
On the Power of Bitsli
e Implementation onIntel Core2 Pro
essorMitsuru Matsui and Junko NakajimaInformation Te
hnology R&D CenterMitsubishi Ele
tri
 Corporation5-1-1 Ofuna Kamakura Kanagawa, JapanfMatsui.Mitsuru�ab, Junko.Nakajima�d
g.MitsubishiEle
tri
.
o.jpAbstra
t. This paper dis
usses the state-of-the-art fast software imple-mentation of blo
k
iphers on Intel's new mi
ropro
essor Core2, parti
-ularly
on
entrating on \bitsli
e implementation". The bitsli
e parallelen
ryption te
hnique, initially proposed by Biham for speeding-up DES,has been su

essful on RISC pro
essors with many long registers, buton the other side bitsli
ed
iphers are not widely used in real appli
a-tions on PC platforms, be
ause in many
ases they were a
tually notvery fast on previous PC pro
essors. Moreover the bitsli
e mode requiresa non-standard data format and hen
e an additional format
onversionis needed for
ompatibility with an existing parallel mode of operation,whi
h was
onsidered to be expensive.This paper demonstrates that some bitsli
ed
iphers have a remarkableperforman
e gain on Intel's Core2 pro
essor due to its enhan
ed SIMDar
hite
ture. We show that KASUMI, a UMTS/GSM mobile standardblo
k
ipher,
an be four times faster when implemented using a bitsli
ete
hnique on this pro
essor. Also our bitsli
ed AES
ode runs at the speedof 9.2
y
les/byte, whi
h is the performan
e re
ord of AES ever madeon a PC pro
essor. Next we for the �rst time fo
us on how to optimizea
onversion algorithm between a bitsli
e format and a standard formaton a spe
i�
 pro
essor. As a result, the bitsli
ed AES
ode
an be fasterthan a highly optimized \standard AES"
ode on Core2, even taking anoverhead of the
onversion into
onsideration. This means that in theCTR mode, bitsli
ed AES is not only fast but also fully
ompatible withan existing implementation and moreover se
ure against
a
he timingatta
ks, sin
e a bitsli
ed
ipher does not use any lookup tables withkey/data-dependent address.Keywords: Fast Software En
ryption, Bitsli
e, AES, KASUMI, Core21 Introdu
tionThe purpose of this paper is to study software performan
e optimization te
h-niques for symmetri
 primitives on PC pro
essors, parti
ularly fo
using on \bit-sli
e implementation" on Intel's new Core2 mi
ropro
essor, and show that, byfully utilizing its enhan
ed SIMD instru
tions, many important
iphers su
h as

2KASUMI, AES and Camellia
an be mu
h faster than previously expe
ted withkeeping full
ompatibility with an existing parallel mode of operation.The bitsli
ing te
hnique was introdu
ed by Biham [5℄ in 1997 for speeding-up DES, whi
h was a
tually implemented on several pro
essors and used forbrute for
e key sear
h of DES in the distributed.net proje
t [7℄. In the bitsli
eimplementation one software logi
al instru
tion
orresponds to simultaneous ex-e
ution of n hardware logi
al gates, where n is a register size, as shown in �gure 1Hen
e bitsli
ing
an be eÆ
ient when the entire hardware
omplexity of a target
ipher is small and an underlying pro
essor has many long registers.Therefore the bitsli
e implementation is usually su

essful on RISC pro
es-sors su
h as Alpha, PA-RISC, Spar
, et
, but unfortunately was not
onsideredto be very attra
tive on Intel x86 pro
essors in many
ases due to the smallnumber of registers. While several papers already dis
ussed bitsli
e te
hniquesof blo
k
iphers [4℄[14℄[15℄[18℄[20℄, as far as we know, only one paper reporteda
tually measured performan
e of a real bitsli
e
ode of AES on a PC pro
essor[14℄. Moreover a
onversion of data format is required for
ompatibility with anexisting parallel mode of operation su
h as the CTR mode, but no papers haveinvestigated an overhead of this
onversion in a real platform.In [14℄ we studied an optimization of AES on 64-bit Athlon64 and Pentium4pro
essors, where his bitsli
ed AES ran still (or only) 50% slower than an opti-mized standard AES (i.e. a
ode written in a usual blo
k-by-blo
k style). Thebitsli
ed AES
ode shown in the paper was implemented on 64-bit general regis-ters, not on 128-bit XMM registers. This was be
ause on these pro
essors XMMinstru
tions were more than two times slower than the
orresponding x64 in-stru
tions and hen
e using 128-bit instru
tions did not have any performan
eadvantage. Also note that we did not in
lude an overhead of format
onversionin the
y
le
ounts.Our
urrent paper gives performan
e �gures of several highly optimized bit-sli
ed blo
k
iphers on Intel's new Core2 pro
essor, whi
h was laun
hed into PCmarket last summer and has sin
e been very widely used in desktop and mo-bile PCs. Core2 has several signi�
ant improvements over previous pro
essors,of whi
h the most advantageous one for us is that its all exe
ution ports supportfull 128-bit data. Three logi
al 128-bit XMM instru
tions
an now run in paral-lel (although some hidden stall fa
tors still remain as previous Intel pro
essors),whi
h is expe
ted to boost performan
e of a bitsli
ed
ipher.First we implement KASUMI, a UMTS/GSM standard
ipher, in both stan-dard and bitsli
e modes. We show an optimization te
hnique for a single blo
k en-
ryption, whi
h results in 36.3
y
les/byte. On the other side, our bitsli
ed
oderuns at the speed of 9.3
y
les/byte, four times faster, thanks to its hardware-oriented lookup tables and improved XMM instru
tions of the Core2 pro
essor.Sin
e the mode of operation adopted in the UMTS standard is not a parallelmode, this bitsli
e te
hnique
annot be dire
t applied to a handset, but
an beused in a radio network
ontroller, whi
h has to treat many independent datastreams.

