
An Efficient Method for Random Delay

Generation in Embedded Software

Jean-Sébastien Coron and Ilya Kizhvatov

Université du Luxembourg
6, rue Richard Coudenhove-Kalergi

l-1359 Luxembourg

{jean-sebastien.coron, ilya.kizhvatov}@uni.lu

Abstract. Random delays are a countermeasure against a range of side
channel and fault attacks that is often implemented in embedded soft-
ware. We propose a new method for generation of random delays and
a criterion for measuring the efficiency of a random delay countermea-
sure. We implement this new method along with the existing ones on
an 8-bit platform and mount practical side-channel attacks against the
implementations. We show that the new method is significantly more
secure in practice than the previously published solutions and also more
lightweight.

Key words: Side channel attacks, countermeasures, random delays

1 Introduction

Insertion of random delays in the execution flow of a cryptographic algorithm is a
simple yet rather effective countermeasure against side-channel and fault attacks.
To our knowledge, random delays are widely used for protection of cryptographic
implementations in embedded devices, mainly smart cards. It belongs to a group
of hiding countermeasures, that introduce additional noise (either in time, am-
plitude or frequency domain) to the side channel leakage while not eliminating
the informative signal itself. This is in contrary to masking countermeasures,
that eliminate correlation between the side channel leakage and the sensitive
data processed by an implementation.

Hiding countermeasures increase complexity of attacks while not rendering
them completely impossible. They are not treated in academia as extensively as
masking but are of great importance in industry. A mixture of multiple hiding
and masking countermeasures would often be used in a real-life protected im-
plementation to raise the complexity of attacks above the foreseen capabilities
of an adversary.

There are two connected problems that arise in this field. The first one is
to develop efficient countermeasures, and the second one is how to measure the
efficiency of the countermeasures. In this paper we tackle both tasks for the case
of the random delays.

Random delays. Most side-channel and fault attacks require an adversary to
know precisely when the target operations occur in the execution flow. This en-
ables her to synchronize multiple traces at the event of interest as in the case
of Differential Power Analysis (dpa) and to inject some disturbance into the
computations at the right time as in the case of fault attacks. By introducing
random delays into the execution flow the synchronization is broken, which in-
creases the attack complexity. This can be done in hardware with the so called
Random Process Interrupts (rpi) as well as in software by placing “dummy” cy-
cles at some points of the program. We give preliminary information on software
random delays in Sect. 2.

Related work. First detailed treatment of the countermeasure was done by
Clavier et al. in [1]. They showed that the number of traces for a successful dpa
attack against rpi grows quadratically or linearly with the variance of the delay
(when integration is used). Mangard presented statistical analysis of random
disarrangement effectiveness in [2]. Amiel et al. [3] performed practical evaluation
of random delays as a protection against fault attacks.

To date, the only effort to improve the random delays countermeasure in
software was published by Benoit and Tunstall in [4]. They suggested to modify
the distribution of an individual independently generated random delay so that
the variance of the sum increases and the mean, in turn, decreases. As a result,
they achieve some improvement. We outline their method briefly here in Sect. 3.

Our Contribution. In this work, we propose a significantly more efficient
algorithm for generating random delays in software (see Sect. 4). Our main idea
is to generate random delays non-independently in order to obtain a much greater
variance of the cumulative delay for the same mean.

We also introduce a method for estimating the efficiency of random delays
based on the coefficient of variation (see Sects. 2 and 5). This method shows how
much variance is introduced by the sum of the delays for a given performance
overhead. We show that the plain uniform delays and the Benoit-Tunstall method

[4] both have efficiency in Θ
(

1/
√

N
)

only, where N is the number of delays in

the sum, whereas our method achieves Θ(1) efficiency with the growth of N .
For example, compared to the plain uniform delays and to the Benoit-Tunstall
method, for the sum of 10 delays our method is more than twice as efficient, and
for the sum of 100 delays – over 6 times more efficient.

Finally, we implement our new method along with the previously known
methods on an 8-bit Atmel avr microcontroller and demonstrate by mounting
practical side-channel attacks that it is indeed more efficient and secure (see
Sect. 6). It is also more lightweight in terms of implementation.

2 Software Random Delays and Their Efficiency

A common way of implementing random delays in software is placing loops of
“dummy” operations (like NOP instructions) at some points of the program. The
number of loop iterations varies depending on the delay value.

