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Abstract. The use of an appropriate fault detection scheme for hard-
ware implementation of the Advanced Encryption Standard (AES) makes
the standard robust to the internal defects and fault attacks. To mini-
mize the overhead cost of the fault detection AES structure, we present a
lightweight concurrent fault detection scheme for the composite field re-
alization of the S-box using normal basis. The structure of the S-box is di-
vided into blocks and the predicted parities of these blocks are obtained.
Through an exhaustive search among all available composite fields and
transformation matrices that map the polynomial basis representation in
binary field to the normal basis representation in composite field, we have
found the optimum solution for the least overhead S-box and its parity
predictions. Finally, using FPGA implementations, the complexities of
the proposed schemes are compared to those of the previously reported
ones. It is shown that the FPGA implementations of the S-box using nor-
mal basis representation in composite fields outperform the traditional
ones using polynomial basis for both with and without fault detection
capability.

Key words: Advanced encryption standard, fault detection, normal ba-
sis, S-box

1 Introduction

The AES was approved by NIST in 2001 [1] and is currently replaced the previous
Data Encryption Standard in many applications. In encryption, the AES accepts
a 128-bit plaintext and a key as the inputs, where the key size can be selected as
128, 192 or 256 bits. In the AES-128, which is hereafter referred to as AES, the
ciphertext is generated after 10 rounds, where each encryption round (except for
the final round) consists of four transformations [1].

Among the four transformations in the encryption of the AES, only the S-box
operation is non-linear. There exist several fault detection schemes devised for
detecting the faults in the hardware implementation of this operation, see for
example [2], [3], [4], [5], [6], [7], and [8]. In this regard, the schemes in [2], [4],
[5], [6], and [7] are independent of the way this transformation is implemented
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in hardware. In [2], redundant unit is proposed for the fault detection of the S-
box, where an inverse S-box is placed after the S-box. Although such an scheme
detects any faults in the S-box or the inverse S-box, its overhead is at least 100%.
The approach in [4] and [5] is based on storing the one-bit predicted parity of
the S-box in a table and comparing it with the actual parity. Theoretically,
this causes the error coverage of 50% for a single S-box. In [6], a multiplication
approach for the fault detection of the multiplicative inversion of the S-box is
presented. In this approach, the result of the multiplication of the input and the
output of the multiplicative inversion is compared to the actual result.

There exist some other fault detection schemes that are suitable for a specific
implementation of the S-box, see for example [3] and [8]. The fault detection
approach presented in [3] is based on the table look-up S-boxes which may not
be preferable for high performance implementations. Therefore, for applications
requiring high performance AES implementations, the S-box is implemented
using logic gates in the composite field [9]. This reduces the area complexity of
the implementations. In addition, through pipelining, the working frequencies of
the hardware implementations can be increased [10].

Since direct calculation of the multiplicative inversion is costly [9], [11], com-
posite field arithmetic is used to perform a low cost inversion. It is noted that
the inversion in GF (28) can be implemented by mapping the binary field to the
composite field using polynomial or normal bases. It is shown in [9] that the
S-box structure using normal basis in composite field requires lower gate count
as compared to its counterparts using polynomial basis. In this paper, we have
implemented both types of the S-boxes on FPGAs and have shown that the
ones using normal basis has lower complexities than the one using polynomial
basis. Furthermore, we show that the parity predictions for the proposed fault
detection scheme using normal basis has lower gate count and time complexity
in comparison with those presented in [8] which uses polynomial basis.

In this paper, we propose a lightweight concurrent parity-based fault detec-
tion scheme for the S-box using normal basis. This scheme can also be applied
to the inverse S-box. Through an exhaustive search, we obtain the least area and
delay overhead S-box and its fault detection scheme for the optimum compos-
ite field. In this regard, our comparisons through FPGA implementations show
that the presented scheme is more efficient than the previously reported ones.
Furthermore, considering random fault injection, high error coverage is achieved
for the presented scheme.

The organization of this paper is as follows: In Section 2, preliminaries regard-
ing the AES S-box and its implementation using composite fields and normal
basis are explained. The proposed fault detection scheme for the S-box is pre-
sented in Section 3. Moreover, in this section, the time and space complexities
of the proposed scheme are analyzed. In Section 4, the presented fault detection
scheme for the S-box and the previously reported ones are implemented on FP-
GAs and they are compared in terms of time and space complexities. Finally,
conclusions are made in Section 5.
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2 Preliminaries

In this section, we first describe the S-box operation. Then, the composite field
realization of the S-box using normal basis is explained.

2.1 The S-box

The S-box is a nonlinear operation which takes an 8-bit input and generates
an 8-bit output. In the S-box, the irreducible polynomial of P (x) = x8 + x4 +
x3 + x + 1 is used to construct the binary field GF (28). Let X ∈ GF (28) and
Y ∈ GF (28) be the input and the output of the S-box, respectively. Then, the
S-box consists of the multiplicative inversion, i.e., X−1 ∈ GF (28), followed by
an affine transformation. The affine transformation consists of the matrix A and
the vector b to generate the output as

y = Ax−1 + b =




1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1




x−1 +




1
1
0
0
0
1
1
0




, (1)

where, y and x−1 are vectors corresponding to the field elements Y and X−1,
respectively.