3Our next target is AES in the bitsli
e mode, fully utilizing 128-bit XMM reg-isters and instru
tions. Our optimized
ode has a
hieved the en
ryption speedof 9.2
y
les/byte on Core2, whi
h is the highest speed of AES ever a
hievedon a PC pro
essor. Also we present a spe
i�

ode sequen
e for
onverting databetween a bitsli
e mode and a standard mode. This format
onversion is essen-tially an entire bitwise data reallo
ation, whi
h was believed to be expensive.Our
onversion algorithm fully utilizes SIMD instru
tions and su

essfully runsin less than 1
y
le/byte.As a result, we
on
lude that bitsli
ed AES that is fully
ompatible with theCTR mode
an run still faster than highly optimized standard AES on Core2.Moreover note that a bitsli
e
ipher is safe against implementation atta
ks su
has
a
he timing atta
ks [17℄. We believe that the bitsli
e implementation is infa
t very promising in real appli
ations in
urrent and future PC pro
essors.Table 1 shows our referen
e ma
hines and environments.
n -bit register 1

n -bit register 2

n -bit register 3

n -bit register b

n : Register size
= the number of encrypted blocks

b : Block size
= the number of registers

Cipher

Block

1

Cipher

Block

2

Cipher

Block

n

Fig. 1. The basi

on
ept of bitsli
ing.Pro
essor Name Intel Pentium 4 AMD Athlon 64 Intel Core2 Duo561 3500+ E6400Core Name Pres
ott Win
hester ConroeClo
k Frequen
y 3.6GHz 2.2GHz 2.13GHzCa
he (Code/Data) 12K�ops / 16KB 64KB / 64KB 32KB / 32KBMemory 1GB 1GB 1GBOperation System Windows XP 64-bit EditionCompiler Mi
rosoft Visual Studio 2005Table 1. Our referen
e ma
hines and environments.2 Core2 Ar
hite
tureThis se
tion brie
y des
ribes internal ar
hite
ture of Core2 and points out whata programmer of symmetri
 algorithms should noti
e in optimizing performan
e

4on this pro
essor. Intel has not published details of its pipeline hardware me
h-anism, and moreover undo
umented pipeline stalls are often observed. This se
-tion hen
e largely
omes from external resour
es [9℄[11℄ and our own experimen-tal results.Intel Core2 pro
essor
ame after Pentium 4, whi
h one-side fo
used on high
lo
k frequen
y and rea
hed its dead end due to an overheating problem. Thepipeline of Core2 has 14 stages, signi�
antly shorter than that of Pentium 4,aiming at higher supers
alarity rather than higher frequen
y as shown below.The pipeline of Core2 in
ludes the following stages:{ Instru
tion Fet
h and Prede
odingInstru
tions are fet
hed from memory and sent to the prede
oder, whi
hdete
ts where ea
h instru
tion begins. Unfortunately the prede
oder
anpro
ess only 16 bytes/
y
le, whi
h is very likely a performan
e bottlene
k.So using a short instru
tion and a short o�set is essential for optimization.For instan
e, three XMM \xor" instru
tions xorps, xorpd and pxor arelogi
ally equivalent, but the se
ond and third ones are one byte longer thanthe �rst one. The same applies to movaps, movapd and movdqa. Anotherexample is that using registers xmm8 to xmm15 leads to an additional pre�xbyte.{ Instru
tion De
odingIn this stage, an instru
tion is broken down into mi
ro-operations (�ops).Core2
an treat a read-modify instru
tion as one �op,
alled a fused �op,while previous pro
essors
ounted it as two �ops. The same applies to amemory write instru
tion. Sin
e an instru
tion
onsisting of two or more�ops
an be de
oded in only one of the four de
oders of Core2, this fusionme
hanism greatly improves de
oding eÆ
ien
y. We expe
t that the de
od-ing stage is not a performan
e bottlene
k in programming a blo
k
ipher.{ Register RenamingIn this stage a register to be written or modi�ed is renamed into a virtualregister, and then �ops are sent to the reordering bu�er. This stage
anhandle up to 4�ops/
y
le, whi
h is the overall performan
e limitation ofCore2. In other words, assembly programmer's obje
tive is to write a
odethat runs at the speed of (as
lose as possible to) 4�ops/
y
le. Also this stage
ontains another bottlene
k fa
tor
alled \register read stall"; i.e. only tworegisters
an be renamed per
y
le, ex
luding those that have been modi�edwithin the last few
y
les [9℄. We hen
e have to avoid registers that arefrequently read without being written. It is however diÆ
ult to avoid thisstall without
ausing another penalty in pra
ti
e.{ Exe
ution UnitsA fused �op is �nally broken down into unfused �ops, whi
h are issuedtoward exe
ution units. Core2 has a total of six ports; three for ALUs, onefor read, one for write address, and one for write data. A very good news for