A straightforward method is to generate individual delays independently with
durations uniformly distributed in the interval [0, a] for some a ∈ N. We refer to
this method as plain uniform delays. It is easily implementable in cryptographic
devices as most of them have a hardware random number generator (rng) on
board.

In [1] and [2] it was shown that the complexity of a dpa attack (expressed
as the number of power consumption traces required) grows quadratically or
linearly (in case integration techniques are used) with the standard deviation of
the trace displacement in the attacked point. That is why we are interested in
making the variance of random delays as large as possible.

Here are our preliminary assumptions about the attacker’s capabilities.

1. An attacker knows the times when the cryptographic algorithm execution
starts and ends. This is commonly possible by monitoring i/o operations of
a device, or operations like eeprom access.

2. It is harder for an attacker to eliminate multiple random delays than a few
ones.

3. The method of delay generation and its parameters are known to an attacker.

Note that it could be possible to place two sufficiently large and uniformly
distributed delays in the beginning and in the end of the execution. That would
make each point in the trace uniformly distributed over time when looking from
the start of from the end, which is actually the worst case for an attacker.
Unfortunately, in this case it would be relatively easy to synchronize the traces
with the the help of cross-correlation (see [5] for an example). So we assume
that in this case resynchronization of traces can be performed by an attacker.
Therefore, we want to break the trace with relatively short (to keep performance)
random delays in multiple places.

It can be still possible to detect delays produced by means of “dummy” loops
in a side-channel trace because of a regular instruction pattern. To partially
hinder this, “dummy” random data may be processed within a loop. We do
not address this issue in this paper, just following the simple (but natural)
assumption 2.

So an attacker will typically face the sum of several random delays. Follow-
ing the Central Limit Theorem, the distribution of the sum of N independent

(and not necessarily uniform) delays converges to normal with mean Nµd and
variance Nσ2

d, where µd and σ2

d are correspondingly the mean and the variance
of the duration of an individual random delay. In other words, the distribution
of the sum of independent delays depends only on the mean and the variance of
individual delays but not on their particular distribution.

With all the above in mind, we adhere to the following criteria for random
delay generation.

1. The sum of random delays from start or end to some point within the exe-
cution should have the greatest possible variance.

2. The performance overhead should be possibly minimal.

When estimating efficiency of random delay generation, one might be inter-
ested what performance overhead is required to achieve the given variation of
the sum of N delays. Performance overhead can be naturally measured as the
mean µ of this sum. We suggest to estimate efficiency of random delay genera-
tion methods in terms of the coefficient of variation σ/µ, where σ is the standard
deviation for the sum of N random delays. The greater this efficiency ratio σ/µ,
the more efficient the method is.

3 Method of Benoit and Tunstall

In [4], Benoit and Tunstall propose a way to improve the efficiency of the random
delays countermeasure. Their aim is to increase the variance and decrease the
mean of the sum of random delays while not spoiling the distribution of an indi-
vidual random delay. To achieve this aim, the authors modify the distribution of
an independently generated individual delay from the uniform to a pit-shaped
one (see Figure 1). This increases the variance of the individual delay. Further-
more, some asymmetry is introduced to the pit in order to decrease the mean of
an individual delay.

50 100 150 200 250
0

0.02

0.04

0.06

0.08

Delay

R
el

a
ti
v
e

fr
eq

u
en

cy

500 1000 1500 2000 2500
0

0.02

0.04

0.06

0.08

Plain uniform

Benoit-Tunstall

Fig. 1. Distribution for the method of Benoit and Tunstall [4] compared to plain uni-
form delays: 1 delay (left) and sum of 10 delays (right)

The delays are generated independently, so if an individual delay has mean
µbt and variance σ2

bt, the distribution of the sum of N delays converges to normal
(as in the case of plain uniform delays) with mean Nµbt and variance Nσ2

bt.
The authors estimate efficiency of their method by comparing it to plain

uniform random delays. In an example, they report an increase of the variance
by 33% along with a decrease of the mean by 20%. Distributions for a single delay
and for the sum of 10 delays (for the parameters from the example mentioned
above, see [4]) are shown in Figure 1 in comparison to plain uniform delays.

We note that the authors also pursued an additional criterion for the difficulty
of deriving the distribution of the random delay. But it seems reasonable to
consider this distribution to be known to an adversary, at least if the method is
published.

