
The Carry Leakage on the Randomized ExponentCountermeasurePierre-Alain Fouque1, Denis R�eal2;3, Fr�ed�eri
 Valette2, and Mhamed Drissi31 �E
ole normale sup�erieure/CNRS/INRIA, 75 Paris, Fran
ePierre-Alain.Fouque�ens.fr2 CELAR, 35 Bruz, Fran
efDenis.Real;Frederi
.Valetteg�dga.defense.gouv.fr3 INSA-IETR, 20 avenue des 
oesmes, 35043 Rennes, Fran
efDenis.Real;Mhamed.Drissig�insa-rennes.frAbstra
t. In this paper, we des
ribe a new atta
k against a 
lassi
al di�erential poweranalysis resistant 
ountermeasure in publi
 key implementations. This 
ountermeasurehas been suggested by Coron sin
e 1999 and is known as the exponent randomization.Here, we show that even though the binary exponentiation, or the s
alar produ
t on ellip-ti
 
urves implementation, does not leak information on the se
ret key, the 
omputationof the randomized se
ret exponent, or s
alar, 
an leak useful information for an atta
ker.Su
h part of the algorithm 
an be not well-prote
ted sin
e its goal is to avoid atta
kduring the exponentiation. Consequently, our atta
k 
an be mounted against any kindof exponentiation, even very resistant as soon as the exponent randomization 
ounter-measure is used. We target an `-bit adder whi
h adds `-bit words of the se
ret exponentand of a random value. We show that if the 
arry leaks during the addition, then we
an almost learn the high order bits of ea
h word of the se
ret exponent. Finally, su
hinformation 
an be then used to re
over the entire se
ret key of RSA or ECC based
ryptosystems.1 Introdu
tionSide 
hannel atta
ks are very powerful atta
ks and today most embedded appli
ations thatrequire high level of se
urity use 
ountermeasures against su
h kind of atta
ks. Two of themost 
arefully studied algorithms are the square-and-multiply algorithm and its analog onEllipti
 Curve, the double-and-add algorithm, sin
e its wide usage. There exists a 
lassi
al
ountermeasure to avoid simple power analysis (SPA) atta
k, that always performs the multiplyor the add operation so that all the operations of the implementation are not key dependent.This 
ountermeasure is very eÆ
ient in pra
ti
e, so that most implementations use it. However,su
h implementations 
an be atta
ked by using di�erential power analysis (DPA [13℄) te
hniquessu
h as in [14℄ and a popular 
ountermeasure 
onsists in randomizing the se
ret exponent orse
ret s
alar by a multiple of the order of the elements '(N) in the 
ase of RSA modulus orof the order of the base point in the 
ase of Ellipti
 Curve. Su
h 
ountermeasure has beenproposed by Coron in [7℄ sin
e 1999. With this 
ountermeasure, the se
ret exponent will neverbe the same and DPA atta
ks that re
over the se
ret bit by bit 
annot be mounted.Related Work. This well-known 
ountermeasure has been �rst atta
ked by Fouque andValette in [11℄ using the Doubling Atta
k. However, in su
h atta
k the adversary is assumed



