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Abstract. We briefly address general aspects that reliable security eval-
uations of physical RNGs should consider. Then we discuss an efficient
RNG design that is based on a pair of noisy diodes. The main contribu-
tion of this paper is the formulation and the analysis of the corresponding
stochastic model which interestingly also fits to other RNG designs. We
prove a theorem that provides tight lower bounds for the entropy per ran-
dom bit, and we apply our results to a prototype of a particular physical
RNG.
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1 Introduction

Many cryptographic mechanisms require random numbers, e.g. as session keys,
signature parameters, ephemeral keys (DSA, ECDSA), zero-knowledge proto-
cols, challenge response-protocols, nonces. Inappropriate RNGs may allow to
break principally strong cryptosystems, e.g. if an adversary is able to deter-
mine session keys. Ideal RNGs generate random numbers that are uniformly
distributed on their range and independent. An ideal RNG, however, is a math-
ematical construction (lastly a fiction). Following [11] (cf. [21] for further ex-
planations) ’real-world’ RNGs can be divided into two classes, which contain
the true RNGs (TRNGs) and the deterministic RNGs (DRNGs; aka pseudo-
random number generators), respectively. The TRNGs fall into two subclasses:
Physical TRNGs use non-deterministic effects of electronic circuits (e.g. shot
noise from Zener diodes, inherent semiconductor thermal noise, free running os-
cillators) or physical experiments (e.g., time between emissions of radioactive
decay, quantum photon effects). Non-physical non-deterministic RNGs exploit
non-deterministic events (e.g., system time, hard disk seek time, RAM content,
user interaction). So-called hybrid RNGs combine design elements from both,
TRNGs and DRNGs.



Unlike for deterministic RNGs it seems hardly possible to specify approved
designs for physical RNGs (in a strict sense) since security-relevant properties do
not only depend on the generic design but also on its implementation. A designer
of a physical RNG is faced with two challenges. At first he has to develop an
appropriate design, and then he has to implement it carefully. The second task
may be even more difficult, namely providing evidence that the generic RNG
design and its implementation are indeed appropriate.

In the last years several designs of physical RNGs have been proposed [4–7, 9]
etc., and several evaluation guidances and standards were developed and became
effective [1, 17, 2, 13, 11]. These documents define properties that strong RNGs
should fulfil, and the evaluation guidances explain how these criteria shall be
verfied. A comprehensive treatment of evaluation aspects for physical RNGs are
given in [22].

In Section 2 we briefly address central aspects and goals that reliable security
evaluations of physical RNGs should consider. In Section 3 we discuss an RNG
design that exploits a pair of noisy diodes. Section 4 contains the main contribu-
tion of our paper. We formulate and analyze a stochastic model that describes
this design and, interestingly, also fits to further RNG designs. In particular, we
prove a theorem that allows to quantify a tight lower bound for the average en-
tropy per random bit. We apply our results to a particular physical RNG where
we derive lower entropy bounds per random bit that are very close to 1. Finally
we explain a generic online test scheme that is tailored to RNG designs which
belong to the analyzed stochastic model.

2 Security Evaluation of Physical RNGs: Fundamental
Aspects

In this section we address central aspects that are relevant for security evalua-
tions of physical RNGs. For a comprehensive treatment of this matter we refer
the interested reader to [21, 22, 19].

2.1 Entropy

With regard to Section 4 we extend the definition of Shannon entropy to ran-
dom variables with infinite range. More precisely, to a random variable X that
assumes values in a countable (finite or infinite) set Ω (e.g. Ω = IN0) we assign
the term

H(X) := −
∑
ω∈Ω

Prob(X = ω) log2(Prob(X = ω)). (1)

As usual, we set 0 · log2(0) := 0. Following the common convention we denote
the Shannon entropy briefly as ’entropy’ in the remainder.

Remark 1. (i) We point out that H(X) ∈ [0,∞] where H(X) = ∞ is possible
for infinite Ω. The ’auxiliary’ random variables V(s′), which will be relevant in
Section 4, yet have finite entropy for any s′ ∈ (0,∞) (cf. [20], Lemma 2(ii)).
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(ii) Random numbers that are generated by physical RNGs can usually be mod-
elled by stationary stochastic processes (cf. Sect. 4). At least the internal random
numbers (cf. Subsect. 2.2) typically assume values in Ω = {0, 1}, and for all cases
of practical relevance the Shannon entropy per internal random bit should be
close to 1. Hence the Shannon entropy provides a sound estimate for the average
guessing workload, justifying the use of the Shannon entropy for physical RNGs
in place of the more conservative min-entropy. For physical RNGs it is usually
much easier to compute the Shannon entropy than the min-entropy (cf. [21], Sub-
sect. 5.2, for a more comprehensive treatment of this matter). We mention that
it may be necessary to apply the min-entropy in place of the Shannon entropy
in specific guessing problems with very imbalanced probability distributions (cf.
[15]).

2.2 Central Definitions and Goals of a Security Evaluation

The core of a physical RNG is its noise source, which usually generates a time-
continuous analog signal that is digitized after uniform time intervals. The digi-
tized values are called das random numbers where ’das’ abbreviates digital analog
signal . The das-random numbers may be algorithmically postprocessed, giving
the so-called internal random numbers. Algorithmic postprocessing may increase
the entropy per bit, but only at cost of performance (data compression). If the
entropy of the das-random numbers is sufficiently large the algorithmic postpro-
cessing may be saved in favour of higher throughput. Online and tot tests shall
detect non-tolerable weaknesses while the RNG is in operation. Upon external
request the RNG outputs external random numbers.

