
Higher-order Masking and Shu�ing for Software

Implementations of Block Ciphers

Matthieu Rivain1;2, Emmanuel Prou�1, and Julien Doget1;3;4

1 Oberthur Technologies, France
2 University of Luxembourg, Luxembourg

3 Universit�e catholique de Louvain, Belgium
4 University of Paris 8, France

{m.rivain,e.prouff,j.doget}@oberthur.com

Abstract. Di�erential Power Analysis (DPA) is a powerful side channel
key recovery attack that e�ciently breaks block ciphers implementations.
In software, two main techniques are usually applied to thwart them:
masking and operations shu�ing. To bene�t from the advantages of the
two techniques, recent works have proposed to combine them. However,
the schemes which have been designed until now only provide limited
resistance levels and some advanced DPA attacks have turned out to
break them. In this paper, we investigate the combination of masking and
shu�ing. We moreover extend the approach with the use of higher-order
masking and we show that it enables to signi�cantly improve the security
level of such a scheme. We �rst conduct a theoretical analysis in which
the e�ciency of advanced DPA attacks targeting masking and shu�ing
is quanti�ed. Based on this analysis, we design a generic scheme com-
bining higher-order masking and shu�ing. This scheme is scalable and
its security parameters can be chosen according to any desired resistance
level. As an illustration, we apply it to protect a software implementation
of AES for which we give several security/e�ciency trade-o�s.

1 Introduction

Side Channel Analysis (SCA in short) exploits information that leaks from phys-
ical implementations of cryptographic algorithms. This leakage (e.g. the power
consumption or the electro-magnetic emanations) may indeed reveal information
on the secret data manipulated by the implementation. Among SCA attacks, two
classes may be distinguished. The set of so-called Pro�ling SCA corresponds to
a powerful adversary who has a copy of the attacked device under control and
who uses it to evaluate the distribution of the leakage according to the processed
values. Once such an evaluation is obtained, a maximum likelihood approach is
followed to recover the secret data manipulated by the attacked device. The sec-
ond set of attacks is the set of so-called Di�erential Power Analysis (DPA) [11].
It corresponds to a more realistic (and much weaker) adversary than the one
considered in Pro�ling SCA, since the adversary is only able to observe the
device behavior and has no a priori knowledge of the implementation details.

This paper only deals with the set of DPA as it includes a great majority of the
attacks encountered e.g. by the smart card industry.

Block ciphers implementations are especially vulnerable to DPA attacks and
research e�orts have been stepped up to specify implementation schemes counter-
acting them. For software implementations, one identi�es two main approaches:
masking [2, 7] and shu�ing [8]. However, some advanced DPA techniques exist
that defeat these countermeasures [3, 15]. A natural approach to improve the
DPA resistance is to mix masking and shu�ing [8, 25, 26]. This approach seems
promising since it enables to get the best of the two techniques. However, the
schemes that have been proposed so far [8, 26] only focus on �rst-order mask-
ing which prevents them from reaching high resistance levels. This is all the
more serious that advanced DPA attacks have turned out to be quite e�cient in
breaking them [25,26].

In this paper, we conduct an analysis to quantify the e�ciency of an attack
that targets either a masked implementation or a shu�ed implementation or a
masked-and-shu�ed implementation. Based on this analysis, we design a new
scheme combining higher-order masking and shu�ing to protect software imple-
mentations of block ciphers. This scheme is scalable and its parameters can be
speci�ed to achieve any desired resistance level. We apply it to protect a software
implementation of AES and we show how to choose the scheme parameters to
achieve a given security level with the minimum overhead.

2 Preliminaries

2.1 Masking and Shu�ing Countermeasures

To protect cryptographic implementations against DPA, one must reduce the
amount of information that leaks on sensitive intermediate variables during the
processing. A variable is said to be sensitive if it is a function of the plaintext
and a guessable part of the secret key (that is not constant with respect to the
latter).

To thwart DPA attacks, countermeasures try to make leakages as independent
as possible of sensitive variables. Nowadays, two main approaches are followed
to achieve such a purpose in software: the masking and the shu�ing. We brie
y
recall hereafter the two techniques.

The core idea behind masking is to randomly split every sensitive variable X
into d+1 shares M0,..., Md in such a way that the relation M0 ? ::: ?Md = X is
satis�ed for a group operation ? (e.g. the x-or or the modular addition). Usually,
M1,...,Md (called the masks) are randomly picked up andM0 (called the masked

variable) is processed to satisfy M0 ? ::: ? Md = X. The parameter d is usually
called the masking order. When carefully implemented (namely when all the
shares are processed at di�erent times), dth-order masking perfectly withstands
any DPA exploiting less than d + 1 leakage signals simultaneously. Although
attacks exploiting d + 1 leakages are always theoretically possible, in practical
settings their complexity grows exponentially with d [2]. The design of e�cient

higher-order masking schemes for block ciphers is therefore of great interest.
However, even for small d, dealing with the propagation of the masks through
the underlying scheme is an issue. For linear operations, e�cient and simple
solutions exist that induce an acceptable overhead irrespective of d. Actually,
the issue is to protect the non-linear S-boxes computations. In the particular
case d = 1, a straightforward solution called the table re-computation exists (see
for instance [1, 14]). Straightforward generalizations of the method to higher
orders d do not provide security versus higher-order DPA. Indeed, whatever
the number of masks, an attack targeting two di�erent masked input/output
is always possible (see for instance [17]). To bypass this
aw, [23] suggests to
re-compute a new table before every S-box computation. This solution is very
costly in terms of timings and [5] shows the feasibility of third-order attacks, so
the scheme is only secure for d < 3. An alternative solution for d = 2 has been
proposed in [21] but the timing overhead is of the same order.

