Collision Search for Elliptic Curve Discrete
Logarithm over GF(2™) with FPGA

Guerric Meurice de Dormale*, Philippe Bulens**, and Jean-Jacques Quisquater

UCL DICE/Crypto Group, Place du Levant 3, B-1348 Louvain-La-Neuve, Belgium.
{gmeurice,bulens,quisquater}@dice.ucl.ac.be

Abstract. In this last decade, Elliptic Curve Cryptography (ECC) has
gained increasing acceptance in the industry and the academic commu-
nity and has been the subject of several standards. This interest is mainly
due to the high level of security with relatively small keys provided by
ECC. Indeed, no sub-exponential algorithms are known to solve the un-
derlying hard problem: the Elliptic Curve Discrete Logarithm.

The aim of this work is to explore the possibilities of dedicated hardware
implementing the best known algorithm for generic curves: the paral-
lelized Pollard’s p method. This problem has specific constraints and
requires therefore new architectures. Four different strategies were inves-
tigated with different FPGA families in order to provide the best area-
time product, according to the capabilities of the chosen platforms. The
approach yielding the best throughput over hardware cost ratio is then
fully described and was implemented in order to estimate the cost of an
attack. Such results should help to improve the accuracy of the security
level offered by a given key size, especially for the shorter parameters
proposed for resource constrained devices.

1 Introduction

Since their introduction in cryptography in 1985 by Neal Koblitz [20] and Victor
Miller [26], elliptic curves have raised increasing interest. This rich mathematical
tool has been used to set up new asymmetric schemes able to compete with the
well established RSA. Such schemes allow many useful functionalities like digital
signature, public key encryption, key agreement, ... For those needs, Elliptic
Curve Cryptography (ECC) is indeed an attractive solution as the provided
public key scheme is currently one of the most secure per bit.

The underlying hard problem of ECC is the intractability of the Elliptic
Curve Discrete Logarithm Problem (ECDLP). Let E(F) be an elliptic curve
over a finite field F and let P be a point of E(FF). For any point @ € (P) (the
subgroup generated by P), the problem is to determine the integer k, 0 < k < n,
(with n the order of P) verifying k- P = Q.

In day-to-day life utilizations of public key cryptography, choosing security
parameters is a major concern'. Knowing the difficulty of solving ECDLP in-

* Supported by the Belgian fund for industrial and agricultural research (FRIA)
** Supported by Walloon Region / ALIS - First Europe Program
L A platform gathering current recommended key sizes can be found in [10].

stances is therefore essential to reach good trade-offs between security and com-
putation power. Until 2006, the only released attacks were performed on general
purpose processors. Hardware platforms can obviously be lower power and faster
than software ones but the cost improving factor, for given GF(2™) problems, is
currently unknown. The aim of this work is therefore to evaluate the complexity
and the cost of solving ECDLP by means of dedicated hardware. Such results
should help to improve the accuracy of the security level offered by a given key
size, especially for small key proposed for resource-constrained devices [32].

This work focusses on curves over GF(2™) instead of GF(p). Indeed, GF(2™)
arithmetic is well suited for hardware platforms (addition is a simple bitwise xor)
while software platforms are optimized for GF(p). A higher improvement factor
over software solutions is therefore expected.

The framework here is a general attack on curves over GF(2™), independently
of the representation of the underlying group. Specific attacks, like MOV [23],
Pohlig-Hellman [22] and the exploitation of weak fields GF(2™") [9, 24] are not
handled. For general attacks, the methods of interest are Pollard’s p [15] or
Shanks’ Baby-step Giant-step [5]. The algorithm used in this work is the paral-
lelized p method of van Oorschot and Wiener [38] with Teske’s observations [37].

For the hardware platform, FPGAs instead of ASICs were chosen. Indeed,
today’s FPGAs got rid of most of the electrical and thermal problems they were
suffering from in the last half decade. Prices for large FPGA devices are now
also very affordable. As a result, its flexibility and performance over cost (for low
volume) makes FPGAs an attractive solution. In particular, the FPGA-based
COPACOBANA engine [17] was used for the cost assessment of this work.

Existing ECC architectures cannot be easily tailored to meet the specific re-
quirements of the problem (cf. 4.2). New architectures with new trade-offs have
therefore to be considered. In this work, four kinds of processors for solving
ECDLP were investigated on different FPGA device families: tiny and small
with low area requirements for low-cost FPGAs, medium for low-cost FPGAs
and large for high-performance FPGAs. The aim is to provide architectures
with different area-time complexity in order to best fit the capabilities of the
chosen platforms. As a result, a high-performance device is not reduced to the
sum of small devices. For that purpose, an original approach based on a prior
theoretical analysis of area requirements of algorithms was used. This method
allows selecting best options before implementations. Then, based on prelimi-
nary implementation results, the best processor is selected and fully described.
Finally, timings of a software-based implementation are used to compare the
performance-cost ratio of hardware platforms and general purpose processors.

This paper is structured as follows: Section 2 deals with previous attempts
for solving ECDLP. Section 3 reminds the mathematical background of elliptic
curves. Then, Section 4 explains the algorithm and improvements used for the
collision search. The description of the architecture of the whole system stands
in Section 5. After that, algorithms necessary for the arithmetic on elliptic curve
are studied in Section 6. Based on this theoretical analysis, the four kinds of
processors are presented in Section 7. Afterwards, the most efficient processor

is fully described in Section 8. The hardware results and cost assessments are
presented in Section 9 and finally, conclusions are given in Section 10.

