
TEC-Tree: A Low-Cost, Parallelizable Tree for Efficient

Defense against Memory Replay Attacks

Reouven Elbaz1, David Champagne
1
, Ruby B. Lee

1
, Lionel Torres2,

Gilles Sassatelli2, and Pierre Guillemin3

1 Department of Electrical Engineering, Princeton University,

Princeton, NJ, 08544, USA

{relbaz, dav, rblee}@princeton.edu

http://palms.ee.princeton.edu/

2 LIRMM UMR University of Montpellier II/ CNRS C5506,

34392 Montpellier, France

{torres, sassatelli}@lirmm.fr

http://www.lirmm.fr/

3 STMicroelectronics, Advanced System Technology,

13106 Rousset, France

pierre.guillemin@st.com

http://www.st.com/

Abstract. Replay attacks are often the most costly attacks to thwart when

dealing with off-chip memory integrity. With a trusted System-on-Chip, the

existing countermeasures against replay require a large amount of on-chip

memory to provide tamper-proof storage for metadata such as hash values or

nonces. Tree-based strategies can be deployed to reduce this unacceptable

overhead; for example, the well-known Merkle tree technique decreases this

overhead to a single hash value. However, it comes at the cost of performance-

killing characteristics for embedded systems – e.g. non-parallelizable hash

computations on tree updates. In this paper, we propose an alternative solution:

the Tamper-Evident Counter Tree (TEC-Tree). It allows for tamper-evident off-

chip storage of the nonces involved in a replay countermeasure; TEC-Tree

parallelizes the computations involved in both the authentication and tree

update processes. Moreover, because our tree relies on block encryption, it

provides data confidentiality at no extra cost. TEC-Tree is a deployable solution

for memory integrity, with low performance hit and hardware cost.

Keywords: Memory Integrity, Replay Attacks, Physical Attacks, Tamper

Evidence, Merkle Trees, Parallelizability, Confidentiality.

1 Introduction

As the range of services provided by embedded systems grows, the amount of

sensitive data they manipulate increases. As a result, there are currently significant

incentives for attackers wishing to benefit from attacks on these systems [1]. Board-

level attacks such as bus probing provide a point of entry to the system for

adversaries, as shown by the well-known Xbox cracking exploit [2]. Attacks on buses

allow retrieving bus data going to or from memory and thus raise the issue of data

confidentiality. Typically, encryption schemes are implemented to ensure data

confidentiality. However, the attack launched by Markus Kuhn [3] on a bus

encryption system demonstrates encryption alone is not enough when an adversary is

able to modify or manipulate data without detection. The issue of memory integrity is

thus a prime concern in protecting a computing platform against active attackers.

In this paper, we focus on protecting the integrity of data transferred by a System-

on-Chip (SoC) to or from a RAM (Random Access Memory) chip. Our objective is to

deploy an efficient mechanism providing a tamper-evident environment to software

executing on the SoC: data deletion, corruption or permutation within the system’s

memory space must be detected before the tampered data is sent to the Central

Processing Unit (CPU) pipeline.

When dealing with memory integrity, one of the most costly attacks to thwart is

replay – i.e. temporal permutation of a memory block at a given address. Existing

techniques allow for easy prevention of replay attacks but are very expensive in terms

of on-chip memory overhead: some techniques store on-chip a hash value computed

over each memory block written off-chip, while others store on-chip nonces used in

MAC (Message Authentication Code) computations or in a block-level AREA

(Added Redundancy Explicit Authentication [4]) scheme [5, 6]. The well-known

Merkle Tree technique [7, 8, 9] allows reducing the overhead of the countermeasure

storing hashes on-chip to a single hash value. However, it comes at the cost of

performance-killing characteristics for embedded systems – e.g. non-parallelizable

hash computation on tree updates. PAT (Parallelizable Authentication Tree) [10, 11]

is another tree technique – based on MACs – reducing the on-chip memory overhead,

but allowing for parallel tree updates. However, PAT is patented and has not been

implemented or evaluated in our application domain.

In this paper, we propose a fully-parallelizable tree on both read and write

operations: the TEC-Tree (Tamper-Evident Counter Tree). Our tree has advantages

over both PAT and Merkle Tree and also introduces new concepts for integrity trees.