In the following, we explain the composite field realization of the multiplica-
tive inversion using normal basis. Then, in the next section, we propose the
parity-based fault detection scheme of the S-box using this realization.

2.2 Multiplicative Inversion Using Composite Fields and Normal
Basis

Let us briefly explain the composite field arithmetic to calculate the multiplica-
tive inversion over GF (28). In what follows, we use capital Roman letters such
as X and Y for the elements in the binary field GF (28). Furthermore, small
Greek letters such as ηh, ηl, ν represent the elements in GF (24). Finally, capital
Greek letters such as Φ and Ω are utilized for the elements in GF (22).

The transformation matrix Ψ transforms a field element X =
∑7

i=0 xiα
i

in the binary field GF (28) to the corresponding representation in the compos-
ite field GF (28)/GF (24). The result of this transformation is the polynomial
X = ηhu16 + ηlu (see Fig. 1), with the multiplications modulo the irreducible
polynomial u2 + τu + ν. It is noted that the coefficients ηh and ηl are field
elements in the sub-field GF (24) representing X in terms of the normal basis
[U16, U ] [12]. The decomposition can be further applied to represent GF (24) as a
linear polynomial over GF (22) with multiplications modulo the irreducible poly-
nomial of v2 + Ωv + Φ which uses the normal basis [V 4, V ]. Moreover, one can
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Fig. 1. The S-box using composite field and normal basis [12] and its fault detection
blocks.

represent GF (22) as a linear polynomial over GF (2) with multiplications mod-
ulo the irreducible polynomial of w2 + w + 1 using the normal basis [W 2,W ].
After calculating the inversion in the composite field, the inverse transformation
matrix Ψ−1 is used to transform the composite field representation to the field
element Y =

∑7
i=0 yiα

i in GF (28).
For calculating the multiplicative inversion, the most efficient choice is to let

Ω = τ = 1 in the above irreducible polynomials [9], [12]. Then, we have the
following for the multiplicative inversion using normal basis [12]

(ηhu16 + ηlu)−1 = [θηh]u16 + [θηl]u, (2)

where, θ = (ηhηl + (ηh
2 + ηl

2)ν)−1 (see the output of block 3 in Fig. 1). As seen
in (2), the multiplicative inversion consists of a number of multiplications, an
inversion, a squaring and modulo-2 additions in GF (24). In the next section,
while we derive the parity predictions for the S-boxes, we will explain these in
more details. Then, we derive the most efficient coefficients ν and Φ for the
presented fault detection scheme.

3 Fault Detection Scheme

In this paper, we use multiple stuck-at fault model at the logic level. This type
of fault, which forces multiple nodes to be stuck at logic one (for stuck-at one) or
zero (for stuck-at zero) independent of the fault-free logic values, has been fre-
quently used in the literature, see for example [16]. It is noted that the presented
scheme is independent of the life time of the faults. Thus, both permanent and
transient stuck-at faults lead to the same fault coverage.

In the parity-based fault detection scheme of a block of logic gates, the parity
of the block is predicted and it is compared to the actual parity. The result of
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this comparison is the error indication flag of the corresponding block. This
method has been utilized in the literature to develop a fault detection scheme
for different applications, see for example [3], [13], [14], [15].

We have divided the S-box into 5 blocks similar to what is done in [8]. This
results in low overhead parity predictions while maintaining the fault detection
required for the security-constrained environments. This is shown in Fig. 1. Let
bi be the output of block i in Fig. 1, where b1 = ηh + ηl, b2 = γ, b3 = θ, b4 = σ,
and b5 = Y . As seen in this figure, the first block consists of the transforma-
tion matrix that changes an element in polynomial basis to the composite field.
Moreover, the last block (block 5) is obtained by mixing the inverse and affine
transformation matrices. The remaining three blocks are for the multiplicative
inversion, where, the hardware realization of equation (2) has been depicted. In
this figure, the modulo-2 additions, consisting of 4 XOR gates, are shown by two
concentric circles with a plus inside. Furthermore, the multiplications in GF (24)
are shown by rectangles with crosses inside. In the remaining of this section, the
five predicted parities of the outputs of five blocks of the S-box (b1-b5 in Fig. 1)
are obtained. The predicted parity of the output of block i is a Boolean function
of the inputs of block i. These parity predictions are denoted by P̂b1, P̂b2, P̂b3,
P̂b4, and P̂b5 in Fig. 1. It is noted that we have exhaustively searched for the
best possible choice of ν and Φ to find the least overhead parity predictions using
composite field and normal basis, the details of which are to follow.