2 Previous work

Until now, the hardest Certicom challenges [6] solved were done on 109-bit fields
using general purpose processors. The ECC2-109 challenge was solved in 2004
by the team of Chris Monico. The effort required 2600 computers and took 17
months. The gross CPU time used was estimated equivalent to that of an Athlon
XP 3200+ working nonstop for about 1200 years [6]. Those results suggest the
use of dedicated hardware for attacking higher fields like for ECC2-131.

A survey about hardware for attacking ECC, based mainly on results of [11]
about GF(p) curves can be found in [29].

A rough estimation about using dedicated hardware for solving ECDLP on
curves over GF(215%) with elements represented on an Optimal Normal Basis
(ONB) can be found in [38]. Their aim was to show that the setup of [1] was
insecure: that a largest prime factor with a size of only 2'?° was insufficient. With
a budget of $10 million for their 1.5 pm ASICs clocked at 40 Mhz, the authors
estimated that solving this particular ECDLP should only take 32 days2.

Unlike this work, we focus on polynomial basis with low weight irreducible
polynomials (as those recommended in standards like [27, 32]). Further analysis
of ONB-based systems is left for another work.

The first results about concrete hardware implementation were presented
in [11] for GF(p) and in [4] for GF(2™). Compared to the (unpublished) results
presented in [4], this work completes the study in many aspects. In particular,
in addition to a large processor for high-performance FPGAs, small processors
for low-cost FPGAs are studied. Moreover, power consumption and performance
analysis in terms of the throughput-hardware cost ratio are given.

3 Mathematical Background

Let p(z) € GF(2)[z] be an irreducible polynomial of degree m generating the
field GF(2™). A non supersingular elliptic curve E over GF(2™) using affine
coordinates can be defined as the set of solutions of the reduced Weierstrafl
equation:
E:y’+ay=2+az’+b (1)
where a,b € GF(2™), b # 0, together with the point at infinity O.
The inverse of point P = (z1,y1) is —P = (z1, 21 +y1). In affine coordinates,

the sum P+ @ of points P = (x1,41) and Q = (2, y2) (assuming that P,Q # O
and P # —Q) is point R = (x3,y3) where:

z3=N 4+ Atz +2240a . gli?f when P # Q
with A = ¢ #1722
yz3=A-(z1+x3)+x3+y 2 +z1 when P=Q

2 However, the processor should be used in affine mode instead of projective (cf. 4.2).

Those modular arithmetic computations involve an expensive division, a mul-
tiplication, a squaring and several additions. When performing a scalar multi-
plication, the inversion is usually deferred to the end of the whole computation
by using different coordinate systems. However, as an invariant is required while
solving ECDLP, the use of affine coordinates is cheaper (cf. 4.2).

For a thorough description of elliptic curves, the reader is referred to [3].

4 Collision Search

The main algorithms for solving a generic ECDLP are Pollard’s p [15] and
Shanks’ Baby-step Giant-step [5] methods. However, Pollard’s p has the great
advantage of requiring only a little amount of memory. The parallelized version
of this method, with distinguished points, was chosen for this work as it is the
best known algorithm to solve a generic ECDLP instance.

4.1 Pollard’s p Algorithm

The basic idea to solve DLP is to walk in the group as randomly as possible
until a collision is found, i.e. once a group element is reached twice, coming from
different ways. The algorithm shown here is a general adaptation of Pollard’s
method to the case of the ECDLP.
To recover the unknown k, with Q = k - P, a random chain is initialized by
a point Ry = ¢ - P + dp - Q. Then, the following function is iteratively applied:
{ R; + M, when R; € T\,
Ri =
2-R; when R; € T,
for some point M, = e, - P + f, - Q with ey, f, randomly chosen. T, (resp.
T,) is the set of partitions for which an addition (resp. doubling) is performed.
In order to solve the DLP, ¢ and d have to be updated accordingly. Following
the birthday paradox, the probability to find R; = R; increases, leading to the
solution k:
¢ P+ diQ =c¢;P+ dikP = ¢; P+ djkP = ¢; P + d;Q

_ Cj*C
k= d;—d

L mod n
J

An appropriate number of T,, and T, partitions has to be chosen. Teske’s
experimental results [37] suggest that setting u > 20 and v = 0 yields perfor-
mances close to the optimal “true” random walk. This is particularly interesting
as it allows the point addition to be solely implemented. In practice, a power of 2
is a convenient choice for u: a small chunk of bits of the point can be regarded
as the index of the partition.

4.2 Improvements

Distinguished Points: The concept of Distinguished Points (DPs), attributed
to Rivest by Denning [7], can be included to improve the overall efficiency of
the algorithm. A distinguished point criterion, or property, is chosen and each

computed point satisfying this criterion is stored. The collision search is now
limited to a comparison between the distinguished points.

However, a given point can be represented in many ways using different co-
ordinate systems. Without an invariant in point representation, DP criterion
cannot be checked. Moreover, chains do not merge after a collision, preventing
its detection while reaching a DP. To our knowledge, there is no invariant com-
putationally cheaper than a modular division. As a result, affine coordinates are
more efficient as point representation in this system is unique.

A well chosen DP criterion® will ensure that enough DPs are encountered to
limit the number of steps (§ term below), but not too much (as those DPs are
stored). More precisely: if 6 is the proportion of points in (P) having the DP
property, the expected number of elliptic curve operations before a collision of
DP is observed is /%% + 5, or & - /52 4+ 4 with C' computers (cf. below).