First, the computations involved in this tree scheme are based on block encryption,

thus providing data confidentiality for free – i.e. at no additional cost (performance,

hardware, memory overheads) than that already incurred by data integrity

verification. Second, our TEC-Tree solution can detect splicing – spatial permutation

of memory blocks – and spoofing – arbitrary corruption of memory blocks –

immediately after the first level verification of the tree authentication process is

completed. This allows for splicing- and spoofing-free speculative execution. Finally,

to reduce the frequency of costly re-encryptions due to the overflow of nonces used to

provide freshness, we propose using a per-block local counter rather than a global

counter of the same size.

The rest of the paper is organized as follows. Section 2 presents our threat model.

Section 3 describes existing replay attack countermeasures and the related tree

techniques proposed in the literature. In section 4, we detail the TEC-Tree scheme,

address SoC implementation issues and provide a security analysis. Section 5 presents

an implementation example with estimates of area cost and memory overhead.

Finally, Section 6 summarizes the new properties provided by TEC-Tree and gives an

overview of our current and future work.

2 Threat Model

We assume the protected device is exposed to a hostile environment in which physical

but non-invasive attacks are feasible. The main hypothesis of our threat model is that

the System-on-Chip (SoC) is resistant to all physical attacks and is thus trusted. Side-

channel and software attacks are not taken into account in this paper; we assume the

operating system (OS) or at least the OS kernel is trusted. As a consequence, we

consider that on-chip registers and memories cannot be observed or tampered with by

an adversary.

In this work, we focus mainly on board-level attacks involving processor-memory

(PM) bus probing or memory tampering. Such attacks allow observation of the

memory contents and injection of arbitrary data on the PM bus or directly into the

memory chip. We are particularly concerned with “Man-in-the-middle” attacks in

which an attacker i) first monitors the PM communications to intercept data on the

bus or directly reads data from memory (passive attack), ii) and then inserts chosen

data on the processor-memory bus (active attack) and thus challenges data integrity.

The objective of the attacker could be to take control of the system by injecting

malicious code or to constrain the search space in a key or message recovery attack.

There are three classes of active attacks – also feasible when data are encrypted –

defined with respect to the attacker’s possible ways to choose the inserted data:

1) Spoofing attacks: the adversary exchanges an existing memory block with an

arbitrary fake one.

2) Splicing or relocation attacks: the attacker swaps a memory block at address A

with a block at address B, where A≠B. Such an attack may be viewed as a spatial

permutation of memory blocks.

3) Replay attacks: a memory block located at a given address is recorded and

inserted at the same address at a later point in time; by doing so, the current block’s

value is replaced by an older one. Such an attack may be viewed as a temporal

permutation of a memory block, for a specific memory location.

3 State of the Art

3.1 Memory Integrity Checking Techniques

In this paper, providing memory integrity for the SoC means ensuring the tamper-

evidence of the data it stores in external memory, i.e. making sure we can detect when

a datum read from memory was spliced, spoofed or replayed. We consider there are

three distinct strategies for implementing a memory integrity protection mechanism

on a computing platform: i) regular hashes, ii) Message Authentication Codes

(MACs) and iii) AREA at the block level [5, 6].

Regular Hashes: A naïve solution for detecting all types of active attacks is to store

on-chip a hash value for each memory block stored off-chip. This way, hashes are

inaccessible to adversaries and any corruption in the loaded data is detected. Indeed,

detection can be achieved by comparing the hash computed from the loaded block

with the on-chip hash.

MACs: In the second approach, the SoC computes – for every data block in the

protected memory space – a MAC instead of a hash. The key used by the SoC for

MAC computation is securely stored on-chip such that only the SoC itself is able to

compute valid MACs. As a result, the MACs can be stored in untrusted memory

because the attacker is unable to compute a valid MAC over a corrupted data block.

In addition to the data contained by the block, the pre-image of the MAC function

contains the address of that block and a nonce. This allows protection against splicing

and replay attacks. The address precludes an attacker from passing a data block at

address A, along with the associated MAC, as a valid (data block, MAC) pair for

address B, where A ≠ B. The nonce prevents the replay of a (data block, MAC) pair

by distinguishing two pairs related to the same address, but written in memory at

different points in time. To allow for re-computation of MACs during read operations

and to protect the integrity of the nonces, the nonces can be stored on-chip.

Block-Level AREA: This principle – introduced with PE-ICE (Parallelized

Encryption and Integrity Checking Engine) in [5] – leverages the diffusion property

of block encryption to add the integrity checking capability to this type of encryption

algorithm. This is achieved by applying the AREA (Added Redundancy Explicit

Authentication [4]) technique at the block level: redundant data (a nonce) is added to

each plaintext block before encryption and checked in the decrypted ciphertext block.