to be able to send many times the same message and that no randomization of the messageis performed before the exponentiation. Here, our atta
k avoids these two drawba
ks sin
e theatta
k does not need the knowledge of the message.In [10℄, Fouque et al. show that if Coron's 
ountermeasure is used with some windowingexponentiation algorithms and a small publi
 key e, then a simple SPA followed by a very 
leveratta
k 
an re
over the se
ret key d and '(N) in the same time. In [10℄, the implementation is notprote
ted against SPA atta
ks sin
e the 
lassi
al SPA atta
k does not work on the windowingalgorithms. In this work, the authors have to solve a problem similar of that whi
h we try tosolve here, namely, re
overing the se
ret d in RSA, knowing some non-
onse
utive bits of d.Indeed, side 
hannel te
hnique allows Fouque et al. to learn some key bits of many randomizedexponents of the form dj = d+ �j'(N), for many �j in a small set, the set of 20-bit or 32-bitintegers in typi
al implementations.Re
overing se
ret RSA key knowing some bits of d is an old problem starting from thepionerring work of Boneh, Durfee and Frankel in [2℄ sin
e 1998. However, the te
hniques usedin Boneh et al.'s paper are based on Coppersmith's latti
e algorithm [5, 6℄ that works well whenthe bits are 
onse
utive. Later, other atta
ks su
h as [9, 1℄ have been proposed on RSA, but noone ex
ept [10℄ targets the 
ase when bits are non 
onse
utive.In the Ellipti
 Curve 
ase, the problem of re
overing se
ret s
alar when non
onse
utive bitsare known has also been studied. The Baby Step Giant Step algorithm 
an always be used,however redu
ing the memory requirement is not always possible as with Pollard algorithm orthe lambda method, a.k.a. the kangoroo algorithm in [19, 15℄. However, Stinson des
ribes analgorithm due to Coppersmith in [18℄ that 
an be used to redu
e the memory requirement.A similar algorithm has been devised by Coron et al. in [8℄ for RSA modulus. However, themissing bits must not be too numerous sin
e the method is based on the birthday paradox andmemory and time requirements are almost in the square root or fourth root of the number ofmissing bits.Our Results. In this paper, we show that the exponent randomization 
ountermeasure 
anbe atta
ked very eÆ
iently and the whole se
ret key 
an be re
overed. The main novelty ofthe atta
k is to target the 
omputation of the randomization itself dj = d + �j � '(N) in 
aseof an RSA modulus and not the exponentiation x 7! xdj mod N . In the addition of a randomvalue with a �x and se
ret one, the targeted operation is the sum of the se
ret s
alar witha random number, a random multiple of the order of the base point P . Seifert in [17℄ andBrier et al. in [3℄ have also studied atta
ks on other part of the algorithm, on some publi
information for example. Here, our atta
k is less invasive sin
e we do not 
hange parametersand we only re
ord some ele
tromagneti
 radiations. Finally, this atta
k is very eÆ
ient sin
eit works against very se
ure or even \provably-se
ure" exponentiation that uses the exponentrandomization sin
e the side 
hannel leakage 
omes from the 
ountermeasure and not from theexponentiation algorithm.We show that when the se
ret exponent, or s
alar, and the randomization are 
ut into `-bitword, then the 
arries of the adder 
an leak and su
h information 
an be used to guess the highorder bits of ea
h `-bit word of the se
ret with a good pre
ision. Then to re
over the wholese
ret key, either the number of missing bits is small enough so that a 
lassi
al baby step giantstep method 
ould be used or other te
hniques are required to �nd the other bits. In the 
aseof RSA keys or large ECC keys, the idea 
onsists in re
overing the randomized value �j usingthe known bits of the order. On
e the �j 's are known, the addition or the exponentiation are2



unprote
ted against 
lassi
al DPA atta
ks su
h as address-bit DPA [12℄ or Correlation PowerAnalysis (CPA) atta
k [4℄.Organization of the paper. The prin
iple of the atta
k is presented in se
tion 2. Then, inse
tion 3, we theoreti
ally explain how the knowledge of the number of 
arries allows us toguess the high order bits of ea
h word of the se
ret key. In se
tion 4, we show that the internal
arries of the full addition involved in the masking pro
ess 
an be observed by SCA. Finally, inse
tion 5 we des
ribe the atta
ks against 
lassi
al implementations of RSA and ECC to retrievethe whole se
ret key.2 The Atta
k Prin
ipleThe idea of the atta
k is to target the 
ountermeasure operation and not the exponentiationor s
alar produ
t operation. The former operation is usually not well prote
ted sin
e it is usedto prote
t the latter one. So, in the sequel, we assume that the exponentiation is prote
tedagainst SPA by using the square-and-multiply always algorithm and against DPA atta
k byusing randomization of the message even with unknown blinding and the randomization of theexponent.2.1 The Se
ret Randomization CountermeasureIt is well-known that randomizing d with dj = d + �j'(N) for RSA and dj = d + �j#Efor ECC leads to the same results. Furthermore, if �j is di�erent at ea
h exe
ution of thealgorithm, 
lassi
al DPA atta
ks whi
h retrieve the se
ret bit by bit be
ome ine�e
tive. Su
ha 
ountermeasure is known as the exponent randomization. Fig. 1 des
ribes this te
hnique forRSA and ECC. { Inputs: a message M for RSA (resp. a point P of a 
urve E forECC), a word size in bits �, an exponent d, a modulus N (resp.#E , the 
ardinal of E).{ Output: Md mod N for RSA (resp. d � P for ECC)1. Take a �-bit random integer �j2. Compute dj = d+ �j'(N) (resp. dj = d+ �j#E)3. Return SCA prote
ted exponentiation Mdj mod N (resp. dj � P )Fig. 1. The Private Exponent Randomization for RSA (resp. ECC)2.2 The Sket
h of the Atta
kIf someone adds random integers Ri to a �xed integer S, the probability over the di�erent valuesof Ri to observe a 
arry 
ag only depends on S. Indeed, on 8-bit integers, random additionwith the �xed value 0xFF is more likely to raise a 
arry 
ag than with the �xed integer 0x01.3