To deal with the case where a chain falls into a loop without DP, chains
exceeding 20 times the average length are dropped. This corresponds to a pro-
portion of (1—6)2/? ~ ¢=20 chains with a waste of work of 20 e=2° < 5 10~%[38].

Parallelization: Using a large number of computers, van Qorschot and Wiener [38]
showed that it was interesting to make them share their knowledge. The collision
search can therefore be viewed as a search between several chains. The complex-
ity is reduced by the full number of computers C taking part in the collision
search. Resorting to DP is particularly useful with the parallelization technique.

Negation and Frobenius Map: Other improvements, like negation map and frobe-
nius map (for Koblitz curves) allow limiting the collision search to a fraction of
the space [39]. They are not currently tackled and are left for another work.

5 Collision Search Architecture

The global collision search architecture is made of a server (e.g. a PC) and an
arbitrary number of clients (for instance FPGAs). The hardware clients take care
of the computationally intensive part of the work, namely the random walks on
the elliptic curve. The software server handles the low-throughput operations:
computation and dispatching of the starting points (SPs), recovery of the DPs,
check for their correctness and sorting in order to find a collision. A software-
based platform is a natural choice as it can provide the resources to sort the DPs
and a huge memory to store them.

5.1 Software Program

The software is organized as follows: python language is used as the high level
programming language and wraps, with swigwin [36], the low level C/C++ func-
tionalities. The C++ modules use NTL [28] and deal with the number theory
aspects while the C modules handle the communications. The performances of
those modules are not critical.

% As pointed out in [33], some DP criteria lead to inefficient attacks on GF(2™).

5.2 Hardware Circuit

Each hardware client embeds a communication interface (basically a FIFO), a
main controller and some numbers of elliptic curve processors with their own
communication buffers (EC-uP). A ring communication topology is the most
scalable approach, especially for a set of many small EC-uP on a large platform.

For the communication, each data set is made of a header, the z- and y-
coordinates of a point and its ¢ and d components in the P, Q basis. The header
is used to determine the address of the EC-uP and the kind of data carried
(either SP or DP). A more detailed view of an EC-uP is given in Fig. 1.

During the initialization phase, the data are sent from the main controller
to the first EC-uP which collects one SP for each chain. Additional SPs are
stored to allow starting a new chain when it exceeds the allowed length (20/0).
SPs are deserialized to feed FIFOs in order to load RAMs of the Point Update
and Coeff Update computing units. In most architectures, the throughput of
the Coeff Update unit is sufficiently low to work on w-bit data (which avoids a
specific (de)serialize circuit). When a DP is found, the point and its coefficients
are stored in other FIFOs in order to serialize and output the data as soon as
possible. In this case, the corresponding chain length is reset as well.

The default behavior of the EC-uP is to compute the point additions, update
the coefficients and track the length of the chains. The number u of partitions
(cf. Section 4.1) was set to 2° in order to directly map the 5 LSBs of the z-
coordinate (called hash) to 32 partitions. For each point addition, this hash
is sent through a FIFO to the Coeff Update unit in order to update the two
coefficients of each chain accordingly. The Point Update unit also sent (through
a FIFO) one bit for each chain to tell if a DP was found. When a chain exceeds
the allowed length, its ID is sent to the Point Update unit through another FIFO.

6 Elliptic Curve Arithmetic

This section reviews different algorithms for the operations needed to compute
an EC point addition (PA). Hardware implementations (e.g. [2]) usually focus
on inversion-free coordinates as they are potentially more area-time efficient in
the high-speed domain. Nevertheless, affine coordinates are cheaper and all the
trade-offs have therefore to be reconsidered. Moreover, as a lot of area is poten-
tially available in the targeted circuits, a lot of area-time trade-offs are achiev-
able. In order to select the best algorithms, this analysis begins by reviewing
their theoretical area requirements in terms of FPGA slices.

In this work, low-weight binary irreducible polynomials of degree m are con-
sidered. Such trinomials and pentanomials are recommended for implementa-
tions in [32,27] and are used in challenges proposed in [6]. As sketched in Sec-
tion 2, addition in GF(2™) is a simple bitwise zor operation. Reconfigurable
logic is used for the EC-uP, the polynomials can therefore be hardwired. As a
result, each bit of the parallel modular reduction is computed with mainly 5-
input zor gates for pentanomials and 3-input zor gates for trinomials. This leads

to an inexpensive modular squaring circuit as the squaring itself is obtained by
inserting a ‘0’ bit between consecutive bits of the binary representation of the
input polynomial [13]. Other relevant operations are multiplication and inver-
sion/division.

6.1 Squaring

Most of the bits of a hardwired parallel squarer are computed with 2-input and
3-input zor gates for pentanomials and 1-input (no gate) and 2-input gates for
trinomials. This corresponds to an area of m/2 slices. For circuits composed
of parallel multiple squarers, logical simplifications occur. As a result, they are
more area-time efficient than the iterative use of a single squarer.

6.2 Multiplication

For an iterative architecture, a digit-serial by parallel multiplier [34] is an at-
m

tractive solution. With a D-bit digit, the computation needs {5] cycles. The
circuit is composed of a register for the parallel input, a shift register for the
serial input and a registered 2D + 1-input sum of product (and-zor network)
for the accumulated partial product and output. The modular reduction can be
neglected. The following areas, in function of D, are required: 3m/2 (1), 2m
(2,3), 5m/2 (4), 3m (5,6), Tm/2 (7), 4m (8,9), 9m/2 (10), 5m (11,12).