Upon a memory write, the SoC appends an n-bit nonce to the data to be written to

memory, encrypts the resulting plaintext block and then writes the ciphertext to

memory. The encryption is performed using a key securely stored on the SoC. The

SoC decrypts the block it fetches from memory on a read transaction and verifies that

the last n bits of the resulting plaintext block are equal to the nonce that was inserted

by the SoC upon encryption. To recover the nonce on a read operation and to protect

its integrity, [5, 6] propose storing the nonce on-chip.

3.2 Tree Techniques

The techniques presented above prevent the active attacks described in our threat

model. However, they incur an unacceptable on-chip memory overhead by requiring

storage of references – i.e. hashes or nonces – on-chip to thwart replay attacks. To

address this issue, several research efforts suggest applying the memory integrity

protection methods recursively on the references so they can be stored off-chip. By

doing so, a tree structure is formed and only the root of the tree needs to be stored on

the SoC, the trusted area.

Merkle Hash Trees: In [8, 9], cryptographic hashes are computed over each data

block composing the memory space being protected. We call these hashes Level 1

hashes. One Level 2 hash is computed for every group of A Level 1 hashes. At this

stage, Level 1 hashes can be sent off-chip since Level 2 hashes – stored on-chip –

protect their integrity. This scheme is applied recursively until an A-ary hash tree with

L levels is obtained, at which point a single Level L hash – called the root hash – is

kept on-chip. This root hash reflects the current valid state of the external memory.

The number of hash verifications on a read operation is L: each level of hashes must

be verified to validate the integrity of the data read from memory. On read operations,

the hash computations are parallelizable during the integrity checking process. On

write operations however, updates to the tree are a sequential – and thus high-latency

– process: the computation of a new hash value in the tree must be completed before

the update of the related hash in the upper level can start.

Parallelizable Authentication Tree (PAT): To reduce the on-chip memory overhead

of a replay defense mechanism based on MACs, [10] computes a tree of (MAC,

nonce) pairs and only keeps the root of that tree on-chip. To allow for parallelizable

updates to the tree, [10] does not directly compute higher level MACs using lower

level MACs as a pre-image. Instead, the pre-image of each MAC in the tree consists

of the nonce associated to this MAC and the nonce in the upper level. With this

approach, the root of the MAC tree is a simple nonce stored on-chip.

Our Approach: TEC-Tree, the tree scheme proposed in this paper, solves the issue of

on-chip nonce storage that was problematic in [5, 6]. Similarly to [10], our tree is

parallelizable on both read and write operations: all computation required for

checking or updating a tree branch involves data which are generated independently

from a tree level to another. However, our tree has advantages over [10] and [7]. Our

parallelizable tree can detect splicing and spoofing attacks as soon as the first check is

completed. Even if tree computations are parallelizable, memory bus transactions

remain a sequential process allowing only a certain number of tree levels to be

checked or updated concurrently. Quick detection of spoofing and splicing is

important in reducing the risks involved with speculative execution [8, 12] – a

strategy in which data and instructions are sent to the processor pipeline before tree

authentication is completed. Moreover, since we rely on block encryption to construct

our tree, TEC-Tree provides data confidentiality at no extra cost: without any

additional impact on latencies, using the hardware already in place for integrity

protection and by sharing the integrity metadata (off-chip memory overhead).

4 TEC-Tree – Tamper-Evident Counter Tree

TEC-Tree is a practical and low-cost solution to efficiently prevent active attacks

challenging memory integrity – including replay attacks – for SoC embedded

systems. We first describe how TEC-Tree protects the integrity of individual data

blocks from the memory space using nonces. Then we explain how the protection

method is applied recursively to those nonces in order to form a hardware-rooted tree.

4.1 Protecting Data

As in [5, 6], the protection of data integrity in our TEC-Tree scheme relies on the

diffusion property identified by Shannon [13] for block ciphers to be considered as

secure. Theoretically, a block cipher must be indistinguishable – from the point of

view of an adversary without the key – from a random permutation with equiprobable

outputs, meaning that the redundancy in the statistics of the plaintext has to be

dissipated in the statistics of the ciphertext. Once a block encryption is performed, the

resulting position and value of each bit in a ciphertext block C are a function of all

bits of the corresponding plaintext block P and of the key. In this paper, the block

cipher used for TEC-Tree processes b-bit blocks under a secret key K. EK and DK

refer respectively to the encryption and decryption functions under key K.