Shu�ing consists in spreading the signal containing information about a sen-
sitive variable X over t di�erent signals S1; : : : ; St leaking at di�erent times. This
way, if the spread is uniform, then for every i the probability that Si corresponds
to the manipulation of X is 1

t
. As a consequence, the signal-to-noise ratio of the

instantaneous leakage on X is reduced by a factor of t (see Sect. 3.2 for details).
Applying shu�ing is straightforward and does not relate to the nature (linear
or non-linear) of the layer to protect. Moreover, shu�ing is usually signi�cantly
less costly than higher-order masking when applied to non-linear layers.

Since higher-order masking is expensive and since �rst-order masking can
be defeated with quite reasonable e�orts [17], a natural idea is to use shu�ing
together with �rst-order masking. A few schemes have already been proposed
in the literature [8, 26]. In [8], an 8-bit implementation of AES is protected
using �rst-order masking and shu�ing. The work in [26] extends this scheme
to a 32-bit implementation with the possible use of instructions set extension.
Furthermore, [26] proposes some advanced DPA attacks on such schemes whose
practicability is demonstrated in [25]. These works show that combining �rst-
order masking with shu�ing is de�nitely not enough to provide a strong security
level. A possible improvement is to involve higher-order masking. This raises
two issues. First, a way to combine higher-order masking with shu�ing must be
de�ned (especially for S-boxes computations). Secondly, the security of such a
scheme should be quanti�able. It would indeed be of particular interest to have a
lower bound on the resistance of the overall implementation by choosing a priori

the appropriate trade-o� between masking and shu�ing orders. In the rest of
the paper, we address those two issues.

2.2 Notations and Leakage Model

We use the calligraphic letters, like X , to denote �nite sets (e.g. Fn2). The corre-
sponding capital letter X is used to denote a random variable over X , while the
lowercase letter x - a particular element from X . The expectation of X is de-
noted by E [X], its variance by Var [X] and its standard deviation by � [X]. The

correlation coe�cient [27] between X and Y is denoted by � [X;Y]. It measures
the linear interdependence between X and Y and is de�ned by:

� [X;Y] =
Cov [X;Y]

� [X]� [Y]
; (1)

where Cov [X;Y], called covariance of X and Y , equals E [(X � E [X])(Y � E [Y])]
or E [XY]� E [X] E [Y] equivalently.

In the next sections, we investigate the security of the combination of masking
and shu�ing towards DPA. Our analysis is conducted in the Hamming weight
leakage model that we formally de�ne hereafter. This model is very common
for the analysis of DPA attacks [9, 20, 26] and it has been practically validated
several times [15,17].

De�nition 1 (Hamming weight model). The leakage signal Si produced by

the processing of a variable Di satis�es:

Si = �i + �i �H(Di) +Ni ; (2)

where �i denotes a constant o�set, �i is a real value, H(�) denotes the Hamming

weight function and Ni denotes a noise with mean 0 and standard deviation �.

When several leakage signals Si's are jointly considered, we shall make three
additional assumptions: (1) the constant �i is the same for the di�erent Si's
(without loss of generality, we consider �i = 1), (2) noises Ni's are mutually
independent and (3) the noise standard deviation � is the same for the di�erent
Ni's.

3 Analysis of Advanced DPA Attacks Against Masking

and Shu�ing

Higher-order DPA attacks aim at recovering information on a sensitive variable
X by considering several non-simultaneous leakage signals. Let us denote by
S the multivariate random variable corresponding to those signals. The attack
starts by converting S into an univariate random variable by applying it a func-
tion g. Then, a prediction function f is de�ned according to some assumptions
on the device leakage model. Eventually, every guess X̂ on X is checked by esti-
mating the correlation coe�cient between the combined leakage signal g(S) and
the so-called prediction f(X̂).

As argued in several works (see for instance [12, 13, 20, 23]), the absolute
value of the correlation coe�cient � [f(X); g(S)] (corresponding to the correct
key guess) is a sound estimator of the e�ciency of a correlation based DPA
characterized by the pair of functions (f; g). In [13, 24], it is even shown that
the number of leakage measurements required for the attack to succeed can be
approximated by c � � [f(X); g(S)]

�2
where c is a constant depending on the

number of key guesses and the required success rate. In the following, we exhibit
in the Hamming weight model (see Sect. 2.2) explicit formulae of this coe�cient

for advanced DPA attacks where the sensitive variable is either (1) protected
by (higher-order) masking, or (2) protected by shu�ing or (3) protected with a
combination of the two techniques.

3.1 Defeating Masking: Higher-order DPA

When dth-order masking is used, any sensitive variable X is split into d+1 shares
X�M, M1, ..., Md, whereM denotes the sum

L
iMi. In the following, we shall

denote X �M by M0. The processing of each share Mi respectively results in a
leakage signal Si. Since the Mi's are assumed to be mutually independent, every
tuple of d signals or less among the Si's is independent of X. Thus, to recover
information about X, the joint distribution of all the d+1 signals must be con-
sidered. Higher-order DPA consists in combining the d+1 leakage signals by the
mean of a so-called combining function C(�; � � � ; �). This enables the construction
of a signal that is correlated to the sensitive variable X.