The main part of a security evaluation considers the generic design and its
implementation. The central goal is to quantify (at least a lower bound for) the
entropy per random bit. Unfortunately, entropy cannot be measured as voltage
or temperature. Instead, entropy is a property of random variables and not
of observed realizations (here: random numbers). In particular, entropy cannot
be guaranteed by passing a collection of statistical blackbox tests [14, 16] since
typically even weak pseudorandom sequences pass these tests [19, 21, 22]. To
quantify entropy one has to study the distribution of the random numbers, or
more precisely, the distribution of the underlying random variables.

Definition 1. Random variables are denoted with capital letters. Realizations
of these random variables, i.e. values that are assumed by these random vari-
ables, are denoted by the respective small letters. For instance, the das random
numbers r1, r2, . . . are interpreted as realizations of random variables R1, R2, . . ..
We denote the internal random numbers and the underlying random variables
by y1, y2, . . . and Y1, Y2, . . ., respectively.

External random numbers are not under control of the RNG designer. Since
the external random numbers are usually concatenations of the internal random
numbers it is natural to focus on the conditional entropy

H(Yn+1 | Y1 = y1, . . . , Yn = yn) (2)
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which corresponds to the real-life situation that an adversary knows a subse-
quence y1, y2, . . . , yn of internal random numbers, e.g. due to openly transmitted
challenges or session keys which the adversary received legitimately.

The random variables R1, R2, . . . describe the stochastic behaviour of the
das random numbers. Their distribution clearly depends on the noise source
and the digitization mechanism. Usually, it is not feasible to determine these
distributions exactly. At least in a strict sense the exact distribution depends
on the characteristics of the components of the particular noise source, and
these characteristics may differ to some extent even for RNGs from the same
production series. A sound security evaluation of a physical RNG should be
based on a stochastic model .

Stochastic Model. Ideally, the stochastic model comprises a family of dis-
tributions that contains the true distribution of the internal random numbers.
At least, the stochastic model should specify a family of probability distribu-
tions that contains the distribution of the das-random numbers or even merely
of ’auxiliary’ random variables provided that these random variables enable the
verification of a lower entropy bound for the internal random numbers. We follow
this approach in Sect. 4, for instance.

Example 1. (Repeated tossing of a single coin) Since coins have no memory
it is reasonable to assume that the random variables Rj are independent and
binomially B(1, p)-distributed with unknown parameter p ∈ [0, 1], defining a
one-parameter family of probability distributions. Given a particular coin the
parameter p can be estimated by tossing the coin a large number of times.
Substituting the gained estimate p̃ into the entropy formula yields an estimate
for the entropy. The entropy of the internal random numbers depends on p and
the algorithmic postprocessing (if there is any).

For ’real life’ RNGs the stochastic model is usually more complicated than
in Example 1, often depending on several parameters. For most RNG designs
it is reasonable to assume that the sequence R1, R2, . . . is stationary (i.e. time-
invariant; Definition 2), at least within time periods that are large compared to
the output rate. Drifts of process parameters within the life cycle of the RNG
(e.g. due to ageing effects) are not problematic if the distribution remains in
the acceptable part of the specified class of distributions. In a first step we are
interested in

H(Rn+1 | R1 = r1, . . . , Rn = rn) (3)

for any history r1, . . . , rn, or at least in the average conditional entropy

H(Rn+1 | R1, . . . , Rn). (4)

For dependent random variables the calculation of (4) is in general easier than
(3). At least if (4) is too small a suitable (data-compressing) postprocessing
algorithm should be applied to the das random numbers that increases the av-
erage entropy per bit ([22], Sect. 5). (Of course, even if not necessarily needed,
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a strong cryptographic postprocessing algorithm with memeory may serve as an
additional security anchor.)

Due to tolerances of components, ageing effects, a total breakdown of the
noise source or (depending on the conditions of use) maybe active attacks the
RNG may output considerably weaker random numbers than the RNG proto-
types which were investigated in the lab. Online tests and tot tests (’total failure
test’) shall detect non-tolerable weaknesses while the RNG is in operation. Un-
fortunately, there do not exist statistical tests that are universally strong for
any RNG design. Instead, these tests should be tailored to the stochastic model
of the das random numbers. The statistical tests may be supported by physical
sensors. The second task of a security evaluation is thus to verify the effective-
ness of the online and tot tests and the consequence of noise alarms [18, 19, 22].
We will briefly address relevant aspects in Section 6.

Remark 2. A reasonable stochastic model is the core of any CC (Common Cri-
teria) evaluation with regard to the evaluation guidance AIS 31 [2, 13], which
has been effective in Germany since 2001. We point out that besides physical
RNGs with cryptographic postprocessing the international ISO norm [11] also
permits physical RNGs without cryptographic postprocessing provided that a
sound stochastic model confirms that the random numbers have enough entropy
and that effective online tests are applied.

3 An RNG Design Based on Two Noisy Diodes

Figure 1 illustrates an RNG design that exploits two identical noisy diodes. (E.g.)
Zener diodes have a reverse avalanched effect (depending on the diode type 3 - 4
Volt or about 10 V) and generate more than 1 mV noisy voltage with a frequency
of about 10 MHz. The outlets of both diodes provide symmetrical input to an
operational amplifier that amplifies the difference of the voltages. We point out
that, depending on the implementation, the device and the conditions of use,
a design with only one noisy diode may be more vulnerable to manipulations
by active adversaries, e.g. by external electromagnetic fields. The circuit of the
AC coupling, the negative feedback for the operational amplifier, the stabilizing
mechanism for the power supply or compensating effects of temperature are
omitted in the graphic. The output of the operational amplifier (with very high
amplification rate) is fed into a Schmitt trigger. The mean voltage of the amplifier
output signal is about the middle of the two threshold values of the Schmitt
trigger. Due to the steep edges of the input and usage of the 0-1-upcrossings
only the hysteresis effect should be negligible. Moreover, the proposed design
only exploits 0-1-crossings. The output signal of the Schmitt trigger consists of
zeros (’low’) and ones (’high’). The time lengths of these signals is random.