In TEC-Tree, P is in fact composed of an lp-bit data block D – hereafter called a

payload – and an n-bit nonce N (P = D||N), also called tag; after encryption with a

block cipher, it is impossible to identify the ciphered versions of D and N within the

ciphertext block C = EK(P). Moreover, if a C’ is derived by flipping a single bit in C,

there is a large probability that the last n bits of the plaintext P’ = DK(C’) will be

different from N. This probability depends on the nonce size n. The number of

possible plaintext blocks with the same N resulting from the decryption of a tampered

C is equal to 2
b-n

. Hence the probability that N remains the same after decryption is

1/2
n
 (= 2

b-n
 / 2

b
). As we explain in the security analysis later in this paper, with a

reasonable nonce size, this probability becomes sufficiently low to resist spoofing

attacks. In the rest of this paper, we use the term data chunk (DC) to refer to an

atomic block loaded from memory for authentication; the size of a DC is b bits, the

size of blocks processed by the underlying block cipher. We call this authentication

technique block-level AREA.

Reading and Writing DCs. Similarly to [5, 6], the previous property of ciphers is

used as follows in TEC-Tree to add the integrity checking capability to the block

encryption of data chunks:

On write operations, the data D provided by the processor – or coming from the

last level of on-chip cache on a cache line eviction – is concatenated with the n-bit

nonce N to produce a plaintext block P to be processed by a block cipher in ECB

(Electronic Code Book) mode. The encryption provides confidentiality since it is

performed by the SoC using a key it securely stores in an on-chip register. We ensure

that N is a “Number used ONCE” by making it equal to the address of the block

concatenated with an r-bit counter. Initially zero, a counter is incremented by one

every time a block is written by the SoC. Using a counter to generate nonces requires

changing the encryption key whenever the counter reaches its limit; replacing the

encryption key requires a re-encryption of the entire memory space. Since such

massive re-encryption is expensive, and since we want to keep counter width

reasonably small, we cannot use a single r-bit global counter to generate all nonces –

i.e. a counter which is incremented on every write to memory. Instead, we use an r-bit

counter per chunk to ensure the occurrence of counter overflows – and thus the re-

encryption of the memory space – remains a rare event. We characterize such a

counter as “local” in opposition to “global” because it is dedicated to a specific chunk

and because it is incremented only when this chunk is updated. By doing so, we

extend the lifetime of the encryption key with respect to the implementation of an r-

bit global counter1. Note that even when local counters have the same value, the

address contained in tags ensures that those tags remain nonces. After the generation

of N, the SoC encrypts this unique (D, N) pair and writes the resulting b-bit ciphertext

block to memory. A plaintext data chunk is depicted in Figure 1. Note that the entire

data chunk: data, address and counter, is encrypted as a single block before being

stored in external memory.

On read operations, a b-bit ciphered data chunk C is loaded from memory and

decrypted by the SoC. The last n bits of the resulting plaintext block – which we

designate by N’ – are compared to N, the nonce initially used by TEC-Tree to

compute C and which was regenerated on-chip. If N’ does not match N, it means that

at least one bit of C has been modified during its transmission on the bus or while

stored in off-chip memory. When this happens, our integrity verification mechanism

raises a “memory integrity” exception to alert the processor of the memory

corruption.

Fig. 1. Layout of a Data Chunk (DC) before encryption

The challenge lies in regenerating the correct nonces on read operations in order to

perform the integrity checks. The approach proposed by [5, 6] is to store on-chip – in

a dedicated memory – the counter part of the nonce values generated on write

operations. These counter values are tamper-proof since they are stored on the SoC

and thus within the trust boundary. However, this strategy incurs an unacceptable

increase in on-chip memory capacity: [6] shows that protecting 1GB of RAM with a

32-bit counter requires 256MB of on-chip memory. Our approach, which we discuss

next, reduces this overhead by securely storing counter values off-chip.