4 Our New Method: Floating Mean

In this section we present our new method for random delay generation in
software. The main idea of the method is to generate random delays non-
independently. This significantly improves the variance of the cumulative de-
lay and the method is also more efficient compared to [4] and to plain uniform
random delays.

By x ∼ DU [y, z] we will denote a random variable x following discrete uniform
distribution on [y, z], y, z ∈ Z, y < z.

Our method is as follows. First, we fix some a ∈ N which is the maximum
delay length.1 Additionally, we fix another parameter b ∈ N, b ≤ a. These
implementation parameters a and b are fixed in an implementation and do not
change between different executions of an algorithm under protection.

Now, in each execution, we first produce a value m ∈ N randomly uniformly
on [0, a−b], and then generate individual delays independently and uniformly on
[m,m+ b]. In other words, within any given execution individual random delays
have a fixed mean m + b/2. But this mean varies from execution to execution,
hence our naming of the method.

The resulting histograms in comparison to plain uniform delays are depicted
in Figure 2. This figure also shows how the properties of the method vary depen-
dent on the ratio b/a of the parameters of the method, that can take possible
values between 0 and 1.

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

R
el

a
ti
v
e

fr
eq

u
en

cy

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

Delay
0 500 1000 1500 2000 2500

0

0.01

0.02

0.03

0.04

Plain uniform

Floating mean

b/a ≈ 0.2

Floating mean

b/a ≈ 0.8

Fig. 2. Distribution for the Floating mean method with different b/a ratio compared
to plain uniform delays: histogram for 1 delay (left), for 1 delay within a single trace,
i.e. for some fixed m (center) and for the sum of 10 delays (right), a = 255

1 We consider a and other parameters below to be integers as in an embedded device
integer arithmetic would be the only option when generating delays.

In fact, Floating mean is a pure trade-off between the quality of the distri-
bution of single delay within a trace and that of the sum of the delays. When
b/a is small (like the case b = 50, a = 255, b/a ≈ 0.2 in Figure 2), the distri-
bution of an individual delay within a trace has a comparatively small variance,
but the variance of a single delay across traces and of the sum of the delays is
large. When b/a is large (like the case b = 200, a = 255, b/a ≈ 0.8 in Figure
2), the distribution of an individual delay within a trace has large variance, but
the distribution of the sum of the delays converges to normal. The extreme case
b/a = 0 just means that within an execution all delays have same length m,
while the distribution of the sum of N delays is uniform on the N -multiples in
[0, aN]. In the other extreme case, b/a = 1, the methods simply converges to
plain uniform delays with each delay generated uniformly on [0, a].

To calculate the parameters of the distribution of the sum SN of N de-
lays, we represent an individual delay as a random variable di = m + vi, where
m ∼ DU [0, a − b] and vi ∼ DU [0, b] for i = 1, 2, . . . N are independent random
variables. The sum is then expressed as

SN =

N
∑

i=1

di = Nm +

N
∑

i=1

vi .

For the mean, we have

E(SN) = E(Nm) + E

(

N
∑

i=1

vi

)

= N · a − b

2
+ N · b

2
=

Na

2
.

For the variance, since m and vi are independent, all vi are identically distributed
and

Var(m) =
(a − b + 1)2 − 1

12
, Var(vi) =

(b + 1)2 − 1

12
, i = 1, 2, . . . , N

we have

Var(SN) = Var

(

Nm +

N
∑

i=1

vi

)

= N2 · Var(m) + N · Var(v1)

= N2 · (a − b + 1)2 − 1

12
+ N · b2 + 2b

12
.

So, the variance of the sum of N delays is in Θ
(

N2
)

, in comparison to plain
uniform delays and the method of [4] that both have variances in Θ (N). This is
because we generate random delays non-independently; namely in our solution
the lengths of the individual random delays are correlated: they are short if m
is small, or they are longer if m is larger. This enables us to get a much larger
variance than if the delays were generated independently, as in the plain uniform
method and the method of [4].

At the same time, if we look at the delays within a single execution and thus
under fixed m, the mean for the sum of N delays becomes N(m + b/2). This
implies that the cumulative delay for a given execution and therefore the length
of the execution depends on m. An adversary can thus accept only the short
traces, as they have short individual delays, and reject the long ones; this can
lower the complexity of the attack.