Several combining functions have been proposed in the literature. Two of
them are commonly used: the product combining [2] which consists in multiplying
the di�erent signals and the absolute di�erence combining [15] which computes
the absolute value of the di�erence between two signals. As noted in [5, Sect. 1],
the latter can be extended to higher orders by induction. Other combining func-
tions have been proposed in [9,16]. In a recent paper [20], the di�erent combining
functions are compared for second-order DPA in the Hamming weight model.
An improvement of the product combining called normalized product combining

is proposed and it is shown to be more e�cient than the other combining func-
tions5. In this paper, we therefore consider the normalized product combining
generalized to higher orders:

C (S0; S1 � � � ; Sd) =
dY

i=0

(Si � E [Si]) : (3)

We shall denote by Cd(X) the combined leakage signal C (S0; S1 � � � ; Sd)
where the Si's correspond to the processing of the shares X �M, M1, ..., Md

in the Hamming weight model. The following lemma gives the expectation of
Cd(X) given X = x for every x 2 F

n
2 . The proof is given in the extended version

of this paper [22].

Lemma 1. Let x 2 F
n
2 , then the expectation of Cd(x) satis�es:

E [Cd(x)] =

�
�1

2

�d �
H(x)� n

2

�
: (4)

Lemma 1 shows that the expectation of Cd(x) is an a�ne function of the
Hamming weight of x. According to the analysis in [20], this implies that the

5 This assertion is true while considering a noisy model. In a fully idealized model,
other combining may provide better results (see [20]).

Hamming weight of X maximizes the correlation. For the reasons given in [20],
this function can therefore be considered as an optimal prediction for Cd(X).
Hence, the HO-DPA we focus here consists in estimating the correlation between
the Hamming weight of the target variable H(X) and the combined leakage
Cd(X). The next proposition provides the exact value of this correlation. The
proof is given in the extended version of this paper [22].

Proposition 1. Let X be a random variable uniformly distributed over Fn2 . The

correlation between H(X) and Cd(X) satis�es:

� [H(X); Cd(X)] = (�1)d
p
n

(n+ 4�2)
d+1
2

: (5)

Notation. The correlation coe�cient in (5) shall be referred as �(n; d; �).

3.2 Defeating Shu�ing: Integrated DPA

When shu�ing is used, the signal containing information about the sensitive
variable X is randomly spread over t di�erent signals S1, ..., St. As a result,
the correlation between the prediction and one of these signals is reduced by a
factor t compared to the correlation without shu�ing. In [3], an integrated DPA

attack (also called windowing attack) is proposed for this issue. The principle is
to add the t signals all together to obtain an integrated signal. The correlation is
then computed between the prediction and the integrated signal. The resulting
correlation is reduced by a factor

p
t instead of t without integration. This is

formalized in the next proposition.

Proposition 2. Let (Si)16i6t be t random variables identically distributed and

mutually independent. Let Y denote a signal Sj's whose index j is a random

variable uniformly distributed over f1; � � � ; tg. Let X be a random variable that

is correlated to Y and that is independent of the remaining Si's. For every mea-

surable function f , the correlation between f(X) and S1 + � � �+ St satis�es:

� [f(X); S1 + � � �+ St] =
1p
t
� [f(X); Y] : (6)

Proof. On one hand we have Cov [f(X); S1 + � � �+ St] = Cov [f(X); Y] and on
the other hand we have � [S1 + � � �+ St] =

p
t � [Y]. Relation (6) straightfor-

wardly follows. �

3.3 Defeating Combined Masking and Shu�ing: Combined
Higher-order and Integrated DPA

When masking is combined with shu�ing, any sensitive variable X is split into
d + 1 shares X �M, M1, ..., Md whose manipulations are randomly spread
over t di�erent times yielding t di�erent signals Si. The (d + 1)-tuple of sig-
nals indices corresponding to the shares hence ranges over a subset I of the set

of (d + 1)-combinations from f1; � � � ; tg. This subset depends on how the shuf-

ing is performed (e.g. the shares may be independently shu�ed or shu�ed all
together).

To bypass such a countermeasure, an adversary may combine integrated and
higher-order DPA techniques. The most pertinent way to perform such a com-
bined attack is to design a so-called combined-and-integrated signal by summing
all the possible combinations of d+ 1 signals among S1, ..., St [25, 26]. That is,
the combined-and-integrated signal, denoted ICd;I(X), is de�ned by:

ICd;I(X) =
X

(i0;:::;id)2I

C(Si0 ; � � � ; Sid) : (7)

We show in the following proposition that the correlation coe�cients of the
combined attacks relate on �(n; d; �). The proof is given in the extended version
of this paper [22].

Proposition 3. Let X, M1, ..., Md be a family of d + 1 n-bit random vari-

ables uniformly distributed and mutually independent. Let I be a set of (d +
1)-combinations from f1; � � � ; tg and let (i0; � � � ; id) be a random vector uni-

formly distributed over I. Let (Di)i be a family of random variables such that

(Di0 ; Dii ; � � � ; Did) = (X �LiMi;M1; � � � ;Md) and, for every j 6= i0; :::; id,

Dj is uniformly distributed and mutually independent of (Di)i6=j. Let (Si)i be

a family of t signals following the Hamming weight model corresponding to the

processing of the Di's. Then we have:

� [H(X); ICd;I(X)] =
1p
#I

�(n; d; �) :

4 A Generic Scheme Combining Higher-order Masking

and Shu�ing

In this section, we propose a generic scheme to protect block cipher implemen-
tations by combining higher-order masking and shu�ing. First we introduce the
general block cipher model and then we describe the proposed scheme. After-
ward, we investigate the possible attack paths and we deduce a strategy for
choosing the scheme parameters (i.e. the masking and shu�ing orders, see Sect.
4.2).

4.1 Block Cipher Model

A block cipher is parameterized by a master key and it transforms a plaintext
block into a ciphertext block through the repetition of key-dependent round

transformations. We denote by p, and we call state, the temporary value taken
by the ciphertext during the algorithm. In practice, the cipher is iterative, which
means that it applies several times the same round transformation ' to the state.