3.1 Least Overhead Parity Predictions

The implementation complexities of different blocks of the S-box are dependent
on the choice of the coefficients ν ∈ GF (24) and Φ ∈ GF (22) in the irreducible
polynomials u2 + u + ν and v2 + v + Φ used for the composite field. Therefore,
the area/delay complexities of the predicted parities of these blocks are also
affected for different choices of ν and Φ. It is noted that only the values of these
coefficients that make the polynomials irreducible are acceptable. Therefore, it
can be derived that the only two acceptable values for Φ are Φ = w2 = {10}2
and Φ = w = {01}2. Furthermore, among the 16 values for ν, the following
8 make the polynomial of u2 + u + ν irreducible and thus are possible: ν ∈
{{Φ00}2, {00Φ}2, {Φ200}2, {00Φ2}2, {Φ11}2, {11Φ}2, {Φ211}2, {11Φ2}2}
= {{0100}2, {0001}2, {1000}2, {0010}2, {0111}2, {1101}2, {1011}2, {1110}2}.

In what follows, we are going to compare different implementations of the
predicted parities of the blocks in the S-box considering different combinations
of ν and Φ to reach a low complexity fault detection scheme.

Blocks 1 and 5 of the S-box Based on the possible values of ν and Φ,
the transformation matrices in blocks 1 and 5 of the S-box, denoted as Ψ and
Ψ−1/affine, can be constructed using the algorithm presented in [17] with a
slight modification for normal basis. One possible way to find the least complex
transformation matrices is to calculate the Hamming weights, i.e., the number
of non-zero elements, of the matrices Ψ and Ψ−1/affine. It is noted in [9] that
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Table 1. Area/delay complexities of blocks 1 and 5 of the S-box and their predicted
parities for possible values of νs and Φs.

H(Ψ)+H Total area of Total delay of Total area of Total delay of

Φ ν (Ψ−1/affine) blocks 1 and 5 blocks 1 and 5 P̂b1 and P̂b5 P̂b1 and P̂b5

0001 57 28X 5X
0010 57 32X 5X
0100 57 34X 5X

10 1000 57 30X 5X
0111 67 34X 3X
1011 65 30X 5X
1101 67 34X 3X
1110 65 31X 7TX 5X 4TX

0001 57 32X 5X
0010 57 32X 5X
0100 57 29X 5X

01 1000 57 34X 5X
0111 65 34X 5X
1011 67 37X 3X
1101 65 34X 5X
1110 67 32X 3X

X = XOR, TX= Delay of an XOR

instead of considering the Hamming weights, subexpression sharing is used for
obtaining the low complexity implementations. We have exhaustively searched
for the least overhead transformation matrices and their parity predictions com-
bined, the results of which are presented in Table 1. In this table, for every
possible combination of ν and Φ, the Hamming weights of Ψ and Ψ−1/affine for
the least complex cases are tabulated in column 3. Also, the number of gates
needed for the low complexity implementation of blocks 1 and 5 are presented
in column 4 of the table. Furthermore, the total number of XOR gates needed
for the predicted parities of blocks 1 and 5 of the S-box, i.e., P̂b1 and P̂b5, and
the delays associated with them are also shown in the table.

Block 2: As shown in Fig. 1, block 2 of the S-box consists of a multiplication,
an addition, a squaring and a multiplication by constant ν in GF (24). The
multiplication in GF (24) presented in [12], is depicted in Fig. 2a. As seen in
this figure, it consists of three multiplications, additions and a multiplication by
constant Φ in GF (22). Moreover, the multiplication in GF (22) is shown in this
figure. The following lemmas are used for deriving the predicted parity of the
multiplication in GF (24) and block 2, respectively. It is noted that all proofs are
presented in Appendix A.

Lemma 1. Let λ = (λ3, λ2, λ1, λ0) and δ = (δ3, δ2, δ1, δ0) be the inputs of a
multiplier in GF (24). The predicted parity of the result of the multiplication of
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Fig. 2. (a) Multiplication and (b) Inversion in GF (24) [12].

λ and δ in GF (24) is independent of Φ and can be derived as

P̂π = λ3δ3 + λ2δ2 + λ1δ1 + λ0δ0. (3)

Lemma 2. The predicted parity of block 2, i.e., P̂b2 in Fig. 1, depends on the
choice of the coefficients ν ∈ GF (24) and Φ ∈ GF (22) in the irreducible polyno-
mials u2 + u + ν and v2 + v + Φ used for the composite field.

The proof is presented in Appendix A.
Using Lemma 1 and Lemma 2 and Fig. 1, we can state the following to

predict the parity of block 2. The proof is presented in Appendix A.

Lemma 3. The predicted parity of block 2, i.e., P̂b2, can be derived as shown in
Table 2.

