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Abstract. In this paper, we describe a new attack against a classical differential power
analysis resistant countermeasure in public key implementations. This countermeasure
has been suggested by Coron since 1999 and is known as the ezponent randomization.
Here, we show that even though the binary exponentiation, or the scalar product on ellip-
tic curves implementation, does not leak information on the secret key, the computation
of the randomized secret exponent, or scalar, can leak useful information for an attacker.
Such part of the algorithm can be not well-protected since its goal is to avoid attack
during the exponentiation. Consequently, our attack can be mounted against any kind
of exponentiation, even very resistant as soon as the exponent randomization counter-
measure is used. We target an ¢-bit adder which adds ¢-bit words of the secret exponent
and of a random value. We show that if the carry leaks during the addition, then we
can almost learn the high order bits of each word of the secret exponent. Finally, such
information can be then used to recover the entire secret key of RSA or ECC based
cryptosystems.

1 Introduction

Side channel attacks are very powerful attacks and today most embedded applications that
require high level of security use countermeasures against such kind of attacks. Two of the
most carefully studied algorithms are the square-and-multiply algorithm and its analog on
Elliptic Curve, the double-and-add algorithm, since its wide usage. There exists a classical
countermeasure to avoid simple power analysis (SPA) attack, that always performs the multiply
or the add operation so that all the operations of the implementation are not key dependent.
This countermeasure is very efficient in practice, so that most implementations use it. However,
such implementations can be attacked by using differential power analysis (DPA [13]) techniques
such as in [14] and a popular countermeasure consists in randomizing the secret exponent or
secret scalar by a multiple of the order of the elements ¢(N) in the case of RSA modulus or
of the order of the base point in the case of Elliptic Curve. Such countermeasure has been
proposed by Coron in [7] since 1999. With this countermeasure, the secret exponent will never
be the same and DPA attacks that recover the secret bit by bit cannot be mounted.

Related Work. This well-known countermeasure has been first attacked by Fouque and
Valette in [11] using the Doubling Attack. However, in such attack the adversary is assumed



to be able to send many times the same message and that no randomization of the message
is performed before the exponentiation. Here, our attack avoids these two drawbacks since the
attack does not need the knowledge of the message.

In [10], Fouque et al. show that if Coron’s countermeasure is used with some windowing
exponentiation algorithms and a small public key e, then a simple SPA followed by a very clever
attack can recover the secret key d and ¢(N) in the same time. In [10], the implementation is not
protected against SPA attacks since the classical SPA attack does not work on the windowing
algorithms. In this work, the authors have to solve a problem similar of that which we try to
solve here, namely, recovering the secret d in RSA, knowing some non-consecutive bits of d.
Indeed, side channel technique allows Fouque et al. to learn some key bits of many randomized
exponents of the form d; = d + A\jp(N), for many A; in a small set, the set of 20-bit or 32-bit
integers in typical implementations.

Recovering secret RSA key knowing some bits of d is an old problem starting from the
pionerring work of Boneh, Durfee and Frankel in [2] since 1998. However, the techniques used
in Boneh et al.’s paper are based on Coppersmith’s lattice algorithm [5, 6] that works well when
the bits are consecutive. Later, other attacks such as [9, 1] have been proposed on RSA, but no
one except [10] targets the case when bits are non consecutive.

In the Elliptic Curve case, the problem of recovering secret scalar when nonconsecutive bits
are known has also been studied. The Baby Step Giant Step algorithm can always be used,
however reducing the memory requirement is not always possible as with Pollard algorithm or
the lambda method, a.k.a. the kangoroo algorithm in [19, 15]. However, Stinson describes an
algorithm due to Coppersmith in [18] that can be used to reduce the memory requirement.
A similar algorithm has been devised by Coron et al. in [8] for RSA modulus. However, the
missing bits must not be too numerous since the method is based on the birthday paradox and
memory and time requirements are almost in the square root or fourth root of the number of
missing bits.