For a parallel multiplier, the sub-quadratic technique of Karatsuba is a pop-
ular choice (e.g. [30,8]). The area depends on: the decomposition of m, the
parameter used with the implementation tools (like register balancing) and the
constraint on the operating frequency. A size of (m/2)? is achievable. More in-

formation about constructing such multipliers can also be found in [4].

6.3 Extended Euclidean Division

A divider based on the binary extended Euclidean algorithm [35] was presented
in [40]. 2m — 1 cycles are required with an area of 2m slices [25]. A fully unrolled
implementation would need the quite huge amount of 4m? — m?/2 slices. The
m?/2 term comes from the fact that half the data converge towards zero.

6.4 Montgomery Almost Inverse

The Montgomery almost inverse algorithm [16] could be used to save m?/2
slices over a parallel* Euclidean-based circuit. Unfortunately, the cost of the
domain transformation almost — output (cf. [12]) counterbalances this benefit.
Moreover, an additional multiplication is needed to achieve the division.

6.5 Little Fermat’s Theorem Inverse

Inverse could also be computed with little Fermat’s theorem, stating that 37! =
(%" =2, with # # 0 € GF(2™). In order to minimize the number of multiplica-
tions, the chain technique of Itoh and Tsujii [14] can be employed. It needs m
squarings and |log,(m — 1)| + Hamming Weight(m — 1) — 1 multiplications.

4 In the context of this paper, an iterative circuit cannot be improved by this method.

6.6 Montgomery trick

As inverters are usually more expensive than multipliers, the Montgomery trick [5]
could be used. If the throughput of multiplier(s) is increased by a factor 3t — 3
/4t —3, the throughput of an inverter/divider can be reduced by a factor ¢t. More
memory is also required to store the different inputs and temporary data.

7 Elliptic Curve Processors

In order to best fit the capabilities of different FPGA families, several kinds of
architectures are considered. The aim is to achieve the best area-time complexity
on a given platform, resulting in a fair throughput/hardware cost comparison.
For instance, a big high-performance device is not reduced to the sum of small
devices: the high internal data bandwidth is exploited. For each of the four design
principles, the algorithms of the architecture are selected using the theoretical
area requirements provided in Section 6. The cost of control, RAMs, ROMs and
the interface also have to be taken into account.

To ease this analysis, the operating frequency is supposed to be the same
for all architectures. For small architectures, the bottleneck is the control logic
while the frequency is limited by place and route problems in big architectures.

To avoid data dependency problems within an EC-uP, several chains can also
be used in parallel. This is important to keep arithmetic operators busy (like the
critical divider). It is even required when pipelining is introduced within the
operators. The drawback is the increase in memory requirements.

7.1 Tiny

The first idea is to build a small footprint ALU, able to compute all the GF(2™)
arithmetic functions. As the behavior of serial by parallel multiplication and
Euclidean division only differs in the shift direction, hybrid circuits are achiev-
able [18,19]. The squaring can be translated into a multiplication and the addi-
tion made of small additional logic. Beside the ROM storing the points of the
u partitions, 3 memory locations are required to store x3, y3 and a temporary
variable. A small GF(p) unit for updating coordinates and the chain length is
also needed. Unfortunately, considering the area of the whole EC-uP, theoretical
results show this solution leads to an inefficient area-time product.

7.2 Small

Another approach is to allow several small parallel arithmetic units: a Euclidean
divider/inverter (Div/Inv), a digit-serial by parallel multiplier (Mult) and a
squarer (Sqr) for instance. A dedicated squarer is however not needed as Mult
performs faster than Div. Two chains are used to never let the divider idle. This
architecture requires therefore 2m + 1 cycles to compute 1 PA.

As the latency of the multiplier with D = 2 is 4 times smaller than the divider,
it could be worth it to use Montgomery trick. However, while the processing of
1 chain requires 1 Div and 2 Mults, 2 chains require 2 Divs and 4 Mults, or 1

Inv and 9 Mults using Montgomery trick® with t = 2 and D = 5. Four chains
are used with this approach and require 12 (< 2%) memory locations: 8 for the 4
points data and 2 for temporary variables. Roughly speaking, 3m /2 slices can be
theoretically saved (without taking into account the increase of the logic needed
by the control machine). As a result, Montgomery trick could be interesting.

7.3 Medium

If more area is available, it could be interesting to use sub-quadratic multi-
plication algorithms in order to improve the area-time product. As sketched
in Section 6, an inverter based on Itoh-Tsujii with parallel multipliers could
perform better than a Euclidean-based divider. For this architecture, one par-
allel Karatsuba multiplier (Mult) with a multi-squarer (Msqr) is used for the
inversion and the two multiplications of the PA algorithm (cf. Fig. 2). The in-
verter architecture and especially the principle of a Msqr unit is similar to [31].
The main difference lies in the purpose of the circuit: area-time efficiency is re-
quired here, not only speed. This is achieved by using several chains and pipelin-
ing the arithmetic units. The number of cycles needed to compute one PA is
2 + |logy(m — 1)| + HammingWeight(m — 1) — 1 (= 11 for m = 163).

The number of parallel chains used is equal to 16: the pipeline depth of both
the Mult (8) and the Msqr (8). To maximize the utilization of the Msqr, the
two multiplications can be computed during the inversion. The computational
requirements of Msqr can therefore be reduced as two multi-squaring can be
both computed in two iterations. This requires doubling the number of chains.