Table 2 shows the predicted parities for different combinations of ν and Φ
and their area/delay complexities. Moreover, the complexities for block 2 are
shown in this table. As seen in Table 2, the delay overhead for both the original
block and its parity prediction is the same for all the cases. Whereas, the area
in terms of the number of gates are different for different values of ν and Φ.
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Table 2. Parity predictions and complexities of block 2 of the S-box in Fig. 1 for
possible values of ν and Φ.

Area of Delay of Predicted Area of Delay of

Φ ν block 2 block 2 parity (P̂b2) P̂b2 P̂b2

0001 28X+9A (η7 ∨ η3) + (η6 ∨ η2) + (η4 ∨ η0) + η5η1 3X+3O+1A
0010 29X+9A (η7 ∨ η3) + (η5 ∨ η1) + (η4 ∨ η0) + η6η2 3X+3O+1A
0100 28X+9A (η6 ∨ η2) + (η5 ∨ η1) + (η4 ∨ η0) + η7η3 3X+3O+1A

10 1000 29X+9A (η7 ∨ η3) + (η6 ∨ η2) + (η5 ∨ η1) + η4η0 3X+3O+1A
0111 28X+9A (η4 ∨ η0) + η7η3 + η6η2 + η5η1 3X+3A+1O
1011 29X+9A (η7 ∨ η3) + η6η2 + η5η1 + η4η0 3X+3A+1O
1101 28X+9A (η6 ∨ η2) + η7η3 + η5η1 + η4η0 3X+3A+1O
1110 29X+9A 6TX (η5 ∨ η1) + η7η3 + η6η2 + η4η0 3X+3A+1O 2TX

0001 29X+9A +1TA (η6 ∨ η2) + (η5 ∨ η1) + (η4 ∨ η0) + η7η3 3X+3O+1A +1TA

0010 28X+9A (η7 ∨ η3) + (η6 ∨ η2) + (η5 ∨ η1) + η4η0 3X+3O+1A
0100 29X+9A (η7 ∨ η3) + (η6 ∨ η2) + (η4 ∨ η0) + η5η1 3X+3O+1A

01 1000 28X+9A (η7 ∨ η3) + (η5 ∨ η1) + (η4 ∨ η0) + η6η2 3X+3O+1A
0111 29X+9A (η6 ∨ η2) + η7η3 + η5η1 + η4η0 3X+3A+1O
1011 28X+9A (η5 ∨ η1) + η7η3 + η6η2 + η4η0 3X+3A+1O
1101 29X+9A (η4 ∨ η0) + η7η3 + η6η2 + η5η1 3X+3A+1O
1110 28X+9A (η7 ∨ η3) + η6η2 + η5η1 + η4η0 3X+3A+1O

A = AND, {+, X} = XOR, {∨, O} = OR

TX= Delay of an XOR, TA= Delay of an AND= Delay of an OR

Block 3: Block 3 in Fig. 1 consists of an inversion in GF (24). The hardware
implementation for this block has also been shown in Fig. 2b [12]. As seen in
this figure, the inversion in GF (24) is dependent on the two possible choices of
Φ and is the same for different values of ν. Therefore, depending on the choice
of Φ, there are two possible choices for this block and its parity prediction. It
is noted that for both of these implementations, the area and the critical path
delay are the same. The following theorem is used for obtaining the predicted
parity of block 3, i.e., P̂b3, the proof of which is presented in Appendix A.

Theorem 1. Let γ = (γ3, γ2, γ1, γ0) be the input and θ = (θ3, θ2, θ1, θ0) be the
output of an inverter in GF (24). Then, for Φ = w2 = {10}2, the predicted parity
of block 3, i.e., P̂b3, can be found as

P̂b3 = P̂θ = γ2γ0(γ3 + γ1) + γ3γ1(γ2 + γ0). (4)

Also, for Φ = w = {01}2 we have

P̂b3 = P̂θ = γ3γ1(γ2 + γ0) + γ2γ0(γ3 + γ1). (5)

Block 4: Block 4 of the S-box consists of two multiplications in GF (24). Ac-
cording to Lemma 1, the area/delay overhead of the multiplications in GF (24)
and that of their predicted parity are the same for both Φ = w = {01}2 and Φ =
w2 = {10}2. Moreover, as seen in Fig. 1, we have P̂b4 = P̂ηhθ + P̂ηlθ = P̂(ηh+ηl)θ.
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Fig. 3. Time complexity of the presented concurrent fault detection scheme for the 5
blocks of the S-box.

Then, according to (3) in Lemma 1 with the inputs of ηh + ηl and θ, one can
find P̂b4 as

P̂b4 = (η7 + η3)θ3 + (η6 + η2)θ2 + (η5 + η1)θ1 + (η4 + η0)θ0. (6)

It is noted that as seen in Fig. 1, for the implementation of P̂b4, the modulo-2
additions of η7 + η3, η6 + η2, η5 + η1, and η4 + η0 are already available at the
input of block 2. Therefore, implementing (6) only needs 3 XORs and 4ANDs.

