
First-Order Side-Channel Attacks on

the Permutation Tables Countermeasure

Emmanuel Prouff and Robert McEvoy

1 Oberthur Technologies, France
e.prouff@oberthur.com

2 Claude Shannon Institute for Discrete Mathematics, Coding and Cryptography,
University College Cork, Ireland
robertmce@eleceng.ucc.ie

Abstract. The use of random permutation tables as a side-channel at-
tack countermeasure was recently proposed by Coron [5]. The counter-
measure operates by ensuring that during the execution of an algorithm,
each intermediate variable that is handled is in a permuted form de-
scribed by the random permutation tables. In this paper, we examine the
application of this countermeasure to the AES algorithm as described
in [5], and show that certain operations admit first-order side-channel
leakage. New side-channel attacks are developed to exploit these flaws,
using correlation-based and mutual information-based methods. The at-
tacks have been verified in simulation, and in practice on a smart card.

Keywords: Side-Channel Attacks, Permutation Tables, CPA, MIA, Masking

1 Introduction

When a cryptographic algorithm is implemented in hardware or embed-
ded software, information may be leaked about the intermediate vari-
ables being processed by the device. The class of implementation attacks
called Side-Channel Attacks (SCA) aims to exploit these leakages, and
recover secret information [12]. Masking is one of the most popular SCA
countermeasures, used to protect sensitive variables (i.e. variables whose
statistical distribution is dependent on the secret key) [4]. Masking has
been well studied, and has been shown to be effective against a number of
types SCA [2, 4], but remains ineffective in stronger attack models (e.g.
Higher-Order SCA [14]).

Recently, Coron presented the permutation tables countermeasure, as
an alternative to masking [5]. The new proposal can be viewed as a gener-
alization of the classical approach, where masking is no longer performed
through a random translation, but through a random permutation. Like
classical masking, the permutation tables countermeasure also requires a

random bit string, which is used at the start of the cryptographic algo-
rithm to generate a permutation P . In the case of an encryption algo-
rithm, P is then applied to both the message x to be encrypted and the
secret key k, producing P (x) and P (k) respectively. It is these permuted
variables that are used by the encryption algorithm. At each stage of the
algorithm, the cryptographic operations must be modified so that all of
the intermediate variables remain in the permuted form described by P . If
the countermeasure is applied correctly, the intermediate variables should
all have a uniform distribution independent of sensitive variables, thereby
precluding side-channel attacks that rely on statistical dependency of the
intermediate variables with the secret key.

In this paper, we examine the application of the permutation tables
countermeasure to AES, as described by [5]. We show that certain sen-
sitive intermediate variables in this algorithm are, in fact, not uniformly
distributed, and therefore leak side-channel information about the secret
key. However, because of the nature of the permutation tables counter-
measure, it is not possible to exploit these flaws with classical approaches
(such as those used in [6, 7, 9]). In fact, the main issue is to exhibit a
sound prediction function to correlate with the leakages in correlation-
based SCA (e.g. Correlation Power Analysis (CPA) [3]). After modeling
the side-channel leakage, we use the method proposed in [19] to exhibit
a new prediction function for the permuted sensitive variables. An ana-
lytical expression for the optimal prediction function is derived, which,
for the correct key hypothesis, maximises the correlation with leakage
measurements from the algorithm.

Furthermore, since the flawed intermediate variables do not have a
monotonic dependency with the sensitive variables, we consider SCA
attacks involving distinguishers able to exploit non-monotonic interde-
pendencies. We investigate how Mutual Information Analysis (MIA) [8,
18] can be applied in order to exploit the flaws, and compare it with
the correlation-based approach. Both of these new attacks are performed
both in simulation and in practice on a smart card, and are successful at
breaking the countermeasure described in [5].

2 Preliminaries

2.1 Mathematical Background and Notation

We use calligraphic letters, like X , to denote finite sets (e.g. F
n
2). The

corresponding capital letter X is used to denote a random variable over
X , while the lowercase letter x denotes a particular element from X . The

probability of the event (X = x) is denoted p [X = x]. The uniform prob-
ability distribution over a set X is denoted by U(X), and the Gaussian
probability distribution with mean µ and standard deviation σ is denoted
by N (µ, σ2). The mean of X is denoted by E [X] and its standard devia-
tion by σ[X]. The correlation coefficient between X and Y is denoted by
ρ [X,Y]. It measures the linear interdependence between X and Y , and
is defined by:

ρ [X,Y] =
Cov [X,Y]

σ [X] σ [Y]
, (1)

where Cov [X,Y], called covariance of X and Y , equals E [XY] −
E [X] E [Y]. It can be checked [19] that for every function f measurable
on X , the correlation ρ [f(X), Y] satisfies:

ρ [f(X), Y] = ρ [f(X),E [Y |X]]× ρ [E [Y |X] , Y] . (2)

This implies (see Proposition 5 in [19]) the following inequality:

ρ [f(X), Y] ≤
σ [E [Y |X]]

σ [Y]
. (3)