5us is that all ports support the full 128-bit data and ea
h of the three ALUsindependently a

ept a 128-bit XMM logi
al instru
tion with throughputand laten
y 1. This is a remarkable improvement of Core2 over previouspro
essors su
h as Pentium 4 and Athlon 64, and is the most
ontributingfa
tor in high speed en
ryption in the bitsli
e mode.Table 2 shows a list of laten
y (left) and throughput (right) of instru
tionsfrequently used in a blo
k
ipher
ode on Pentium 4, Athlon 64 and Core2. Itis
learly seen that while Athlon 64 still outperforms Core2 for x64 instru
tions,Core2 has mu
h stronger 128-bit ALU units; in parti
ular three XMM logi
alinstru
tions
an run in parallel, whi
h is extremely bene�
ial for the bitsli
eimplementation. This list was
reated on the basis of our experiments, sin
esometimes what Intel's do
uments say does not agree with our experimental re-sults. For instan
e, our measurements show that the throughput of add reg,regnever rea
hes 3 on Pentium 4,
ontrary to Intel's
laim. An unknown stall fa
-tor must exist in its pipeline. Note that it is
ommon that unexpe
ted thingshappen on Intel pro
essors. For another simple example, on Core2, a repetitionof Code1A below runs in 2.0
y
les/iteration as expe
ted, but Code1B andCode1C run in 2.5 and 3.0
y
les/iteration, respe
tively. On Athlon64 all thethree
odes a
tually work in 2.0
y
les/iteration.Pro
essor Pentium4 Athlon64 Core2Operand Type 64-bit general registersmov reg,[mem℄ 4, 1 3, 2 3, 1mov reg,reg 1, 3 1, 3 1, 3add reg,reg 1, 2:88 1, 3 1, 3xor/and/or reg,reg 1, 7=4 1, 3 1, 3shr reg,imm 7, 1 1, 3 1, 2shl reg,imm 1, 7=4 1, 3 1, 2ror/rol reg,imm 7, 1=7 1, 3 1, 1Operand Type 128-bit XMM registersmovaps xmm,[mem℄ �, 1 �, 1 �, 1movaps xmm,xmm 7, 1 2, 1 1, 3paddb/w/d xmm,xmm 2, 1=2 2, 1 1, 2paddq xmm,xmm 5, 2=5 2, 1 1, 1xorps/andps/orps xmm,xmm 2, 1=2 2, 1 1, 3psllw/d/q xmm,imm 2, 2=5 2, 1 2, 1pslldq xmm,imm 4, 2=5 2, 1 2, 1punp
klbw/wd/dq xmm,xmm 2, 1=2 2, 1 4, 1=2punp
klqdq xmm,xmm 3, 1=2 1, 1 1, 1pmovmskb reg,xmm �, 1=2 �, 1 �, 1Table 2. A list of an instru
tion laten
y and throughput.

6 and rax,rax and rax,rdx and rax,raxand rbx,rbx and rbx,rsi and rbx,raxand r
x,r
x and r
x,rdi and r
x,raxand rdx,rdx and rdx,rax and rdx,raxand rsi,rsi and rsi,rbx and rsi,raxand rdi,rdi and rdi,r
x and rdi,raxCode1A: 2.0
y
les Code1B: 2.5
y
les Code1C: 3.0
y
lesOne of the blo
k
ipher algorithms that
an have the biggest bene�t of Core2is 128-bit blo
k
ipher Serpent[2℄. Serpent was designed in a 32-bit bitsli
e style;spe
i�
ally, it internally applies 32 lookup tables with 4-bit input/output inparallel in a single round, whi
h
an be
oded with 32-bit logi
al and shiftinstru
tions only. Table 3 demonstrates that our four-blo
k parallel en
ryption
ode using XMM instru
tions dramati
ally improves its performan
e on Core2as
ompared with a highly optimized single blo
k en
ryption program written byGladman[10℄. Serpent was known as a blo
k
ipher with a high se
urity marginand a low en
ryption speed but our result shows that Serpent will be
ategorizedinto fast
iphers on future pro
essors.Pro
essor Pentium 4 Athlon 64 Core2Style 4-Parallel Single [10℄ 4-Parallel Single [10℄ 4-Parallel Single [10℄Cy
les/blo
k 681 689 466 569 243 749Cy
les/byte 42:6 43:1 29:1 35:6 15:2 46:8Instrs/
y
le 0:71 1:98 1:03 2:40 1:98 1:83Table 3. Performan
e of Serpent in single-blo
k and four-blo
k parallel modes.3 KASUMIKASUMI [1℄ is a 64-bit blo
k
ipher with 128-bit key that forms the heart ofUMTS
on�dentiality algorithm f8 and integrity algorithm f9. KASUMI has beenalso adopted as one of GSM standard
iphers for
on�dentiality. KASUMI wasdesigned on the basis of MISTY1 blo
k
ipher with 64-bit blo
k and 128-bit key[13℄, whi
h has been in
luded in the ISO-18033 standard [12℄. Sin
e these
iphershighly fo
us on hardware platforms, we
an naturally expe
t that they a
hievehigh performan
e when implemented in a bitsli
e style. In this se
tion, we startwith dis
ussing an optimization of a single blo
k en
ryption for
omparison, andthen move to the bitsli
e implementation3.1 KASUMI and MISTY1Both of KASUMI and MISTY1 have an eight-round Feistel stru
ture, whoseround fun
tion is
alled FO fun
tion, and additionally a small
omponent
alledFL fun
tion is inserted several times outside the FO fun
tions. The FO fun
tionitself has a ladder stru
ture with three inner rounds, ea
h of whi
h is
alled FI