In order to relieve an adversary of such a benefit, we can generate the first
half of random delays (in the first half of the execution) uniformly on [m,m + b]
(that is, with mean m + b/2), and the second half of delays – uniformly on
[a−m− b, a−m] (that is, with mean a−m− b/2). In this way, the distribution
of the sum of all the N = 2M delays for a given execution is independent of m
(the mean is aN/2 and the variance is N(b2 + 2b)/12). So an adversary cannot
gain any additional information about the distribution of the delays within an
execution by observing its length. Still, the variance of the sum of L < M delays
from start or end to some point up to the middle of the execution is in Θ(L2).

Floating mean method is described in Algorithm 1.1. It is easily imple-
mentable in software on a constrained platform that has a built-in rng pro-
ducing uniformly distributed bytes since parameters a and b can be naturally
chosen so that a− b = 2s − 1 and b = 2t − 1, where s, t ∈ N and 2s + 2t < 2n + 2
for an n-bit target microcontroller. Random integers in the range [0, 2s − 1] and
[0, 2t − 1] can be obtained by a simple bit-wise AND with bit masks 2s − 1 and
2t − 1 correspondingly. The method requires no additional memory, as opposed
to [4]. We are describing our implementation of Floating mean in Sect. 6 and
Appendix B.

Algorithm 1.1 Floating mean method for generation of random delays

Input: a, b ∈ N, b ≤ a, N = 2M ∈ N

m← DU [0, a− b]
for i = 1 to N/2 do

di ← m +DU [0, b]
end for

for i = N/2 + 1 to N do

di ← a−m−DU [0, b]
end for

Output: d1, d2, . . . , dN

4.1 A Method That Does Not Quite Work: Floating Ceiling

In this section we present another method that is based on the same principle
as the previous method: generate random delays non-independently to improve
the variance of the cumulative sum. However we explain below why this method
does not quite work.

The method is as follows. First, we fix some implementation parameter a ∈ N

which determines the maximum length of an individual random delay. Now, prior

to generation of the first delay in each execution of the algorithm we produce a
value c ∈ N randomly uniformly on [1, a − 1]. After that, within the execution
we generate individual delays randomly uniformly on [0, c]. Loosely speaking, c
is the “ceiling” for the length of the random delays that varies from execution
to execution. The resulting distributions are shown in Figure 6 in Appendix A.
For the sum SN of N delays we obtain the following mean and variance (see
Appendix A):

E(SN) = N · a

4
, Var(SN) = N2 · a2 − 2a

48
+ N · 2a2 + 5a

72
.

As in the Floating mean method, here the variance of the sum of the delays
is also in N2 since we generate delays non-independently. However we have the
same undesired property as in the Floating mean method without the two halves.
Namely the mean length of the cumulative delay within a single trace (i.e. with
c fixed) is Nc/2. So an adversary can judge the mean length of the delays within
an execution by the total length of the execution that he can definitely measure.

If we try to fix this in the same manner by generating the first half of random
delays uniformly on [0, c] and the second half – uniformly on [0, a−c], the mean of
the sum of all N = 2M random delays within an execution becomes constant and
equal to Na/4. However, one can see that for a given execution the distribution of
the sum (and in particular its variance) still depends on c; therefore an adversary
could still derive information from c in a given execution by measuring its length.
For example, since the variance of the sum is maximal when c = 0 or c = a,
an adversary could select those executions in which a large deviation from the
mean is observed; this would likely correspond to small c or large c; then the
adversary would concentrate his attack on those executions only.

The complete Floating ceiling method is defined by Algorithm 1.2. It does
not require any tables to be stored in memory, as opposed to [4]. However, its
implementation requires random integers on [0, c] for arbitrary positive integer
c. This can be inconvenient on constrained platforms as this requires to omit
rng outputs larger than c, thus leading to a performance decrease.

Algorithm 1.2 Floating ceiling method for generation of random delays

Input: a ∈ N, N = 2M ∈ N

c← DU [1, a− 1]
for i = 1 to N/2 do

di ← DU [0, c]
end for

for i = N/2 + 1 to N do

di ← DU [0, a− c]
end for

Output: d1, d2, . . . , dN

5 Comparing Efficiency

In this section we compare our new method with the existing ones based on the
efficiency metrics σ/µ suggested in Sect. 2.

Efficiency ratios σ/µ for the sum of N delays for the new method and for
the existing ones are given in Table 1. Note that we are mostly interested in the
coefficient of variation somewhere around the middle of the trace.