4.2 Storing Counter Values Off-Chip

To allow for off-chip storage of counter values while ensuring their tamper-evidence,

we apply the block-level AREA scheme, discussed above, to those values, without

requiring additional hardware. We concatenate counter values used to authenticate

contiguous data blocks into a payload PL to which we append a nonce N. We then

encrypt the plaintext block P = PL||N to obtain the ciphertext C, which we send to

external memory; we store on-chip the counter part of the nonce (CTR in Figure 2). In

1 Note that this does not apply if the global counter is n-bit i.e. the size of the nonce. However,

removing the address from the nonce precludes the splicing-free and spoofing-free

speculative execution property which is highlighted in the security analysis.

the rest of this paper, we call such a plaintext block P a Counter Chunk (CC) 2. Figure

2 shows a counter chunk CC. Note that the entire CC – payload (concatenated DC

counters), and nonce (address and counter) – is encrypted as a single block before

being stored in external memory.

Fig. 2. Layout of a Counter Chunk (CC) before encryption

The number A of counter values fitting in a CC payload depends on the payload

size (lp-bit) and on the counter width r. The formula for A is as follows:









=

r

l
A

p
 Where  X denotes X rounding down.

(1)

Off-chip storage of the counters allows for a reduction of the on-chip memory

overhead by a factor A. Since this reduction is insufficient in most cases, we

recursively apply the block-level AREA scheme to the on-chip counter values until

only one counter value – called the trusted counter value – remains on-chip, thus

obtaining an A-ary tree of tamper-evident counter values. The main objective of this

tree we call TEC-Tree is to reduce the on-chip memory overhead to a single counter

value while providing full memory integrity and faster detection of splicing and

spoofing attacks.

4.3 TEC-Tree

A TEC-Tree is an A-ary tree3 with data chunks (DC) as leaves and counter chunks

(CC) as intermediate nodes. Each element of the TEC-Tree is b-bit long. The data to

protect are contained in the DCs, which are the leaves of the tree. Each intermediate

node or CC in the tree is used to authenticate, using the block-level AREA, the A

leaves or A nodes below itself – its A children. The root chunk of the tree is

authenticated using the trusted counter value kept on-chip. Each DC is composed of

an lp-bit data payload and an n-bit nonce; each CC is composed of A r-bit counter

values and an n-bit nonce. Figure 3 depicts a 3-level, 4-ary TEC-Tree. Arrows in the

figure go from a node to the counter part of the nonce which protects that node.

2 It is important to note that there is no need to store the whole nonce of the contiguous DCs in

the counter chunks (CC) since the address part of the nonce is generated by the processor

whenever the chunk is accessed.
3 In this section as in the rest of this paper, we consider that all the trees we work with are

balanced – i.e. each node in the tree has the same number of children.

Fig. 3. A 3-level, 4-ary TEC-Tree

TEC-Tree at Run-Time. The function ReadAndCheck and WriteAndUpdate

of Figure 4 describe how TEC-Tree works at run-time when data is read or written

from memory, respectively.

On read operations, the data chunk at address addr0 containing the data to be read

is loaded on-chip and decrypted. The parent chunk is also fetched and decrypted to

retrieve the counter value required – in addition to addr0 – to reconstitute the DC’s

nonce. Authentication of the DC is performed by comparing the reconstituted nonce

to the last n bits of the plaintext resulting from the decryption of the DC. If the two

values match, the data is forwarded to the processor for speculative execution while

the rest of the chunks on the branch from the DC to the root chunk are authenticated.

To do so, the procedure described previously is recursively applied to parent nodes

until the root of the tree is authenticated. If a nonce mismatch is detected at any point

during the verification of the branch, an integrity checking exception is raised to warn

the processor. Once the chunks on the branch from the DC to the root chunk are

loaded, all decryption operations can be performed in parallel since the chunks are

deciphered using a block cipher in ECB mode. The number of nonce verifications V

required to complete the authentication process – and thus the number of chunks to

load and decrypt during that process – is V = L+1, where L is the number of levels of

the TEC-Tree. L is easily computed from Nbr – the number of data chunks – and from

the tree’s arity A: L = logA(Nbr). The unit increment to L is due to the check of the

TEC-Tree’s root chunk using the on-chip trusted counter value.

Fig. 4. Pseudo-Code for TEC-Tree Checks and Updates

–– addr is the CPU address of the data to read or write

–– addri is the physical address of a chunk at level i

–– L is the number of levels in the TEC-Tree.

We define the following functions:

–– ParentFromChild(addri) is a function which – given as an input the address addri of

a chunk X at level i - returns the address addri+1 of X’s parent chunk. If addri is the address

of the root, the function returns -1.

–– DC_ADDR(addr) is a function computing a DC address from addr.