A sample of a finite number of values taken by X over X is denoted
by (xi)i or by (xi) if there is no ambiguity on the index, and the mean of
such a sample is denoted by x = 1

#(xi)

∑
i xi. Given two sample sets (xi)

and (yi), the empirical version of the correlation coefficient is the Pearson
coefficient:

ρ̂ ((xi), (yi)) =

∑
i(xi − x)(yi − y)√∑

i(xi − x)2
√∑

i(yi − y)2
, (4)

The correlation and Pearson coefficients relate to affine statistical
dependencies, and two dependent variables X and Y can be such that
ρ(X,Y) = 0. To quantify the amount of information that Y reveals about
X (whatever the kind of dependency is), the notion of mutual informa-
tion is usually involved. It is the value I(X;Y) defined by I(X;Y) =
H(X) − H(X|Y), where H(X) is the entropy of X and where H(X|Y) is
the conditional entropy of X knowing Y (see [13] for more details).

2.2 Side-Channel Attack Terminology

We shall view an implementation of a cryptographic algorithm as the
processing of a sequence of intermediate variables, as defined in [2]. We
shall say that an intermediate variable is sensitive if its distribution is a

function of some known data (for example, the plaintext) and the secret
key, and is not constant with respect to the secret key. Consequently, the
statistical distribution of a sensitive variable depends on both the key and
on the distribution of the known data. If a sensitive intermediate variable
appears during the execution of a cryptographic algorithm, then that
implementation is said to contain a first-order flaw. Information arising
from a first-order flaw, that can be monitored via a side-channel (such as
timing information or power consumption), is termed first-order leakage.
A first-order side-channel attack (SCA) against an implementation is a
SCA that exploits a first-order leakage, in order to recover information
about the secret key. Similarly, an rth-order SCA (Higher-Order SCA
or HO-SCA) against an implementation is a SCA that exploits leakages
at r different times, which are respectively associated with r different
intermediate variables.

Remark 1. In [21], an alternative definition for HO-SCA is used, where an
rth-order SCA is defined with respect to r different algorithmic variables
(which may be manipulated simultaneously, or which may correspond to
a single intermediate variable). In this paper, we focus on the countermea-
sure of [5]; therefore, we adhere to the HO-SCA definition in [5] (which
is widely accepted in the community [2, 10, 14, 16]).

In order to prevent side-channel attacks on cryptographic implemen-
tations, many countermeasures (such as masking and the permutation
tables countermeasure) aim to randomise the leakage caused by each in-
termediate variable. An implementation of a cryptographic algorithm can
be said to possess first-order SCA security if no intermediate variable in
the implementation is sensitive. Similarly, rth-order SCA security requires
an implementation to be such that no r-tuple of its intermediate variables
is sensitive.

3 The Permutation Tables Countermeasure

3.1 Generation of Permutation Tables

In order to use permutation tables as a SCA countermeasure, a new per-
mutation table P must be generated at the beginning of each execution
of the cryptographic algorithm. Here, P is described in the context of
the AES algorithm, where the intermediate variables are 8-bit words. P
comprises two 4-bit permutations p1 and p2, and operates on an 8-bit
variable x according to:

P (x) = p2(xh)||p1(xl) , (5)

where xh and xl respectively denote the high and low nibbles of x, and ||
denotes concatenation. Upon each invocation of the algorithm, permuta-
tions p1 and p2 are randomly chosen from a set of permutations P, defined
over F

4
2. For efficiency reasons, the set P is not defined as the set of all

the permutations over F
4
2. Indeed, in such a case the random generation

of an element of P would be costly. In [5], Coron defines an algorithm to
generate elements of the set P from a 16-bit random value. Here, we will
assume that the random variable P1 (respectively P2) associated with the
random generation of p1 (resp. p2) satisfies p [P1 = p1] = 1/#P (resp.
p [P2 = p2] = 1/#P) for every p1 ∈ P (resp. p2 ∈ P).

3.2 Protecting AES Using Permutation Tables

The Advanced Encryption Standard (AES) is a well-known block cipher,
and details of the algorithm can be found in [5]. Essentially, the AES
round function for encryption operates on a 16-byte state (with each
element labelled ai, 0 ≤ i ≤ 15), and consists of four transformations:
AddRoundKey, SubBytes, ShiftRows and MixColumns.