Each 0-1 crossing (up-crossing) within the Schmitt trigger clocks an inter-
mediate flip-flop. This flip-flop inverts the D-input of a second (final) flip-flop,
which is latched by a clock after constant time intervals. The number of 0-1-
crossings within the nth clock cycle gives the das random number rn. Hence
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yn+1 = yn ⊕ rn+1(mod 2) where yn and yn+1 denote the internal random num-
bers in Step n and n+ 1, respectively. (We mention that more efficient algorith-
mic postprocessing algorithms than the addition (mod 2) may exist but this is
outside the scope of this paper.)

Unlike for related designs that exploit both 0-1- and 1-0-crossings it is ir-
relevant whether the intervals between 0-1- and 1-0-crossings and the intervals
between 1-0- and 0-1-crossings are identically distributed. This feature increases
robustness at cost of halving the output rate.

Fig. 1. RNG with two noisy diodes: generic design

The uncertainty on the number of switchings of the Schmitt trigger per time
interval is crucial for the entropy of the random numbers. Hence the ratio beteen
the cycle length of the clock and the average length between two consecutive 0-
1-crossings should not be selected too small. If the distribution of the interval
lengths changes considerably, causing a smaller or larger number of switchings
within the particular clock cycles, this may have significant influence on the
entropy per output bit. Online and tot test should detect such behaviour (cf.
Subsect. 6). The tot test may separately check the generation of the noisy voltage
for each diode in order to detect a total breakdown or abnormality of the noise.

4 Formulation and Analysis of the Stochastic Model

In this section we formulate and analyze a stochastic model for the RNG design
discussed in the previous section. Interestingly, the same stochastic model fits
to to other RNG designs as well (cf. Remark 3(ii), (iii)). Theorem 1 collects the
main results.

In the following we assume that the analogue part of the noise source is in
equilibrium state (since a sufficient amount of time has passed since the start of
the RNG; a fraction of a second should suffice). We begin with the analysis of
the das random numbers r0, r1, . . . at time t = 0. The internal random numbers
y1, y2, . . . are latched at equidistant times s1 := s, . . . , sj := js, . . . where s > 0
denotes the cycle length of the clock that latches the final flip-flop (cf. Fig. 1).
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Recall that the das random number rn denotes the number of 0-1-switchings of
the Schmitt trigger within the time interval In := (sn−1, sn] = ((n − 1)s, ns].
Clearly

yn ≡ yn−1 + rn ≡ y0 + r1 + · · ·+ rn(mod2) for n ≥ 1 (5)

where y0 denotes the internal random number at time t = 0. Our goal is to
determine a lower bound for

H(Rn+1 | R1, . . . , Rn) and finally for H(Yn+1 | Y0, Y1, . . . , Yn), (6)

the average conditional entropy per das-random number, resp. the average con-
ditional entropy per internal random number. Recall that the second formula
corresponds to the real-world situation where an adversary knows several inter-
nal random numbers y0, y1, y2, . . . , yn (cf. Sect. 2). Since the algorithmic post-
processing is very elementary results on the das random numbers can directly
be transferred to the internal random numbers.

Definition 2. As usually, iid stands for ‘independent and identically distributed’.
A sequence of random variables X1, X2, . . . or . . . , X−1, X0, X1, . . . is called (strictly)
stationary if for each integer r ≥ 1 the distribution of (Xm+1, . . . , Xm+r) does
not depend on the shift parameter m. The generalized variance of the sequence
X1, X2, . . . is defined as

σ2 = Var(X1) + 2
∞∑
i=2

E ((X1 − µ)(Xi − µ)) . (7)

The sequence X1, X2, . . . is called q-dependent if the vectors (Xa, . . . , Xb) and
(Xc, . . . , Xd) are independent whenever c− b > q.

As usually, N(µ, σ2) denotes a normal distribution with mean µ and variance
σ2. The cumulative distribution function of the standard normal distribution
N(0, 1) is denoted with Φ, i.e. Φ(x) =

∫ x
−∞ e−t

2/2 dt/
√

2π for x ∈ IR.

Stochastic Model. We interpret the lengths t1, t2, . . . of the time intervals
between consecutive 0-1-switchings as realizations of a q-dependent stationary
stochastic process T1, T2, . . .. We set µ := E(T1) and σ2

T := Var(T1) while the
generalized variance of T1, T2, . . . simplifies to

σ2 = σ2
T + 2

q+1∑
i=2

E ((T1 − µ)(Ti − µ)) (8)

We assume σ2
T > 0 (otherwise the das-random numbers were deterministic),

E(|Tj |3) <∞ (needed for the proof of Lemma 2(iii); cf. also Remark 3(iii)) and
Prob(T1 = 0) = 0.
The term zn denotes the index of the first 0-1-switching that follows after time
sn = ns (i.e., when the clock latches the nth time) while wn := tzn

− sn. That
is, wn equals the time span from sn to the next 0-1-switching. In particular,
w0 + t1 + · · ·+ tzn−1 ≤ sn < w0 + t1 + · · ·+ tzn

. Recall that the stochastic model

7



of an RNG shall enable to determine (at least a lower bound for) the conditional
entropy H(Yn+1 | Y0, . . . , Yn). This defines our central goal.