Our Results. In this paper, we show that the exponent randomization countermeasure can
be attacked very efficiently and the whole secret key can be recovered. The main novelty of
the attack is to target the computation of the randomization itself d; = d + A; - ¢(IN) in case
of an RSA modulus and not the exponentiation  — % mod N. In the addition of a random
value with a fix and secret one, the targeted operation is the sum of the secret scalar with
a random number, a random multiple of the order of the base point P. Seifert in [17] and
Brier et al. in [3] have also studied attacks on other part of the algorithm, on some public
information for example. Here, our attack is less invasive since we do not change parameters
and we only record some electromagnetic radiations. Finally, this attack is very efficient since
it works against very secure or even “provably-secure” exponentiation that uses the exponent
randomization since the side channel leakage comes from the countermeasure and not from the
exponentiation algorithm.

We show that when the secret exponent, or scalar, and the randomization are cut into ¢-bit
word, then the carries of the adder can leak and such information can be used to guess the high
order bits of each £-bit word of the secret with a good precision. Then to recover the whole
secret key, either the number of missing bits is small enough so that a classical baby step giant
step method could be used or other techniques are required to find the other bits. In the case
of RSA keys or large ECC keys, the idea consists in recovering the randomized value \; using
the known bits of the order. Once the A;’s are known, the addition or the exponentiation are



unprotected against classical DPA attacks such as address-bit DPA [12] or Correlation Power
Analysis (CPA) attack [4].

Organization of the paper. The principle of the attack is presented in section 2. Then, in
section 3, we theoretically explain how the knowledge of the number of carries allows us to
guess the high order bits of each word of the secret key. In section 4, we show that the internal
carries of the full addition involved in the masking process can be observed by SCA. Finally, in
section 5 we describe the attacks against classical implementations of RSA and ECC to retrieve
the whole secret key.

2 The Attack Principle

The idea of the attack is to target the countermeasure operation and not the exponentiation
or scalar product operation. The former operation is usually not well protected since it is used
to protect the latter one. So, in the sequel, we assume that the exponentiation is protected
against SPA by using the square-and-multiply always algorithm and against DPA attack by
using randomization of the message even with unknown blinding and the randomization of the
exponent.

2.1 The Secret Randomization Countermeasure

It is well-known that randomizing d with d; = d + Ajp(N) for RSA and d; = d + \j#E
for ECC leads to the same results. Furthermore, if \; is different at each execution of the
algorithm, classical DPA attacks which retrieve the secret bit by bit become ineffective. Such
a countermeasure is known as the exponent randomization. Fig. 1 describes this technique for
RSA and ECC.

— Inputs: a message M for RSA (resp. a point P of a curve £ for
ECC), a word size in bits p, an exponent d, a modulus N (resp.
#&, the cardinal of £).

— Dutput: M? mod N for RSA (resp. d - P for ECC)

1. Take a p-bit random integer \;
2. Compute dj =d + X\jp(N) (resp. dj = d + \j#E)
3. Return SCA protected exponentiation M% mod N (resp. d; - P)

Fig. 1. The Private Exponent Randomization for RSA (resp. ECC)

2.2 The Sketch of the Attack

If someone adds random integers R; to a fixed integer S, the probability over the different values
of R; to observe a carry flag only depends on S. Indeed, on 8-bit integers, random addition
with the fixed value OxFF is more likely to raise a carry flag than with the fixed integer 0x01.



Integers are often too large to be added through a digital circuit. The operands are usually
broken into £-bit words and the full addition function is splitted into ¢-bit additions. An ¢-bit
addition is the sum of two ¢-bit integers. A carry flag is raised for a buffer overflow, i.e. when
the (-bit sum is larger or equal to 2°.

These carry flags raised during the full addition can be observed by side channel analysis.
An attacker who observes a device for many secret randomizations can use the carry flag as a
source of information to retrieve the secret RSA or ECC exponent. Our attack uses two stages:
the side channel analysis to obtain information on the secret and the cryptographic attack
which uses the information to recover the entire secret key.