7fun
tion. Therefore these
iphers have a total of 24 FI fun
tions, whi
h dominatetheir en
ryption performan
e.The left side of �gure 2 shows the detailed stru
ture of the FI fun
tion ofKASUMI. The FI has again a ladder stru
ture with two lookup tables S7 and S9,whi
h are internally applied two times ea
h. Unlike KASUMI, the FI of MISTY1has only three rounds (S9 - S7 - S9) with slightly di�erent S7 and S9. S7 and S9(for both of KASUMI and MISTY1) are linearly equivalent to a power fun
tionover Galois �eld GF (27) and GF (29), and their algebrai
 degree is 3 and 2,respe
tively. These low degree tables signi�
antly
ontribute to small hardwarein real appli
ations.The key s
heduling part of KASUMI is extremely simple,
onsisting of 16-bitrotate shifts by a
onstant size and xor operations with a
onstant value only,whi
h is
ompa
tly implemented in hardware. Also the key s
heduling part ofMISTY1 is not
ostly,
onsisting of eight parallel FI fun
tions. For more details,see [1℄ and [13℄.
S9

S7

S9

S7

16

9 7

16

9 7

S9E S7E

7 9

S7E S9E

KIij,2KIij,1

KIij

zero-extend

truncate

zero-extend

truncate

16 16

16 16

Fig. 2. Equivalent forms of the FI fun
tion of KASUMI.3.2 Single Blo
k ImplementationFirst we show our implementation of KASUMI in a usual single blo
k en
ryptionstyle. As stated above, the
omplexity of the FI fun
tion dominates the entireperforman
e of the KASUMI algorithm. A straightforward implementation of theFI on Core2 (or any other PC pro
essors) requires approximately 16 instru
tions.However by preparing the following two new tables S7E and S9E, we
an
reatea simpler form that is equivalent to the FI fun
tion as shown in the right side of�gure 2.S9E[x℄ = ((S9[x℄<<9)^S9[x℄) & 0xffff ; 9-bit -> 16-bitS7E[x℄ = ((S7[(x&0x7f)℄^(x&0x7f))<<9) ^ (x&0x7f) ; 8-bit -> 16-bit

8 Use of S7E and S9E redu
es the number of instru
tions of the FI fun
tiondown to 10. Code2 shows the spe
i�
 10-line implementation. Note that S7Emust a

ept an eight-bit input (and ignore its highest bit), whi
h results in asaving of one instru
tion at the beginning of the
ode. Sin
e an output of S7Eand S9E is stored in a 32-bit entry in pra
ti
e, a total size of the new tables is28 � 4 bytes (S7E) + 29 � 4 bytes (S9E) = 3072 bytes.01 movzx esi,al ; extra
t right 8 bits02 shr eax,7 ; extra
t left 9 bits03 mov eax,S9E[rax*4℄04 xor eax,S7E[rsi*4℄05 xor eax,[key℄ ; xor subkey06 mov esi,eax07 shr esi,9 ; extra
t left 7 bits08 and eax,01ffh ; extra
t right 9 bits09 mov eax,S9E[rax*4℄10 xor eax,S7E[rsi*4℄Code2: An optimized
ode of the FI fun
tion of KASUMI.Note that in an x64 environment we
an equivalently use 64-bit registersinstead of 32-bit registers, say, shr rsi,9 instead of shr esi,9, but this shouldbe avoided in general be
ause use of a 64-bit general register as a data registermakes an instru
tion length longer. Also sin
e two adja
ent FI fun
tions aremutually independent even if they are not
ontained in the same FO fun
tion,interleaving two FI fun
tions
ontributes to further speeding-up.As a result, our optimized
odes for the full KASUMI and MISTY1
an run atthe speed of 290
y
les/blo
k and 214
y
les/blo
k, respe
tively. The di�eren
ein performan
e
omes from the fa
t that the former applies 4� 3� 8 = 96 tablelookups and the latter does 3�3�8 = 72. The key s
heduling part of KASUMI,instead, works of
ourse mu
h faster than that of MISTY1.3.3 Bitsli
e implementationIn this subse
tion we deal with an implementation of KASUMI and MISTY1 inthe bitsli
e mode, that is, 128-blo
k parallel en
ryption, fully utilizing 16 128-bitXMM registers of the Core2 pro
essor. The performan
e of bitsli
ed KASUMIand MISTY1 is largely determined by the number of instru
tions of lookup tablesS7 and S9. Below is our (hand-optimized) bit-level logi
 of S7 and S9 at the timeof writing, where output bits yi are
omputed sequentially in our
ode. Boldfa
eterms, whi
h always appear pairwisely (or more), are stored into registers inadvan
e in order to redu
e the number of instru
tions.MISTY S9:y0 = x0(x4+x5) + x1(x5+x6) + x2(x6+x7) + x3(x7+x8) + x4x8 + 1y1 = x3(1+x2+x1+x4+x8) + x0(x2+x6+x8) + x5(x4+x8) + x2x6 + x7 + 1y2 = x4(1+x3+x0+x2+x5) + x1(x0+x3+x7) + x6(x0+x5) + x3x7 + x8y3 = x5(1+x4+x1+x3+x6) + x2(x1+x4+x8) + x7(x1+x6) + x0 + x4x8

