
Practical Electromagnetic Template Attack on HMAC

Pierre-Alain Fouque1, Gaëtan Leurent1, Denis Réal2,3, and Frédéric Valette3

1 École normale supérieure/CNRS/INRIA
{Pierre-Alain.Fouque;Gaetan.Leurent}@ens.fr

2 INSA-IETR, 20 avenue des coesmes, 35043 Rennes, France
Denis.Real@insa-rennes.fr
3 CELAR, 35 Bruz, France

{Denis.Real;Frederic.Valette}@dga.defense.gouv.fr

Abstract. In this paper, we show a very efficient side channel attack against HMAC. Our
attack assumes the presence of a side channel that reveals the Hamming distance of some
registers. After a profiling phase in which the adversary has access to a device and can configure
it, the attack recovers the secret key by monitoring a single execution of HMAC-SHA-1. The
secret key can be recovered using a "template attack" with a computation of about 2323κ

compression functions, where κ is the number of 32-bit words of the key. Finally, we show that
our attack can also be used to break the secrecy of network protocols usually implemented on
embedded devices.
We have performed experiments using a NIOS processor executed on a Field Programmable
Gate Array (FPGA) to confirm the leakage model. We hope that our results shed some light
on the requirements in term of side channel attack for the future SHA-3 function.

1 Introduction

HMAC is a hash-based message authentication code proposed by Bellare, Canetti and
Krawczyk in 1996 [3]. It is very interesting to study for at least three reasons: HMAC
is standardized (by ANSI, IETF, ISO and NIST) and widely deployed (e.g. SSL, TLS, SSH,
IPsec); HMAC has security proofs [2, 3]; and it is a rather simple construction. It is used
in a lot of Internet standards. For instance embedded devices running IPsec protocols [16]
have to implement it. There are many such efficient equipments on the market from router
vendors that incorporate security protocols on their systems. It is crucial to study the se-
curity of such implementations since Virtual Private Network (VPN) products are widely
deployed and used to secure important networks.

Recently, new attacks on HMAC based on Wang et al. [31, 29, 30, 28] collision attacks
have emerged. However, either their complexity is very high, or they attack a function
no more widely used in practice such as HMAC-MD4, or the security model is not really
practical such as the related key model [6, 24, 8]. Here, we focus on more practical attacks on
HMAC. We show that when HMAC is implemented on embedded devices, and the attacker
has access to the physical device to use a side channel, then there exist devastating attacks.
These kind of attacks do not rely on previous collision attacks and can be applied on many
hash functions, such as MD5 or SHA-2 for instance. Even though side channel attacks are
believed to be very intrusive techniques, we show that our attack can be mounted using
little contact with the targeted device.

We choose to illustrate our attack with HMAC since it is used in a lot of Internet
standards. Beyond the integrity attacks, the side channel attack we describe, can be used
to attack the confidentiality of other Internet standards such as the Layer Two Tunneling
Protocol (L2TP [27]) or to attack the key derivation of IPsec in the Internet Key Exchange
(IKE [13]) protocol. Our attack can also be applied on a famous side channel countermeasure,
proposed by Kocher in [18] which is to derive a specific key for each call to the cryptographic
application. This kind of protection is very efficient against classical DPA techniques and
makes previous attacks infeasible. However our attack allows to recover the master key after
listening to only two derivation processes.

1.1 Description of SHA-1

All the computations in SHA-1 are made on 32-bit words. We use � to denote the modular
addition, and X≪n to denote the bit-wise rotation of X by n bits. SHA-1 is an iterated
hash function following the Merkle-Damgård paradigm. The message is padded and cut
into blocks of k bits (with k = 512 for SHA-1), and the digest is computed by iterating a
compression function, starting with an initial value IV.