3.2 Complexity Analysis

Based on the above discussions, the delay overhead of the predicted parities of
the 5 blocks in the S-box is the same for different combinations of ν and Φ, i.e.,
the total delay of the predicted parities is 14TX + 4TA. This delay overhead can
overlap the delays for the implementations of the 5 blocks in Fig. 1. We use Fig. 3
for explaining this delay overhead in more details. As seen in this figure, the time
complexity of the presented concurrent fault detection scheme for the 5 blocks
of the S-box is shown. For this reason, the delays for the parity predictions, i.e.,
the delays for P̂b1-P̂b5, as well as the delays for the actual parity calculations1,
i.e., the delays for Pb1-Pb5, are depicted in this figure. As seen in Fig. 3, the
delays for 5 parity predictions can overlap the time needed for computations
in the corresponding blocks. After finding the predicted parity for a block, say
block i, the actual parity of this block is obtained during the time needed for

1 Binary trees of XOR gates are used.
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Table 3. Area complexities of blocks 1 to 5 of the S-box and their predicted parities
for possible values of νs and Φs.

Area of Area of Total area of the S-box

Φ ν blocks 1 to 5 P̂b1 to P̂b5 and its parity predictions

0001 119X+36A 14X+9A+3O+1N 133X+45A+3O+1N
0010 124X+36A 14X+9A+3O+1N 138X+45A+3O+1N
0100 125X+36A 14X+9A+3O+1N 139X+45A+3O+1N

10 1000 122X+36A 14X+9A+3O+1N 136X+45A+3O+1N
0111 125X+36A 12X+11A+1O+1N 137X+47A+1O+1N
1011 122X+36A 14X+11A+1O+1N 136X+47A+1O+1N
1101 125X+36A 12X+11A+1O+1N 137X+47A+1O+1N
1110 123X+36A 14X+11A+1O+1N 137X+47A+1O+1N
0001 124X+36A 14X+9A+3O+1N 138X+45A+3O+1N
0010 123X+36A 14X+9A+3O+1N 137X+45A+3O+1N
0100 121X+36A 14X+9A+3O+1N 135X+45A+3O+1N

01 1000 125X+36A 14X+9A+3O+1N 139X+45A+3O+1N
0111 126X+36A 14X+11A+1O+1N 140X+47A+1O+1N
1011 128X+36A 12X+11A+1O+1N 140X+47A+1O+1N
1101 126X+36A 14X+11A+1O+1N 140X+47A+1O+1N
1110 123X+36A 12X+11A+1O+1N 135X+47A+1O+1N

X = XOR, A = AND, O = OR, N = NOT

the computation of block i + 1. As seen in Fig. 3, the only delay overhead for
this concurrent scheme is the delay of the actual parity of block 5 which is 3TX .

Using the discussions presented in this section and the results of Tables 1
and 2, the total gate count of all blocks of the S-box and their parity predictions
for different combinations of ν and Φ are shown in Table 3. As seen in this table,
if we only consider the area complexities of the parity predictions, the following
four composite fields have the least area: Φ = {10}2 and ν ∈ {{0111}2, {1101}2}
and also Φ = {01}2 and ν ∈ {{1011}2, {1110}2}. As seen from Table 3, the
gates needed for implementing these low-area parity predictions are 12 XORs,
11 ANDs, 1 OR and 1 NOT. However, the results of the table show that none of
these has the least area for the S-box and its fault detection circuit together. As
seen in Table 3, among all the 16 possible combinations of ν and Φ, the composite
field shown in bold face, i.e., Φ = w2 = {10}2 and ν = {00Φ2}2 = {0001}2,
has the least area for the S-box and its fault detection circuit combined. It is
interesting to note that after area optimization, this field has also been suggested
in [9] for reaching the least area S-box using composite field.

From the previous section, we reach the following parity predictions for the 5
blocks in order to obtain the least overhead S-box and its fault detection circuit
in Fig. 1

P̂b1 = x7 + x5, (7)

P̂b2 = (η7 ∨ η3) + (η6 ∨ η2) + (η4 ∨ η0) + η5η1, (8)

P̂b3 = γ2γ0(γ3 + γ1) + γ3γ1(γ2 + γ0), (9)
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P̂b4 = (η7 + η3)θ3 + (η6 + η2)θ2 + (η5 + η1)θ1 + (η4 + η0)θ0, (10)

P̂b5 = σ7 + σ5 + σ4 + σ3 + σ2, (11)

where, ∨ represents an OR operation.
We conclude this section with the calculation of the error coverage of the

presented scheme. As seen in Fig. 1, since the 5 blocks of the S-box do not overlap,
the fault detection of each block is independent of those of the others. It is noted
that using parities, the probability of detecting (or not detecting) the faults by
the error indication flag of each block is 1

2 . Therefore, using the mentioned fault
model, for the error coverage of each S-box we have 100× (1− ( 1

2 )5)% = 97%.