9y4 = x6(1+x5+x2+x4+x7) + x3(x0+x2+x5) + x8(x2+x7) + x1 + x0x5y5 = x7(1+x6+x3+x5+x8) + x4(x1+x3+x6) + x0(x3+x8) + x2 + x1x6y6 = x8(1+x7+x0+x4+x6) + x5(x2+x4+x7) + x1(x0+x4) + x3 + x2x7 + 1y7 = x1(1+x0+x2+x6+x8) + x7(x0+x4+x6) + x3(x2+x6) + x0x4 + x5 + 1y8 = x0(1+x1+x5+x7+x8) + x6(x3+x5+x8) + x2(x1+x5) + x4 + x3x8 + 1MISTY S7:y0 = x0 + x0x3x4 + x1(x3+x0x6) + x2(x0x5+x6) + x5(x4+x3x6) + x5(x1+x0x6) + 1y1 = x2(x0+x4x5) + x0x6 + x2x3x6 + x4(x0+x3+x1x6) + x5(x1+x0x6) + 1y2 = x2(x1+x0x3) + x4 + x0((x1+x5)x4+x5) + x4(x2x6+x1) + x3(x4x5+x6) + x6(x0x3+x4+x1)y3 = (x0+x1+x0(x1x2+x3)) + x6(x2+x5+x1x3) + x4(x2+x0x6) + x1x4x5 + 1y4 = x4(x0+x1x3) + x5 + x1x2x5 + x3(x2+x0x5) + x6((x1+x4)x5+x1) + 1y5 = (x0+x1+x0(x1x2+x3)) + x2 + x1x2x3 + x4(x1+x0x2) + x0(x1x5+x6) + x5(x0+x3+x2x6)y6 = x0x3 + x2(x3x4+x5) + x1(x0+x3x5) + x1x2x6 + x6(x0x3+x4+x1) + x5(x0+x3+x2x6)KASUMI S9y0 = x7(x0+x1+x2+x8) + x5(x2+x6+x8) + x4x8 + x0x2 + x3 + 1y1 = x1(1+x0+x4+x7) + x5(x0+x3+x8) + x2(x3+x7) + x0x4 + x6 + 1y2 = x6(x2+x3+x5+x7) + x0(x5+x3+x8) + x7(x4+x5) + x3x4 + x1 + 1y3 = x0(1+x6+x3+x8) + x1(x2+x6+x8) + x4(x2+x7) + x7x8 + x5y4 = x0(x1+x5+x7) + x3(x1+x6+x8) + x8(x1+x2) + x6x7 + x4y5 = x6(x0+x8+x1+x7) + x4(x1+x5+x7) + x7(x3+x8) + x5x8 + x2 + 1y6 = x5(x1+x4+x2+x6+x8) + x3(x2+x6+x8) + x8(x1+x7) + x4x6 + x0 + x7y7 = x2(x0+x3+x6+x1+x7) + x3(1+x0+x6) + x5(x4+x7) + x0x1 + x8 + 1y8 = x1(x0+x2+x5+x6) + x2(1+x5+x8) + x4(x3+x6) + x3x8 + x7KASUMI S7y0 = x4(x0x1+x3x5+x2x6) + x2x5 + x6(1+x0+x1+x3+x5(x1+x4)) + x1x3 + x4y1 = x0(x1+x4+x3x5+x2x6) + x3x6 + x5(1+x1x2) + x4(x2+x5x6) + 1y2 = x0(x4x3+x1x6) + x6(x2+x4) + x5(x1+x0x2) + x2(x3+x1x4) + x0 + 1y3 = x5x1x4 + x1x0x5 + x6(x2+x1x3) + x3(x2x5+x4) + x1x0x2 + x1y4 = x0x3x6 + x0x1x4 + x4x0x5 + x3(1+x1+x2x4) + x5(x6+x1x3) + x0x2 + x1x6 + 1y5 = x0(x4x2+ x6x3+x5) + x5(x6x2+x4) + x1x2(x3+x6) + x6(x1+x3x4) + x2 + 1y6 = x6(1+x1(x0+x4)+x2x3+x0x5) + x0(x4+x1x3) + x5(x1+x3) + x1x2KASUMI MISTY1Lookup tables S9 S7 S9 S7Number of instru
tions 149 153 148 144Table 4. The number of instru
tions of S7 and S9.Pro
essor Pentium 4 Athlon 64 Core2Style Bitsli
e Single Bitsli
e Single Bitsli
e SingleKASUMICy
les/blo
k 241 300 241 272 74 290Cy
les/byte 30:1 75:0 30:1 34:0 9:25 36:3Instrs/
y
le 0:71 1:69 0:71 1:86 2:31 1:75Cy
les/Keys
h 8 104 7 64 2 78MISTY1Cy
les/blo
k 185 234 195 203 59 214Cy
les/byte 23:1 29:3 24:4 25:4 7:38 26:8Instrs/
y
le 0:72 1:82 0:68 2:10 2:26 1:99Cy
les/Keys
h 57 244 57 240 16 178Table 5. Performan
e of our implementation of KASUMI and MISTY1.