2.3 The Exponent Randomization Ripple Carry Addition

This subsection describes the notations used in the rest of the paper. The attacker performs m
exponent randomizations and j denotes the indice of the randomization from 0 to m — 1.

Fig. 2. j** Exponent randomization

The addition function used for the exponent randomization is assumed to be designed as
a k-word ripple carry addition. The two operands of the addition are broken in k& ¢-bit words
with £ = 8, 16 or 32. The full addition is then performed word by word using a ¢-bit adder
which takes as input two ¢-bit operands and a carry-in and outputs the sum and the carry-
out. The ripple strategy consists in chaining the carry-out and the carry-in together. Let 7 be
the word indice from 0 to £ — 1. The private exponent and the mask are denoted by d and
AW = Xjp(N) for RSA and AV = X\;#¢& for ECC. The carry flag raised during the i‘" (-bit
(9)

addition for the j* randomization is ¢;”’ and C; is the sum of the carry flags raised during

the m exponent randomizations, C; = Z?:Bl cEj ). The principle of the ripple adder for the jt"

exponent randomization is described in Fig. 2 and the notations are the following:

— ¢: The atomic adder size



— k: The number of words.
— m: The number of exponent randomizations observed.
— d: The private exponent d = Zf:_ol D2t
— d': The randomized private exponent d' = Zf:_ol D2t
— AW: The j" mask AW =y F 1 agj)2“.
- cgj ): The carry involved in the addition of the i** ¢-bit word:
- c(ﬂ =0 (no initial carry.)
D =1t D +a? + P > 20 with 0 < i < k and ¢/ = 0 otherwise.
— (;: The number of carries in the addition of the it" ¢-bit word: C; = Z;n:_ol cgj )

3 The Exponent Randomization Attack

The exponent randomization consists in summing the private exponent with a mask. To do so,
both exponent and mask are divided into k& £-bit words. In this section, we assumed that the
attacker can observe or deduce the number C; of carries involved on the it* ¢-bit addition in
the m exponent randomizations. In the next section, we show that such information can be
observed by using side channel attack.

In the following, we assume that the randomization Ajo(N) (or A;#E) are uniformly dis-
tributed values. Even though such an assumption is not correct, we can assume that it is
locally correct. For each word of A\jp(IN), we can assume this property since the number of
curves needed is less than the 232 values of the \;’s and the multiplication has the property to
quickly spread the random values of the A;s into all words of A\jo(NN) except maybe the first
and last words.

Probability of Guessing a Word given the Number of Carries. The attacker has
to guess the it" word of the secret exponent knowing the number of carries involved during
the m randomizations. Theorem 1 gives us the probability of a correct guess of the probability
distribution of guessing the i*" word of the secret knowing the number C; of carry flags involved
in its making is given by Eq. 1.

Theorem 1. The probability distribution of guessing the it word of the secret knowing C; the
number of carries flags involved in the m randomizations is

(n/?l)q(l — n/2l)m7q
> (@/25(1 — a/2)m=

Proof. First, we compute the probability distribution of the first ¢-bit word Dy of the secret
exponent given the number of carries Cy involved with a ¢-bit adder implementation during m
randomizations, i.e. we prove the above formula for ¢ = 0. Then, we use an induction on i to
prove the theorem for all values i.

Pr(D; =n|C; =q) = (1)

During a single randomization, the probability Pr(Cy = 1{Dg = n) of observing one carry for
the first word is n/ 2¢. Indeed, let a given mask A7, a given secret d, and their first ¢-bit words
are respectively a} and Dy. These words can take 2¢ different values with the same probability.