As an inversion instead of a division is computed anyway, Montgomery trick
could prove efficient in this case. For m = 163, the number of cycles becomes 8
for one PA (25 % improvement). Twice the number of chains is required. The
architecture is also more complicated as there are more different operations.
However, the computational requirements, and therefore the area, of Msqr can
be reduced if the seven multiplications are computed during the inversion.

7.4 Large

If a large amount of area is available, a fully pipelined design can be implemented
in order to reach the best area-time product. The circuit can indeed be data-
driven and fully specialized. Moreover, economy of scale can also be achieved.
The number of chains is simply equal to the number of register stages in the
pipeline, resulting in a PA every clock cycle. In particular, Itoh-Tsujii technique
is used in parallel with repeated squarers and parallel Karatsuba multipliers.
The reader is referred to [4] for further information about this strategy.

8 Chosen Elliptic Curve Processor

Appropriate algorithms were chosen thanks to the theoretical area requirements
of Section 6. The tiny processor was discarded on that basis. Now, based on pre-
liminary implementation results, area and throughput of each solution are evalu-
ated. Such numbers are reported in Table 3 together with prices of corresponding

5 Throughput of the Mult and the Inv must be equalized to maximize the efficiency.

FPGAs. “Preliminary results” means here that all the control structures were
not fully implemented. However, performances are based on working components
(Mult, Div, Sqr, RAMs, ...) and behavior correctness was checked on software.
Based on those estimates, the medium processor on a low-cost Spartan3E ap-
pears as the solution with the best throughput over hardware cost (device price).
According to the author, those results are sufficient to focus only here on the
medium architecture. Nevertheless, exact description and full implementation of
other processors could be the subject of another work.

8.1 The Medium Processor

The medium architecture is presented in Fig. 2 while the scheduling for m = 163
is available as Table 4. The main components are a Mult, a Msqr and an ALU.
3 RAMs and a ROM are also available to store coordinates and variables. Shift
registers (Delays) are used to render the latency independent from the computed
operation. A buffer is used to accumulate the partial result of the inversion in
Mult. The buffer of Msqr is employed when a multi squaring is performed in
multiple iterations. A comparator is also employed to check the DP criterion.

Based on synthesis results for m = 163 on a Spartan3E-1600, it is clearly
interesting to perform the 2 multiplications during the inversion: the area saving
is 50% (22% of the FPGA) for the Msqr and the area loss is 45% (5% of the
FPGA) for the memory. 32 chains are therefore used. The Montgomery trick was
currently not fully implemented. Using this strategy (64 chains), the memory
increase is 70% (8% of the FPGA) and surprisingly, no significant savings are
measured for the Msqr. As a result, if there is enough remaining area in the
FPGA, the Montgomery trick approach could be interesting.

The Coeff Update and Chain Length Check units serially process the data.
They are simply made of 4 bBRAMs (1 ROM and 2 RAMs for ¢, d and 1 for chain
lengths) and a few logic for 16-bit modular adders, counters and comparators.

9 Hardware Results and Cost Assessment

In this section, hardware implementation results and cost assessment for attack-
ing GF(2™) ECDLP were achieved for 3 security levels recommended in [32].

9.1 Hardware results

All the hardware modules were written in VHDL and placed & routed on either
XC3S1200E-4FT256 (21 US$) or XC3S1600E-5FG320 (33 US$) low-cost FP-
GAsS. Table 1 reports the different performances for a clock period constrained
to 10 ns. For m = 113, two cores are embedded in the FPGA. Notice that
bRAMs requirements depend on whether enough of such RAMs was available to
implement 32 or 64 x m memories. The throughput over FPGA cost is used to
allow fair comparison with other FPGA platforms. The power consumption was
also estimated using the Xilinz Spartan-8E Web V8.1 power tool. The electricity
cost for one year, assuming a price of 0.1 US$ per kWh, is also reported.

® FPGA costs are 2007/2008 Xilinx prices for 1000 devices.

Table 1. Medium EC-pP, Place and Route results from Xilinx ISE 9.1.

m | FPGA Area Area |Freq. |Throughput|Thr./cost|Cons.|Elec. price
[kSlices] |[bRAMs]|[Mhz]| [PA/s] [PA/s$] | [W] |[$/1 year]
113|S3E1600-513.9 (94%)(18 (50%)| 100 |2 x 10 10° | 6 10° | 4.2 3.7
131[S3E1200-4| 7.9 (91%) [21(75%) | 100 | 10105 | 4.810° | 3.2 2.8
163|S3E1600-5(10.9 (74%)|25 (69%)| 100 9.1 10° 2.710° | 3.8 3.3

9.2 Cost Assessments

It was planned to compare hardware with homemade software results. Unfor-
tunately, our code based on the C++ NTL library [28] has poor performances
compared to Certicom challenge results. Chris Monico’s challenge results for
GF(21%9) will therefore be used for further comparisons.

For the hardware cost assessment on FPGA, the COPACOBANA engine [17]
was chosen. It embeds 120 low-cost Spartan3-1000 FPGAs. The Spartan3E-
1600 FPGA selected for this work has twice the area of a Spartan3-1000 FPGA.
Nevertheless, the price of both devices is the same (for 1000 parts) and their form
factor is similar. The price of one COPACOBANA engine is therefore assumed
to remain 10 kUS$. Concerning the power consumption, the xilinx web power
tool suggests that the power consumption is doubled with the S3E FPGAs. As a
result, doubling the power consumption of the original engine seems safe. Based
on power consumption needed to attack DES with COPACOBANA (600 Watts),
we will assume a power consumption of 1.2 kWatts for our application. Exact
power consumption is left for further work.