10 Tables 4 and 5 show our implementation results of KASUMI and MISTY1on Pentium 4, Athlon 64 and Core2. Instru
tions for S7 and S9 o

upy 69% and61% of the entire
ode of KASUMI and MISTY1, respe
tively. It is seen thatboth
iphers a
hieve an overwhelming performan
e; three to four times faster inthe bitsli
e mode on Core2. Also the key s
heduling of KASUMI
an be
arriedout almost with no
ost due to the nature of its stru
ture.4 AES and Camellia4.1 Bitsli
e ImplementationHow to implement bitsli
ed AES [8℄ and Camellia [3℄ on x64 platforms was �rstreported in [14℄. The
odes shown in the paper were written not using 128-bitXMM registers but using 64-bit general registers, be
ause XMM instru
tions hadpoor performan
e for bitsli
ing on its target pro
essors (Pentium 4 and Athlon64). In fa
t these pro
essors internally treated a 128-bit instru
tion as two 64-bit operations. In this subse
tion, we dis
uss performan
e of bitsli
ed AES andCamellia fully utilizing 128-bit XMM instru
tions on the Core2 pro
essor.The dominant part of these bitsli
ed
iphers is the lookup table S, whi
h islinearly equivalent to an inversion fun
tion over GF (28). The known smallesthardware design (i.e. most suitable for the bitsli
e implementation) of S is touse a sub�eld of index two; that is, we represent an inverse of GF (22n) as a
ombination of operations on GF (2n) re
ursively [6℄[16℄[19℄. The essen
e of thiste
hnique is to sele
t (1; a) as a basis ofGF (22n) overGF (2n) for an a 2 GF (22n)su
h that TrGF (22n)=GF (2n)(a) = 1. Then for any x; y; z; u 2 GF (2n), we have(x+ ya)(z + ua) = (xz + yuNrGF (22n)=GF (2n)(a)) + ((x+ y)(z + u) + xz)a;whi
h means that a multipli
ation of GF (22n)
an be designed with three mul-tipli
ations of GF (2n) like the Karatsuba algorithm.Using 16 XMM registers, instead of general registers, also redu
es \registerpressure", whi
h results in a smaller number of instru
tions of S in software. Ouroptimized
odes for S
onsist of 201 and 199 instru
tions for AES and Camellia,respe
tively, whi
h are 2% smaller than those shown in [14℄.Table 6 shows our implementation results of AES and Camellia with 128-bitkey in bitsli
e and non-bitsli
e modes. \Bs128" and \Bs64" denote the bitsli
emode using 128-bit XMM instru
tions and 64-bit general instru
tions, respe
-tively. \Single" and \Double" indi
ate a usual single blo
k en
ryption and adouble-blo
k parallel en
ryption by interleaving two blo
ks, respe
tively. Forboth algorithms, the obtained en
ryption speed, 9.2
y
les/blo
k and 8.4
y-
les/blo
k on Core2, respe
tively, is the highest speed ever a
hieved in a PCplatform, where the previous re
ord was 10.6
y
les/blo
k and 10.9
y
les/blo
kon Athlon 64 as shown in [14℄. In addition, to our best knowledge, this is the�rst result where performan
e of AES in the bitsli
e mode has ex
eeded that inan ordinary blo
k-by-blo
k en
ryption mode.