This round transformation is parameterized by a round key k that is derived from
the master key.

In our model, ' is composed of di�erent operations: a key addition layer (by
xor), a non-linear layer
 and a linear layer �:

'[k](p) = [� �
](p� k) :

We assume that the non-linear layer applies the same non-linear transfor-
mation S, called S-box, on N independent n-bit parts pi of the state:
(p) =�
S(p1); � � � ; S(pN)

�
. For e�ciency reasons, the S-box is usually implemented by a

look-up table. The linear layer � is composed of L linear operations �i that oper-
ate on L independent l-bit parts pi(l) of the state: �(p) =

�
�1(p1(l)); � � � ; �L(pL(l))

�
.

We also denote by l0 6 l the minimum number of bits of a variable manipulated
during the processing of �i. For instance, theMixColumns layer of AES applies to
columns of l = 32 bits but it manipulates some elements of l0 = 8 bits. We further
assume that the �i's are su�ciently similar to be implemented by one atomic

operation that is an operation which has the same execution
ow whatever the
index i.

Remark 1. Linear and non-linear layers may involve di�erent state indexing. In
AES for instance, the state is usually represented as a 4� 4 matrix of bytes and
the non-linear layer usually operates on its elements p1,...,p16 vertically (starting
at the top) and from left to right. In this case, the operation �1 corresponding to
the AES linear layer (that is composed of ShiftRows followed by MixColumns [6])
operates on p1(32) = (p1; p6; p11; p16).

In the sequel, we shall consider that the key addition and the non-linear
layer are merged in a keyed substitution layer that adds each key part ki to the
corresponding state part pi before applying the S-box S.

4.2 Our Scheme

In this section, we describe a generic scheme to protect a round ' by combining
higher-order masking and operations shu�ing. Our scheme involves a dth-order
masking for an arbitrarily chosen d. Namely, the state p is split into d+1 shares
m0, ..., md satisfying:

m0 � � � � �md = p : (8)

In practice, m1, ..., md are random masks and m0 is the masked state de�ned
according to (8). In the sequel, we shall denote by (mj)i (resp. (mj)i(l)) the

ith n-bit part (resp. the ith l-bit part) of a share mj . At the beginning of the
ciphering the masks are initialized to zero. Then, each time a part of a mask is
used during the keyed substitution layer computation, it is refreshed with a new
random value (see below). For the reasons given in Sect. 2.1, our scheme uses
two di�erent approaches to protect the keyed substitution layer and the linear
layer. These are described hereafter.

Protecting the keyed substitution layer. To protect the keyed substitution
layer, we use a single d0th-order masked S-box (for some d0 6 d) to perform all
the S-box computations. As explained in Sect. 2.1, such a method is vulnerable
to a second-order DPA attack targeting two masked inputs/outputs. To deal
with this issue, we make use of a high level of shu�ing in order to render such
an attack di�cult and to keep an homogeneous security level (see Sect. 4.4).

The input of S is masked with d0 masks r1, ..., rd0 and its output is masked
with d0 masks s1, ..., sd0 . Namely, a masked S-box S� is computed that is de�ned
for every x 2 f0; 1gn by:

S�(x) = S
�
x�

d0M
j=1

rj

�
�

d0M
j=1

sj : (9)

This masked S-box is then involved to perform all the S-box computations.
Namely, when the S-box must be applied to a masked variable (m0)i, the d

masks (mj)i of this latter are replaced by the d0 masks rj which enables the
application of S�. The d0 masks sj of the obtained masked output are then
switched for d new random masks (mj)i.

The high level shu�ing is ensured by the addition of dummy operations.
Namely, the S-box computation is performed t times: N times on a relevant part
of the state and t � N times on dummy data. For such a purpose, each share
mj is extended by a dummy part (mj)N+1 that is initialized by a random value
at the beginning of the ciphering. The round key k is also extended by such a
dummy part kN+1. For each of the t S-box computations, the index i of the parts
(mj)i to process is read in a table T . This table of size t contains all the indices
from 1 to N stored at random positions and its t�N other elements equal N+1.
Thanks to this table, the S-box computation is performed once on every of the
N relevant parts and t�N times on the dummy parts. The following algorithm
describes the whole protected keyed substitution layer computation.

Algorithm 1 Protected keyed substitution layer
Input: the shares m0, ..., md s.t.

L
mi = p, the round key k = (k1; � � � ; kN+1)

Output: the shares m0, ..., md s.t.
L

mi =
(p� k)

1. for iT = 1 to t

// Random index pick-up

2. i T [iT]

// Masks conversion : (m0)i (pi
L

j rj

3. for j = 1 to d0 do (m0)i ((m0)i � rj)� (mj)i

4. for j = d0 + 1 to d do (m0)i (m0)i � (mj)i

// key addition and S-box computation: (m0)i (S(pi � ki)�
L

j sj

5. (m0)i S�
�
(m0)i � ki

�

// Masks generation and conversion: (m0)i (S(pi � ki)�
L

j (mj)i

6. for j = 1 to d0

7. (mj)i rand()

8. (m0)i ((m0)i � (mj)i)� sj

9. for j = d0 + 1 to d

10. (mj)i rand()

11. (m0)i (m0)i � (mj)i

12. return (m0; � � � ;md)

Remark 2. In Steps 3 and 8, we used round brackets to underline the order in
which the masks are introduced. A new mask is always introduced before remov-
ing an old mask. Respecting this order is mandatory for the scheme security.