More abstract, the corresponding random variables can be described as fol-
lows:

T1, T2, . . . are stationary (9)
Rn := Zn − Zn−1 with (10)
Zn := minm∈IN{W0 + T1 + T2 + . . .+ Tm > sn} (11)

Remark 3. (i) Relations (9) to (11) remain valid if we substitute the two noisy
diodes by a single noisy diode.
(ii) We note that (9) to (11) also fits to a RNG design, which was introduced in
[23] and later analyzed in [8, 20]. This noise source consists of two independent
ring oscillators. To simplify analysis we assumed W0 = 0 in [20]. Since the ratios
(sn− sn−1)/µ and thus the das random numbers r1, r2, . . . were extremely large
this simplification had little impact.
(iii) The assumption that the Tj are q-dependent may be relaxed as long as
a version of the central limit theorem for dependent random variables remains
valid (cf. Lemma 2(iii)).
(iv) Due to the nature of shot noise one may assume that q is very small, pre-
sumably q ≤ 1 (cf. Sect. 5).
(v) In our context s should be selected considerably larger than µ so that at
least one 0-1-switching should occur in each time interval (sn, s(n + 1)] with
overwhelming probability. Then zn equals the index of the first 0-1-switching
within this interval.

With regard to Remark 3(i), (ii) it should be profitable to study the system
(9) to (11) under general (weak) assumptions as well as for specific conditions
on the distribution of the Tj (e.g., for iid or Markovian Tj). Note, however,
that although (9) to (11) fit to several RNG designs the distributions of the
random variables T1, T2, . . . and, consequently, the distribution of R1, R2, . . . and
Y1, Y2, . . . may be very different. Lemma 1 below considers the ’transfer’ of the
stationarity property.

Lemma 1. (Stationarity Lemma) Let . . . , T ′−1, T
′
0, T

′
1, . . . denote a doubly infi-

nite sequence of stationary random variables with Prob(T ′j ∈ [0, s)) = 1 and
Prob(T ′j = 0) < 1. Assume that the sequence . . . , S′−1, S

′
0, S
′
1, . . . fulfils S′j+1 −

S′j ≡ T ′j+1(mod s) for each integer j. Assume further that S′J is uniformly dis-
tributed on [0, s) and independent from the random variables . . . , T ′−1, T

′
0, T

′
1, . . .

for a particular integer J .
(i) S′j is uniformly distributed on [0, s) for each integer j, and the random vari-
ables . . . , S′−1, S

′
0, S
′
1, . . . are stationary.

(ii) For j ≥ 1 let z′j denote the jth index m > 0 for which S′m < S′m−1, and
W ′j := S′zj

. For R′j = Z ′j − Z ′j−1 the random vectors (W ′j , R
′
j) and the random

variables W ′j, R
′
j and Y ′ := f(R′j) (with f : IR→ IR) are stationary.
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Proof. For k ≥ 0 trivially S′J+k ≡ S′J + T ′J+1 + · · · + T ′J+k(mod s), and the in-
dependence of S′J and T ′J+1 + · · · + T ′J+k proves the first assertion of (i). The
case k < 0 can be handled analogously. We point out that the sequence (S′j −
S′j−1)(mod s) ≡ T ′j(mod s) is stationary. We claim that S′J+j and (T ′i , . . . , T

′
k)

are independent for any triple of integers (j, i, k) with i ≤ k. Let M := {J +
1, . . . , J + j, i, . . . , k} and assume j ≥ 0 for the moment. Then Prob(S′J+j ∈ A |
T ′τ = t′τ for all τ ∈ M}= Prob(S′J + T ′J+1 + · · · + T ′J+j(mod s) ∈ A | T ′τ = t′τ
for all τ ∈ M}= Prob(SJ ∈ (A − t′J+1 − · · · − t′J+j)(mod s)) = Prob(S′J ∈ A)
for each Borel subset A ⊆ [0, s) and any realizations t′J+1, . . . , t

′
J+j , t

′
i, . . . , t

′
k

since the random variables S′J and (T ′J+1, . . . , T
′
J+j , T

′
i , . . . , T

′
k) are independent,

and SJ is uniformly distributed on [0, s). This proves the claim for j ≥ 0. For
j ≤ 0 we have S′J ≡ S′J+j + TJ+j+1 + · · · + T ′J(mod s), and the claim can be
shown analogously. Let k and j be fixed for the moment. By the preceding
Prob(S′j+1, (T

′
j+2, . . . , T

′
j+k) ∈ A× B) = Prob(S′j+1 ∈ A)Prob(T ′j+2, . . . , T

′
j+k ∈

B) = Prob(S′1 ∈ A)Prob(T ′2, . . . , T
′
k ∈ B) = Prob(S′1, (T

′
2, . . . , T

′
k) ∈ A × B)

for any Borel subsets A ⊆ [0, s) and B ⊆ [0, s)k−1. Hence (S′1, T
′
2, . . . , T

′
k)

and (S′j+1, T
′
j+2, . . . , T

′
j+k) are identically distributed. Let the diffeomeorphism

χk: [0, s)k → [0, s)k be given by χ(x1, . . . , xk) := (x1, x1 + x2(mod s), . . . , x1 +
· · · + xk(mod s)). Since (S′j+1, S

′
j+2, . . . , S

′
j+k) = χk(S′j+1, T

′
j+2, . . . , T

′
j+k), the

random vectors (S′1, S
′
2, . . . , S

′
k) and (S′j+1, S

′
j+2, . . . , S

′
j+k) are identically dis-

tributed. Since j and k were arbitrary, this completes the proof of (i).
Let j1 > 0 denote the smallest index for which S′j1 < S′j1−1. Divide the random
variables . . . , S′−1, S