The value Dy is fixed while a} is purely random, thus: Pr(Co = 1|Dy = n) = Pr(n + af) >



2¢ —1) = Pr(a}, > 2/ —n—1). Then a carry is observed when @}, takes one of the n values larger
than or equal to 2¢ — n and smaller than or equal to 2¢ — 1. Therefore:

Pr(Cy = 1|Dy = n) = n/2" (2)

Now, we compute the probability distribution Pr(Dy = n N Cy = ¢) using the definition of the
conditional probability: Pr(Dy = n N Cy = q) = Pr(Co = q|Dy = n) - Pr(Dy = n). Since there
exist (7;) possible cases where ¢ carries are observed during m randomizations. Therefore:

Pr(Dyp=nnNCo =q) = [(”;) Pr(Co = 1|Dy = n)4(1 — Pr(Cy = 1|Dy = n))™ 1| - (1/2%) (3)

Then, we need to compute the probability distribution of the event Cy = ¢. Since, the secret
Dy can take 2¢ different values, we can thus compute the probability by summing on all value

of Dy as follows: Pr(Cy = q) = Zi:ol Pr(Co = ¢N Dy = ) and using (3), we get:
2f-1
Pr(Co=a) = 5+ (") 3 /2101 = /2ty @
2£ q a=0
Finally, we compute the probability distribution Pr(Dg = n|Cy = ¢) by using (3) and (4):
(n/2)1(1 —n/2™ ¢
Saco (@/201(1 — a/2yms

Pr(Do =n|Cy =q) = (5)

Now, we prove theorem (1) for ¢ > 0. For the j* randomization, the (i + 1) addition carry

¢, does not only depend on the value of D;; + al,; but also on the i** addition carry c!.
More precisely, the (i 4+ 1)t addition carry does not depend on the it" addition carry except if
DI, +al,, =2"—1. Then, as D;y, is fixed, ¢, depends on ¢/ one time out of 2. If we omit
this fact, then equation (5) can be generalized to:
Na(1 _ {\m—gq
Pr(Dips = nlCopn = q) = ot 0= 12) ©
Da=o (a/29)1(1 — a/2t)m=a

a

Even if this function is discrete, the probability distribution of the random variable D;/2¢
knowing C; can be approximated as the Beta distribution 8(¢g+1,m—g+1). This approximation
is detailed in Appendix B and Fig. 3 represents the evolution of the probability distribution
according to the number m of experiments.

The probability distribution shape tends to zero except on a lobe which is maximal for
lg- (2° +1)/m] or [g- (2° + 1)/m]. The attacker can then take a decision. The most probable
of these two words is defined as the secret estimate D;. The attacker’s probability to take the
right decision, i.e. the probability of D; = n, increases with m. The worst case, i.e. when the
probability of D; = n is the lowest, is for m = 2¢ leading to D; =21,

Furthermore, instead of choosing one single word, the attacker can select the most probable
words that could match to the secret. He owns then not anymore one estimate but a set of
estimates. He can then accumulate the different probabilities, meaning he tries to guess part of
the secret instead of the whole secret itself. This strategy can be very efficient. Indeed, just a



Fig 3.1: Probability distribution for 1=8 Fig 3.2: Probability distribution for I=16
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Fig. 3. Probability Distribution of D|C' According to the Number of Experiments with ¢ = 8 and
=16

few words achieve a non negligible probability, the other ones having a probability close to 0.
This strategy consists then in using cumulative properties instead of the density properties.

This gain can be illustrated through an example: an attacker observes 10,000 exponent
randomizations and observes 1,250 carries on a 8-bit adder. What can he deduce? The proba-
bility that 0x20 is the secret word is 0.47. But the probability that 0x1F or 0x20 is the secret
word increases to 0.7. Cumulating 4 words (0x1E,0x1F,0x20 0x21) leads to a probability of
success higher than 0.99. In the worst case, m = 2¢, the variance of f(m/2 + 1,m/2+ 1) is
0? = 1/4(m + 3) [16]. Then, the number of estimates to accumulate for reaching a success
probability of at least 0.99 is proportional with 2¢/\/m by using Chebyshev bound. We veri-
fied experimentally this result: for 10,000 exponent randomizations, 4 estimates are needed for
getting a probability of 0.99 when ¢ = 5,000 and ¢ = 8.

4 The Exponent Randomization SCA

In this section, we show that the value C; can be learned by the adversary. The target of our side
channel attack is the carry-out of the atomic adder. We have tested its feasibility by simulating
a 160-bit masking on the ProASIC 3/E starter kit from Actel which is a FPGA development
kit. We have designed a full ripple addition function with a 32-bit adder. In appendix A, we
give some information concerning addition design.