Masked S-box computation. The look-up table for S� is computed dynamically
at the beginning of the ciphering by performing d0 table re-computations such
as proposed in [23]. This method has been shown to be insecure for d0 > 2, or
for d0 > 3 depending on the table re-computation algorithm [5, App. A]. We
will therefore consider that one can compute a masked S-box S� with d0 6 3
only. The secure computation of a masked S-box with d0 > 3 is left to further
investigations.

Indices table computation. Several solutions exist in the literature to randomly
generate indices permutation over a �nite set [10, 18, 19]. Most of them can be
slightly transformed to design tables T of size t > N containing all the indices 1
to N in a random order and whose remaining cells are �lled with N+1. However,
few of those solutions are e�cient when implemented in low resources devices. In
our case, since t is likely to be much greater than N , we have a straightforward
algorithm which tends to be very e�cient for t� N . This algorithm is given in
Appendix A (Algorithm 3).

Protecting the linear layer. The atomic operations �i are applied on each
part (mj)i(l) of each share mj in a random order. For such a purpose a table
T 0 is constructed at the beginning of the ciphering that is randomly �lled with
all the pairs of indices (j; i) 2 f0; � � � ; dg � f1; � � � ; Lg. The linear layer is then
implemented such as described by the following algorithm.

Algorithm 2 Protected linear layer
Input: the shares m0, ..., md s.t.

L
mi = p

Output: the shares m0, ..., md s.t.
L

mi = �(p)

1. for iT 0 = 1 to (d+ 1) � L

2. (j; i) T 0[iT 0] // Random index look-up

3. (mj)i(l) �i
�
(mj)i(l)

�
// Linear operation

4. return (m0; � � � ;md)

Indices table computation. To implement the random generation of a permu-
tation T 0 on f0; � � � ; dg � f1; � � � ; Lg, we followed the outlines of the method
proposed in [4]. However, since this method can only be applied to generate per-
mutations on sets with cardinality a power of 2 (which is not a priori the case
for T 0), we slightly modi�ed it. The new version can be found in Appendix A
(Algorithm 4).

4.3 Time Complexity

In the following we express the time complexity of each step of our scheme
in terms of the parameters (t; d; d0; N; L) and of constants ai that depend on
the implementation and the device architecture. Moreover, we provide practical
values of these constants (in number of clock cycles) for an AES implementation
protected with our scheme and running on a 8051-architecture.

Generation of T (see Appendix A). Its complexity CT satis�es:

CT = t� a0 +N � a1 + f(N; t)� a2 ;

where f(N; t) = t
PN�1

i=0
1
t�i

. As argued in Appendix A, f(N; t) can be approx-

imated by t ln
�

t
t�N

�
for t� N .

Example 1. For our AES implementation, we got a0 = 6, a1 = 7 and a2 = 9.

Generation of T 0. Let q denote dlog2((d+1)L)e. The complexity CT 0 satis�es:

CT 0 =

�
q � a0 + 2q � (a1 + q � a2) if q = log2((d+ 1)L);
q � a0 + 2q � (a1 + q � a2) + 2q � a3 otherwise.

Example 2. For our AES implementation, we got a0 = 3, a1 = 15 and a2 = 14,
a3 = 17.

Generation the Masked S-box. Its complexity CMS satis�es:

CMS = d0 � a0 :

Example 3. For our AES implementation, we got a0 = 4352.

Protected keyed Substitution Layer.Its complexity CSL satis�es:

CSL = t� (a0 + d� a1 + d0 � a2) :

Example 4. For our AES implementation, we got a0 = 55, a1 = 37 and a2 = 18.

Protected Linear Layer. Its complexity CLL satis�es:

CLL = (d+ 1)L� a0 :

Example 5. For our AES implementation, we got a0 = 169.

4.4 Attack Paths

In this section, we list attacks combining higher-order and integrated DPA that
may be attempted against our scheme. Section 3 is then involved to associate
each attack with a correlation coe�cient that depends on the leakage noise
deviation �, the block cipher parameters (n;N; l0; L) and the security parameters
(d; d0; t). As argued, these coe�cients characterize the attacks e�ciencies and
hence the overall resistance of the scheme.

Remark 3. In this paper, we only consider known plaintext attack i.e. we assume
the di�erent sensitive variables uniformly distributed. In a chosen plaintext at-
tack, the adversary would be able to �x the value of some sensitive variables
which could yield better attack paths. We do not take such attacks into account
and let them for further investigations.

Every sensitive variable in the scheme is (1) either masked with d unique
masks or (2) masked with d0 masks shared with other sensitive variables (during
the keyed substitution layer).

(1). In the �rst case, the d + 1 shares appear during the keyed substitu-
tion layer computation and the linear layer computation. In both cases, their
manipulation is shu�ed.

(1.1). For the keyed substitution layer (see Algorithm 1), the d + 1 shares
all appear during a single iteration of the loop among t. The attack consists in
combining the d + 1 corresponding signals for each loop iteration and to sum
the t obtained combined signals. Proposition 2 implies that this attack can be
associated with the following correlation coe�cient �1:

�1(t; d) =
1p
t
�(n; d; �) : (10)

(1.2). For the linear layer (see Algorithm 2), the d+1 shares appear among
(d + 1) � L possible operations. The attack consists in summing all the combi-
nations of d+ 1 signals among the (d+ 1) � L corresponding signals. According
to Proposition 3, this attack can be associated with the following correlation
coe�cient �2:

�2(L; d) =
1q�

(d+1)�L
d+1

��(l0; d; �) : (11)

Remark 4. In the analysis above, we chose to not consider attacks combining
shares processed in the linear layers together with shares processed in the keyed
substitution layer. Actually, such an attack would yield to a correlation coe�-
cient upper bounded by the maximum of the two correlations in (10) and (11).