In [5], Coron described how to protect the AES encryption algorithm
against side-channel attacks, by using the permutation tables counter-
measure. We will refer to this encryption algorithm as randomised AES.
Firstly, after the random permutation P has been generated (as described
in [5]), it is applied to each byte of both the message and the key. For
every byte x, we will refer to u = P (x) as the P-representation of x.
Each permuted value is passed to the AES round function, where it
is operated upon by the AES transformations listed above. As noticed
by Coron in [5], each of these AES transformations must be carefully
implemented, such that: (i) sensitive variables always appear in their
P -representation, and (ii) the output of each transformation is in P -
representation form. Coron described the following implementations of
AddRoundKey and MixColumns (for details of the other transformations,
see [5]):

– Randomised AddRoundKey takes two bytes u = P (x) and v = P (y) as
inputs, and outputs P (x ⊕ y). In order to achieve this, two 8-bit to
4-bit tables are defined (for (ul, vl) – resp. (uh, vh) – in (F4

2)
2):

XT1
4(ul||vl) = p1(p

−1
1 (ul)⊕ p

−1
1 (vl)) , (6)

XT2
4(uh||vh) = p2(p

−1
2 (uh)⊕ p−1

2 (vh)) . (7)

Tables XT1
4 and XT2

4 are calculated at the same time as P , and stored
in memory. An 8-bit XOR function, denoted by XT8, is then computed

using those table look-ups (for u, v ∈ F
8
2):

XT8(u, v) = XT2
4(uh||vh)||XT1

4(ul||vl) . (8)

– Randomised MixColumns is computed as a combination of doubling
and XOR operations. To calculate randomised MixColumns from the
P (ai)’s (the P -representations of the bytes of the AES state), the XOR
operations are computed using the XT8 function in Eq. (8). For the
doubling operations, Coron defined a function D2, such that when
applied to u = P (x), we get D2(P (x)) = P ({02} • x) (where {·}
denotes hexadecimal notation, and • denotes multiplication modulo
x8 + x4 + x3 + x + 1). The P -representation of the first byte of the
MixColumns output is then calculated using:

P (anew
0) = XT8(D2(a

′
0), XT8(D2(a

′
1), XT8(a

′
1, XT8(a

′
2, a

′
3)))) , (9)

where a′i denotes the P -representation of ai. The other bytes in the
randomised MixColumns output can be similarly calculated.

At the completion of the last encryption round, the inverse permutation
P−1 is applied to each byte of the AES state, revealing the ciphertext.

4 Security of Randomized AES against First-Order SCA

4.1 Examining the Proof of Security

In [5], the author proposes the following Lemma to argue that the ran-
domised AES implementation is resistant against first-order SCA:

Lemma 1. For a fixed key and input message, every intermediate byte
that is computed in the course of the randomised AES algorithm has the
uniform distribution in {0, 1}8.

In [5], the proof of Lemma 1 is based on the fact that any intermediate
AES data W is assumed to be represented as P (W) = P2(Wh)||P1(Wl).
However, this assumption is incorrect for the implementation described
in [5] and recalled in Section 3.2. Indeed, when XT8(P (X), P (Y)) is com-
puted (Eq. (8)), the two functions XT1

4 and XT2
4 are parameterized with the

intermediate variables P1(Xl)||P1(Yl) and P2(Xh)||P2(Yh) respectively.
Namely, the same permutation P1 (resp. P2) is applied to the lowest
and the highest nibbles of the intermediate data W = Xl||Yl (resp. W =
Xh||Yh). In this case W is not of the form P (W); therefore, the statement

made in [5] to prove Lemma 1 is incorrect. Actually, not only the proof
but the Lemma itself is incorrect. If two nibbles are equal, e.g. Xl = Yl,
then their P1-representations will also be equal, i.e. P1(Xl) = P1(Yl), ir-
respective of P1. Otherwise, if Xl 6= Yl, then P1(Xl) and P1(Yl) behave
like two independent random variables, except that they cannot be equal.
This implies that the variable P1(Xl)||P1(Yl) will have two different non-
uniform distributions depending on whether Xl equals Yl or not. This
gives rise to first-order leakage.

4.2 First-Order Leakage Points

In the randomised AES, the function XT8 is employed to securely im-
plement every bitwise addition between 8-bit words. To compute the P -
representation of X ⊕ Y from the P -representations X ′ = P (X) and
Y ′ = P (Y), the following successive operations are processed:

1. R1 ← XT1
4 (X ′

l ||Y
′
l)

2. R2 ← XT2
4 (X ′

h||Y
′
h)

3. output← R2||R1

Register output contains P (X ⊕ Y) at the end of the processing above.
Let us focus on the intermediate result R1 (the same analysis also holds
for R2). It is computed by accessing the table XT1

4 at address Z = X ′
l ||Y

′
l

which, by construction, satisfies:

Z = P1(Xl)||P1(Yl) . (10)

As discussed in Section 4.1, the manipulation of Z therefore induces a
first-order leakage in the AES implementation, whenever (Xl, Yl) statisti-
cally depends on a secret information and a known data. This condition
is satisfied when XT8 is used to process the randomised AddRoundKey and
randomised MixColumns operations during the first round of AES:

– [Randomised AddRoundKey] During this step, XT8 takes the pair
(P (A), P (K)) as operand, where K is a round key byte and A is a
known byte of the AES state. In this case, (10) becomes:

Z = P1(Al)||P1(Kl) . (11)

– [Randomised MixColumns] During this step, XT8 takes the pair
(A′

1, A
′
2) = (P (S[A1 ⊕ K1]), P (S[A2 ⊕ K2])) as operand, with S de-

noting the AES S-box, with A1 and A2 being two known bytes of the
AES state and with K1 and K2 being two round-key bytes.