Integers are often too large to be added through a digital 
ir
uit. The operands are usuallybroken into `-bit words and the full addition fun
tion is splitted into `-bit additions. An `-bitaddition is the sum of two `-bit integers. A 
arry 
ag is raised for a bu�er over
ow, i.e. whenthe `-bit sum is larger or equal to 2`.These 
arry 
ags raised during the full addition 
an be observed by side 
hannel analysis.An atta
ker who observes a devi
e for many se
ret randomizations 
an use the 
arry 
ag as asour
e of information to retrieve the se
ret RSA or ECC exponent. Our atta
k uses two stages:the side 
hannel analysis to obtain information on the se
ret and the 
ryptographi
 atta
kwhi
h uses the information to re
over the entire se
ret key.2.3 The Exponent Randomization Ripple Carry AdditionThis subse
tion des
ribes the notations used in the rest of the paper. The atta
ker performs mexponent randomizations and j denotes the indi
e of the randomization from 0 to m� 1.

Fig. 2. jth Exponent randomizationThe addition fun
tion used for the exponent randomization is assumed to be designed asa k-word ripple 
arry addition. The two operands of the addition are broken in k `-bit wordswith ` = 8; 16 or 32. The full addition is then performed word by word using a `-bit adderwhi
h takes as input two `-bit operands and a 
arry-in and outputs the sum and the 
arry-out. The ripple strategy 
onsists in 
haining the 
arry-out and the 
arry-in together. Let i bethe word indi
e from 0 to k � 1. The private exponent and the mask are denoted by d andA(j) = �j'(N) for RSA and A(j) = �j#E for ECC. The 
arry 
ag raised during the ith `-bitaddition for the jth randomization is 
(j)i and Ci is the sum of the 
arry 
ags raised duringthe m exponent randomizations, Ci =Pm�1j=0 
(j)i . The prin
iple of the ripple adder for the jthexponent randomization is des
ribed in Fig. 2 and the notations are the following:{ `: The atomi
 adder size 4