4.1 The Location and Profiling Stages

The SCA feasibility is demonstrated with EMA techniques, studying the electromagnetic side
channel. Radiation is measured in the near field zone using a small loop probe sensitive to the
horizontal magnetic field. The used test bench is represented on Fig. 4. The two operands are
randomly chosen to localise in space the adder on the chip and time slot where the addition
is performed during the implementation. The carry flag can then be localised more sharply by
using a DPA attack.

Fig. 4. EM Test Bench

In order to build the j** 160-bit mask used for the j* exponent randomization, the random
generator of the FPGA is used. The 32-bit addition is performed in two stages: the loading
stage (the new operands of the adder are loaded) and the addition stage (the add instruction
is executed).

4.2 The Attacking Stage

The 160-bit secret d is split in 5 32-bit words. Then, it is randomized m times and the average
EMA trace I, is computed. From the profiling stage, we can locate on I, the carry contribution
for each word D;. This contribution is noise free. Indeed, the noise is assumed to be zero-mean.
It is close to zero with m large enough. For each word D;, the corresponding carry contribution
is expected to be proportional with the carry probability. The number of carry flags raised
during the m masking operations can be then deduced according to the previous section.

The previous statements are illustrated on a concrete case. We performed 1000 masking
operations. The least significant bits (LSB) of each word D; are chosen randomly, the probability
to have a carry depends then only on the most significant bits (MSB) of D;. Thus, we build d
such as:

Dy=0x00FC3478: the expected carry probability is around 0

— D;=0x40FE56AC: the expected carry probability is around 63/256
— D»,=0x804890BD: the expected carry probability is around 127/256
D3=0xC0C2A4C8: the expected carry probability is around 200/256
— D,=0xFF98ACBF: the expected carry probability is around 255/256



Fig. 5 shows I'1gpo where the contribution of the masking of Dy is subtracted. To do so, an
extra loading is made with Dy parameters but the addition is not performed: this yields the
characteristic of the unrelated instructions.

0.02
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Fig. 5. Average Trace g0 where the contribution of the masking of Dy is subtracted

For a given word of d, the expected carry probability and the carry radiation are proportional

as it is shown in Tab. 1. The relative amplitude difference between two consecutive maskings
is 5uV.

Masking|Absolute Amplitude/Relative Amplitude
Do — Do 0.012mV OmV

Dy — Dy 0.031mV 0.019mV

Dy — Dy 0.036mV 0.024mV

D3 — Dy 0.043mV 0.031mV

D4y — Dy 0.049mV 0.037mV

Table 1. Absolute and relative contributions of the carry on Iiggo

4.3 Results and Conclusion

For a ripple carry addition, the attacker can have access to the information C; even in the
presence of noise. If the addition function has been designed another way, we claim that the



attacker has access to the same amount of information. Indeed, the computational cost of the
carry-out of a £-bit adder depends on the way it is built. The more the carry-out is complex to
obtain, the more its computation costs power and the more it leaks with the side channel. The
ripple carry adder is the adder whose carry-out is the lowest side channel available. Indeed, it
needs 2 OR and 3 AND while the carry-out of a 4-bit look-ahead adder costs 10 OR and 4
AND as it is stated in Appendix A.

Furthermore, independently of the addition design, it takes into account word adder whose
operands are a word of the private exponent and the corresponding word of the mask: the
unique difference is the carry-in treatment. However this difference is negligible: as D; is fixed,
the carry-out of the word adder depends one time out 2¢ on the carry-in. Then, irrespective of
the addition function used, we assume that the multiple bits adder takes into account a carry-in
equals to zero.

5 Recovering the Entire Secret Keys

In this section, we present two ways to use the information extracted by the side channel
measurements. The first technique consists in finding enough bits with the carry leakage to
be able to realize a kind of exhaustive search of the secret by using the baby step-giant step
method. The second technique consists in combining two side channel attacks to retrieve the
entire secret key. Both attacks are complementary as their efficiency depends on the size of the
key and on the size of the registers. Some examples are discussed in the last subsection.