In this case, (10) becomes:

Z = P1(S[A1 ⊕K1]l)||P1(S[A2 ⊕K2]l) , (12)

where S[·]l denotes the lowest nibble of S[·].

Both of the leakage points described above are first-order flaws, since
they depend on a single intermediate variable Z. In the next sections, we
will develop first-order side-channel attacks, that exploit these first order
leakages. In both attacks, we will use the notation Z(kl) (resp. Z(k1, k2))
for the random variable Z|(Kl = kl) (resp. Z|(K1 = k1,K2 = k2)), each
time we need to specify which key(s) Z is related to. The random variable
corresponding to the leakage on Z shall be denoted by L. They are related
through the following relationship:

L = ϕ(Z) +B , (13)

where ϕ denotes a deterministic function called the leakage function and
B denotes independent noise. We shall use the notation L(kl) (resp.
L(k1, k2)) when we need to specify the key(s) involved in the leakage
measurements.

5 Attacking the Randomised AddRoundKey Operation

There are currently two main ways to perform an attack on the manipu-
lation of a random variable Z. The first method relies on affine statistical
dependencies (for example CPA), whereas the second method relies on
any kind of statistical dependency (for example MIA). Here, we describe
a CPA attack on the first use of randomised AddRoundKey (performing
an MIA attack on randomised AddRoundKey is less pertinent, as will be
discussed in Section 6).

5.1 CPA Preliminaries

In a CPA [3], the attacker must know a good affine approximation ϕ̂ of
ϕ. It is common to choose the Hamming Weight (HW) function for ϕ̂, as
this is known to be a good leakage model for devices such as 8-bit micro-
controllers. The attacker must also know a good affine approximation Ẑ
of Z. Based on these assumptions, key candidates k⋆

l are discriminated by

testing the correlation between ϕ̂(Ẑ(k⋆
l)) and L(kl), for a sample of leak-

age measurements from the target device, and the corresponding known
plaintexts.

Here, our attack targets the use of XT8 when the first randomised
AddRoundKey operation is performed. We assume that a sample of N
leakages (ℓi) has been measured for N known lowest nibbles (ai) of the
AES state. Due to (11) and (13), the ℓi’s and the ai’s satisfy the following
relation:

ℓi = ϕ (p1,i(ai)||p1,i(kl)) + bi , (14)

for 1 ≤ i ≤ N , where bi denotes the value of the noise for the ith leakage
measurement and where p1,i denotes the permutation used at the time of
the ith measurement.

To test a hypothesis k⋆
l on kl, the following Pearson’s coefficient ρ̂k⋆

l

is computed for an appropriate prediction function f :

ρ̂k⋆
l

= ρ̂((ℓi)i, (f(ai, k
⋆
l))i) . (15)

If f has been well chosen, the expected key will satisfy kl = argmaxk⋆
l
|ρ̂k⋆

l
|.

This is the case for leakage functions ϕ in (14) where E [ϕ[Z(kl)]] is not
constant on Kl (recall that Z(kl) equals P1(A)||P1(kl)). Almost all func-
tions ϕ satisfy this condition. However, this is not the case for func-
tions ϕ where ϕ(X||Y) = ϕ(X) + ϕ(Y) (e.g. ϕ = HW). For those leak-
age functions, Pearson’s coefficient (15) is not a sound key-distinguisher
when applied directly to the leakages ℓi’s. Indeed, in this case, (3) and
σ [ϕ[Z(Kl)] | Kl] = 0 imply that ρ [L(kl), f(A, kl)] is null, regardless of
the prediction function f . For such functions ϕ, it makes sense (see for
instance [20]) to focus on higher order moments, and to compute the
following Pearson’s coefficient for an appropriate function f , which may
differ from the case when o = 1:

ρ̂k⋆
l

= ρ̂(((ℓi − ℓ)
o)i, (f(ai, k

⋆
l))i) . (16)

For instance, if ϕ = HW, then the second order centered moments of the
ϕ[Z(kl)]’s are different, so (16) must be computed for o = 2.

Remark 2. For o = 1 (i.e. when the CPA focuses on the means), there
is no need to center the leakage measurements and the term ℓ can be
omitted. In the other cases, centering the leakage measurements (and
thus the predictions) improves the CPA efficiency (see [19]).

When a good approximation ϕ̂ of ϕ is assumed to be known, the
efficiency of the CPA relies on the prediction function f that is chosen.
This is especially true in our case where data is not simply masked by
the addition of a random value, but by a random permutation, so that

removing the effect of the masking (even biased) is difficult. Designing
a prediction function f , such that a CPA involving this function in (16)
succeeds, is not straightforward. Therefore, to exploit the flaw in (11)
using a CPA attack, we need to exhibit a sound prediction function f .