{ k: The number of words.{ m: The number of exponent randomizations observed.{ d: The private exponent d =Pk�1i=0 Di2`�i.{ d0: The randomized private exponent d0 =Pk�1i=0 D0i2`�i.{ A(j): The jth mask A(j) =Pk�1i=0 a(j)i 2`�i.{ 
(j)i : The 
arry involved in the addition of the ith `-bit word:{ 
(j)�1 = 0 (no initial 
arry.){ 
(j)i = 1 if Di + a(j)i + 
(j)i�1 � 2` with 0 � i < k and 
(j)i = 0 otherwise.{ Ci: The number of 
arries in the addition of the ith `-bit word: Ci =Pm�1j=0 
(j)i3 The Exponent Randomization Atta
kThe exponent randomization 
onsists in summing the private exponent with a mask. To do so,both exponent and mask are divided into k `-bit words. In this se
tion, we assumed that theatta
ker 
an observe or dedu
e the number Ci of 
arries involved on the ith `-bit addition inthe m exponent randomizations. In the next se
tion, we show that su
h information 
an beobserved by using side 
hannel atta
k.In the following, we assume that the randomization �j'(N) (or �j#E) are uniformly dis-tributed values. Even though su
h an assumption is not 
orre
t, we 
an assume that it islo
ally 
orre
t. For ea
h word of �j'(N), we 
an assume this property sin
e the number of
urves needed is less than the 232 values of the �j 's and the multipli
ation has the property toqui
kly spread the random values of the �js into all words of �j'(N) ex
ept maybe the �rstand last words.Probability of Guessing a Word given the Number of Carries. The atta
ker hasto guess the ith word of the se
ret exponent knowing the number of 
arries involved duringthe m randomizations. Theorem 1 gives us the probability of a 
orre
t guess of the probabilitydistribution of guessing the ith word of the se
ret knowing the number Ci of 
arry 
ags involvedin its making is given by Eq. 1.Theorem 1. The probability distribution of guessing the ith word of the se
ret knowing Ci thenumber of 
arries 
ags involved in the m randomizations isPr(Di = njCi = q) = (n=2`)q(1� n=2`)m�qP2`�1�=0 (�=2`)q(1� �=2`)m�q (1)Proof. First, we 
ompute the probability distribution of the �rst `-bit word D0 of the se
retexponent given the number of 
arries C0 involved with a `-bit adder implementation during mrandomizations, i.e. we prove the above formula for i = 0. Then, we use an indu
tion on i toprove the theorem for all values i.During a single randomization, the probability Pr(C0 = 1jD0 = n) of observing one 
arry forthe �rst word is n=2`. Indeed, let a given mask Aj , a given se
ret d, and their �rst `-bit wordsare respe
tively aj0 and D0. These words 
an take 2` di�erent values with the same probability.The value D0 is �xed while aj0 is purely random, thus: Pr(C0 = 1jD0 = n) = Pr(n + aj0 >5



2`�1) = Pr(aj0 > 2`�n�1): Then a 
arry is observed when aj0 takes one of the n values largerthan or equal to 2` � n and smaller than or equal to 2` � 1. Therefore:Pr(C0 = 1jD0 = n) = n=2` (2)Now, we 
ompute the probability distribution Pr(D0 = n \ C0 = q) using the de�nition of the
onditional probability: Pr(D0 = n \ C0 = q) = Pr(C0 = qjD0 = n) � Pr(D0 = n): Sin
e thereexist �mq � possible 
ases where q 
arries are observed during m randomizations. Therefore:Pr(D0 = n \ C0 = q) = ��mq �Pr(C0 = 1jD0 = n)q(1� Pr(C0 = 1jD0 = n))m�q� � (1=2`) (3)Then, we need to 
ompute the probability distribution of the event C0 = q. Sin
e, the se
retD0 
an take 2` di�erent values, we 
an thus 
ompute the probability by summing on all valueof D0 as follows: Pr(C0 = q) =P2`�1�=0 Pr(C0 = q \D0 = �) and using (3), we get:Pr(C0 = q) = 12` � �mq � 2`�1X�=0 (�=2`)q(1� �=2`)m�q (4)Finally, we 
ompute the probability distribution Pr(D0 = njC0 = q) by using (3) and (4):Pr(D0 = njC0 = q) = (n=2`)q(1� n=2`)m�qP2`�1�=0 (�=2`)q(1� �=2`)m�q (5)Now, we prove theorem (1) for i > 0. For the jth randomization, the (i + 1)th addition 
arry
ji+1 does not only depend on the value of Di+1 + aji+1 but also on the ith addition 
arry 
ji .More pre
isely, the (i+1)th addition 
arry does not depend on the ith addition 
arry ex
ept ifDji+1 + aji+1 = 2`� 1. Then, as Di+1 is �xed, 
ji+1 depends on 
ji one time out of 2`. If we omitthis fa
t, then equation (5) 
an be generalized to:Pr(Di+1 = njCi+1 = q) = (n=2`)q(1� n=2`)m�qP2`�1�=0 (�=2`)q(1� �=2`)m�q (6)utEven if this fun
tion is dis
rete, the probability distribution of the random variable Di=2`knowing Ci 
an be approximated as the Beta distribution �(q+1;m�q+1). This approximationis detailed in Appendix B and Fig. 3 represents the evolution of the probability distributiona