For the cost assessment reported in Table 2, achievable performances are
estimated through the expected running time (ERT). It is derived from per-
formances of the architecture and expected number of group operations (ENO)
before a collision occurs (cf. 4.2). For ENO, n is set as 2™ and 6 as 2~™/3. The
expenses for the power consumption were added for the total cost. For an attack
during 1 year, it represents a 10*" of the purchase cost of the device.

Those results show that GF(2!13) is far from secure. For that attack, the
number of required FPGA’s is sufficiently small to overcome an ASIC-based
solution. While the cost for the GF(213!) attack is still tractable, an ASIC-based
platform should be more cost-effective. For m = 163, a standard level security
parameter, it is currently impossible to mount an FPGA-based attack.

Based on those results and [21], a rough ASIC extrapolation for a 90 nm
CMOS techno using standard cells can be sketched”. The following parameters
are assumed: area factor is 20, speed factor is 3.5, consumption factor is 14,
die size of S3E-1600 is 2.5 x 2.5 mm and cost of one 300 mm wafer is 30
k$ (multiplied by two for overheads like packaging, cooling, ...). This rough
estimation leads to a cost of 2.2 10° $ neglecting NREs for m = 163, which is
still currently out of reach. Notice that half the price is for power consumption.

7 Assuming the circuits are built to attack a given ECDLP instance many times,
meaning that both the field size and the irreducible polynomial can be hardwired.

Another goal of this cost assessment is to compare hardware and software-
based solutions. To solve the GF(219%) challenge in 6 months, 2400 Athlon XP
3200+ were needed. By modifying the m = 113 result of Table 2, this problem
is expected to be solved by one COPACOBANA engine in 6 months. Assuming
a price of 150 $ for a computer and a consumption of 250 Watts, the purchase
price ratio is 35. This is a bit less than expected, provided those general purpose
CPUs have no dedicated GF(2™) ALU. From a power consumption prospect, the
ratio is as big as 500. Those results clearly justify the use of hardware.

Table 2. Cost assessments to solve different GF(2™) ECDLP using COPACOBANA

m | ENO Thr. ERT | ERT [s] |#Copa for|Cost [US$] of| Total cost
[#PA] |[#PA/s] [s] |on 1 Copa| 1-year |power supply|[US$] 1-year

113|128 10*®| 20 10° | 6.4 10° | 53.3 10° 2 2.1 10° 22.1 10°
131]65.4 10*®| 10 10° |6.54 10'?| 54.5 10° 1728 1.8 10° 19.1 10°
163]4.23 10%4] 9.1 10° |471 10*®| 4 10%° 125 108 131 10° 1.4 10'?

As a GF(2™) attack is supposed to perform better in hardware than a GF(p)
one, it is interesting to compare them. From [11], the throughput for GF(p)
and k = 160 (Table 1) is 93.6 kPA/s. Multiplying this result by 2 (to estimate
performances on a S3E-1600) and comparing with the m = 163 result of Table 1,
it appears that the throughput ratio is near 50. For fairness purpose, notice that
no parameters are hardwired in their architecture.

10 Conclusion

This work presented a thorough analysis of an FPGA-based solution to attack
elliptic curve cryptosystems over GF(2™). The provided results complete in many
aspects the few previous studies. In particular, the performance-cost optimum
for four different architectures was investigated on two different families of Xilinx
FPGAs. The selected architecture, based on a low-cost Spartan3E FPGA, was
described and implemented. Cost assessments were then performed on the basis
of a cluster of low-cost FPGAs.

Compared to the software used to solve the GF(2!%?) challenge, the hard-
ware exhibits an improvement factor of 35 for purchase costs and 500 for power
consumption. Considering current architectures to attack GF(p) and GF(2™)
instances, a throughput ratio of 50 was also measured. This follows the expec-
tations as GF(2™) arithmetic is particularly well suited for hardware platforms.

The lowest security level of the SECG standard, based on GF(2!3), was
found to be easily breakable. However, even by taking the rough ASIC extrap-
olation, a standard security level like GF(21%) stays out of reach of current
attacks. Breaking those systems would require either far too much time given a
moderate amount of money, or a prohibitive price to raise a solution in a rea-
sonable amount of time. Given today’s know-how and understanding of ECC, it
is expected that current standard security keys do not suffer from any threat for
the time being.

References

1.

2.

3.

»o

10.
11.

12.

13.

14.

16.

17.

18.

20.
21.

22.
23.

24.

25.

26.
27.

28.
29.

30.

31.

32.
33.

34.

35.

36.

G.B. Agnew et al., An Implementation of Elliptic Curve Cryptosystems over F,i155, I[EEE
Journal on Selected Areas in Communications, vol. 11(5), 804-813, 1993.

B. Ansari, M. Anwar Hasan, High Performance Architecture of Elliptic Curve Scalar Multipli-
cation, CACR Research Report 2006-01, 2006.

LF. Blake, G. Seroussi, N.P Smart, Elliptic Curves in Cryptography, London Mathematical
Society, Lecture Notes Series 265, Cambridge University Press, 1999.