(2). In the second case, the attack targets a d0th-order masked variable oc-
curring during the keyed substitution layer. Two alternatives are possible.

(2.1). The �rst one is to simultaneously target the masked variable (that
appears in one loop iteration among t) and the d0 masks that appear at �xed

times (e.g. in every loop iteration of Algorithm 1 or during the masked S-box
computation). The attack hence consists in summing the t possible combined
signals obtained by combining the masked variable signal (t possible times) and
the d0 masks signals (at �xed times). According to Proposition 3, this leads to a
correlation coe�cient �3 that satis�es:

�3(t; d
0) =

1p
t
�(n; d0; �) : (12)

(2.2). The second alternative is to target two di�erent variables both masked
with the same sum of d0 masks (for instance two masked S-box inputs or outputs).
These variables are shu�ed among t variables. The attack hence consists in sum-
ming all the possible combinations of the two signals among the t corresponding
signals. According to Proposition 3, this leads to a correlation coe�cient �4 that
satis�es:

�4(t) =
1p

t � (t� 1)
�(n; 2; �) : (13)

4.5 Parameters Setting

The security parameters (d; d0; t) can be chosen to satisfy an arbitrary resistance
level characterized by an upper bound �� on the correlation coe�cients corre-
sponding to the di�erent attack paths exhibited in the previous section. That is,
the parameters are chosen to satisfy the following inequality:

max(j�1j; j�2j; j�3j; j�4j) 6 �� : (14)

Among the 3-tuples (d; d0; t) satisfying the relation above, we select one
among those that minimize the timing complexity (see Sect. 4.3).

5 Application to AES

We implemented our scheme for AES on a 8051-architecture. According to Re-
mark 1, the ShiftRows and the MixColumns were merged in a single linear layer
applying four times the same operation (but with di�erent state indexings). The
block cipher parameters hence satisfy: n = 8, N = 16, l = 32, l0 = 8 and L = 4.

Remark 5. In [8], it is claimed that the manipulations of the di�erent bytes in
the MixColumns can be shu�ed. However it is not clear how to perform such a
shu�ing in practice since the processing di�ers according to the byte index.

Table 1 summarizes the timings obtained for the di�erent steps of the scheme
for our implementation.

Remark 6. The unprotected round implementation has been optimized, in par-
ticular by only using variables stored in DATA memory. Because of memory
constraints and due to the scalability of the code corresponding to the protected

Table 1. Timings for the di�erent steps of the scheme for an AES implementation on
a 8051-architecture.

T Generation CT = 112 + t
�
6 + 9

P15
i=0

1
t�i

�

T 0 Generation CT 0 = 3q + 2q(15 + 14q) [+17� 2q]

Masked S-box Generation CMS = 4352d0

Pre-computations CT + CT 0 + CMS

Substitution Layer CSL = t(55 + 37d+ 18d0)

Linear Layer CLL = 676(d+ 1)

Protected Round CSL + CLL = 676(d+ 1) + t(55 + 37d+ 18d0)

Unprotected Round 432

round, many variables have been in stored in XDATA memory which made the
implementation more complex. This explains that, even for d = d0 = 0 and t = 16
(i.e. when there is no security), the protected round is more time consuming than
the unprotected round.

We give hereafter the optimal security parameters (t; d; d0) for our AES im-
plementation according to some illustrative values of the device noise deviation
� and of correlation bound ��. We consider three noise deviation values: 0,

p
2

and 4
p
2. In the Hamming weight model, these values respectively correspond

to a signal-to-noise ratio (SNR) to +1, 1 and 1
4 . We consider four correlation

bounds: 10�1, 10�2, 10�3, and 10�4. The security parameters and the corre-
sponding timings for the protected AES implementation are given in Table 5.
Note that all the rounds have been protected.

Table 2. Optimal parameters and timings according to SNR and ��.

SNR = +1 SNR = 1 SNR = 1
4

�� t d d0 timings t d d0 timings t d d0 timings

10�1 16 1 1 3:66� 104 16 1 1 3:66� 104 16 1 0 2:94� 104

10�2 20 3 3 8:57� 104 20 2 2 6:39� 104 16 1 1 3:66� 104

10�3 1954 4 3 5:08� 106 123 3 3 3:13� 105 16 2 2 5:75� 104

10�4 195313 5 3 5:75� 108 12208 4 3 3:15� 107 19 3 3 8:35� 104

When SNR = +1, the bound d0 6 3 implies an intensive use of shu�ing
in the keyed substitution layer. The resulting parameters for correlation bounds
10�3 and 10�4 imply timings that quickly become prohibitive. A solution to
overcome this drawback would be to design secure table re-computation algo-
rithms for d0 > 3. Besides, these timings underline the di�culty of securing block
ciphers implementations with pure software countermeasures. When the leakage
signals are not very noisy (SNR = 1), timings clearly decrease (by a factor from

10 to 20). This illustrates, once again, the soundness of combining masking with
noise addition. This is even clearer when the noise is stronger (SNR = 1

4), where
it can be noticed that the addition of dummy operations is almost not required
to achieve the desired security level.

6 Conclusion

In this paper, we have conducted an analysis that quanti�es the e�ciency of ad-
vanced DPA attacks targeting masking and shu�ing. Based on this analysis, we
have designed a generic scheme combining higher-order masking and shu�ing.
This scheme generalizes to higher orders the solutions previously proposed in the
literature. It is moreover scalable and its security parameters can be chosen ac-
cording to any desired resistance level. As an illustration, we applied it to protect
a software implementation of AES for which we gave several security/e�ciency
trade-o�s.