ording to the number m of experiments.The probability distribution shape tends to zero ex
ept on a lobe whi
h is maximal for�q � (2` + 1)=m� or �q � (2` + 1)=m�. The atta
ker 
an then take a de
ision. The most probableof these two words is de�ned as the se
ret estimate D̂i. The atta
ker's probability to take theright de
ision, i.e. the probability of D̂i = n, in
reases with m. The worst 
ase, i.e. when theprobability of D̂i = n is the lowest, is for m = 2q leading to D̂i = 2`�1.Furthermore, instead of 
hoosing one single word, the atta
ker 
an sele
t the most probablewords that 
ould mat
h to the se
ret. He owns then not anymore one estimate but a set ofestimates. He 
an then a

umulate the di�erent probabilities, meaning he tries to guess part ofthe se
ret instead of the whole se
ret itself. This strategy 
an be very eÆ
ient. Indeed, just a6
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Fig. 3. Probability Distribution of DjC A

ording to the Number of Experiments with ` = 8 and` = 16few words a
hieve a non negligible probability, the other ones having a probability 
lose to 0.This strategy 
onsists then in using 
umulative properties instead of the density properties.This gain 
an be illustrated through an example: an atta
ker observes 10; 000 exponentrandomizations and observes 1; 250 
arries on a 8-bit adder. What 
an he dedu
e? The proba-bility that 0x20 is the se
ret word is 0:47. But the probability that 0x1F or 0x20 is the se
retword in
reases to 0:7. Cumulating 4 words (0x1E,0x1F,0x20 0x21) leads to a probability ofsu

ess higher than 0:99. In the worst 
ase, m = 2q, the varian
e of �(m=2 + 1;m=2 + 1) is�2 = 1=4(m + 3) [16℄. Then, the number of estimates to a

umulate for rea
hing a su

essprobability of at least 0:99 is proportional with 2`=pm by using Chebyshev bound. We veri-�ed experimentally this result: for 10; 000 exponent randomizations, 4 estimates are needed forgetting a probability of 0:99 when q = 5; 000 and ` = 8.4 The Exponent Randomization SCAIn this se
tion, we show that the value Ci 
an be learned by the adversary. The target of our side
hannel atta
k is the 
arry-out of the atomi
 adder. We have tested its feasibility by simulatinga 160-bit masking on the ProASIC 3/E starter kit from A
tel whi
h is a FPGA developmentkit. We have designed a full ripple addition fun
tion with a 32-bit adder. In appendix A, wegive some information 
on
erning addition design.7



4.1 The Lo
ation and Pro�ling StagesThe SCA feasibility is demonstrated with EMA te
hniques, studying the ele
tromagneti
 side
hannel. Radiation is measured in the near �eld zone using a small loop probe sensitive to thehorizontal magneti
 �eld. The used test ben
h is represented on Fig. 4. The two operands arerandomly 
hosen to lo
alise in spa
e the adder on the 
hip and time slot where the additionis performed during the implementation. The 
arry 
ag 
an then be lo
alised more sharply byusing a DPA atta
k.

Fig. 4. EM Test Ben
hIn order to build the jth 160-bit mask used for the jth exponent randomization, the randomgenerator of the FPGA is used. The 32-bit addition is performed in two stages: the loadingstage (the new operands of the adder are loaded) and the addition stage (the add instru
tionis exe
uted).4.2 The Atta
king StageThe 160-bit se
ret d is split in 5 32-bit words. Then, it is randomized m times and the averageEMA tra
e �m is 
omputed. From the pro�ling stage, we 
an lo
ate on �m the 
arry 
ontributionfor ea
h word Di. This 
ontribution is noise free. Indeed, the noise is assumed to be zero-mean.It is 
lose to zero with m large enough. For ea
h word Di, the 
orresponding 
arry 
ontributionis expe
ted to be proportional with the 
arry probability. The number of 
arry 
ags raisedduring the m masking operations 
an be then dedu
ed a

ording to the previous se
tion.The previous statements are illustrated on a 
on
rete 
ase. We performed 1000 maskingoperations. The least signi�
ant bits (LSB) of ea
h wordDi are 
hosen randomly, the probabilityto have a 
arry depends then only on the most signi�
ant bits (MSB) of Di. Thus, we build dsu
h as:{ D0=0x00FC3478: the expe
ted 
arry probability is around 0{ D1=0x40FE56AC: the expe
ted 
arry probability is around 63=256{ D2=0x804890BD: the expe
ted 
arry probability is around 127=256{ D3=0xC0C2A4C8: the expe
ted 
arry probability is around 200=256{ D4=0xFF98ACBF: the expe
ted 
arry probability is around 255=2568