5.2 Designing fopt

The target intermediate variable Z in (11) takes the general form
P1(X)||P1(Y), where P1, X and Y are random variables and where
Y depends on kl. In [19], Prouff et al. showed that for every func-
tion C : L 7→ C(L), the optimal prediction function fopt is the func-
tion x, y 7→ E [C(L(kl))|X = x, Y = y]. In our case, C(L(kl)) equals
(L(kl)− E [L(kl)])

o for a given order o. To mount the attack , we need an
analytical expression for the function fopt so that it can be estimated even
when no information on the noise parameters is known (non-profiling at-
tacks). Therefore, we conducted an analytical study of the function fopt

defined by:

fopt(x, y) = E [(L(kl)− E [L(kl)])
o | X = x, Y = y] , (17)

for o ∈ N, for L equal to ϕ̂(Z) +B, for B ∼ N (ε, σ2) and for Z equal to
P1(X)||P1(Y) with X,Y ∼ U(Fn

2) and P1 is a random variable over P.
Below we state the results of our analysis (the derivations of the for-

mulas are given in Appendix A):

– To compute (16), we suggest using the prediction function f defined
for every (ai, k

⋆
l) ∈ (F4

2)
2 by:

f(ai, k
⋆
l) =

∑

p1∈P

(ϕ̂ (p1(ai)||p1(k
⋆
l))− E

[
ϕ̂k⋆

l

]
)op [P1 = p1] , (18)

where:

E
[
ϕ̂k⋆

l

]
= 2−4

∑

a∈F
4

2

∑

p1∈P

ϕ̂ (p1(a)||p1(k
⋆
l)) p [P1 = p1] . (19)

For o ∈ {1, 2}, it is argued in Appendix A that the functions f above
are affine equivalent to fopt.

– Let δx(y) be the function defined by δx(y) = 1 if x = y, and δx(y) = 0
otherwise. If we assume that o = 2, ϕ̂ = HW, and that P1 has a
uniform distribution over P, we suggest using the following function:

fopt(ai, k
⋆
l) = δai

(k⋆
l) , (20)

which is affine equivalent to fopt.

Table 1: Num. of measure-
ments required in simu-
lated CPA attack on ran-
domised AddRoundKey

Noise standard Number of
deviation measurements

0 100
0.5 1, 000
1 1, 500
2 4, 500
5 60, 000
7 230, 000
10 900, 000

0 500 1000 1500 2000 2500 3000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Number of Power Traces

C
or

re
la

tio
n

Fig. 1: CPA attack on smart card implemen-
tation of randomised AddRoundKey

5.3 Attack Results

In the attack simulations presented in Table 1, we give an estimation of
the minimum number of measurements required to achieve the success
rate 0.9 for P1 ∼ U(P) (where P is designed as proposed in [5]) and
ϕ = ϕ̂ = HW. In this case, Pearson coefficients have been computed
between ((ℓi − ℓ)2)i and (fopt(ai, k

⋆
l))i for the function fopt defined in

(18) for o = 2. This success rate is defined as the ratio of successful
attacks involving N measurements to the number of attacks involving
N measurements. We assumed that an attack is successful if the highest
correlation is attained for the correct key. The simulations show that for
noiseless measurements, key nibbles can be successfully recovered from
the randomised AddRoundKey operation using only 100 power traces. We
also carried out the CPA attack on a practical smart card implementation
of the randomised AES, as described by [5]. We used a Silvercard, which
contains a programmable 8-bit PIC16F877 microprocessor, and verified
that the power consumption of the card leaks information in the HW
model. For each plaintext sent to the card, the encryption operation was
performed ten times (with the same random values used to generate the
permutation tables) and an average trace of the power consumption was
recorded, in order to reduce the effects of acquisition noise. For the attack,
we calculated the correlations between ((ℓi − ℓ)

2)i and (fopt(ai, k
⋆
l))i for

the simplified function fopt defined in (20). The results of the attack are
shown in Fig. 1 for various numbers of power traces. The correlation for
the correct key nibble is highlighted, showing that the correct key nibble
can be recovered using fewer than 1, 000 plaintext/power trace pairs.

6 Attacking the Randomised MixColumns Operation

In this section, we describe CPA and MIA attacks that target the use of
XT8 when the first MixColumns operation is performed. These attacks are
of interest, because they allow recovery of two key bytes (cf. Eq. (12)),
as opposed to a single key nibble when the AddRoundKey operation is
targeted. We assume that a sample of N leakages (ℓi)i has been measured
for N pairs of known AES state values ((a1,i, a2,i))i (where aj,i denotes
the known value of byte aj at the time of the ith measurement ℓi). Due
to (12) and (13), the ℓi’s and the aj,i’s satisfy the following relation:

ℓi = ϕ(p1,i(S[a1,i ⊕ k1]l)||p1,i(S[a2,i ⊕ k2]l) + bi , (21)

where bi and p1,i are as defined for Eq. (14).