P. Bulens, G. Meurice de Dormale, J.-J. Quisquater, Hardware for Collision Search on Elliptic
Curve over GF(2™), SHARCS, Ecrypt Workshop, 2006.

H. Cohen, A course in computational algebraic number theory, Graduate Text in Mathematics,
138, Springer-Verlag, New York, 1993.

Certicom, http://www.certicom.com.

D.E. Denning, Cryptography and Data Security, Addison Wesley, 1982.

J. von zur Gathen, J. Shokrollahi, Fast arithmetic for polynomials over F2 in hardware, IEEE
ITW 2006, pp. 107-111, 2006.

P. Gaudry, F. Hess, N. P. Smart, Constructive and Destructive Facets of Weil Descent on Elliptic
Curves, Journal of Cryptology, vol. 15, no. 1, pp. 19-46, 2002.

D. Giry, P. Bulens, http://www.keylength.com.

T. Giineysu, C. Paar, J. Pelzl, Attacking elliptic curve cryptosystems with special-purpose
hardware, FPGA’07, ACM/SIGDA, pp. 207-215, 2007.

A. A.-A. Gutub, New Hardware Algorithms and Designs for Montgomery Modular Inverse
Computation in Galois Fields GF(p) and GF(2™), Ph.D. Thesis, 2002.

D. Hankerson, A. Menezes, S. Vanstone, Guide to Elliptic Curve Cryptography, Springer Pro-
fessional computing, Springer, 2004.

T. Itoh, S. Tsujii, A Fast Algorithm for Computing Multiplicative Inverses in GF(2™) Using
Normal Bases, Information and Computation, vol. 78, pp. 171-177, 1988.

J.M. Pollard, Monte Carlo Methods for Index computation (mod p), Mathematics of compu-
tation, vol. 32, n143, pp. 918-924, July 1978.

B. S. Kaliski Jr., The Montgomery Inverse and its Applications, IEEE Transactions on Com-
puters, vol. 44(8), pp. 1064-1065, August 1995.

S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, M. Schimmler, Breaking Ciphers with COPACOBANA
- A Cost-Optimized Parallel Code Breaker, CHES 2006, LNCS 4249, pp. 101-118, 2006.

C.H. Kim, S. Kwon, J.J. Kim et al., A New Arithmetic Unit in GF(2™) for Reconfigurable
Hardware Implementation, FPL 2003, LNCS 2778, pp. 670-680, 2003.

M.G. Kim, S.J. Yu, Y.S. Lee, J.S. Song, A Fast Hybrid Arithmetic Unit for Elliptic Curve Cryp-
tosystem in Galois Fields with Prime and Composite Exponents, IEICE Electronics Express,
vol. 1(1), pp. 13-18, 2004.

N. Koblitz, Elliptic curve cryptosystems, Math. of computation, vol. 48, pp. 203-209, 1987.

I. Kuon, J. Rose, Measuring the Gap Between FPGAs and ASICs, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 62, no. 2, Feb 2007.

A. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer, 1993.

A. Menezes, T. Okamoto, S.A. Vanstone, Reducing Elliptic Curve Logarithms to Logarithms in
a Finite Field, ACM Symp. Theory Computing, pp. 80-89, 1991.

A. Menezes, E. Teske, A. Weng, Weak fields for ECC, CT-RSA 2004, LNCS 2964, pp. 366-386,
2004.

G. Meurice de Dormale, J.-J. Quisquater, Iterative Modular Division over GF(2™): Novel Al-
gorithm and Implementations on FPGA, ARC 2006, LNCS 3985, pp. 370-382, 2006.

V. Miller, Uses of elliptic curves in cryptography, CRYPTO’85, LNCS 218, pp. 417-426, 1986.
U.S. Department of Commerce/National Institute of Standards and Technology (NIST), Digital
Signature Standard (DSS), FIPS PUB 182-2changel, 2000.

NTL : A Library for doing Number Theory, http://www.shoup.net/.

J. Pelzl, Exact Cost Estimates for Attacks on ECC with Special-Purpose Hardware, Workshop
on Elliptic Curve Cryptography - ECC 2006.

F. Rodriguez-Henriquez, C.K. Kog, On Fully Parallel Karatsuba Multipliers for GF(2™), (394)
Computer Science and Technology - 2003, 2003.

F. Rodriguez-Henriquez et al., Parallel Itoh-Tsujii Multiplicative Inversion Algorithm for a
Special Class of Trinomials, http://eprint.iacr.org/2006/035.pdf, 2006.

Certicom Research, SEC 2: Recommended Elliptic Curve Domain Parameters, v1.0, 2000.

N. P. Smart, A note on the x-coordinate of points on an elliptic curve in characteristic two,
Technical Report CSTR-00-019, University of Bristol, December 2000.

L. Song, K. K. Parhi, Low energy digit-serial/parallel finite field multipliers, Journal of VLSI
Signal Processing, vol. 19(2), pp. 149166, 1998.

J. Stein, Computational problems associated with Racah algebra, Journal of Computational
Physics, vol. 1, pp. 397-405, 1967.

SWIG : Simplified Wrapper and Interface Generator, http://www.swig.org/.

E. Teske, On Random Walks for Pollard’s rho method, Mathematics of computation, vol. 70,
n. 234, pp. 809-825, 2000.

38.

39.

40.

A

B

P. C. van Oorschot and M. J. Wiener, Parallel Collision Search with Cryptanalytic Applications,
Journal of Cryptology, 12, pp. 1-28, 1999.