References

1. M.-L. Akkar and C. Giraud. An Implementation of DES and AES, Secure against
Some Attacks. In C� . Ko�c, D. Naccache, and C. Paar, editors, Cryptographic Hard-

ware and Embedded Systems { CHES 2001, volume 2162 of Lecture Notes in Com-

puter Science, pages 309{318. Springer, 2001.
2. S. Chari, C. Jutla, J. Rao, and P. Rohatgi. Towards Sound Approaches to Coun-

teract Power-Analysis Attacks. In M. Wiener, editor, Advances in Cryptology {

CRYPTO '99, volume 1666 of Lecture Notes in Computer Science, pages 398{412.
Springer, 1999.

3. C. Clavier, J.-S. Coron, and N. Dabbous. Di�erential Power Analysis in the Pres-
ence of Hardware Countermeasures. In C� . Ko�c and C. Paar, editors, Cryptographic
Hardware and Embedded Systems { CHES 2000, volume 1965 of Lecture Notes in

Computer Science, pages 252{263. Springer, 2000.
4. J.-S. Coron. A New DPA Countermeasure Based on Permutation Tables. In

R. Ostrovsky, R. D. Prisco, and I. Visconti, editors, Security and Cryptography for

Networks, 6th International Conference, SCN 2008, volume 5229 of Lecture Notes

in Computer Science, pages 278{292. Springer, 2008.
5. J.-S. Coron, E. Prou�, and M. Rivain. Side Channel Cryptanalysis of a Higher

Order Masking Scheme. In P. Paillier and I. Verbauwhede, editors, Cryptographic
Hardware and Embedded Systems { CHES 2007, volume 4727 of Lecture Notes in

Computer Science, pages 28{44. Springer, 2007.
6. FIPS PUB 197. Advanced Encryption Standard. National Institute of Standards

and Technology, Nov. 2001.
7. L. Goubin and J. Patarin. DES and Di�erential Power Analysis { The Duplication

Method. In C� . Ko�c and C. Paar, editors, Cryptographic Hardware and Embedded

Systems { CHES '99, volume 1717 of Lecture Notes in Computer Science, pages
158{172. Springer, 1999.

8. P. Herbst, E. Oswald, and S. Mangard. An AES Smart Card Implementation
Resistant to Power Analysis Attacks. In J. Zhou, M. Yung, and F. Bao, editors,
Applied Cryptography and Network Security { ANCS 2006, volume 3989 of Lecture
Notes in Computer Science, pages 239{252. Springer, 2006.

9. M. Joye, P. Paillier, and B. Schoenmakers. On Second-order Di�erential Power
Analysis. In J. Rao and B. Sunar, editors, Cryptographic Hardware and Embedded

Systems { CHES 2005, volume 3659 of Lecture Notes in Computer Science, pages
293{308. Springer, 2005.

10. D. Knuth. The Art of Computer Programming, volume 2. Addison Wesley, third
edition, 1988.

11. P. Kocher, J. Ja�e, and B. Jun. Di�erential Power Analysis. In M. Wiener, editor,
Advances in Cryptology { CRYPTO '99, volume 1666 of Lecture Notes in Computer

Science, pages 388{397. Springer, 1999.
12. S. Mangard. Hardware Countermeasures against DPA { A Statistical Analysis of

Their E�ectiveness. In T. Okamoto, editor, Topics in Cryptology { CT-RSA 2004,
volume 2964 of Lecture Notes in Computer Science, pages 222{235. Springer, 2004.

13. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks { Revealing the

Secrets of Smartcards. Springer, 2007.
14. T. Messerges. Securing the AES Finalists against Power Analysis Attacks. In

B. Schneier, editor, Fast Software Encryption { FSE 2000, volume 1978 of Lecture
Notes in Computer Science, pages 150{164. Springer, 2000.

15. T. Messerges. Using Second-order Power Analysis to Attack DPA Resistant Soft-
ware. In C� . Ko�c and C. Paar, editors, Cryptographic Hardware and Embedded

Systems { CHES 2000, volume 1965 of Lecture Notes in Computer Science, pages
238{251. Springer, 2000.

16. E. Oswald and S. Mangard. Template Attacks on Masking|Resistance is Futile.
In M. Abe, editor, Topics in Cryptology { CT-RSA 2007, volume 4377 of Lecture
Notes in Computer Science, pages 243{256. Springer, 2007.

17. E. Oswald, S. Mangard, C. Herbst, and S. Tillich. Practical Second-order DPA At-
tacks for Masked Smart Card Implementations of Block Ciphers. In D. Pointcheval,
editor, Topics in Cryptology { CT-RSA 2006, volume 3860 of Lecture Notes in

Computer Science, pages 192{207. Springer, 2006.
18. J. Patarin. How to Construct Pseudorandom and Super Pseudorandom Permuta-

tion from one Single Pseudorandom Function. In R. Rueppel, editor, Advances in
Cryptology { EUROCRYPT '92, volume 658 of Lecture Notes in Computer Science,
pages 256{266. Springer, 1992.

19. J. Pieprzyk. How to Construct Pseudorandom Permutations from Single Pseu-
dorandom Functions Advances. In I. Damg�ard, editor, Advances in Cryptology

{ EUROCRYPT '90, volume 473 of Lecture Notes in Computer Science, pages
140{150. Springer, 1990.

20. E. Prou�, M. Rivain, and R. B�evan. Statistical Analysis of Second Order Di�er-
ential Power Analysis. IEEE Trans. Comput., 58(6):799{811, 2009.

21. M. Rivain, E. Dottax, and E. Prou�. Block Ciphers Implementations Provably
Secure Against Second Order Side Channel Analysis. In T. Baign�eres and S. Vau-
denay, editors, Fast Software Encryption { FSE 2008, Lecture Notes in Computer
Science, pages 127{143. Springer, 2008.