The compression function of SHA-1 is an unbalanced Feistel ladder with an internal state
of five 32-bit registers A,B,C,D,E. The compression function has two inputs: a chaining
value which is used as the initial value of the internal registers A−1, B−1, C−1, D−1; and
a message block cut into 16 message words M0...M15. The message is expanded into 80
words W0...W79, such that Wi = Mi for i < 16. Then we iterate 80 steps, where each step
updates one of the registers. Each step uses one word Wi of the expanded message. If we
use Ai, Bi, Ci, Di, Ei to denote the value of the registers after the step i, the compression
function of SHA-1 can be described by:

Step update: Ai+1 = Φi �A≪5
i �Wi � Ei �Ki

: Φi = fi(Bi, Ci, Di)
: Bi+1 = Ai Ci+1 = B≪30

i Di+1 = Ci Ei+1 = Di

Input: A−1 ‖ B−1 ‖ C−1 ‖ D−1 ‖ E−1

Output: A−1 �A79 ‖B−1 �B79 ‖C−1 � C79 ‖D−1 �D79 ‖E−1 � E79

1.2 Description of HMAC

HMAC is a hash-based message authentication code proposed by Bellare, Canetti and
Krawczyk [3]. Let H be an iterated Merkle-Damgård hash function. HMAC is defined by

HMACk(M) = H(k̄ ⊕ opad ||H(k̄ ⊕ ipad ||M)),

where M is the message, k is the secret key, k̄ its completion to a single block of the hash
function, ipad and opad are two fixed one-block values.

The security of HMAC is based on that of NMAC. Since H is assumed to be based on
the Merkle-Damgård paradigm, we denote by Hk the modification of H where the public
IV is replaced by the secret key k. Then NMAC with secret key (k1, k2) is defined by:

NMACk1,k2(M) = Hk1(Hk2(M)).

2

We call k2 the inner key, and k1 the outer key. Due to the iterative structure of H, HMACk

is essentially equivalent to NMACH(k̄⊕opad),H(k̄⊕ipad).
Any key-recovery attack against NMAC can be used to recover an equivalent inner

key H(k̄ ⊕ ipad) and an equivalent outer key H(k̄ ⊕ opad) in HMAC. This information is
equivalent to the key of HMAC, since it is sufficient to compute any MAC. Most previous
attacks against HMAC are of this kind, but our attack is different: we will use a side channel
during the computation of H(k̄ ⊕ ipad) and H(k̄ ⊕ opad) to recover information about the
key k. Thus our attack cannot be used against NMAC.

1.3 Related Work on Side Channel Attacks.

Since there is no efficient and practical attacks against HMAC, it is interesting to study the
security of this function against side channel attacks. Similarly, Kelsey et al. have studied
the security of block ciphers using different leakage models [15, 14].

A classical side channel attack on HMAC has been proposed without experiments by
Lemke et al. in 2005 using a Differential Power Analysis [19] in [20]. They show that a
forgery attack can be mounted by performing a multi-bit DPA since SHA-1 manipulates
32-bit registers. This attack allows to recover the inner and outer keys of HMAC, but does
not allow to retrieve the initial key. Note that other DPA attacks are reported on HMAC
based on other hash functions such as [22, 10, 21]. But none of them allow to retrieve the
initial key value as the message is not directly mixed with the initial key but only with the
derivated subkeys.

To our knowledge, no Template Attacks (TA) [5, 25] have never been applied on HMAC.
This is mainly due to the fact that the manipulated registers are 32 bits long which make
classical templates attacks infeasible.

1.4 Our Results

The aim of this paper is two-fold. On the one hand, we assume that we have a side channel
that leaks the number of flipped bits when a value is loaded from the memory to a register.
We show that this side channel is sufficient to recover the secret key used in HMAC. On the
other hand, we show that this side channel is available in practice. A similar attack can also
be used against other standards or against key derivation process.

Our attack is quite different from previous side-channel attacks: we do not require knowl-
edge of the message being signed, and we only need to measure one execution of HMAC.
Thus some classical countermeasures against DPA will not affect our attack.

In our attack model, the adversary can profile the device during a first offline stage.
This assumption is classical, and is used in template attacks. It seems reasonable since
the adversary can buy and test its own device. During this profiling phase, the adversary
generates curves when loading data from the memory to a register with all the possible
Hamming distances. Then, in a second online stage, he has access to the targeted device
during one execution of the implementation. During this phase, according to the recorded
values, the Hamming distance can be learned using a single matching between the curves.