Table 1. Efficiency ratios σ/µ for different random delay generation methods

Plain uniform Benoit-Tunstall Floating mean

1
√

3N
= Θ

“

1
√

N

”

σbt
µbt
· 1
√

N
= Θ

“

1
√

N

”

√
N((a−b+1)2−1)+b2+2b

a
√

3N
= Θ (1)

In Figure 3, the efficiency ratio σ/µ for the sum of N delays for different
methods is depicted against N . For all methods, we have considered the max-
imum delay length a = 255. The mean µbt = 99 and the variance σ2

bt = 9281
of an individual delay in the Benoit-Tunstall method was estimated empirically
for the parameters used as an example in [4].

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

N

σ
/µ

Benoit-Tunstall

Plain uniform

Floating mean, b/a ≈ 0.2

Fig. 3. Efficiency of the random delay generation algorithms in terms of the efficiency
ratio σ/µ against the number of delays N in a sum

It can be seen that our new Floating mean method presented in Sect. 4 is more
efficient compared to the previously published ones. Figure 4 further illustrates
the difference, presenting the distributions of the sum of 100 random delays for
different methods with the parameters that yield the same performance penalty,
i.e. the same mean of the sum. We see that for the same average performance
penalty, our method has a much larger variance.

In the case of independently generated individual delays the efficiency ratio
σ/µ for the sum of any N delays is σd/µd ·1/

√
N , where σd and µd are the stan-

0 0.5 1 1.5 2 2.5

x 10
4

0

0.02

0.04

0.06

0.08

Cumulative delay

R
el

a
ti
v
e

fr
eq

u
en

cy

Plain uniform

Benoit-Tunstall

Floating mean, b/a ≈ 0.2

Fig. 4. Distributions of the sum of 100 delays for random delay generation algorithms,
for the case of equal means

dard deviation and the mean of an individual delay. One can increase σd/µd ratio
to improve efficiency, which was done in [4], but with an increase of the number

of delays in the sum the efficiency of such methods decreases like Θ
(

1/
√

N
)

,

asymptotically tending to 0. Whereas for our method the efficiency is in Θ(1),
so with an increase of the number of delays it tends to a nonzero constant value.
This can be seen in Figure 3.

Thus, when implementing our method, one can benefit from using shorter
but more frequent delays, as this does not cause the decrease in efficiency. This
is an advantage as frequent short delays may be harder to eliminate than the
long but less frequent ones.

6 Implementation and Resistance to Practical Attacks

Here we present comparison between the practical implementations of plain uni-
form delays, table method of Benoit and Tunstall [4] and the new Floating mean
method by mounting Correlation Power Analysis (cpa) attack [6] against them.

We have implemented the methods on an 8-bit Atmel avr microcontroller.
Each delay is a multiple of 3 processor cycles (this granularity cannot be further
reduced for this platform). Further details on our implementation are presented
in Appendix B.

Random delays were introduced into aes-128 encryption. We put 10 de-
lays per each round: before AddRoundKey, 4 per SubBytes+ShiftRows, before each
MixColumn and after MixColumns. 3 “dummy” aes rounds that also incorporated
random delays were added in the beginning and in the end of the encryption.
Thus, the first SubByte operation of the first encryption round, which is the tar-
get for our attacks, is separated from the start of the execution, which is in turn
our synchronization point, by 32 random delays.

The parameters of the methods were chosen to ensure (nearly) the same
performance overhead across the methods. They were made sufficiently small

to enable attacks with a reasonable number of traces. For the Floating mean
method we used parameters a = 18 and b = 3. For the table method of Benoit
and Tunstall, the p.d.f. of the pit-shaped distribution was generated using the
formula y = ⌈akx + bkN−x⌉ from [4] with the parameters N = 19, a = 40,
b = 34 and k = 0.7. These parameters were chosen so that they lead to the
table of 256 entries with the inverse c.d.f. of the distribution. We use this table
to produce delay values on [0, 19] by indexing it with a random byte. For the
plain uniform delays, the individual delay values were generated on [0, 16]. On
our 8-bit platform we can efficiently produce random integers only on [0, 2i − 1]
for i = 1, 2, ..., 8 (see Sect. 4), so we could not make the performance overhead
for this method to be exactly the same as for the other methods.