6.1 MIA Preliminaries

In MIA attacks [8], key candidates k⋆ are discriminated by estimating
the mutual information I(ϕ̂(Ẑ(k⋆));L(k)). In an MIA, the attacker is
potentially allowed to make weaker assumptions on ϕ and on Z than
in the CPA. Indeed, rather than a good affine approximation of ϕ and
of Z, we only require a pair (ϕ̂, Ẑ) such that I(ϕ̂(Ẑ(k));L(k)) is non-
negligible when the good key k is tested (which may happen even if
ρ(ϕ̂(Ẑ(k)), L(k)) = 0) (see [1, 18] for more details). Therefore, we do not
require a lengthy derivation for a prediction function fopt, as was required
in Section 5.2 for the CPA. After assuming that a good approximation
ϕ̂ of the leakage function ϕ is known, an MIA attack can be performed
by estimating the mutual information between the random variable L
associated with the leakage measurements ℓi in (21) and the prediction
function ϕ̂(S[A1 ⊕ k

⋆
1]l||S[A2 ⊕ k

⋆
2]l), for various hypotheses (k⋆

1 , k
⋆
2) on

key bytes (k1, k2). The mutual information will attain its maximum value
for the correct set of key hypotheses.

Remark 3. As noted in Sec. 5, it was less pertinent to use mutual informa-
tion as a distinguisher when attacking the randomised AddRoundKey op-
eration. The main reason for this is that when ϕ is the Hamming weight
function, the conditional random variable ϕ(Z(k)) has the same entropy
for each k. As discussed in [8, 18], a way to deal with this issue is to focus
on the mutual information between ϕ(Z(k)) and predictions in the form
ϕ̂◦ψ(Ẑ(k⋆)), where ψ is any non-injective function. Even if this approach
enables recovery of the key, we checked that for various functions ψ (in
particular for functions ψ selecting less than 8 bits in Ẑ(k)), MIA attacks
were much less efficient than CPA.

6.2 Attack Results

In simulation, we tested both an MIA attack and a CPA attack, tar-
geting the first call to XT8 in the first MixColumns operation. For the
MIA, we used the Kernel Density and Parametric estimation methods
described in [18] to estimate the mutual information. For the same rea-
sons as given in Sec. 5.2 (and Appendix A), the CPA simulations used
the pre-processing described in Eq. (16), and the following prediction
function:

fopt(a1,i, k
⋆
1 , a2,i, k

⋆
2) = δ(S[a1,i⊕k⋆

1
]l)(S[a2,i ⊕ k

⋆
2]l) (22)

In the attack simulations presented in Table 2, we give a rough es-
timation of the minimum number of measurements required to achieve
the success rate 0.9 for the different distinguishers. In these experiments,
one key byte was fixed at the correct value, and the distinguishers were
calculated for the 28 values of the second key byte. Fewer measurements
are required for a successful attack using CPA than are required when
using MIA, for low-noise measurements. This is to be expected, since in
the simulations, the HW of the attack variable leaks perfectly, so there
is a linear relation between the deterministic part of the leakage and the
prediction. MIA is more useful when the relationship between the leak-
age and the prediction is non-linear. It is interesting to note that when
the measurements are noisy, the parametric MIA attack is more efficient
than the CPA attack (even in this simulation context that is favourable
to CPA).

These attacks were also verified using measurements from the smart
card implementation, as shown in Figures 2 and 3 (where the distinguisher
for the correct key byte is highlighted). Since the noise in these acquisi-
tions has been reduced due to averaging, the CPA succeeds in fewer mea-
surements (∼ 2, 000 power traces) than an MIA attack (∼ 23, 000 traces,
using the histogram method to estimate the mutual information [8]).

Table 2: Num. measurements required in MIA and CPA attacks on ran-
domised MixColumns (where ‘−’ implies no successful result with up to 1
million measurements)

Noise standard deviation 0 0.5 1 2 5 7 10 15 20

Nb of measurements [MIA with Kernel] 2, 500 20, 000 60, 000 290, 000 − − − − −

Nb of measurements [Parametric MIA] na 3, 000 4, 000 25, 000 250, 000 500, 000 800, 000 − −

Nb of measurements [CPA with fopt] 1, 000 1, 000 1, 500 6, 500 120, 000 550, 000 − − −

0 500 1000 1500 2000 2500 3000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Number of Power Traces

C
or

re
la

tio
n

Fig. 2: CPA attack on smart card
implementation of randomised
MixColumns

0.5 1 1.5 2 2.5 3

x 10
4

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of Power Traces

M
ut

ua
l I

nf
or

m
at

io
n

Fig. 3: MIA attack on smart card
implementation of randomised
MixColumns

7 Conclusion

In this paper, we have shown that first-order flaws exist in the permu-
tation tables countermeasure proposed in [5]. In order to exploit this
leakage, two attacks have been developed. The first attack applies the
recent work of [19] to develop an optimal prediction function for use in
a correlation-based attack. The second attack is based on mutual infor-
mation analysis, and uses estimation methods proposed by [18]. The new
attacks were verified in both simulation and practice. In the extended
version of this paper [17], we suggest a patch for the permutation tables
countermeasure, thereby removing the first-order leakage. It is interest-
ing to note that even if the permutation tables countermeasure is flawed,
exploiting this flaw requires more traces than, for instance, an attack on
a flawed masking scheme. Therefore, an avenue for further research is
to examine the HO-SCA resistance of the (patched) permutation tables
countermeasure, as it may also be more HO-SCA resistant than masking.