′
0, S
′
1, . . . into increasing subsequences . . . , (. . . , S′j1−1),

(S′j1 , . . . , S
′
j2−1), (S′j2 , . . .), . . . such that S′jm−1 > S′jm . (As Prob(T ′j = 0) < 1

these subsequences are finite with probability 1.) Alternatively, these subse-
quences can be described by the sequence (W ′j , R

′
j)j∈Z (and index j0). For any

k ≥ 1, integers r1, . . . , rk ≥ 1 and subsets A1, . . . , Ak ⊆ [0, s) the probability
Prob((W ′1+τ , R

′
1+τ ) ∈ A1×{r1}, . . . , (W ′k+τ , R′k+τ ) ∈ Ak×{rk}) depends on the

distribution of the r := (r1 + · · ·+ rk + 2)-tuple (S′j1−1, . . . , S
′
j1+r−2). Since the

sequence . . . , (S′1, . . . , S
′
r), (S

′
2, . . . , S

′
r+1), . . . is stationary the above probability

is independent of τ . This proves the stationarity of (W ′j , R
′
j)j∈Z . The random

variables W ′j , R
′
j and Y ′j are functions of (W ′j , R

′
j), which completes the proof of

(ii).

Assumption 1. Unlike Prob(T ′j ≥ s) in Lemma 1 the probability Prob(Tj ≥
s) may be not 0 but negligible if µ � s. It is reasonable to assume that for
’large’ indices j the term T1 + · · ·+ Tj(mod s) is uniformly distributed on [0, s)
(→ uniformity assumption on S′j), and that T1, T2, . . . may be assumed to be
stationary. Note that the intervals between the 0-1 switchings from the start of
the RNG to time t = 0 can be described by random variables Tj with negative
indices. The assumptions on the Tj seem to be natural and very mild, and with
regard to Lemma 1 (and its proof) we assume in the following that besides the
Tj also (Rj)j∈IN, (Wj)j∈IN0 , (Rj(mod 2))j∈IN and finally (Yj)j∈IN are stationary.

Definition 3. The cumulative distribution functions of the random variables Tj
and Wn are denoted by GT (·) and GW (·). For u ∈ (0,∞) the random variable
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V(u) := inf
{
τ ∈ IN |

∑τ+1
j=1 Tj > u

}
= sup

{
τ ∈ IN |

∑τ
j=1 Tj ≤ u

}
quantifies the

number of 0-1-switchings in the interval [0, u] if W0 ≡ 0.

Lemma 2 collects some useful properties that will be needed later. Note that
(12) formally confirms the intuition that the knowledge of more random numbers
should not weaken the adversary’s position. We point out that (12) might become
false without the stationarity property, namely when Rn (for what reasons ever!)
is easier to guess than Rn+1.

Lemma 2.

(i) H(Rn | R0, R1, . . . , Rn−1) ≥ H(Rn+1 | R0, R1, . . . , Rn) and (12)
H(Yn | Y0, Y1, . . . , Yn−1) ≥ H(Yn+1 | Y0, Y1, . . . , Yn) for all n ∈ IN .

In particular, limn→∞H(Rn+1 | R1, . . . , Rn) and limn→∞H(Yn+1 | Y1, . . . , Yn)
exist.
(ii) For k ≥ 1 we have

Prob(V(u) = k) = Prob (T1 + · · ·+ Tk ≤ u)− Prob (T1 + · · ·+ Tk+1 ≤ u) . (13)

Further,

Prob(V(u) = 0) = 1− Prob (T1 ≤ u) , Prob(V(u) =∞) = 0 and (14)
H(V(u)) <∞. (15)

(iii) The distributions of the random variables (
∑k
j=1 Tj − kµ)/(

√
kσ) tend to

the standard normal distribution as k tends to infinity. In particular,

Prob
(
T1 + · · ·+ Tk − kµ√

kσ
≤ x

)
−→k→∞ Φ(x). (16)

for each x ∈ IR.
If the random variables T1, T2, . . . are iid the condition E(|Tj |3) < ∞ may be
dropped, and in particular σ2 = σ2

T

(iv) Let u = vµ with v >> 1. Then

Prob
(
V(vµ) = k

)
≈ Φ

(
v − k√
k
· µ
σ

)
− Φ

(
v − (k + 1)√

k + 1
· µ
σ

)
for k ≥ 1 (17)

Prob
(
V(vµ) = 0

)
≈ 1− Φ

(
(v − 1)

µ

σ

)
. (18)

The distribution of the random variable V(vµ) (or more precisely, its approxima-
tion given by (17) and (18)) depends only on the ratios µ/σ and u/µ = v but
not on the absolute values of the parameters µ, σ2, u = vµ. The mass of V(vµ)

is essentially concentrated on those k’s with k ≈ v. Unless k is very small the
interval

Jk :=
[
v − (k + 1)√

k + 1
· µ
σ
,
v − k√
k
· µ
σ

)
has length ≈ µ

σ
· v + k

2k3/2
(19)
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(v) (iid case) If the random variables T1, T2, . . . are iid then

Prob(Wn ≤ x) =
1
µ

∫ x

0

(1−GT (u)) du =: GW (x). (20)

for any distribution of W1. (Note that if ’Prob(Wn ≤ x)’ is substituted by
’limn→∞Prob(Wn≤x) assertion (20) remains valid even if the sequence (Wn)n∈IN0

is not stationary.) If GT (·) is continuous (or equivalently, if Prob(T1 = y) = 0
for all y ∈ [0,∞)) then GW (·) has density g(x) := (1−GT (x))/µ.