–– REF_NONCE(addr, P) returns addr || CTR, where CTR is retrieved from P. When P = -1,

the function uses the on-chip counter as CTR.

–– ADDR(P) returns the address field of plaintext chunk P’s nonce

–– COUNTER(P) returns the counter field of plaintext chunk P’s nonce

–– UpdateCCPayload(addr, P) returns P updated with X’s counter incremented, where X is

P’s child chunk at address addr.

ReadAndCheck(addr)

 addr0 = DC_ADDR(addr)

FOR (i = 0, i = L, i++)

 IF i = 0 –– first level of the tree � leaves

 1. Load C0, the DC at addr0 from memory

 2. Load C1, the parent CC at addr 1 := ParentFromChild(addr0)

 3. Compute P0 := DK(C0) and P1 := DK(C1)

 4. IF addr0 ≠ ADDR(P0) THEN ERROR –– first check against splicing and spoofing

 ELSE send P0 to CPU –– speculative execution

 5. IF NONCE(P0) ≠ REF_NONCE(addr0, P1) THEN ERROR

 ELSE IF i ≠ L –– authentication of intermediate RC in the tree

 1. Load Ci+1, the parent CC at addri+1 := ParentFromChild(addri)

 2. Compute Pi+1 := DK(Ci+1)

 3. IF addri ≠ ADDR(Pi) THEN ERROR

 4. IF NONCE(Pi) ≠ REF_NONCE(addri, Pi+1) THEN ERROR

 ELSE –– i = L: the root of the tree is reached

 1. IF addri ≠ ADDR(Pi) THEN ERROR

 2. IF (NONCE(Pi) ≠ REF_NONCE(addri, -1)) THEN ERROR

WriteAndUpdate(addr, new_data)

ReadAndCheck(addr) –– Load, decrypt and authenticate all chunks

For (i = 0, i = L, i++)

 IF i = 0 –– update data in DC

 1. Compute U0 := EK(new_data || addr0 || COUNTER(P0) + 1)

 2. Store U0 to memory at addr0

 ELSE IF i ≠ L –– update counters in CCs

 1. Compute Ui := EK(UpdateCCPayload(addri-1, Pi) || addri || COUNTER(Pi) + 1)

 2. Store Ui to memory at addri

 ELSE –– i = L: the root of the tree is reached

 1. On-Chip Counter := COUNTER(Pi) + 1

On write operations, the Data Chunk (DC) to be written is loaded, decrypted and

authenticated using the parent Counter Chunk (CC), loaded immediately after the DC.

Then, the DC’s payload is updated, concatenated with a new nonce – the chunk’s

address concatenated to the incremented counter value CTR –, encrypted and written

off-chip. The payload of the parent CC must then be updated with the new value of

CTR. This process is done for all parents to update the trusted on-chip value. Note

that all loaded chunks must be authenticated before being updated. This is done to

preclude adversaries from injecting a fake chunk before the write, with the aim of

corrupting parts of the chunk which are not affected by the write. As on read

operations, the number of chunks to update is equal to V. Assuming that all chunks

required to update the tree are on-chip, the computations involved in the update

process are parallelizable: ECB decryptions can be done in parallel and so can the re-

encryptions.

Security Analysis. TEC-Tree implements ECB mode to encrypt chunks. The weak

point of this encryption mode is that a given plaintext block always yields the same

ciphertext block upon encryption with a given key. This could leak some information

to an adversary regarding the chunk’s contents. In our scheme however, each

encrypted chunk contains a nonce, so the same ciphertext block never occurs twice.

Moreover, our threat model considers an adversary can only access off-chip data.

Thus, for spoofing attacks the adversary can only modify ciphertext blocks. As

mentioned in Section 4.1, attacks consisting in the insertion of random ciphertext or

the tampering with certain ciphertext bits succeed with probability 1/2
n
, where n is the

bit width of the nonce. An adversary able to predict – without knowledge of the key –

the effect of ciphertext bit manipulations on chosen bits in the plaintext (e.g. nonce

bits) implies the underlying block cipher is broken.

Splicing attacks are detected as soon as a DC decryption is done by checking the

address bits included in the nonce: when a chunk is spliced, the address the SoC uses

to fetch the chunk does not match the bits extracted from the address field in the

decrypted spliced chunk. Similarly to spoofing attacks, an adversary able to predict –

without knowledge of the key – the effect of ciphertext bit manipulations on the

address field of the plaintext implies the underlying block cipher is broken.