5.1 A Kind of Exhaustive Search

We assume that the attacker performs m measurements of the exponent randomization of the
secret d, stored in k ¢-bit words. In the previous analysis, he is able to reduce the number of
possible values in each word of d. For each word, a fraction 2¢/\/m of the corresponding key
word is possible (the probability the secret is in this set is then higher than 0.99) so the number
of possible values for d will be (2¢/\/m)*. If the attacker can reduce the set of possible values
for d to a subset of size lower than 2128, we consider that he can find the whole secret exponent
d with classical baby-step giant-step methods for a computational cost lower than 2. We can
note that this attack will be more efficient on shorter keys and smaller register such as elliptic
curve implementations on 8-bit or 16-bit registers. So the computational cost of the attack is

(2/y/m)*/2.

5.2 The Combined Attack

The other solution uses the carry leakage information to find partial information on d which will
be used to find for each masking operation d; = d+\; x ¢(N) (or d; = d+\j X #&) the random
value A;. Once sufficiently many A;’s are known, a classical DPA attack can be mounted either
on the masking operation or directly on the exponentiation to retrieve the missing bits of d.
In fact, the knowledge of A; will unprotect the exponentiation against classical attacks such as
an address bit DPA which does not need to know the value of the message. We will see in the
following that the success of this attack depends more on the size of key and on the size of A
than on the number of possible measurements.
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Sketch of the attack. The attack can be divided into three steps:

— with m measurements, the attacker approximates the value D; of each register with a
precision of v/m,

— with this approximation, he can try all possible values for A and compute for the known
bits of the order Ord = ¢(N) or #& all the possible values for A x Ord. In case of RSA,
only half of the bits are known as the most significant bits of ¢ (V) are equal to those of IV,
but in the discrete logarithm case, the order of the group is known so all the bits of Ord are
known. With the approximation of d, the attacker can compute for each value A the value
of the carry of the i" register. The carry at register i will be perfectly defined excepted
when it comes from the unknown bits of D; which can happen with probability 1//m. If
the number of carries information is sufficient, each curve can be associated with a single
value of A. This will happen when the number of registers where the carry is known, is
larger than the size of A.

— with the m measurements and their associated value of A, an address-bit DPA or CPA attack
can be mounted to retrieve the value of d. If the attacker targets the masking operation or
the address during the exponentiation, he will have to guess recursively the unknown bits
of d and eventually, the unknown bits of ¢(IV) in case of RSA.

The number of measurements m is defined by the number of curves needed to complete
an address bit DPA attack on the masking operation or on the exponentiation without the
exponent masking protection. Usually, 10,000 curves are sufficient to mount such an attack but
this depends on the noise level. With such a number of curves, the approximation of the value
D; of each register has a precision of 2°. If X is a 32-bit long random value, the attacker needs
the secret key to be stored on more than 32 registers in case of discrete logarithm problem or
more than 64 in case of RSA as only the most significant bits of p(N) are known.

5.3 Results on RSA and ECC

In this section, we will present some applications of the previous attacks. The complexity in
terms of measurement and computation is evaluated according to the considered attack with a
A of 32 bits.

Cryptographic implementation |attack| Measurements|computational cost

RSA 1024 on a 8-bit adder cell |ES 210 1

RSA 1024 on a 8-bit adder cell [CA |10, 000 2%

RSA 1024 on a 16-bit adder celllCA |10, 000 257

RSA 1024 on a 32-bit adder cell|NP

RSA 2048 on a 32-bit adder cell|CA |10, 000 2%

ECC 160 on a 16-bit adder cell [ES 210 ~ (2%6/1/216)1072 — 910
ECC 160 on a 32-bit adder cell [ES 220 ~ (232//220)3/2 = 9%

Table 2. Attack complexity on some examples. “ES” stands for exhaustive search, “CA” for
combined attacks, and “NP” for Not Practical.