Proof. By Assumption 1 the random variables Rj and Yj are stationary. Hence,
(e.g.)

H(Yn | Y1, . . . , Yn−1) = H(Yn+1 | Y2, . . . , Yn) ≥ H(Yn+1 | Y1, . . . , Yn),

and since entropy is non-negative this verifies (i). Assertions (ii), (iii) and the first
assertions of (iv) follow from Lemma 1 and Lemma 2(ii) in [20]. We merely men-
tion that (iii) applies a version of the Central Limit Theorem for dependent ran-
dom variables that was proved in [12]. The remaining assertions in (iv) demand
elementary but careful computations. (Note that (

√
k + 1−

√
k)(
√
k + 1+

√
k) =

1 and
√
k ≈
√
k + 1.) The remark in brackets and (20) were shown in [10] (4.10),

and the last assertion of (v) follows by differentiation.

Under mild regularity assumptions on the T1, T2, . . . plausible heuristic argu-
ments indicate that

H(Yn+1 | Y1, . . . , Yn) ≥ min{H(V(s−u)(mod2)) | u ∈ [0, µ+ aσ)}GW (µ+ aσ).
(21)

even for moderate parameter a > 0. We point out that for n = 0 or if the Tj are
iid (21) is valid for any a ≥ 0. Due to the lack of space we omit details. Theorem 1
collects the main results of this paper. Theorem 1 focuses on the entropy of the
internal random numbers. Cancelling the term ’(mod 2)’ in (21), (24), (25) and
(26) yields entropy estimates for the das random numbers. Equation (29) can be
used to compute the autocovariance function and the autocorrelation function
of the random variables R1, R2, . . ..

Theorem 1. (i)

Prob(Rn+1 = k) ≈
∫ s

0

Prob(V(s−u) = k − 1)GW (du) for k ∈ IN0 (22)

Prob(Rn+1(mod 2)) ≈
∫ s

0

Prob(V(s−u) ≡ k − 1(mod 2))GW (du) for k ∈ {0, 1}(23)

H(Rn+1(mod 2)) ≥ H(Rn+1(mod 2) |Wn) ≈
∫ s

0

H(V(s−u)(mod 2))GW (du)(24)

with equality for iid random variables Tj.
(ii) Substituting the integrands in (22) to (24) by Prob(V(s−u) = k−1 |W0 = u),
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Prob(V(s−u) ≡ k − 1(mod 2) | W0 = u), and H(V(s−u)(mod 2) | W0 = u), resp.,
provides equality also for the general case. For dependent Tj these conditional
terms implicitly define conditions on the random variables T1, T2, . . . and thus
on V(s−u).
(iii) (iid case) If the sequence T1, T2, . . . is iid

H(Yn+1 | Y0, . . . , Yn) ≥
∫ s

0

H(V(s−u)(mod 2))GW (du) for all n ∈ IN . (25)

If GT (·) is continuous the right-hand side of (25) reads∫ s

0

H(V(s−u)(mod 2))
1
µ

(1−GT (u)) du. (26)

(iv) E((R1 + · · ·+Rj)k) =
∫ js

0

E((V(js−u) + 1)k |W0 = u)GW (du) (27)

≈
∫ js

0

E((V(js−u) + 1)k)GW (du) for each k ∈ IN(28)

with equality for iid random variables Tj. The stationarity of the Rj implies

E((R1 + . . .+Rj)2) = jE(R2
1) + 2

j∑
i=2

(j + 1− i)E(R1Ri) (29)

Proof. By stationarity (Rn+1 |Wn = u) is distributed as (V(s−wn) +1 |W0 = u),
and thus (Rn+1(mod 2) | Wn = u) as (V(s−wn) + 1(mod 2) | W0 = u). Formulae
(22) to (24) and (ii) follow immediately from the stationarity of the random
variables R1, R2, . . . and W1,W2, . . .. Within this proof νn and νn|y0,...,yn

denote
the distribution of Wn, resp. of the conditional random variable (Wn | Y0 =
y0, . . . , Yn = yn). In this notation

H(Yn+1 | Y0 = y0, . . . , Yn = yn) ≥ H(Yn+1 | Y0 = y0, . . . , Yn = yn,Wn) (30)

=
∫ ∞

0

H(Yn+1 | Yj = yj , j ≤ n;Wn = u) νn|y0,...,yn
(du)

If the Tj are iid for all n ∈ IN the vector (Tzn+1, Tzn+1+2, . . .) is distributed
as (T1, T2, . . .), regardless of u and the history y0, . . . , yn. In particular, since
H(Yn+1 | ·) = H(Yn+1 − Yn(mod 2) | ·) = H(Rn+1(mod 2) | ·) the integrand of
the right-hand side of (30) only depends on u. More precisely, for any y0, . . . , yn
the integrand equals H(V(s−u) + 1(mod 2)) = H(V(s−u)(mod 2)). Altogether

H(Yn+1 | Y0, . . . , Yn,Wn)

=
∑

y0,...,yn∈{0,1}

Prob(Y0 = y0, . . . , Yn = yn)
∫ ∞

0

H(V(s−u)(mod 2)) νn|y1,...,yn
(du)

=
∫ ∞

0

H(V(s−u)(mod 2)) νn(du) =
∫ s

0

H(V(s−u)(mod 2))GW (du)

12



in the iid case. The last equation follows from the fact that Prob(Wn+1 > s) =
1−GW (s) ≈ 0 since s >> µ. This proves (25), and (26) follows immediately from
Lemma 2(v). The sum R1 + · · ·+Rn = Zn − Z0 is distributed as V(ns−W0) + 1,
which proves (27). For iid Tj the history (expressed by W0) is irrelevant, yielding
(28). The stationarity of the Tj finally yields (29).