Checking address bits upon decryption of a DC thus allows for detection of

splicing attacks before the DC’s data payload is forwarded to the CPU pipeline.

Spoofing attacks are also detected just after a DC decryption by applying the block-

level AREA scheme with the address bits as redundancy. Since our scheme does not

forward spliced or spoofed data to the pipeline, we say it provides splicing- and

spoofing-free speculative execution. This way when the pipeline executes

speculatively over data for which the tree authentication process has not terminated,

we reduce the risk of such a speculative execution to the occurrence of a replay

attack. This is not true for a hash tree since an adversary is able to compute

intermediate nodes for spliced and spoofed data chunks.

For replay attacks, the intrinsic property of the nonce – i.e. uniqueness during the

lifetime of an encryption key – ensures that the first non-replayed chunk in the

authentication branch in the tree allows detection of the attack; if all chunks of this

branch are replayed; the attack is detected by the last verification, which involves the

trusted counter value. This value being stored on-chip it cannot be tampered with or

replayed.

Memory cost. The off-chip memory overhead of the TEC-Tree scheme corresponds

to the amount of memory required to store the counter chunks and the nonces for the

encryption of data chunks. The overhead incurred by the nonces in the DCs is defined

by the ratio n/lp, the bit widths of nonces and payloads respectively. The overhead

incurred by the construction of an A-ary tree over a set of leaves is 1/(A-1) [8]. In our

case, this overhead is applied to DC leaves. Therefore, the memory overhead OTree of

TEC-Tree is of:

OTree =
)1(

1
1

1

−

+
=+














+

− Al

nAl

l

n

l

n

A p

p

pp

 (2)

Address of the parent chunk. For an efficient implementation of TEC-Tree, the

address calculation for data chunks and counter chunk parents along the

authentication branch must be straightforward. Because we protect the physical

address space, the address computation may not be handled by the CPU core itself.

The addressing shift due to the nonce bits contained in DCs and the CC parent

addresses are computed on-the-fly by TEC-Tree hardware logic. For the sake of

clarity, this paper considers that the entire physical memory space is protected by our

scheme and that the memory stores the CCs starting at address 0, followed by the DCs

at address AS. We assume the operating system ensures these addresses from 0 to AS

are not accessed by software.

To address data and counter chunks, we adapt the method presented in [8]: all

elements of a balanced tree are numbered consecutively starting from 0 at the root up

to the leaves, as depicted in Figure 5 for a 4-ary tree. The position (i.e. number) of a

parent node can easily be found by subtracting one from the position of one of its

children, dividing the result by the arity and then rounding down.

Fig. 5. Numbering of payloads

We now introduce the payload tree concept. A payload tree is formed by stripping

the data and counter chunks of a TEC-Tree from their nonces, while keeping the same

relationships between the nodes. The white parts of the TEC-Tree nodes in Figure 3 –

along with the existing arrows – form a payload tree.

Let ACPU be the address provided by the CPU; the position P0 of a payload leaf in

the payload tree is:

pb

CPUS

l

AA
P

)(
0

+
= where lpb is lp expressed in bytes. (3)

Applying the addressing scheme from [8] to the payload tree, the position of a

parent payload Pi in the i
th

 level of the payload tree is recursively computed from the

position of its child Pi-1 or from the position P0 of the payload leaf to authenticate:








 −
= −

A

P
P i

i

11 or





 −
=

ii
A

iP
P 0 (4)

When Pi becomes negative, this means the TEC-Tree root has been reached and

the authentication must be done using the trusted counter value.

From a position computed with the equation above, the physical address ADDDC of

a data chunk corresponds to the location of the P0
th

 block of lpb + nb bytes (chunk

size) in memory, where nb is the nonce width in bytes. Similarly, the physical address

ADDCC(i) of a counter chunk corresponds to the location of the Pi
th

 block of lpb + nb

bytes in memory.

()
bpbiiCC nlPADD +×=)(

 and ()
bpbDC nlPADD +×= 0

 (5)

Note that lpb, nb and A must be powers of 2 to allow a straightforward hardware

computation of addresses.

5 Implementation Example

The proposed implementation of TEC-Tree uses the Rijndael algorithm [14]

processing 192-bit blocks. A chunk before encryption is composed of a 128-bit

payload (lp = 128) and a 64-bit nonce (n = 64). We concatenate a 32-bit address to a

32-bit counter (r = 32) to produce the nonce. The result is a 4-ary TEC-Tree.