We mounted cpa attack [6] in the Hamming weight power consumption model
against the first aes key byte for each of the methods, first SubByte operation
being the attack target. As a reference benchmark for our measurement con-
ditions we performed cpa attack against the implementation without random
delays. For implementations with random delays, we used power consumption
traces as is without any alignment or integration to make a consistent compar-
ison. Table 2 presents the number of traces required for a successful (with the
1st-order success rate close to 1) key byte recovery along with estimated mean
µ, standard deviation σ and efficiency ratio σ/µ of the sum of 32 delays for each
of the methods. Figure 5 presents the cpa attack results.

Table 2. Practical effect of the sum of 32 delays for different methods

No delays Plain uniform Benoit-Tunstall [4] Floating mean

µ, cycles 0 720 860 862

σ, cycles 0 79 129 442

σ/µ − 0.11 0.15 0.51

cpa, traces 50 2500 7000 45000

It can be seen that the Floating mean method is more secure in practice
already for small delay durations and for a small number of delays. To break our
implementation, we require 45000 traces for Floating mean and 7000 traces for
Benoit-Tunstall. That is, for the same performance penalty the Floating mean
method requires 6 times more curves to be broken. This ratio will increase with
the number of delays. However, our method is more efficient already for less
than 10 delays in the sum, as can be seen from Figure 4. This is important for
symmetric algorithm implementations that are relatively short. For inherently
long implementations of public key algorithms the number of delays in the sum
will be naturally large.

10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of traces

C
o
rr

el
a
ti
o
n

co
effi

ci
en

t

No delays

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Plain uniform delays

Number of traces

C
o
rr

el
a
ti
o
n

co
effi

ci
en

t

0.5 1 1.5 2 2.5 3

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Benoit-Tunstall

Number of traces

C
o
rr

el
a
ti
o
n

co
effi

ci
en

t

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of traces

C
o
rr

el
a
ti
o
n

co
effi

ci
en

t

Floating mean

Fig. 5. cpa against random delays: correlation coefficient for all key byte guesses
against the number of power consumption traces. The trace for the correct guess is
highlighted.

7 Conclusion

We proposed a new method for random delay generation in embedded software
– the Floating mean method – and introduced a way to estimate efficiency of
the random delays countermeasure. We presented the lightweight implementa-
tion of our method for protection of aes encryption on an 8-bit platform. We
mounted practical cpa attacks showing that for the same level of performance
the implementation of the new method requires 6 times more curves to be bro-
ken compared to the method of Benoit and Tunstall [4]. Thus, our method is
significantly more efficient and secure.

References

1. Clavier, C., Coron, J.S., Dabbous, N.: Differential power analysis in the presence of
hardware countermeasures. In Koç, Ç.K., Paar, C., eds.: ches 2000. Volume 1965
of lncs., Springer, Heidelberg (2000) 252–263

2. Mangard, S.: Hardware countermeasures against dpa—a statistical analysis of their
effectiveness. In Okamoto, T., ed.: ct-rsa 2004. Volume 2964 of lncs., Springer,
Heidelberg (2004) 222–235

3. Amiel, F., Clavier, C., Tunstall, M.: Fault analysis of dpa-resistant algorithms. In
Breveglieri, L., Koren, I., Naccache, D., Seifert, J.P., eds.: fdtc 2006. Volume 4236
of lncs., Springer, Heidelberg (2006) 223–236

4. Tunstall, M., Benoit, O.: Efficient use of random delays in embedded software.
In Sauveron, D., Markantonakis, K., Bilas, A., Quisquater, J.J., eds.: wistp 2007.
Volume 4462 of lncs., Springer, Heidelberg (2007) 27–38

5. Nagashima, S., Homma, N., Imai, Y., Aoki, T., Satoh, A.: dpa using phase-based
waveform matching against random-delay countermeasure. In: ieee International
Symposium on Circuits and Systems—iscas 2007. (May 2007) 1807–1810

6. Brier, E., Clavier, C., Benoit, O.: Correlation power analysis with a leakage model.
In Joye, M., Quisquater, J.J., eds.: ches 2004. Volume 3156 of lncs., Springer,
Heidelberg (2004) 135–152

A Distribution for the Floating Ceiling Method

500 1000 1500 2000 2500
0

0.02

0.04

0.06

0.08

50 100 150 200 250
0

0.02

0.04

0.06

0.08

Delay

R
el

a
ti
v
e

fr
eq

u
en

cy

Plain uniform

Floating ceiling

Fig. 6. Distribution for the Floating ceiling compared to plain uniform delays: 1 delay
(left) and sum of 10 delays (right) for a = 255

To calculate the mean and the variance for the Floating ceiling method,
we represent an i-th individual delay as a random variable di ∼ DU [0, c], i =
1, 2, . . . N , where in turn c ∼ DU [1, a − 1]. The sum of N delays is expressed as

SN =

N
∑

i=1

di .