Fig. 5 shows �1000 where the 
ontribution of the masking of D0 is subtra
ted. To do so, anextra loading is made with D0 parameters but the addition is not performed: this yields the
hara
teristi
 of the unrelated instru
tions.
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Fig. 5. Average Tra
e �1000 where the 
ontribution of the masking of D0 is subtra
tedFor a given word of d, the expe
ted 
arry probability and the 
arry radiation are proportionalas it is shown in Tab. 1. The relative amplitude di�eren
e between two 
onse
utive maskingsis 5�V. Masking Absolute Amplitude Relative AmplitudeD0 �D0 0:012mV 0mVD1 �D0 0:031mV 0:019mVD2 �D0 0:036mV 0:024mVD3 �D0 0:043mV 0:031mVD4 �D0 0:049mV 0:037mVTable 1. Absolute and relative 
ontributions of the 
arry on �10004.3 Results and Con
lusionFor a ripple 
arry addition, the atta
ker 
an have a

ess to the information Ci even in thepresen
e of noise. If the addition fun
tion has been designed another way, we 
laim that the9



atta
ker has a

ess to the same amount of information. Indeed, the 
omputational 
ost of the
arry-out of a `-bit adder depends on the way it is built. The more the 
arry-out is 
omplex toobtain, the more its 
omputation 
osts power and the more it leaks with the side 
hannel. Theripple 
arry adder is the adder whose 
arry-out is the lowest side 
hannel available. Indeed, itneeds 2 OR and 3 AND while the 
arry-out of a 4-bit look-ahead adder 
osts 10 OR and 4AND as it is stated in Appendix A.Furthermore, independently of the addition design, it takes into a

ount word adder whoseoperands are a word of the private exponent and the 
orresponding word of the mask: theunique di�eren
e is the 
arry-in treatment. However this di�eren
e is negligible: as Di is �xed,the 
arry-out of the word adder depends one time out 2` on the 
arry-in. Then, irrespe
tive ofthe addition fun
tion used, we assume that the multiple bits adder takes into a

ount a 
arry-inequals to zero.5 Re
overing the Entire Se
ret KeysIn this se
tion, we present two ways to use the information extra
ted by the side 
hannelmeasurements. The �rst te
hnique 
onsists in �nding enough bits with the 
arry leakage tobe able to realize a kind of exhaustive sear
h of the se
ret by using the baby step-giant stepmethod. The se
ond te
hnique 
onsists in 
ombining two side 
hannel atta
ks to retrieve theentire se
ret key. Both atta
ks are 
omplementary as their eÆ
ien
y depends on the size of thekey and on the size of the registers. Some examples are dis
ussed in the last subse
tion.5.1 A Kind of Exhaustive Sear
hWe assume that the atta
ker performs m measurements of the exponent randomization of these
ret d, stored in k `-bit words. In the previous analysis, he is able to redu
e the number ofpossible values in ea
h word of d. For ea
h word, a fra
tion 2`=pm of the 
orresponding keyword is possible (the probability the se
ret is in this set is then higher than 0:99) so the numberof possible values for d will be (2`=pm)k. If the atta
ker 
an redu
e the set of possible valuesfor d to a subset of size lower than 2128, we 
onsider that he 
an �nd the whole se
ret exponentd with 
lassi
al baby-step giant-step methods for a 
omputational 
ost lower than 264. We 
annote that this atta
k will be more eÆ
ient on shorter keys and smaller register su
h as ellipti