3

Finally, all theses Hamming distances give some information about the key, and we can
combine them to recover the key, even though the secret-dependent variables are not totally
independent. The simulation of the attack has been experimentally tested to show that we
are able to recover the secret key in practice and to show that the scale can be generated.

Our attack is based on two important facts. First, the key of HMAC is used as a message
in the hash function. The message is processed word by word, as opposed to the IV which
is used all at once, so we can extract information that depends on only one word of the key.
Second, we have two related computations that leak information on the key. Note that it
is important to have two different values of W0: if HMAC were defined with k|| opad and
k|| ipad, the two series of measures in the first step would be exactly the same, and we would
not have enough information for a practical attack.

The main difference between our attack and classical template attacks is that we do not
consider the value of a register but its Hamming weight. This presents the advantage to limit
the number of profiling (only 33 records are needed instead of 232 for 32-bit registers) even if
it gives less information. If the targeted register is manipulated a sufficient number of time,
then we can combine the partial information we have recovered to find the entire value of the
initial register. To sum up, this attack can be viewed as a combination of template attacks
and classical power consumption model. Classical template attacks usually separate keys
according to words or substrings of words. To our knowlegde and even if it seems natural,
it is the first time that a template attack is based on power consumption models.

1.5 Organization of the paper

In section 2, we describe SHA-1 and we present how our attack works. In section 3, we give
experimental results on a real implementation on the NIOS processor embedded in a FPGA
Altera Stratix. Finally, in section 4, we show that our HMAC attack can be applied to other
hash functions such as MD5 and SHA2. We also show how a similar attack can be used
against other constructions: it can break the confidentiality of the L2TP protocol and can
recover the key materials of the IPsec protocol by attacking the key derivation function.

2 Description of the Attack

2.1 SHA-1 Message Leak

In SHA-1, the message is introduced word by word, as opposed to the IV which is introduced
all at once. This means that the values manipulated during the first rounds of SHA-1 depend
only on the first message words. For instance, the internal value A1 depends only on the IV
and on m0. The value A1 is also used as B2 and after a rotation as C3, D4 and E5. Each
time this value is manipulated, there will be some leakage depending only on m0. If we can
model this leakage, we will be able to recover m0: for all possible values of m0, we simulate
the leak, and we keep the values that give a good prediction. The full message recovery
algorithm is given by Algorithm 1.

4

Algorithm 1 Recovery of n message words
1: Profiling Stage
2: Study the device and model the leakage

3: Operational Stage
4: Get side-channel information from one run of the hash function

5: Message recovery
6: S ← {IV} . S is the candidate set
7: for 0 ≤ i < n do
8: S ′ ← ∅
9: for all s ∈ S do
10: for all mi ∈ Z232 do
11: Simulate the leak for (s,mi)
12: if it matches the measure then
13: S ′ ← S ′ ∪ (s,mi)
14: end if
15: end for
16: end for
17: S ← S ′

18: end for

The complexity of the message recovery depends on the size of the set of good candidates
S: each iteration of the loop in line 7 costs 232|S|. If we have γ candidates matching each
measure, the set S will be of size γi after iteration i, and the total cost of the algorithm
to recover n message words is about 232γn. The value of γ will depend of the number of
information leaked through the side channel.

2.2 HMAC key leak

If we look at HMAC, we see that the secret key is used as a message for the hash function,
so we can use the message leak in SHA-1 to recover the key of HMAC-SHA-1. Note that
this does not apply to NMAC, where the key is used as the initialization vector.

In fact, the secret key is used twice in the HMAC construction: it is used in the inner
hash function as H(k̄⊕ ipad) and in the outer hash function as H(k̄⊕ opad). We can collect
side-channel information from those two related messages, which gives two sets of measures
for the same key. This property is crucial for our attack: with only one set of measures, we
would have too many candidates in the set S.