M. J. Wiener and R. Zuccherato, Faster Attacks on Elliptic Curve Cryptosystems, Selected
Areas of Cryptography — SAC’99, Springer, LNCS 1556, pp. 190-200, 1999.

C.H. Wu et al., High-Speed, Low-Complexity Systolic Designs of Novel Iterative Division Algo-
rithms in GF(2™), IEEE Transaction on Computers, vol. 53(3), pp. 375-380, 2004.

EC-uP Architectures

FIFO bus size: m bus size: w
Serialize = Point Chain
Deserialize FIFO Update Length
DP Check
FIFO > bus size: w
iali SP
Deseraize e | Caeft
FIFO Update ? FFoO
oF 4 cLC

Fig. 1. Elliptic curve processors (EC-uP).

FIFO
DP Found| &

Processors’ Comparison Based on Preliminary Results

Table 3 reports the preliminary results for the different design strategies on a low-
cost Spartan3E (XC3S1600E-4, 14 kSlices, 38%) and a high performance Virtex4
(XC4LX200-10, 89 kSlices, 2070$) FPGA. Those Xilinx’s prices stand for 1000
devices. For the different extension fields, those results suggest that the most
cost-effective choice is a medium architecture on low-cost FPGAs. The price of
a big Virtex4 is dominated by die and yield costs. As architectures do not really
benefit from V4 specific features, it seems inappropriate to solve ECDLP.

Table 3. Area and throughput estimations for each processor

H H small H medium H largeH
FPGA S3E1600[V4LX200[[S3E1600[V4LX200[[V4LX200
Area m =179 1.2 4.8 22.2
[kSlices] m =109 1.6 7.4 41.3

m =163 2.4 13.8 81.8
Frequency [Mhz] 100 250 100 250 250
Throughput /EC-uP Freq./(2m + 1) 9 10° 22.7 10°|| 250 10°
#EC-pP 5to11] 36 to 72|| 1to2] 6to17|] 1to3
Through./cost m = 79|[182 (11)| 55 (72)| 478 (2)| 187 (17)|| 362 (3)
[kPA /s$] m=109|| 96 (8)| 30 (54)|| 239 (1)| 120 (12)|| 242 (2)

m=163|| 40 (5)| 13 (36)|| 239 (1)| 66 (6) 120 (1)

——————— - i
Msar T Ty A o R2 = Ra_a] K3
I O~ | © I
i S 0 8 v3|g|a8s| 2| |i[]. Ram Rom
Delay| Delay||Delay E| E| E|l E| © Single port xm
| 2 2 |l 2 o|lojo|o ! 64 xm 7
_| [Squarers .
8| |(8cycles) : 8 : R*Z ROM
& 2227, i & Ab FIFO_SP
o | [Nl i@ oAb M
= = |
g 2278 . Add (xor) | 5
% T | % Multiplier K
7] w20 2% 5 (5 cycles latency) | RAM RAM
A20|A231 \ m/3 | Dual port Dual port %
T | I) 32xm 32xm <
JE S R A S ! | v v
S \ M A DP_check” | R1 R3

C The Medium Processor

Fig. 2. Medium processor, Point Update unit (squarers for m = 163)

The scheduling of the PA for m = 163 is presented in Table 4. The method is
similar for other extension degrees. Each PA; state represents 2 times 8 cycles.
As Msqr follows Mult, its computations are delayed by 8 cycles. Write operations
happen 8 cycles later as latency of arithmetic units is 8 cycles. Two passes are
necessary to compute PAs. One prime on a variable means that data of one set
of 16 chains are processed. No prime or two primes means the other set of 16
chains is treated. The role of those sets is exchanged at each pass. The a constant
is the curve parameter (cf. Section 3).

Table 4. Scheduling of point additions for m = 163, without initialization

S (Msqr) [M (Mult)|R1 (32xm RAM) |R2 (64xm RAM)|R3 (32xm RAM)| A,Ab (ALU)
PA; A x R1 Rlg (z1 + x2) R3o (;Lé/ Sqr(R1)
2Sqr(M) |[Mb «— M R2o — R3 ((z1 4 x2)?)
PA, Mb x S R1; (VInv') R31 (y5) Sqr(R1)
Sqr(M) |Mb «— M R1l; «— Ab R2; «— R3 (Inv’)
PA3 Mb x R1 R1g (d?l JrCEQ)
5Sqr(M) |[Mb «— M
PA4 Mb x S
10Sqr(M) |[Mb «— M
PA5 Mb x S
10Sqr(M) | Mb « M
PAg | Sb — S | A x RL R1; (Inv) R2: (4}) Add(R2,ROM)
10Sqr (M) Rl; « M (yy + v5)
PA; Mb x S R1; (\) R2g (z) Add(Sqr(R1),
40Sqr(M)|Mb «— M R30 « Ab |R1,R2,ROM,a)
PAg Mb x S
Sqr(M) |[Mb «— M
PAgy Mb x R1 Rlo (z1 + z2) R3p (’I‘g) Add(R3,ROM)
40Sqr(M)|Mb «— M Rlgy < Ab (x5 + x5)
PAo| Sb —S | A x RI Rl (V) R2o () R3o (a5) Add(R2,R3)
41Sqr(M) R1l; « M (z} + %)
PA1; Mb x S |R11 (X (z] + z)) R2:1 (y}) R30 (z%) Add(R1,R2,R3)
R1l; «— M R3; « Ab (y5)