Remark 4. (i) (robustness) Formulae (24), (25) and (26) (with and without
’(mod 2)’) provide entropy estimators for the das random numbers and the in-
ternal random numbers that seem to be robust against at least moderate devia-
tions of the distribution of the random variables T1, T2, . . .. In fact, by (17) and
(18) the entropy H(V(s−u)) essentially depends on the ratios (s−u)/µ and µ/σ.
The density (1−GT (·))/µ in (26) is monotonically decreasing, which addition-
ally supports robustness.
(ii) (approximation errors) Theorem 1 tacitly applies the normal approximations
(17) and (18). For large ratios s/µ this should not cause serious problems unless
very small ’entropy defects’ ε := 1 − H(Yn+1 | Y1, . . . , Yn) shall be verified (cf.
Sect. 5); for small ratios s/µ one should be careful anyway. The convergence
rate of the central limit theorem and thus the meaning of ’small’ depends on the
distribution of the random variables T1, T2, . . .. Fortunately, for the conditional
entropy H(Yn+1 | Y1, . . . , Yn) the sum

∑
k≡0( mod 2) Prob(V(s−u) = k) is relevant

so that one may expect that approximation errors in Lemma 2(iv) cancel out
each other to a large extent.
To be on the safe side (especially for very small ε) one may study the approxima-
tion errors in (17) and / or in H(V(s−u)(mod 2)) for the relevant distribution.
For this purpose stochastic simulations may be applied where pseudorandom
numbers tj are generated according to the distribution of the random variables
T1, T2, . . .. A similar approach can be followed with experimental data from mea-
surements (cf. (iii)). If the Tj are independent one may operate with Fourier
transforms. Concerning (17) it seems to be reasonable to concentrate on inte-
gers k in a vicinity of s/µ, resp. for (s− u)/µ with small u.
(iii) Theorem 1 considers the stationary distribution of the random variables Wj

but it can also be adjusted to experimental data in a straight-forward way. To
apply (22), (23), (24), (25) and (28) one uses a sequence of measured time spans
t1, t2, . . . between consecutive 0-1-crossings to obtain an empirical distribution
for the stationary distribution of W1,W2, . . . (tacitly assuming ergodicity). The
formulae are then applied with this empirical distribution in place of GW . For
Theorem 1(ii) and (27) (relevant for dependent Tj ’s) the procedure is similar
but more costly since only subsequences of t1, t2, . . . can be used to obtain the
conditional distributions (· | u). Of course, in this empirical approach statistical
deviations add to the approximation errors mentioned in (ii).

Remark 5. In [4] a design of a physical RNG is investigated that also exploits the
switchings of a comparator. The amplified noise is also modelled as a stationary
stochastic process, and the autocorrelation function of the random numbers are
computed. We mention that unlike the present paper reference [4] yet considers
idealized assumptions (Gaussian white noise etc.), which clearly simplify analy-
sis. [4] exploits the number of comparator switchings within fixed time periods
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for an online test (cf. Sect. 6). For an introduction into the field of stationary
stochastic processes we refer the interested reader e.g. to [24].

5 Practical Experiments

As pointed out in Remark 3 relations (9) to (11) fit to various RNG designs.
The distribution of the random variables Tj and thus of Rj and Yj depend on
the particular design but also on the concrete implementation. To get ’real’ das
random numbers we performed measurements on a prototype of a particular
physical RNG (cf. Fig. 2 and Acknowledgement) for which the design left from
the first flip-flop coincides with the generic design discussed in Section 3.

Fig. 2. RNG prototype used for measurements

Maximum-Likelihood tests indicate that the one-dimensional empirical distri-
bution of the times between consecutive 0-1-crossings can be well approximated
by a Gamma distribution with shape parameter 3.0949 and rate 0.0240. In Fig. 3
the circles show the percentiles of the empirical distribution, and the curve shows
the percentile of Gamma distribution with the indicated parameters.

We applied Theorem 1 (more precisely, (25) and (28) and (29)) to a set of
≈ 620 000 measured time spans t1, t2, . . . between consecutive 0-1-crossings to
obtain Table 1 (cf. Remark 4(iii)). We estimated µ = E(T1) by µ̃ = 128.85ns and
Var(T1) by σ̃2

T = 5314.0. The estimates for the autocovariances cov(Tj , Tj+τ ) =
E(TjTj+τ ) − E(Tj)E(Tj+τ ) were −2.08, −10.08, 5.56, 3.80 and −1.18 for the
shift parameters τ = 1, . . . , 5. Compared to σ̃2

T these values are very small,
and experiments with various measurement sets support the conjecture that the
true autocovariances are essentially 0. We point out that also contingency tests
did not contradict the hypothesis that the random variables Tj and Tj+1 are
independent (97 from 99 tests on significance level 0.01 were passed).

The correlation coefficient of random variablesX and Y is given by corr(X,Y ) =
cov(X,Y )/

√
Var(X)Var(Y ). We applied Theorem 1 directly to the experimen-

tal data and to their Gamma approximation (Table 1). Especially for the small
clock lengths s = 7.497µ̃ and s = 9.996µ̃ the exact conditional entropy H(Yn+1 |
Y1, . . . , Yn) might differ somewhat from the estimates in Table 1 (cf. Remark 4(ii)).
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Fig. 3. Empirical distribution of the time between 0-1 crossings: histogram and per-
centiles

Table 1 suggest that the true conditional entropies should be indeed very close
to 1, especially for s = 15.017µ̃, which gives an output of slightly more than
500 kBit internal random numbers per second. For a k-fold convolution (let’s
say for k ∈ {10, . . . , 20}) of a gamma distribution with the above-mentioned
parameters the normal approximation and thus approximation (17) should be
pretty good. Numerical experiments indicate that for s = 15.017µ̃ the entropy
defect ε = 1 −H(Yn+1 | Y1, . . . , Yn) (cf. Remark 4) should be smaller than (at
least) < 10−4. Smaller bounds seem to be realistic but (in our opinion) deserve
more elaborate analysis.