References

1. S. Aumonier. Generalized Correlation Power Analysis. Published in the Proceed-
ings of the Ecrypt Workshop Tools For Cryptanalysis 2007, 2007.

2. J. Blömer, J. G. Merchan, and V. Krummel. Provably Secure Masking of AES.
In M. Matsui and R. Zuccherato, editors, Selected Areas in Cryptography – SAC

2004, volume 3357 of Lecture Notes in Computer Science, pages 69–83. Springer,
2004.

3. É. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage
Model. In Joye and Quisquater [11], pages 16–29.

4. S. Chari, C.S. Jutla, J.R. Rao, and P. Rohatgi. Towards Sound Approaches to
Counteract Power-Analysis Attacks. In M.J. Wiener, editor, Advances in Cryp-

tology – CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages
398–412. Springer, 1999.

5. J.-S. Coron. A New DPA Countermeasure Based on Permutation Tables. In
R. Ostrovsky, R. De Prisco, and I. Visconti, editors, Security and Cryptography for

Networks, 6th International Conference, SCN 2008, volume 5229 of Lecture Notes

in Computer Science, pages 278–292. Springer, 2008.

6. J.-S. Coron, C. Giraud, E. Prouff, and M. Rivain. Attack and Improvement of a
Secure S-Box Calculation Based on the Fourier Transform. In Oswald and Rohatgi
[15], pages 1–14.

7. G. Fumaroli, E. Mayer, and R. Dubois. First-Order Differential Power Analysis
on the Duplication method. In K. Srinathan, C. Pandu Rangan, and M. Yung,
editors, INDOCRYPT 2007, volume 4859 of Lecture Notes in Computer Science,
pages 210–223. Springer, 2007.

8. B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel. Mutual information analysis. In
Oswald and Rohatgi [15], pages 426–442.

9. J. Golić and C. Tymen. Multiplicative Masking and Power Analysis of AES. In B.S.
Kaliski Jr., Ç.K. Koç, and C. Paar, editors, Cryptographic Hardware and Embedded

Systems – CHES 2002, volume 2523 of Lecture Notes in Computer Science, pages
198–212. Springer, 2002.

10. M. Joye, P. Paillier, and B. Schoenmakers. On Second-order Differential Power
Analysis. In J.R. Rao and B. Sunar, editors, Cryptographic Hardware and Embed-

ded Systems – CHES 2005, volume 3659 of Lecture Notes in Computer Science,
pages 293–308. Springer, 2005.

11. M. Joye and J.-J. Quisquater, editors. Cryptographic Hardware and Embedded Sys-

tems – CHES 2004, volume 3156 of Lecture Notes in Computer Science. Springer,
2004.

12. P. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS and
other systems. In N. Koblitz, editor, Advances in Cryptology — CRYPTO ’96,

16th Annual International Cryptology Conference, volume 1109 of Lecture Notes

in Computer Science, pages 104–113. Springer, 1996.

13. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryp-

tography. CRC Press, 1997.

14. T.S. Messerges. Using Second-order Power Analysis to Attack DPA Resistant
software. In Ç.K. Koç and C. Paar, editors, Cryptographic Hardware and Embedded

Systems – CHES 2000, volume 1965 of Lecture Notes in Computer Science, pages
238–251. Springer, 2000.

15. E. Oswald and P. Rohatgi, editors. Cryptographic Hardware and Embedded Sys-

tems - CHES 2008, 10th International Workshop, Washington, D.C., USA, Au-

gust 10-13, 2008. Proceedings, volume 5154 of Lecture Notes in Computer Science.
Springer, 2008.

16. G. Piret and F.-X. Standaert. Security Analysis of Higher-Order Boolean Masking
Schemes for Block Ciphers (with Conditions of Perfect Masking). IET Information

Security, 2(1):1–11, March 2008.

17. E. Prouff and R. McEvoy. First-Order Side-Channel Attacks on the Permutation
Tables Countermeasure — Extended Version. To appear on the Cryptology ePrint
Archive, http://eprint.iacr.org, 2009.

18. E. Prouff and M. Rivain. Theoretical and Practical Aspects of Mutual Information
Based Side Channel Analysis. In Applied Cryptography and Network Security –

ANCS 2009, Lecture Notes in Computer Science. Springer, 2009. To appear.

19. E. Prouff, M. Rivain, and R. Bévan. Statistical Analysis of Second Order Dif-
ferential Power Analysis. IEEE Transactions on Computers, 58(6):799–811, June
2009.