urve implementations on 8-bit or 16-bit registers. So the 
omputational 
ost of the atta
k is(2`=pm)k=2.5.2 The Combined Atta
kThe other solution uses the 
arry leakage information to �nd partial information on d whi
h willbe used to �nd for ea
h masking operation dj = d+�j�'(N) (or dj = d+�j�#E) the randomvalue �j . On
e suÆ
iently many �j 's are known, a 
lassi
al DPA atta
k 
an be mounted eitheron the masking operation or dire
tly on the exponentiation to retrieve the missing bits of d.In fa
t, the knowledge of �j will unprote
t the exponentiation against 
lassi
al atta
ks su
h asan address bit DPA whi
h does not need to know the value of the message. We will see in thefollowing that the su

ess of this atta
k depends more on the size of key and on the size of �than on the number of possible measurements.10



Sket
h of the atta
k. The atta
k 
an be divided into three steps:{ with m measurements, the atta
ker approximates the value Di of ea
h register with apre
ision of pm,{ with this approximation, he 
an try all possible values for � and 
ompute for the knownbits of the order Ord = '(N) or #E all the possible values for � � Ord. In 
ase of RSA,only half of the bits are known as the most signi�
ant bits of '(N) are equal to those of N ,but in the dis
rete logarithm 
ase, the order of the group is known so all the bits of Ord areknown. With the approximation of d, the atta
ker 
an 
ompute for ea
h value � the valueof the 
arry of the ith register. The 
arry at register i will be perfe
tly de�ned ex
eptedwhen it 
omes from the unknown bits of Di whi
h 
an happen with probability 1=pm. Ifthe number of 
arries information is suÆ
ient, ea
h 
urve 
an be asso
iated with a singlevalue of �. This will happen when the number of registers where the 
arry is known, islarger than the size of �.{ with themmeasurements and their asso
iated value of �, an address-bit DPA or CPA atta
k
an be mounted to retrieve the value of d. If the atta
ker targets the masking operation orthe address during the exponentiation, he will have to guess re
ursively the unknown bitsof d and eventually, the unknown bits of '(N) in 
ase of RSA.The number of measurements m is de�ned by the number of 
urves needed to 
ompletean address bit DPA atta
k on the masking operation or on the exponentiation without theexponent masking prote
tion. Usually, 10; 000 
urves are suÆ
ient to mount su
h an atta
k butthis depends on the noise level. With su
h a number of 
urves, the approximation of the valueDi of ea
h register has a pre
ision of 26. If � is a 32-bit long random value, the atta
ker needsthe se
ret key to be stored on more than 32 registers in 
ase of dis
rete logarithm problem ormore than 64 in 
ase of RSA as only the most signi�
ant bits of '(N) are known.5.3 Results on RSA and ECCIn this se
tion, we will present some appli
ations of the previous atta
ks. The 
omplexity interms of measurement and 
omputation is evaluated a

ording to the 
onsidered atta
k with a� of 32 bits.Cryptographi
 implementation atta
k Measurements 
omputational 
ostRSA 1024 on a 8-bit adder 
ell ES 216 1RSA 1024 on a 8-bit adder 
ell CA 10; 000 232RSA 1024 on a 16-bit adder 
ell CA 10; 000 232RSA 1024 on a 32-bit adder 
ell NPRSA 2048 on a 32-bit adder 
ell CA 10; 000 232ECC 160 on a 16-bit adder 
ell ES 216 � (216=p216)10=2 = 240ECC 160 on a 32-bit adder 
ell ES 220 � (232=p220)5=2 = 255Table 2. Atta
k 
omplexity on some examples. \ES" stands for exhaustive sear
h, \CA" for
ombined atta
ks, and \NP" for Not Pra
ti
al.
11