4 Comparisons

In this section, we compare the area and the delay of the presented scheme with
those of the previously reported ones. For this reason, first the gate count and
the gate delays of the schemes are obtained and compared. Then, the implemen-
tations on the Xilinx [18] FPGAs are presented.

4.1 Area and Time Complexities

For deriving the area overhead of the presented fault detection scheme, we as-
sume that 2-input AND and OR gates require 6 transistors each using the full
CMOS technology. Also, 2-input XOR and XNOR gates can be implemented
using 10 transistors each [19] and a NOT gate can be realized using 2 transistors
assuming that PMOS and NMOS need the same chip area. Therefore, the space
complexities of a 2-input AND (OR) and a NOT gate are equivalent to 0.6 and
0.2 XOR gates, respectively.

In the previous section, the total gate count for the predicted parities of 5
blocks of the S-box was derived as 14 XORs, 9 ANDs, 3 ORs and 1 NOT which
is equivalent to 21.4 XORs. In addition, 23 XORs and 5 XORs are needed for
obtaining the actual parities and the comparisons of the predicted and the actual
parities, respectively. Therefore, the equivalent gates for the total area overhead
is obtained as 21.4 + 28 = 49.4 XOR gates. Moreover, as seen in Table 3, the
corresponding S-box implementation needs 119 XORs and 36 ANDs which is
equivalent to 140.6 XOR gates. Therefore, the percentage of area overhead is
approximately 49.4

140.6 ' 35%.
The complexity of the presented fault detection scheme can be compared to

the other fault detection schemes of the S-box using composite fields. The original
area of the S-boxes and the overheads of these fault detection schemes in terms
of equivalent XOR gates are presented in Table 4. The S-box presented in [11]
has been hardware optimized in [20] and is extensively used in the literature, see
for example [21], [22]. The gate count for the predicted parities of this S-box in
[20] is derived as 23 XORs, 10 ANDs and 1 XNOR [8]. In addition, similar to the
scheme in this paper, 28 XORs are required for obtaining the actual parities and
their comparisons with the predicted parities. Therefore, the equivalent gates
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Table 4. Area overhead comparison of the parity-based fault detection schemes.

S-box [11], [20], [21], [22] [23], [24], [25], [26] [27] Presented

FDSa [8] Appliedb Appliedb This work

S-box XORs 144.6 144.6 141.6 140.6

FDS XORsc 58 56 56.4 49.4

Area overhead 40% 38% 39% 35%

a Fault detection scheme.
b We have applied the technique proposed in [8] to derive the predicted parities for

the 5 blocks of the S-boxes presented in [23]-[27].
c The area complexity overhead of the fault detection scheme is dependent on the way

the S-box is implemented. Therefore, the numbers of XOR gates are different for
different S-box realizations.

for the total area overhead is obtained as 58 XORs. Moreover, this S-box needs
123 XORs and 36 ANDs, equivalent to 144.6 XOR gates, resulting in the area
overhead of approximately 40%. In addition, for comparison, we have derived the
parity predictions of the S-box using polynomial basis, presented in [23] which
is used in the literature, see for example [24], [25], [26]. Table 4 shows the total
equivalent gate count for the fault detection scheme of this S-box, comprising
the actual and the predicted parities and comparisons. As seen in this table,
the gate overhead for the fault detection scheme of this S-box is around 38%.
Finally, using subexpression sharing for the implementation of the S-box in [27],
the area overhead of the fault detection scheme is approximately 39% (see Table
4). As seen in this table, all the above S-boxes and their fault detection S-boxes
are less compact than the scheme presented in this paper. It is noted that similar
to the presented fault detection scheme, the delay overhead of these schemes is
4TX comprising 3TX for calculating the actual parity of block 5 plus one TX for
its comparison with the predicted parity of this block.

4.2 FPGA Implementations

In the following, we have implemented the S-boxes using look-up table (LUT)
and the ones presented in [20], [23], and [27] which use polynomial basis (PB)
representation in composite field. We have also implemented the fault detection
schemes proposed in [2] and [3] which are based on the LUT implementation of
the S-box and the one presented in [8] which is based on the S-box of [20]. More-
over, we have applied similar technique presented in [8] and derived formulations
for the S-boxes of [23] and [27] to implement their fault detection schemes. All
the schemes are implemented on the Xilinx VirtexTM-E and VirtexTM-II Pro
FPGAs [18] and are compared with the one presented in this paper. For the im-
plementations, VHDL has been used as the design-entry language for the Xilinx
ISETM version 9.1i. Furthermore, the synthesis is performed using XSTTM.

For the presented scheme in this paper, we have implemented the S-box pre-
sented in the previous section and the fault detection circuits, i.e., the equations
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Table 5. Comparisons of the implementation of the fault detection scheme of the S-box
using normal basis (NB) with those of other schemes on Xilinx FPGAs.