11Pro
essor Pentium 4 Athlon 64 Core2AESStyle Bs128 Bs64[14℄ Single[14℄ Bs128 Bs64[14℄ Single[14℄ Bs128 Bs64 SingleCy
les/blo
k 491 418 256 560 250 170 147 307 232Cy
les/byte 30:7 26:1 16:0 35:0 15:6 10:6 9:19 19:2 14:5Instrs/
y
le 0:80 1:66 1:81 0:70 2:75 2:74 2:66 2:27 2:00CamelliaStyle Bs128 Bs64[14℄ Double[14℄ Bs128 Bs64[14℄ Double[14℄ Bs128 Bs64 DoubleCy
les/blo
k 467 415 457 510 243 175 135 272 208Cy
les/byte 29:2 25:9 28:6 31:9 15:2 10:9 8:44 17:0 13:0Instrs/
y
le 0:72 1:61 0:94 0:65 2:74 2:46 2:47 2:44 2:07Table 6. Performan
e of our implementation of AES and Camellia with 128-bit key.4.2 Format ConversionThe bitsli
ed
ipher uses a non-standard input/output data format. This is not aproblem in a standalone appli
ation su
h as a �le en
ryption utility or a passwordre
overy program. However a format
onversion is required if a �le en
rypted inthe bitsli
e mode must be de
rypted in an existing parallel mode of operationsu
h as the CTR mode. This
onversion is essentially an entire rearrangement ofbit positions, whi
h is generally
ostly in software, and its performan
e overhead
annot be ignorable.This paper for the �rst time dis
usses a spe
i�
 implementation algorithm ofdata
onversion between a bitsli
e format and an ordinary format. The followingpie
e of
ode (Code3) shows our basi
 step
reating a byte sequen
e formattedin a bitsli
ed style pointed by rdx from an ordinary byte sequen
e pointed byr
x for a 128-bit blo
k
ipher.1 movaps xmm0, 0[r
x℄2 punp
k[l|h℄bw xmm0, 16[r
x℄ ; xxxxxxxx xxxxxx103 movaps xmm1, 32[r
x℄4 punp
k[l|h℄bw xmm1, 48[r
x℄ ; xxxxxxxx xxxxxx325 movaps xmm2, 64[r
x℄6 punp
k[l|h℄bw xmm2, 80[r
x℄ ; xxxxxxxx xxxxxx54.15 movaps xmm7,224[r
x℄16 punp
k[l|h℄bw xmm7,240[r
x℄ ; xxxxxxxx xxxxxxFE1718 punp
k[l|h℄wd xmm0,xmm1 ; xxxxxxxx xxxx321019 punp
k[l|h℄wd xmm2,xmm3 ; xxxxxxxx xxxx765420 punp
k[l|h℄wd xmm4,xmm5 ; xxxxxxxx xxxxBA9821 punp
k[l|h℄wd xmm6,xmm7 ; xxxxxxxx xxxxFEDC2223 punp
k[l|h℄dq xmm0,xmm2 ; xxxxxxxx 76543210

12 24 punp
k[l|h℄dq xmm4,xmm6 ; xxxxxxxx FEDCBA982526 punp
k[l|h℄qdq xmm0,xmm4 ; FEDCBA98 765432102728 pmovmskb eax,xmm0 ; 16 7-th bits of xmm029 mov 112[rdx℄,ax30 paddb xmm0,xmm031 pmovmskb eax,xmm0 ; 16 6-th bits of xmm032 mov 96[rdx℄,ax33 paddb xmm0,xmm034 pmovmskb eax,xmm0 ; 16 5-th bits of xmm035 mov 80[rdx℄,ax36 paddb xmm0,xmm0..48 paddb xmm0,xmm049 pmovmskb eax,xmm0 ; 16 0-th bits of xmm050 mov 0[rdx℄,axCode3: A format
onversion
ode
reating 128
onverted bitsThe �rst part (lines 1 to 26)
reates a 16-byte data on xmm0, whose n-th byte
orresponds to a byte in memory at the addresses 16n + m (n = 0; 1; ::; 15).Also m (m = 0; 1; ::; 15)
an be
ontrolled by a
hoi
e of \unpa
k" instru
tionspunp
k[l|h℄bw, punp
k[l|h℄wd, punp
k[l|h℄bdq, punp
k[l|h℄dqd (low l orhigh h); spe
i�
ally, llll for m = 0, lllh for m = 1 and llhl for m = 2, et
.The latter part (lines 28 to 50)
reates 16-bit data on ax
onsisting of 16 bits atbit positions 8i+j of xmm0 (i = 0; 1; :::; 15) using a spe
ial pmovmskb instru
tion,and then it is written into memory, whi
h is repeated 8 times (j = 0; 1; ::; 7).Basi
ally the full format
onversion of 128 bits � 128 blo
ks = 2KB data
anbe done by repeating Code3 128 times (with
hanging unpa
k instru
tions, r
xand rdx). However by keeping intermediate values in temporary registers for lateruse, the number of memory reads is signi�
antly redu
ed. Table 7 demonstratesperforman
e �gures of our format
onversion
ode. It is seen that the
onversionworks very fast, in less than one byte per
y
le, whi
h shows that bitsli
edAES/Camellia runs still faster than non-bitsli
ed AES/Camellia on Core2 evenif an overhead of data format
onversion is in
luded in the bitsli
ed
ode.Pro
essor Pentium 4 Athlon 64 Core2Cy
les/blo
k 41.5 28.1 15.4Cy
les/byte 2.59 1.76 0.96Instrs/
y
le 0.72 1.06 1.96Table 7. Measured performan
e of our format
onversion
ode.