6 Con
lusionIn this arti
le, we show that the addition performed during an exponent randomization is arisky operation. Indeed, the internal 
arries due to lo
al bu�er over
ows during this operationare a side 
hannel available and se
ret dependent so that the whole private exponent 
an bere
overed for some publi
 key implementations. The SCA feasibility has been demonstratedusing near �eld te
hniques for gaining the ele
tromagneti
 radiations of a FPGA summing two32-bit words: the presen
e of a 
arry has been dete
ted.This new atta
k is interesting sin
e it targets the 
ountermeasure and not the algorithm thatit has to prote
t. Usually this operation is not well-prote
ted and so side 
hannel leakage 
anbe observed. Finally, the atta
k 
an be performed on any exponentiation algorithm ex
ept the�nal phase whi
h is needed only for RSA based 
ryptosystem. The 
arry leakage is in generalsuÆ
ient to atta
k ECC based 
ryptosystem sin
e the se
ret keys are smaller.Referen
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e, pages 229{236. Springer, 1996.A The Addition StrategyThe addition problems start when adding 2 single bits and �nishes when able to add 2 wordsof arbitrary length.A.1 The Single Bit AdderThe single bit adder is the most elementary logi
al 
ir
uit of a devi
e. Two kinds of single bitadder exist: the half adder and the full adder. The Half Single Bit Adder (HA) has two inputslabelled a and b and two outputs: the sum s and the 
arry-out 
out. The value s is the 1-bitsum of a and b while 
out is the 
arry 
ag raised in 
ase of over
ow. Sum and 
arry-out are
omputed as follow : s = a � b and 
out = a:b The Full Single Bit Adder (FA) is a half adderthat takes into a

ount the 
arry-in bit 
in. The di�erent relations be
ome s = a� b� 
in and
out = (a:b) + (b:
in) + (
in:b)A.2 The Word AdderAn `-bit adder is an element used for the addition of two words of ` bits ea
h, typi
ally, ` = 8;16 or 32. Let A =P`�1i=0 ai2i and B =P`�1i=0 bi2i be the two `-bit operands, Cin be the 
arry-in,S = P`�1i=0 si2i be the sum and Cout be the 
arry-out. The value Cout is the obje
t of the side
hannel analysis. There is not just one way of building a word adder. Indeed, di�erent strategiesexist for dealing with internal 
arries. Then, the way Cout is 
omputed depends on the wordadder design.The Ripple Carry Adder. This is the most straightforward implementation of a �nal stage`-bit adder. Carry-ins and 
arry-outs are 
hained together requiring ` FAs. Fig. 6 des
ribes thisdesign. Let 
out;i and 
in;i be respe
tively the 
arry-out and the 
arry-in of the ith FA.Chaining 
arries together leads to the following relations: 
in;0  Cinfor 0 � i < ` 
in;i+1  
out;iCout  
out;`�1.Then Cout is 
onne
ted to the 
arry-out of the last FA.13



Fig. 6. The Ripple Carry AdderThe Carry Look-Ahead Adder. This adder aims to generate all 
arry-ins in parallel for notwaiting until the 
arry propagates from the stage of the FA it has been generated. The 
arrypropagation signal fPig and the 
arry generation signal fGig are introdu
ed using the previousnotations: Pi = ai � bi, Gi = ai � bi and then 
in;i+1 = Gi + 
in;i � Pi. These expressions 
an be
omputed in parallel for all the 
arries. As, an example, for a 4-bit adder, we have:
in;0 = Cin
in;1 = G0 + 
in;0 � P0 = G0 + Cin � P0
in;2 = G1 + 
in;1 � P1 = G1 +G0 � P1 + Cin � P0 � P1
in;3 = G1 + 
in;2 � P2 = G2 +G1 � P2 +G0 � P1 � P2 + Cin � P0 � P1 � P2
in;4 = G3 + 
in;3 � P3 = G3 +G2 � P3 +G1 � P2 � P3 +G0 � P1 � P2 � P3 + Cin � P0 � P1 � P2 � P3Cout = 
in;4B The Beta DistributionThe last probability distribution of the se
ret estimate knowing the 
arry fun
tion given byformula (6) 
an be approximated by a dis
rete beta distribution. Indeed: the beta distributionis de�ned as �(q + 1;m� q + 1) = Z 10 tq(1� t)m�qdtand using Riemann sums, we obtain:�(q + 1;m� q + 1) = limn!1 1n nX�=1 �n q �1� �n�m�q :Finally, if we assume that 2` is large enough, then2` � �(q + 1;m� q + 1) � 2`�1X�=0 �q2` �1� �2`�m�q :14