With a 64-bit nonce, the probability for an adversary to wage a successful

spoofing attack is only 1/2
64

. The address bits in the tag ensure that the whole

physical address space is protected against splicing when considering a 32-bit address

space. Moreover, the use of a nonce in this TEC-Tree scheme prevents replay attacks

while requiring only 32 bits of secure on-chip storage.

[6] shows that block-level AREA with the maximum throughput implemented

with the Rijndael algorithm (192-bit blocks) consumes 80K gates on a platform with a

2:1 CPU to memory bus frequency ratio. Since the hardware required to implement

the TEC-Tree scheme is the same as the one required to implement the standalone

block-level AREA technique, a TEC-Tree also consumes 80 Kgates.

The main overhead of TEC-Tree is the 2x increase in off-chip memory. PAT –

which also offers parallelizability on write operations – has the same 2x off-chip

memory overhead but does not provide data confidentiality.

6 Conclusion

This paper presents TEC-Tree, a novel technique providing memory integrity with

insignificant on-chip memory requirements – i.e. a single counter value. As opposed

to the schemes based on Merkle Trees, TEC-Tree is fully parallelizable on both read

and write operations. Moreover, a benefit of our approach over existing integrity tree

techniques is that the TEC-Tree provides data confidentiality at no additional

hardware, performance and memory costs – and without the information leakage that

typically results from ECB encryption. Our solution also provides a new security

property for implementations using speculative execution: the TEC-Tree ensures

detection of splicing and spoofing attacks before sending read data to the processor

pipeline. Considering these benefits, implementing TEC-Tree for memory integrity in

commercial embedded devices is a more viable solution than Merkle Trees or PAT.

Ongoing work includes the deployment of TEC-Tree to provide memory integrity

with a secure processor architected with our threat model in mind.

Acknowledgments. This work was supported in part by DARPA and NSF Cybertrust

0430487 and 0636808, DoD and NSF ITR.0326372.

References

1. P. Kocher, R. B. Lee, G. McGraw, A. Raghunathan, and S. Ravi, “Security as a New

Dimension in Embedded System Design”, Proceedings of the Design Automation

Conference (DAC), pp. 753-760, June 2004

2. A. Huang, “Keeping Secrets in Hardware the Microsoft Xbox Case Study”, MIT AI Memo,

2002.

3. M. G. Kuhn, “Cipher Instruction Search Attack on the Bus-Encryption Security

Microcontroller DS5002FP”, IEEE Trans. Comput., vol. 47, pp. 1153–1157, October 1998.

4. C. Fruhwirth, “New Methods in Hard Disk Encryption”, Institute for Computer Languages,

Theory and Logic Group, Vienna University of Technology, 2005.

5. R. Elbaz, L. Torres, G. Sassatelli, P. Guillemin, M. Bardouillet and A. Martinez, “A

Parallelized Way to Provide Data Encryption and Integrity Checking on a Processor-

Memory Bus”, Proceedings of the 43rd Design Automation Conference DAC, July 2006.

6. R. Elbaz – “Hardware Mechanisms for Secured Processor Memory Transactions in

Embedded Systems”, PhD Thesis, University of Montpellier, December 2006.

7. R. C. Merkle, “Protocols for Public Key Cryptography”, IEEE Symp. on Security and

Privacy, pages 122–134, 1980.

8. B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas, “Caches and Merkle Trees

for Efficient Memory Integrity Verification”, Proceedings of Ninth International

Symposium on High Performance Computer Architecture, February 2003.

9. C. Yan, B. Rogers, D. Englender, Y. Solihin, and M. Prvulovic, “Improving Cost,

Performance, and Security of Memory Encryption and Authentication”, Proc. of the

International Symposium on Computer Architecture, 2006.

10.W. E. Hall and C. S. Jutla. Parallelizable authentication trees. In Cryptology ePrint Archive,

December 2002.

11. W. E. Hall, C. S. Jutla, “Parallelizable Authentication Tree for Random Access Storage,”

U.S. Patent No. 2004/0107341 A1, June 2004.

12. G. E. Suh, “AEGIS: A Single-Chip Secure Processor”, PhD thesis, Massachusetts Institute

of Technology, September 2005.

13. C. Shannon, “Communication theory of secrecy systems”, Bell System Technical Journal,

28, 1949.

14. J. Daemen, V. Rijmen, “AES Proposal: Rijndael”, March 1999, available at:

http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael-ammended.pdf.