11



6 Conclusion

In this article, we show that the addition performed during an exponent randomization is a
risky operation. Indeed, the internal carries due to local buffer overflows during this operation
are a side channel available and secret dependent so that the whole private exponent can be
recovered for some public key implementations. The SCA feasibility has been demonstrated
using near field techniques for gaining the electromagnetic radiations of a FPGA summing two
32-bit words: the presence of a carry has been detected.

This new attack is interesting since it targets the countermeasure and not the algorithm that
it has to protect. Usually this operation is not well-protected and so side channel leakage can
be observed. Finally, the attack can be performed on any exponentiation algorithm except the
final phase which is needed only for RSA based cryptosystem. The carry leakage is in general
sufficient to attack ECC based cryptosystem since the secret keys are smaller.
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A The Addition Strategy

The addition problems start when adding 2 single bits and finishes when able to add 2 words
of arbitrary length.

A.1 The Single Bit Adder

The single bit adder is the most elementary logical circuit of a device. Two kinds of single bit
adder exist: the half adder and the full adder. The Half Single Bit Adder (HA) has two inputs
labelled ¢ and b and two outputs: the sum s and the carry-out cyy¢- The value s is the 1-bit
sum of a and b while ¢, is the carry flag raised in case of overflow. Sum and carry-out are
computed as follow : s = a © b and ¢,y = a.b The Full Single Bit Adder (FA) is a half adder
that takes into account the carry-in bit ¢;,. The different relations become s = a & b ® ¢;;, and
Cout = (@.b) + (b-cin) + (Cin-b)

A.2 The Word Adder

An /-bit adder is an element used for the addition of two words of ¢ bits each, typically, £ = 8§,
16 or 32. Let A = 2!} 4,27 and B = Y°!20 ;2% be the two £-bit operands, Cj,, be the carry-in,
S = Zf;é 5;2% be the sum and C,,; be the carry-out. The value C,,; is the object of the side
channel analysis. There is not just one way of building a word adder. Indeed, different strategies
exist for dealing with internal carries. Then, the way C,, is computed depends on the word
adder design.

The Ripple Carry Adder. This is the most straightforward implementation of a final stage
(-bit adder. Carry-ins and carry-outs are chained together requiring ¢ FAs. Fig. 6 describes this
design. Let oyt and c;p,,; be respectively the carry-out and the carry-in of the ith FA.

Chaining carries together leads to the following relations: c¢;y, 0 < Cip,

for 0 <@ </l cCinit1 ¢ Coutyi

Cout Cout,(—1-

Then C,,; is connected to the carry-out of the last FA.
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Fig. 6. The Ripple Carry Adder

The Carry Look-Ahead Adder. This adder aims to generate all carry-ins in parallel for not
waiting until the carry propagates from the stage of the FA it has been generated. The carry
propagation signal {P;} and the carry generation signal {G;} are introduced using the previous
notations: P; = a; © b;, G; = a; - b; and then cip i1 = G + cin,i - P;. These expressions can be
computed in parallel for all the carries. As, an example, for a 4-bit adder, we have:

cino = C

Cing = Go + Cino - Po =Go+ Cip - P

Cing =G1+cin1 - PL=G1+Gy-PL+Ciy,-FPy- P,

Cing =G1+cing Po=Go+G1 - Po+Go-PL-Po+Cyp - Py- P - P

Cinga =Gs+cins Pa=G3+G2 P3s+G1-Po-P3s+Go-PL-Po-P3s+Cipy - Py-P- P> P

Cout = Cin,4

B The Beta Distribution
The last probability distribution of the secret estimate knowing the carry function given by

formula (6) can be approximated by a discrete beta distribution. Indeed: the beta distribution
is defined as

1
B(q—l—l,m—q—l—l):/ t9(1 — )™t
0

and using Riemann sums, we obtain:

Bla+1l,m—q+1)= lim =) —

2. Blg+1,m—q+1)~ Z—(1—3)m_q.

a=0
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