We will now study an implementation of SHA-1 on the NIOS processor to check whether
this leakage is sufficient to identify the secret key.

2.3 Modelization of the Attack

The side channel we will use in our practical experiments is a measure of the electromagnetic
radiation (see Section 3). We model it as follows: each time the processor loads a data into a
register, the electromagnetic signal depends on the number of flipped bits inside this register.

5

More precisely, we target the ldw instruction (load word), which loads data from the
memory to a register. Since this instruction does not perform any computation, we expect
the EM signal to be quite clean, and we should be able to read the number of flipped bits.
When a value B is loaded into a register whose previous value was A, we have a transition
A→ B, and we can measure the Hamming weight of A⊕B.

2.4 Study of an Implementation of SHA-1

For our experiments, we used the code of XySSL4 which is an SSL library designed for
embedded processor. The compiled code for the round function of SHA-1 is given in Table 1
in Appendix A, together with the values leaked from the ldw instructions.

Using this implementation of SHA-1, we have 6 measures at each step of the compression
function, which gives 12 measures per key word of HMAC-SHA-1. The Hamming weight of a
32-bit value contains 3.54 bits of entropy, so we expect to have a small number of candidates
for each key word. Note that the measures are clearly not independent, which makes it
difficult to compute the number of expected candidates. Therefore, we ran some simulations
to estimate the complexity of the attack.

2.5 Simulations

To estimate the complexity of the attack, we can run the message recovery step for some
initial states. For a given state (Ai, Bi, Ci, Di, Ei), we consider the 232 values of the message
word Wi, and we compute the Hamming weight of the measures given in Table 1. We can
count the number of collisions in the measures, which will give the distribution of the number
of candidates γ matching the measure.

More precisely for the first message word W0, we know exactly the constants involved
in the measures: they are given in Table 1, and we will use them with W0 = k0 ⊕ ipad and
W0 = k0⊕ opad. The distribution is given in Figure 1. It has an average of 2.79 and a worst
case value of 81. Experiments with random initial state instead of the specified IV of SHA-1
give similar results (this simulates the recovery of the other message words). Moreover, if we
allow one of the measures to be wrong with a difference of one, then we have 4.60 candidates
on average, and 140 in the worst case. This means that we can tolerate some errors in the
measures, without affecting too much the computation time.

In the end, we will assume that the measures give about three candidates at each step.
We expect that the recovery of a 32κ-bit HMAC key will use a set S of size about 3κ, and
the complexity of the attack will be about 232 × 3κ which will take a few hours on a PC for
a 128-bit key. To identify the correct key among the set S, we can either use a known MAC,
or use some leakage in the following steps of the compression function.

3 Experimental Validation on a known implementation of HMAC-SHA1

Our side channel attack recovers the message input of the compression function if we can
measure the number of bits flipped when loading from the memory to a register with the
4 Available at http://xyssl.org/code/

6

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

γ

number of message (log2)

Fig. 1. Distribution of the number of candidates γ, for the first message word W0.

ldw instruction. We experimentally validated this assumption using an implementation of
HMAC-SHA1 for a NIOS processor, on an Altera Stratix FPGA. The electromagnetic ra-
diations are measured by near field methods using a loop probe sensitive to the horizontal
magnetic field. We assume that the assembly code of is known, and we first study the im-
plementation of the HMAC-SHA1 algorithm. Then, we focus on the leakage of the load
instruction.

Electromagnetic radiation signals are now considered as one of the most powerful side
channel signals [9, 1, 23]. One advantage of the EM side channel is that is possible to focus
on local emanations.

3.1 Leakage of HMAC-SHA1 implementation

The Figure 2 shows the radiations measured during the computation of HMAC-SHA1 with a
128-bit key and a 504-bit messageM . We can clearly see the 5 executions of the compression
function. A sharp analysis of this leakage needs to be done in order to find out some more
useful information. During the experiments, we focus on the load instruction (referred as
ldw by Stratix Assembly Language) but other instructions could also give information about
the Hamming weight of the data used during the execution of SHA-1.