20. T. T. Soong. Fundamentals of Probability and Statistics for Engineers. John Wiley
& Sons, Ltd., 3rd edition, 2004.

21. J. Waddle and D. Wagner. Toward Efficient Second-order Power Analysis. In Joye
and Quisquater [11], pages 1–15.

A Derivation of fopt for CPA attacks

This section aims at deriving analytical expressions for the function fopt.
We begin with the expression fopt(x, y) = E [(L− E [L])o | X = x, Y = y]
(Eq. (17)), where for clarity reasons and because there is no ambiguity, we
use the notation L in place of L(kl). We recall that the random variable
L is assumed to satisfy L = ϕ̂(Z) + B and that Z equals P1(X)||P1(Y)
with P1 ∼ U(P). Since the expectation is linear and the random variables
B and (X,Y) are independent, developing (L− E [L])o leads to:

fopt(x, y) = E [(ϕ̂(Z)−m)o | (X,Y) = (x, y)] + µo

+

o−1∑

i=1

(
o

i

)
µo−iE

[
(ϕ̂(Z)−m)i | (X,Y) = (x, y)

]
, (23)

where m denotes the mean E [ϕ̂(Z)] and µi denotes the ith order central
moment of B ∼ N (ε, σ2). Let us notice that since µ1 is zero, the sum in
(23) can start from i = 2.

Example 1. For o equal to 1 and 2, we respectively have:

fopt(x, y) = E [ϕ̂(Z)−m | (X,Y) = (x, y)]

and

fopt(x, y) = E
[
(ϕ̂(Z)−m)2 | (X,Y) = (x, y)

]
+ µ2 .

The prediction function given in (18) corresponds to the development
of the terms in (23) that do not depend on noise parameters. It must be
noticed that in the cases o = 1 and o = 2, such an estimation of fopt is
perfect since the terms that depend on noise parameters are either null
or constant.

Henceforth, we assume that P is the set of all permutations over F
n
2

and that P1 is a random variable with uniform distribution over P. This
assumption is very favorable to the permutation table countermeasure

since it implies that the choice of the masking permutation P1 is not
reduced to a sub-class of the set of permutations over F

n
2 .

We now focus on the non-noisy term in (23), namely on the mean
E [(ϕ̂(Z)−m)o | (X,Y) = (x, y)]. Moreover, we denote this conditional
mean by g(x, y), and define δx(y) s.t. δx(y) = 1 if y = x and δx(y) = 0
otherwise (resp. δx(y) = 1− δx(y)). We have the following Lemma:

Lemma 2. Let X and Y be two random variables with uniform distribu-
tions over F

n
2 and let P1 be a random variable uniformly distributed over

the set of all permutations over F
n
2 . Then for every ϕ̂ the function g is

2-valued and satisfies:

g(x, y) =
2nδx(y)− 1

2n − 1
E [(ϕ̂(I||I) −m)o] +

2nδx(y)

2n − 1
E [(ϕ̂(I||J) −m)o] ,

(24)
where I and J are two independent random variables with uniform dis-
tribution over F

n
2 .

Proof. For every (x, y) ∈ F
2n
2 we have

g(x, y) =
∑

i,j∈F
n
2

(ϕ̂(i||j) −m)op [P1(x) = i, P1(y) = j] .

Since P1 is assumed to have uniform distribution over the set of permu-
tations over F

n
2 , for every (x, y) ∈ (Fn

2)2 s.t. x 6= y we have:

p [P1(x) = i, P1(y) = j] =

{
1/2n(2n − 1) if i 6= j

0 otherwise.
(25)

If x = y, we have

p [P1(x) = i, P1(y) = j] =

{
1/2n if i = j

0 otherwise.
(26)

Combining (25) and (26) gives (24).

When the estimation ϕ̂ is the Hamming weight over F
2n
2 , (24) can be

further developed. Indeed, in this case we have:

g(x, y) =
2nδx(y)− 1

2n − 1
2oE

[(
HW(I)−

n

2

)o]
+

2nδx(y)

2n − 1
E [(HW(I||J) − n)o] ,

since m equals E [HW], i.e. n when HW is defined over F
2n
2 .

As E [HW(I)] equals n
2 and E [HW(I||J)] equals n, the function g is

constant equal to 0 when o = 1. For o = 2, it satisfies:

g(x, y) = δx(y)
n2n−1

2n − 1
+
n(2n−1 − 1)

2n − 1
, (27)

since we have E
[
(HW(I)− n

2)2
]

(resp. E
[
(HW(I||J) − n)2

]
) equal to

Var [HW(I)] = n
4 (resp. Var [HW(I||J)] = n

2).
For o = 2, (27) implies that fopt is an affine increasing function of

δx(y). Since the correlation coefficient is invariant for any affine transfor-
mation of one or both of its parameters, the function x, y 7→ δx(y) itself
(and every affine transformation of it) is actually an optimal prediction
function for o = 2. Hence, in its simplest form the optimal function for
o = 2 is defined for every (x, y) ∈ F

n
2
2 as:

fopt(x, y) = δx(y) . (28)

For o = 2, the function fopt in (28) can be applied to conduct CPA at-
tacks in the particular case of Coron’s construction of P (which is not the
set of all permutations over {0, ..., 15} but a subset of it with cardinality
164), without losing a significant factor in attack efficiency (in terms of
number of leakage measurements).