It is easy to see that the random variables Rn and Rn+1 are negatively
correlated: A ’large’ value rn (resp., a small value rn) is an indicator that wn
is also large (resp., that wn is small), and thus rn+1 is likely to be small (resp.,
rn+1 to be large). Apart from the autocorrelation coefficients corr(R1, R2) and
corr(R1, R3) the results obtained by the direct application of Theorem 1 to the
experimental data and to their Gamma approximation are essentially equal. To
obtain the autocorrelation coefficients we had to apply (28) and (29) iteratively.
In particular since the terms E(R2

j ) dominate estimation errors clearly propagate
to the autocorrelation coefficients. The results for the Gamma approximation are
more reasonable since |corr(R1, R3)| is considerably smaller than |corr(R1, R2)|
and both values decrease for larger s, what was expected. Increasing the sample
size should also yield better results for the direct use of the experimental data.

6 Online Tests

The conditional entropies H(Rn+1 | R0, . . . , Rn) and H(Yn+1 | Y0, . . . , Yn) are
closely related to the entropy of the random variables V(s−u) and V(s−u)( mod 2),
respectively. If the ratio (s−u)/µ is not too small H(V(s−u)) essentially depends
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s=7.497µ̃ s=9.996µ̃ s=9.996µ̃ s=15.017µ̃ s=15.017µ̃
(Gamma approx.) (Gamma approx.)

E(R1) 7.493 9.994 9.996 15.014 15.017
Var(R1) 2.701 3.502 3.519 5.107 5.141

corr(R1, R2) −0.034 −0.034 −0.041 −0.011 −0.028
corr(R1, R3) 0.022 0.010 0.0001 0.019 0.00009

H(Rn+1 |R1, . . . , Rn) 2.631 2.850 2.858 3.155 3.163
H(Yn+1 |Y1, . . . , Yn) 0.99990 1.00000 0.99999 1.00000 1.00000

Table 1. Experimental Results

only on the ratios µ/σ and (s−u)/µ (17). Moreover, ’small’ arguments u provide
the essential contribution to the integrals from Theorem 1. Hence it is natural
(and effective) to estimate the process parameters µ = E(Tj) and the generalized
variance σ2 of T1, T2, . . . while the RNG is in operation. Unfortunately, this
required an internal clock with high resolution, which may be too costly for
many applications.

Alternatively, one may check the process parameters µ and σ2 indirectly,
namely by estimating the mean value µR := E(Rj) and the generalized variance
σ2
R of the stationary sequence R1, R2, . . .. In a first step intervals Iµ and Iσ2

should be specified which contain ’suitable’ values of the process parameters µ
and σ2. By Theorem 1(iv) one computes sets IµR

and Iσ2
R

that contain µR and
σ2
R if µ and σ2 are contained in Iµ and Iσ2 . It seems to be reasonable if the online

tests consider the mean and maybe also the generalized variance of R1, R2, . . ..
Generically,

– Estimate µR: Compute the arithmetic mean av(r1, . . . , rm) := (r1 + · · · +
rm)/m.

– Estimate σ2
R or a related parameter from das random numbers rm+1, . . . , rm+M .

The respective test fails if the estimator lies outside a particular regions.
Such basis tests may directly serve as online tests, or they can be integrated
into a more sophisticated procedure that covers the tasks of the tot test, self
test and online test. Due to lack of space we cannot deepen this aspect here
but refer the interested reader to [18], [22], Sect. 6, or [13], Example 7. In any
case the probability for a failure of a single test must be determined to specify
appropriate test rules.

The distribution of av(R1, . . . , Rm) can be computed with (22) with upper
integration boundary ms in place of s. The second basis test should be tai-
lored to the distribution of the random variables Rj , which is determined by
the RNG. The generalized variance σ2

R can be estimated directly, or a relevant
set of covariances cov(Rn, Rn+k) may be estimated. A precise computation of
the failure probability, i.e. that the test value lies outside a specified set, is more
complicated than for the arithmetic mean. This may be done on basis of theoret-
ical considerations, or by stochastic simulations (with pseudorandom numbers
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t̃1, t̃2, . . . that are generated according to the specified distribution of the ran-
dom variables Tj), or on basis of measurement series. We point out that under
suitable circumstances the second type of online test may be dropped, e.g. when
within the class of distributions that contains the true distribution of R1, R2, . . .
(→ stochastic model) the generalized variance σ2 is a function of µ.

7 Final Remarks

We addressed general requirements that should be considered in security evalu-
ations of physical RNGs. We formulated and analyzed a stochastic model that
describes the stochastic behaviour of a particular RNG design that exploits two
noisy diodes. Interestingly, this stochastic model also fits to other designs, which
makes its understanding important. Theorem 1 collects the main results of this
paper, which allow to establish tight lower bounds for the entropy per internal
random random number. We applied our results to a particular physical RNG,
and we briefly touched the field of online tests.
Acknowledgement: The authors would like to thank Frank Bergmann, who
courteously provided the RNG prototype, and Joachim Schüth for performing
measurements.
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