3.2 The Leakage of the ldw instruction

The analysis in Section 2 shows that information leak from this instruction will be sufficient
to recover the secret key. The goal of this section is to validate that the Hamming distance

7

0 1ms 2ms

Fig. 2. HMAC-SHA1 Electromagnetic Execution. We see the three calls of the compression function to
compute h = H(k̄ ⊕ ipad ‖M) and two calls to compute H(k̄ ⊕ opad ‖h).

between the mnemonic operands manipulated by the instruction ldw leak with electromag-
netic radiations. As an example, if the register R, which value was A, is loaded with the new
value B, we claim the Hamming distance between A and B leaks with the electromagnetic
radiations.

For validation, we precharged the register R to A = 0xae8ceac8, Altera Stratix being
a 32-bit register technology. Then two experiments have been performed: in the first one,
we use B1 = A = 0xae8ceac8 and in the second one, we use B2 = Ā = 0x51731537.
These two experiments are opposite regarding the Hamming distance: H(A⊕B1) = 0 while
H(A⊕B2) = 32. Fig. 3 illustrates this link between radiations and Hamming distance.

We must now check if the measures allow to distinguish a small difference in the Hamming
weight, and if they are masked by the noise. For a successful attack, we need to be able to
distinguish a Hamming distance of 15 from a Hamming distance of 16 since on average the
frequency of this Hamming distance is larger than the extremal values. To verify this, we
used pairs of values with those Hamming distance. Fig. 4 shows the results with the following
pairs: (0x00000000, 0xe0f00ff0), (0x55555555, 0x85a55aa5), (0x00000000, 0xffff0000),
(0xffffffff, 0x0f0f0ff0), (0xaaaaaaaa, 0x00050000). We see that the curve depends on
the Hamming distance between the two values, and not on the actual value of the register.
Moreover, the noise level is sufficiently low in our setting to be able to distinguish a difference
of one in the Hamming distance. These curves have been obtained by zooming on figure 3.

8

0 10ns 20ns 30ns 40ns 50ns 60ns

∆w = 32
∆w = 0

Fig. 3. Extremal Hamming Distances.

Thus, the Side Channel Analysis procedure can be done in two stages, a profiling stage
and an operational stage. 33 measures of load instructions with all the possible Hamming
distance are done during the profiling stage. This will allow us to find the Hamming distance
of all ldw instructions for the operational stage. The profiling stage will also be used to study
the timing of the SHA-1 computation, so as to match each instruction with the assembly
code. Then, the operational stage consists in a Template Attack [5] on the ldw instructions.
Following the attack of Section 2, we expect to recover a secret key of κ words with only
one HMAC measure and a workload of about 2323κ steps of the compressions function.

4 Extension to Other Hash Functions and to Other Usage

In this section, we show that the basic attack we proposed can be extended to other hash
functions, works even though the code is unknown and can also be used to recover encryption
keys in other protocols.

4.1 Other hash function of the MD4 family.

The other functions of the MD4 family (MD5, SHA-2, RIPEMD) have a very similar design
and the message words also enter the compression function one by one. The assembly code
of a specific implementation should be studied to see how many load instructions are used

9

0 1ns 2ns 3ns

∆w = 15 and A = 0x00000000
∆w = 15 and A = 0x55555555
∆w = 16 and A = 0x00000000
∆w = 16 and A = 0xFFFFFFFF
∆w = 18 and A = 0xAAAAAAAA

Fig. 4. Electromagnetic radiations for some Hamming distances.

and what information is leaked, but we expect the attack to be just as efficient. Basically,
our attack should work against any hash function based on a Feistel ladder.

4.2 Unknown Implementation

Even if we don’t have access to the assembly code of the implementation, our attack is
still applicable. The main difference with the previous analysis is that previous value of the
targeted register Ainit is unknown. Anyway, the attacker can improve the profiling stage.
Indeed, he can guess the value of Ainit with Correlation Power Analysis(CPA) [4], making
the secret key varying. Let’s remark that instead of making a 32 bits CPA, the attacker can
do 4 CPA, each one on 8 bits. This procedure permits to limit the computational cost of
the profiling stage. Then, thanks to this CPA procedure, the attacker can guess what was
a register value before the secret key bits are written on it. Furthermore, the CPA peak
permits to localize in time the load instruction.