For the mean, since di are identically distributed, we have

E(SN) = NE(d1) = N

a−1
∑

c=1

1

a − 1
E (d1|c) = N · 1

a − 1

a−1
∑

c=1

c

2
= N · a

4
.

For the variance, in turn,

Var(SN) = E
(

S2

N

)

− (E (SN))
2

.

Again, since di are identically distributed, we have

E
(

S2

N

)

= E

(

N
∑

i=1

di

)2

 = E

(

N
∑

i=1

d2

i

)

+ 2E (d1d2 + d1d3 + . . . + dN−1dN)

= NE
(

d2

1

)

+

(

N

2

)

· 2E (d1d2) .

Now, having

E
(

d2

1

)

=

a−1
∑

c=1

1

a − 1
E
(

d2

i | c
)

=
1

a − 1

a−1
∑

c=1

1

c + 1

c
∑

j=0

j2 =
4a2 + a

36

and (since di|c and dj |c are independent for i 6= j and identically distributed)

E (d1d2) =

a−1
∑

c=1

1

a − 1
E (d1d2 | c) =

1

a − 1

a−1
∑

c=1

(E(d1 | c))
2

=
2a2 − a

24
,

we finally obtain

Var(SN) = N2 · a2 − 2a

48
+ N · 2a2 + 5a

72
.

B Implementation of Random Delays for an 8-bit AVR

Platform

Here we present the reference implementation of several delay generation meth-
ods in the 8-bit avr assembly language. Throughout the code, the following
registers are reserved: RND for obtaining the random delay duration, FM for storing
the value of m used in Floating mean during the execution, MASK for the bit mask that
truncates random values to the desired length.

Common ATmega16 microcontroller that we used does not have a built-in rng.
Hence, we have simulated the rng by pre-loading a pool of pseudorandom numbers
to microcontroller’s sram from the host pc prior to each execution and pointing the
X register at the beginning of the pool. Random numbers are then loaded successively
from sram to RND register by calling the randombyte function:

randombyte:

ld RND, X+ ; X is the dedicated address register

ret ; that is used only in this function

First, here is the basic delay generation routine. It produces delays of length 3 ·
RND+C cycles, where C is the constant overhead per delay. To reduce this overhead, the
delay generation can be implemented in-line to avoid the cost of entering and leaving
the function. The part of the code specific for delay generation methods is omitted and
will be given below.

randomdelay:

rcall randombyte ; obtain a random byte in RND

;

; <place for method-specific code>

;

tst RND ; mind balancing between zero and

breq zero ; non-zero delay values!

nop

nop

dummyloop:

dec RND

brne dummyloop

zero:

ret

Here are specific code parts for delay value generation. For plain uniform delays,
the code is just:

and RND, MASK ; truncate random value to the desired length

The code for the floating mean is one instruction longer (namely, addition of the
value m).

and RND, MASK ; truncate random value to the desired length

add RND, FM ; add ’floating mean’

Floating mean also requires initialization (namely, generation of m) in the beginning
of each execution:

rcall randombyte ; obtain a random byte in RND

mov FM, RND

ldi MASK, 0x0f

and FM, MASK ; trucate mean to the desired length

ldi MASK, 0x03 ; set mask for future use in individual delays

and “flipping” FM in the middle of the execution to make the total execution length
independent of the value of m.

ldi MASK, 0x0f

sub MASK, FM

mov FM, MASK

ldi MASK, 0x03

Finally, for the method of Benoit and Tunstall, the delay value is generated as
follows.

ldi ZH, high(bttable)

mov ZL, RND

ld RND, Z

Here bttable is the table of 256 byte entries with the c.d.f of the pit-shaped dis-
tribution that is pre-loaded into sram.

It can be seen that Floating mean is more “lightweight” in terms of both memory
and code than the table method of Benoit and Tunstall.