FPGA family S-box Slice Delay (ns)
(Device) Structure FDS Original FDS Overheada Original FDS Overheada

LUT [2] 88 188 113.6% 6.280 8.621 37.3%

LUT [3] 88 206 134.1%b 6.280 8.242 31.2%
Virtex-E PB [20] [8] 33 42 27.3% 17.976 19.079 6.1%

(xcv50e-8) PB [23] Appliedc 38 50 31.6% 15.875 17.077 7.8%
PB [27] Appliedc 37 47 27.0% 19.133 19.912 4.1%

NB This work 31 39 25.8% 16.517 17.360 5.1%

LUT [2] 69 150 117.4% 3.826 5.398 41.0%

LUT [3] 69 159 130.4%b 3.826 4.287 12.0%
Virtex-2 Pro PB [20] [8] 33 42 27.3% 9.375 10.317 10.0%
(xc2vp2-7) PB [23] Appliedc 38 50 31.6% 8.285 9.582 15.7%

PB [27] Appliedc 37 47 27.0% 9.986 10.832 8.4%
NB This work 31 39 25.8% 9.339 10.026 9.8%

a Overhead=FDS−original
original

× 100.
b The high area overhead is because of using two blocks of 256 × 9 memory cells to

generate the predicted parity bit and the 8-bit output of the S-box [3].
c We have applied the technique proposed in [8] to derive the predicted parities for

the 5 blocks of the S-boxes presented in [23] and [27].

(7)-(11). The results of the implementations have been tabulated in Table 5.
In this table, the synthesis optimization goal is set as area with medium effort.
The number of slices used for the implementations on the target devices and
the minimum clock periods (delays) are presented in this table. It is noted that
we have not used sub-pipelining in the implementations of the S-boxes using
composite fields since the results are intended for finding the space complexity
of the S-boxes and the overhead of their fault detection schemes.

The results of the comparison of the presented fault detection scheme for the
S-box using normal basis with those of the other schemes have also been pre-
sented in Table 5. Using pipelined distributed memories, we have implemented
the fault detection scheme presented in [2], which is based on using redundant
units for the S-box of table look-ups. Furthermore, the fault detection scheme
proposed in [3] is implemented. This scheme uses 512 × 9 memory cells to gen-
erate the predicted parity bit and the 8-bit output of the S-box [3]. The results
in Table 5 show that for both of these schemes the area overhead is more than
100%. We have also implemented the fault detection scheme presented in [8]
which uses the original S-box proposed in [20]. This S-box uses the polynomial
basis representation in composite field. Our implementations show that the im-
plementation of [20] is more area-efficient on FPGAs than the ones presented in
[23] and [27]. However, the one presented in [23] is the fastest one compared to
[20] and [27]. Moreover, we have applied the fault detection schemes presented
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in [8] to the S-boxes in [23] and [27]. Those fault detection schemes have also
been implemented and the implementation results are also shown in this table.

As seen in bold faces in the table, the presented S-box is the most compact
one among the other S-boxes with and without the fault detection scheme. It
is interesting to note that the least area required for the S-box implementation
using normal basis on FPGAs complies with the least gate count reported in
[12] for such a composite field. Moreover, except for the scheme in [27], the post
place and route timing overhead of the presented scheme is less than the other
schemes. It is interesting to note that the presented scheme has less delay for the
fault detection S-box compared to the scheme for [27]. This delay can overlap
the computation time of the next transformation in the AES encryption.

5 Conclusions

In this paper, we have presented a high performance parity-based concurrent
fault detection scheme of the S-box using normal basis for the advanced encryp-
tion standard. We have exhaustively searched for the least complex S-box as well
as its fault detection circuit and have presented closed formulations for the parity
predictions of each block of the S-box. We have implemented a number of pro-
posed S-boxes and their fault detection schemes from the literature on FPGAs
and compared them with the one presented here. Our FPGA implementations
using area optimized syntheses show that the S-box using normal basis is more
compact than the one using polynomial basis. Moreover, the cost of the FPGA
implementation of the presented fault detection scheme is 25.8% slice overhead
with negligible timing delay. It is noted that similar parity-based fault detection
scheme can be obtained for the inverse S-box in the AES decryption.
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Appendix A: Proofs

Proof of Lemma 1. According to Fig. 2a, for the inputs Λ = (Λ1, Λ0) and ∆ =
(∆1,∆0), the two-bit result of the multiplication in GF (22), Π = (Π1,Π0), can
be derived as Π1 = ∆1Λ0 + ∆0Λ1 + ∆0Λ0 and Π0 = ∆1Λ0 + ∆0Λ1 + ∆1Λ1.
Furthermore, multiplication by two possible values of Φ, i.e., Φ = w2 = {10}2
and Φ = w = {01}2, can be obtained by putting ∆ = Φ. Then, we have Π1 = Λ0

and Π0 = Λ1 + Λ0 for Φ = w2 = {10}2 and Π1 = Λ1 + Λ0 and Π0 = Λ1 for
Φ = w = {01}2. Consequently, one can derive the coordinates of π according to
Fig. 2a and these discussions for the operations in the multiplication GF (24).
Therefore, for Φ = w2 = {10}2 we have