With all these templates obtain at a very low computational cost, the attacker will be
able with only one curve (if the noise is as low as in our setting) to retrieve the full key.

4.3 Other Attack Scenarios

In this section we identify some other construction where our attack can recover a secret
key. The basic requirement is that the secret key is used as the message input of the hash

10

function, and we need two related computations where the key enters the hash function in
two different states.

Confidentiality: The L2TP Example. The L2TP protocol [27] is a tunneling protocol
used to implement VPNs. It uses a shared secret K, and two known values RV and AV . The
plaintext is broken into 16-byte chunks, p1, p2, . . . The ciphertext blocks are called c1, c2, . . .
and the intermediate values b1, b2, . . . are computed as follows:

b1 = MD5(AV ‖K‖RV) c1 = p1 ⊕ b1
b2 = MD5(K‖c1) c2 = p2 ⊕ b2
b3 = MD5(K‖c2) c3 = p3 ⊕ b3 . . .

The secret key K enters the hash function in two different states for the computation of b1
and b2, so we can apply our attack and recover the key.

Key Derivation. Key derivation is sometimes used as a countermeasure against DPA
attacks. The key derivation process described in [17], uses a hash function H, a master key
K and a counter ctr, and computes the sessions keys as SK = H(ctr‖K). Using our attack,
if we observe only two key derivation process, we have enough information to recover the
master key K.

Note About RIPEMD. The RIPEMD family of hash function uses two parallel Feistel
ladder, and combines the results in the end of the compression function. This allows us to
recover two series of measures, even if the secret key enters the hash function only once.
The original function RIPEMD-0 uses two lines with the same permutation and different
constants, which gives enough information for our attack. Thus, any construction which uses
a secret key as a part of a message to be hashed with RIPEMD-0 is vulnerable. The newer
functions RIPEMD-128 and RIPEMD-160 uses different permutations of the message in the
two lines; our attack can reduce the key-space but we don’t have a practical key recovery
with a single hash function call.

4.4 Possible countermeasure

A possible countermeasure against our attack is to keep the internal state of SHA-1 inside
the processor registers. Our attack uses the fact that the internal state is stored in the stack
and moved in and out the registers: we measure the radiations during this movement. If all
the computations are done inside the registers, we can still measure the radiations during
the computations, but the signal will have more noise. Another solution is to load random
values between each ldw instruction or to use classical masking methods but this requires a
random generator and may downgrade the performance drastically.

11

5 Conclusion

In this paper, we show that the electromagnetic radiation of a device can leak the number
of flipped bits when data is loaded into a register. This information could also be observed
using a proper current power analysis. However, EM signal allows to obtain emanations of
local instructions and attacks are not intrusive since they can be performed in the near field
of the device and do not require to modify the circuitry. Our experimentation studies the
ldw instruction since it is easier to characterize during the profiling stage, but the attack
could be improved by using other instructions. Our attack targets the message input of the
compression function, while previous attacks only considered the IV input. This allows us
to attack other standards and to recover crucial information such as the master key in some
key-derivation schemes.

Finally, these results give some information about the efficiency of side channel attack
on hash functions implemented on embedded processors. It is important to see that the
adversary model is very limited: access to a similar device for a profiling stage and then one
execution leads to an efficient key recovery.

References

1. Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi. The em side-channel(s).
In Jr. et al. [12], pages 29–45.

2. Mihir Bellare. New proofs for. In Cynthia Dwork, editor, CRYPTO, volume 4117 of Lecture Notes in
Computer Science, pages 602–619. Springer, 2006.

3. Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message authentication.
In Neal Koblitz, editor, CRYPTO, volume 1109 of Lecture Notes in Computer Science, pages 1–15.
Springer, 1996.

4. Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis with a leakage model.
In Joye and Quisquater [11], pages 16–29.

5. Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Jr. et al. [12], pages 13–28.
6. Scott Contini and Yiqun Lisa Yin. Forgery and partial key-recovery attacks on hmac and nmac using

hash collisions. In Xuejia Lai and Kefei Chen, editors, ASIACRYPT, volume 4284 of Lecture Notes in
Computer Science, pages 37–53. Springer, 2006.

7. Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26,
2005, Proceedings, volume 3494 of Lecture Notes in Computer Science. Springer, 2005.

8. Pierre-Alain Fouque, Gaëtan Leurent, and Phong Q. Nguyen. Full key-recovery attacks on hmac/nmac-
md4 and nmac-md5. In Alfred Menezes, editor, CRYPTO, volume 4622 of Lecture Notes in Computer
Science, pages 13–30. Springer, 2007.

9. Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic analysis: Concrete results.
In Çetin Kaya Koç, David Naccache, and Christof Paar, editors, CHES, volume 2162 of Lecture Notes
in Computer Science, pages 251–261. Springer, 2001.

10. Praveen Gauravaram and Katsuyuki Okeya. An update on the side channel cryptanalysis of macs
based on cryptographic hash functions. In K. Srinathan, C. Pandu Rangan, and Moti Yung, editors,
INDOCRYPT, volume 4859 of Lecture Notes in Computer Science, pages 393–403. Springer, 2007.

11. Marc Joye and Jean-Jacques Quisquater, editors. Cryptographic Hardware and Embedded Systems -
CHES 2004: 6th International Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings, vol-
ume 3156 of Lecture Notes in Computer Science. Springer, 2004.

12

12. Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors. Cryptographic Hardware and Em-
bedded Systems - CHES 2002, 4th International Workshop, Redwood Shores, CA, USA, August 13-15,
2002, Revised Papers, volume 2523 of Lecture Notes in Computer Science. Springer, 2003.

13. C. Kaufman. Rfc 4306 - internet key exchange (ike v2) protocol, December 2005. Available at http:
//www.ietf.org/rfc/rfc4306.txt.

14. John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side channel cryptanalysis of product
ciphers. In Jean-Jacques Quisquater, Yves Deswarte, Catherine Meadows, and Dieter Gollmann, editors,
ESORICS, volume 1485 of Lecture Notes in Computer Science, pages 97–110. Springer, 1998.

15. John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Side channel cryptanalysis of product
ciphers. Journal of Computer Security, 8(2/3), 2000.

16. S. Kent. Security architecture for the internet protocol, November 1998. Available at http://www.ietf.
org/rfc/rfc2401.txt.

17. Paul Kocher. Us patent no. 6,304,658, 2003. Available at http://www.cryptography.com/technology/
dpa/Patent6304658.pdf.

18. Paul Kocher. Us patent no. 6,539,092, 2003. Available at http://www.cryptography.com/technology/
dpa/Patent6539092.pdf.

19. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Michael J. Wiener,
editor, CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages 388–397. Springer, 1999.

20. Kerstin Lemke, Kai Schramm, and Christof Paar. Dpa on n-bit sized boolean and arithmetic operations
and its application to idea, rc6, and the hmac-construction. In Joye and Quisquater [11], pages 205–219.

21. Robert P. McEvoy, Michael Tunstall, Colin C. Murphy, and William P. Marnane. Differential power
analysis of hmac based on sha-2, and countermeasures. In Sehun Kim, Moti Yung, and Hyung-Woo Lee,
editors, WISA, volume 4867 of Lecture Notes in Computer Science, pages 317–332. Springer, 2007.

22. Katsuyuki Okeya. Side channel attacks against hmacs based on block-cipher based hash functions. In
Lynn Margaret Batten and Reihaneh Safavi-Naini, editors, ACISP, volume 4058 of Lecture Notes in
Computer Science, pages 432–443. Springer, 2006.

23. Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (ema): Measures and counter-
measures for smart cards. In Isabelle Attali and Thomas P. Jensen, editors, E-smart, volume 2140 of
Lecture Notes in Computer Science, pages 200–210. Springer, 2001.