22. M. Rivain, E. Prou�, and J. Doget. Higher-order Masking and Shu�ing for
Software Implementations of Block Ciphers. Cryptology ePrint Archive, 2009.
http://eprint.iacr.org/.

23. K. Schramm and C. Paar. Higher Order Masking of the AES. In D. Pointcheval,
editor, Topics in Cryptology { CT-RSA 2006, volume 3860 of Lecture Notes in

Computer Science, pages 208{225. Springer, 2006.
24. F.-X. Standaert, E. Peeters, G. Rouvroy, and J.-J. Quisquater. An Overview

of Power Analysis Attacks Against Field Programmable Gate Arrays. IEEE,
94(2):383{394, 2006.

25. S. Tillich and C. Herbst. Attacking State-of-the-Art Software Countermeasures-A
Case Study for AES. In E. Oswald and P. Rohatgi, editors, CHES, volume 5154
of Lecture Notes in Computer Science, pages 228{243. Springer, 2008.

26. S. Tillich, C. Herbst, and S. Mangard. Protecting AES Software Implementa-
tions on 32-Bit Processors Against Power Analysis. In J. Katz and M. Yung, ed-
itors, ACNS, volume 4521 of Lecture Notes in Computer Science, pages 141{157.
Springer, 2007.

27. L. Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer
Texts in Statistics, 2005.

A Algorithms for Index Tables Generations

Generation of T . To generate T , we start by initializing all the cells of T to
the value N + 1. Then, for every j 6 N , we randomly generate an index i < t

until T [i] = N + 1 and we move j into T [i]. The process is detailed hereafter.

Algorithm 3 Generation of T
Input: state's length N and shu�ing order t
Output: indices permutation table T

1. for i 0 to t� 1

2. do T [i] N + 1 // Initialization of T

3. j 1

4. for j 1 to N

5. do i rand(t) while T [i] = N+1 // Generate random index i < t

6. T [i] = j and j j + 1

7. return T

Complexity Anlysis of loop 4-to-6. The expected number f(N; t) of itera-
tions of the loop 4-to-7 in Algorithm 3 satis�es:

f(N; t) = t � (Ht �Ht�N) ; (15)

where for every r, Hr denotes the r
th Harmonic number de�ned by Hr =

rP
i=1

1
i
.

Let us argue about (15). For every j 6 N , the probability that the loop do-

while ends up after i iterations is
�
t�j
t

� � � j
t

�i�1
: at the jth iteration of the for

loop, the test T [i] = N+1 succeeds with probability pj =
�
j
t

�
and fails with prob-

ability 1� pj =
�
t�j
t

�
. One deduces that for every j 6 N , the expected number

of iterations of the loop do-while is
P

i2N i�pi�1
j �(1�pj). We eventually get that

the number of iterations f(N; t) satis�es f(N; t) =
PN�1

j=0

P
i2N i �

�
pj

i�1 � pj
i
�
,

that is f(N; t) =
PN�1

j=0

P
i2N i�pji�1�PN�1

j=0

P
i2N (i+ 1)�pji+

PN�1
j=0

P
i2N pj

i.
As the two �rst sums in the right-hand side of the previous equation are equal,
one deduces that f(N; t) equals

PN�1
j=0

P
i2N pj

i that is
PN�1

j=0
1

1�pj
. Eventually,

since pj equals
j
t
, we get f(N; t) =

PN�1
j=0

t
t�j

which is equivalent with (15).

Since Hr tends towards ln(r)+
, where
 is the Euler-Mascheroni constant,
we can approximate Ht � Ht�N by ln(t) � ln(t � N). We eventually get the
following relation for t� N :

f(N; t) � t � ln
�

t

t�N

�
:

Generation of T 0. In view of the previous complexity, generating a permuta-
tion with the same implementation as for T is not pertinent (in this case t = N).
To generate the permutation T 0, we follow the outlines of the method proposed
in [4]. However, since this method can only be applied to generate permutations
on sets with cardinality a power of 2 (which is not a priori the case for T 0),
we slightly modi�ed it. Let 2q be the smallest power of 2 which is greater than
(d+1)L. Our algorithm essentially consists in designing a q-bit random permu-
tation T 0 from a �xed q-bit permutation � and a family of q random values in Fq2
(Steps 1 to 6 in Algorithm 4). Then, if (d+1)L is not a power of 2, the table T 0

is transformed into a permutation over f0; � � � ; dg � f1; � � � ; Lg by deleting the
elements which are strictly greater than (d+1)L� 1. The process is detailled in
pseudo-code hereafter.

Algorithm 4 Generation of T 0

Input: parameters (d; L) and a n0-bit permutation � with q = dlog2((d+ 1)L)e
Output: indices permutation table T 0

1. for i 0 to q � 1

2. do aleai rand(q) // Initialization of aleas

3. for j 0 to 2q � 1

4. do T 0[j] �[j]

5. for i 0 to q � 1

6. do T 0[j] �[T 0[j]� aleai] // Process the ith index

7. if q 6= (d+ 1)L

8. then for j 0 to (d+ 1)L� 1

9. do i j

10. while T 0[i] � (d+ 1)L

11. do i i+ 1

12. T 0[j] T 0[i]

13. return T 0

With Algorithm 4, it is not possible to generate all the permutations over
f0; � � � ; dg � f1; � � � ; Lg. In our context, we assume that this does not introduce
any weakness in the scheme.

Complexity Anlysis of loop 8-to-12 The number of iterations of loop 8-to-12
in Algorithm 4 in the worst case is 2q.