π3 = λ3(δ3 + δ1 + δ0) + λ2(δ1 + δ2) + λ1(δ3 + δ2 + δ1 + δ0) + λ0(δ3 + δ1),
π2 = λ3(δ2 + δ1) + λ2(δ3 + δ2 + δ0) + λ1(δ3 + δ1) + λ0(δ2 + δ0),
π1 = λ3(δ3 + δ2 + δ1 + δ0) + λ2(δ3 + δ1) + λ1(δ3 + δ2 + δ1) + λ0(δ3 + δ0), (12)
π0 = λ3(δ3 + δ1) + λ2(δ2 + δ0) + λ1(δ3 + δ0) + λ0(δ2 + δ1 + δ0).

Also, for Φ = w = {01}2 we have the result as

π3 = λ3(δ3 + δ2 + δ1) + λ2(δ3 + δ0) + λ1(δ3 + δ1) + λ0(δ2 + δ0),
π2 = λ3(δ3 + δ0) + λ2(δ2 + δ1 + δ0) + λ1(δ2 + δ0) + λ0(δ3 + δ2 + δ1 + δ0),
π1 = λ3(δ3 + δ1) + λ2(δ2 + δ0) + λ1(δ3 + δ1 + δ0) + λ0(δ2 + δ1), (13)
π0 = λ3(δ2 + δ0) + λ2(δ3 + δ2 + δ1 + δ0) + λ1(δ2 + δ1) + λ0(δ3 + δ2 + δ0).

Modulo-2 adding the coordinates of (12) or (13) gives (3) and the proof is com-
plete. In addition, another proof can be obtained by observing Fig. 2a and noting
that the output of the multiplication by Φ is added to both of the results, i.e.,
it is added to both (π3, π2) and (π1, π0). Therefore, it is canceled in finding the
predicted parity.

ut
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Proof of Lemma 2. Considering the fact that P̂b2 = P̂(ηh+ηl)2ν + P̂ηhηl
, one

can use Lemma 1 to obtain P̂ηhηl
independent of the values of ν and Φ. However,

P̂(ηh+ηl)2ν depends on the elements ν and Φ. This is because of having squaring
in GF (24), i.e., (ηh + ηl)2, and also a multiplication by ν to obtain P̂(ηh+ηl)2ν .
Therefore, the predicted parity of block 2 is also dependent on these values and
the proof is complete.

ut
Proof of Lemma 3. One can use Lemma 1 to obtain P̂(ηh+ηl)2ν and P̂ηhηl

in
P̂b2 = P̂(ηh+ηl)2ν +P̂ηhηl

. P̂ηhηl
can be easily found using Lemma 1. Furthermore,

using Lemma 1 with the inputs being λ = (ηh + ηl)2 and δ = ν one can obtain
P̂(ηh+ηl)2ν . Noting that the possible values for Φ are Φ = w2 = {10}2 and
Φ = w = {01}2, one can find the corresponding possible (ηh + ηl)2 using (12)
and (13). This is achieved by putting both inputs in (12) or (13) as ηh + ηl.
Then, for Φ = w2 = {10}2 we have

(ηh + ηl)2 =(η7 + η6 + η5 + η3 + η2 + η1, η6 + η5 + η4 + η2 + η1 + η0,

η7 + η5 + η4 + η3 + η1 + η0, η7 + η6 + η4 + η3 + η2 + η0), (14)

and for Φ = w = {01}2 we have

(ηh + ηl)2 =(η7 + η5 + η4 + η3 + η1 + η0, η7 + η6 + η4 + η3 + η2 + η0,

η7 + η6 + η5 + η3 + η2 + η1, η6 + η5 + η4 + η2 + η1 + η0). (15)

One can obtain the predicted parities of block 2, i.e., P̂b2 = P̂(ηh+ηl)2ν + P̂ηhηl
,

for all the possible combinations of ν and Φ. The results are presented in Table
2.

ut
Proof of Theorem 1. According to Fig. 2b, P̂θ = P̂Υ−1γh

+P̂Υ−1γl
= P̂Υ−1(γh+γl).

Then, according to the predicted parity of the multiplication in GF (22) in the
proof of Lemma 1, we have P̂Υ−1(γh+γl) = Υ−1

1 (γ3+γ1)+Υ−1
0 (γ2+γ0). Moreover,

considering the fact that the inversion in GF (22) is free, i.e., Υ−1 = (Υ0, Υ1), we
reach P̂θ = Υ0(γ3 + γ1) + Υ1(γ2 + γ0). Then, according to the formulations for
the multiplication in GF (22) and knowing that the squaring in GF (22) is free,
finding the coordinates of Υ for two values of Φ is straightforward and the proof
is complete. ut