24. Christian Rechberger and Vincent Rijmen. On authentication with hmac and non-random properties.
In Sven Dietrich and Rachna Dhamija, editors, Financial Cryptography, volume 4886 of Lecture Notes
in Computer Science, pages 119–133. Springer, 2007.

25. Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model for differential side channel
cryptanalysis. In Josyula R. Rao and Berk Sunar, editors, CHES, volume 3659 of Lecture Notes in
Computer Science, pages 30–46. Springer, 2005.

26. Victor Shoup, editor. Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 14-18, 2005, Proceedings, volume 3621 of Lecture
Notes in Computer Science. Springer, 2005.

27. W. Towsley, A. Valencia, A. Rubens, G. Pall, G. Zorn, and B. Palter. Rfc 2661 - layer two tunneling
protocol "l2tp", August 1999. Available at http://www.ietf.org/rfc/rf2661.txt.

28. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Cryptanalysis of the hash
functions md4 and ripemd. In Cramer [7], pages 1–18.

29. Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full sha-1. In Shoup [26],
pages 17–36.

30. Xiaoyun Wang and Hongbo Yu. How to break md5 and other hash functions. In Cramer [7], pages
19–35.

31. Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient collision search attacks on sha-0. In Shoup
[26], pages 1–16.

13

A SHA-1 code

Table 1. SHA-1 code. The table shows the code for one step of the compression function. The other steps
are exactly the same, excepted that the mapping between the internal state values A,B,C,D,E and the
stack changes at each round.

Stack Registers Measure
Instruction 76 80 84 88 92 r2 r3 r4

Begin step 0 A0 B0 C0 D0 E0 X0 Y0 Z0

ldw r2 76(fp) A0 X0→A0

roli r4, r2, 5 A≪5
0

ldw r3, 84(fp) C0 Y0→C0

ldw r2, 88(fp) D0 A0→D0

xor r3, r3, r2 C0 ⊕D0

ldw r2, 80(fp) B0 D0→B0

and r3, r3, r2 (C0 ⊕D0) ∧B0

ldw r2, 88(fp) D0 B0→D0

xor r2, r3, r2 Φ0

add r3, r4, r2 Φ0 �A≪5
0

ldw r2, 12(fp) W0 Φ0→W0

add r3, r3, r2 Φ0 �A≪5
0 �W0

ldw r2, 92(fp) E0 W0→E0

add r3, r3, r2 Φ0 �A≪5
0 �W0 � E0

movhi r2, 23170 0x5a820000
addi r2, r2, 31129 0x5a827999
add r2, r3, r2 A1

stw r2, 92(fp) A1

ldw r2, 80(fp) B0 A1→B0

roli r2, r2, 30 B≪30
0

stw r2, 80(fp) C1

Begin step 1 B1 C1 D1 E1 A1 X1 Y1 Z1

ldw r2, 92(fp) A1 X1→A1

...

We have the following relations:

Φi = fi(Bi, Ci, Di)

Bi+1 = Ai

Ci+1 = B≪30
i

Di+1 = Ci

Ei+1 = Di

Ai+1 = Φi �A≪5
i �Wi � Ei �Ki

Xi+1 = B≪30
i

Yi+1 = Φi �A≪5
i �Wi � Ei

Zi+1 = A≪5
i

We can make 8 measures per step, but this gives
only 6 informations leaks, because the transitions
Di+1 → Bi+1 and Bi+1 → Di+1 leaks the same in-
formation as Xi → Ai.
For instance, the leaks related to W0 are:

Φ0 →W0 W0 ⊕ 0x98badcfe

W0 → E0 W0 ⊕ 0xc3d2e1f0

A1 → B0 (W0 � 0x9fb498b3)⊕ 0xefcdab89

X1 → A1 (W0 � 0x9fb498b3)⊕ 0x7bf36ae2

Y1 → C1 (W0 � 0x45321f1a)⊕ 0x7bf36ae2

A1 → D1 (W0 � 0x9fb498b3)⊕ 0x98badcfe

14