135 Con
lusionsThis paper explored the state-of-the-art implementation te
hniques for speedingup blo
k
iphers on Intel's new Core2 mi
ropro
essor. We have shown that thebitsli
ing te
hnique is a
tually promising on a PC platform from pra
ti
al pointsof view. A bitsli
ed AES
ode that is fully
ompatible with the CTR mode
anbe now faster than a non-bitsli
ed AES
ode on Core2. Another importan
e ofthe bitsli
e mode is that a bitsli
ed
ode is se
ure against
a
he timing atta
kssin
e it does not use any lookup tables whose address is dependent on se
retinformation. We believe that bitsli
ed
iphers will be mu
h more widely used inreal appli
ations in very near future.Referen
es[1℄ 3GPP TS 35.202 v6.1.0, \3G Se
urity; Spe
i�
ation of the 3GPP Con�dentialityand Integrity Algorithms; Do
ument 2:KASUMI Spe
i�
ation (Release 6)", 3rdGeneration Partnership Proje
t, 2005.[2℄ R. Anderson, E. Biham, L. Knudsen: \Serpent: A proposal for the Advan
ed En-
ryption Standard", Available athttp://www.ftp.
l.
am.a
.uk/ftp/users/rja14/serpent.pdf[3℄ K. Aoki, T. I
hikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, T. Tokita:\The 128-Bit Blo
k Cipher Camellia", IEICE Trans. Fundamentals, Vol.E85-A,No.1, pp.11-24, 2002.[4℄ R. Bhaskar, P. Dubey, V. Kumar, A. Rudra: \EÆ
ient galois �eld arithmeti
 onSIMD ar
hite
tures", Pro
eedings of the �fteenth annual ACM symposium onParallel algorithms and ar
hite
tures, pp.256-257, ACM Press, 2003.[5℄ E. Biham: \A Fast New DES Implementation in Software", Pro
eedings of FastSoftware Workshop FSE'97, Le
ture Notes in Computer S
ien
e, Vol.1267, pp.260-272, Springer-Verlag, 1997.[6℄ D. Canright: \A Very Compa
t S-Box for AES", Pro
eedings of CHES 2005, Le
-ture Notes in Computer S
ien
e, Vol.3659, pp.441-455, Springer-Verlag, 2005.[7℄ The distributed.net proje
t: Available athttp://www.distributed.net/index.php.en[8℄ Federal Information Pro
essing Standards Publi
ation 197, \Advan
ed En
ryptionStandard (AES)", NIST, 2001.[9℄ A. Fog: \Software optimization resour
es", Available athttp://www.agner.org/optimize/[10℄ B. Gladman: \Serpent Performan
e", Available athttp://fp.gladman.plus.
om/
ryptography_te
hnology/serpent/[11℄ T. Granlund: \Instru
tion laten
ies and throughput for AMD and Intel x86 Pro-
essors", Available at http://swox.
om/do
/x86-timing.pdf[12℄ ISO/IEC 18033-3, \Information te
hnology - Se
urity te
hniques - En
ryptionalgorithms - Part3: Blo
k
iphers", 2005.[13℄ M.Matsui, \New en
ryption algorithm MISTY," Pro
eedings of Fast SoftwareWorkshop FSE'97!$Le
ture Notes in Computer S
ien
e, Vol.1267, pp.54-68,Springer-Verlag, 1997.[14℄ M. Matsui: \How Far Can We Go on the x64 Pro
essors?", Pro
eedings ofFast Software Workshop FSE2006, Le
ture Notes in Computer S
ien
e, Vol.4047,pp.341-358, Springer-Verlag, 2006.

14[15℄ J. Nakajima, M. Matsui: \Fast Software Implementations of MISTY1 on AlphaPro
essors", IEICE Trans. Fundamentals, Vol.E82-A, No.1, pp.107-116, 1999.[16℄ N. Mentens, L. Batina, B. Preneel, I. Verbauwhede: \A Systemati
 Evaluation ofCompa
t Hardware Implementations for the Rijndael S-Box", Pro
eedings of CT-RSA 2005, Le
ture Notes in Computer S
ien
e, Vol.3376, pp.323-333, Springer-Verlag, 2005.[17℄ D. A. Osvik, A. Shamir, E. Tromer: \Full AES key extra
tion in 65 millise
ondsusing
a
he atta
ks" Crypto 2005 rump session.[18℄ A. Rudra, P. Dubey, C. Jutla, V. Kummar, J. Rao, P. Rohatgi: \EÆ
ient Rijn-dael En
ryption Implementation with Composite Field Arithmeti
", Pro
eedingsof CHES 2001, Le
ture Notes in Computer S
ien
e, Vol.2162, pp.171-184, Springer-Verlag, 2001.[19℄ A. Satoh, S. Morioka, K. Takano, S. Munetoh: \A Compa
t Rijndael HardwareAr
hite
ture with S-Box Optimization", Pro
eedings of Asia
rypt 2001, Le
tureNotes in Computer S
ien
e, Vol.2248, pp.239-254, Springer-Verlag, 2001.[20℄ T. Shimoyama, S. Amada, S. Moriai: \Improved fast software implementation ofblo
k
iphers," Pro
eedings of the First International Conferen
e on Informationand Communi
ation Se
urity, pp.269-273, Springer-Verlag, 1997.

