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Abstract. We introduce the use of multivariate Gaussian mixture mod-
els for enhancing higher-order side channel analysis on masked crypto-
graphic implementations. Our contribution considers an adversary with
incomplete knowledge at profiling, i.e., the adversary does not know ran-
dom numbers used for masking. At profiling, the adversary observes a
mixture probability density of the side channel leakage. However, the EM
algorithm can provide estimates on the unknown parameters of the com-
ponent densities using samples drawn from the mixture density. Practi-
cal results are presented and confirm the usefulness of Gaussian mixture
models and the EM algorithm. Especially, success rates obtained by au-
tomatic classification based on the estimates of the EM algorithm are
very close to success rates of template attacks.
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1 Introduction

Since the paper of Kocher et al. [12] on Simple Power Analysis (SPA) and Dif-
ferential Power Analysis (DPA) a great variety of similar implementation at-
tacks and appropriate defenses has been proposed. For these kinds of attacks
it is assumed that measurable observables depend on the internal state of a
cryptographic algorithm. This impact is specific for each implementation and
represents the side channel. Side channel attacks using instantaneous physical
observables, e.g., the power consumption or electromagnetic radiation [12, 9] have
to be mounted in the immediate vicinity of the device.

Besides univariate attacks such as DPA, multivariate analysis has been al-
ready adapted to side channel analysis by [5]. Multivariate analysis requires
stronger assumptions on adversary’s capabilities, i.e., it is assumed that the ad-
versary can use a training device for learning probability density functions of
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the observables. A template [5] is a multivariate Gaussian probability density
function for one key dependent internal state of the implementation.

In response to side channel attacks designers of cryptographic implementa-
tions may include randomization techniques such as secret splitting or masking
schemes, e.g., [4, 6]. These randomization techniques shall prevent from predict-
ing any relevant bit in any cycle of the implementation. As result, statistical
tests using physical observables at one instant cannot be assumed to be success-
ful in key recovery. However, as already indicated by [12] high-order differential
analysis can combine multiple instants from within one measurement trace.

Second-order DPA as proposed by [15,22] uses again univariate statistics.
It combines measurements at related time instants before statistics is applied.
Related work on second-order DPA can also be found in [11,19,17,21,16,1].
Except for [1] these contributions assume that the leakage of the cryptographic
device corresponds to the Hamming weight model. Reference [1] acts on the
different assumption that the adversary has access to an implementation with a
biased random number generator at profiling.

An adversary with complete knowledge at profiling is able to build templates
for all possible combinations of keys and random masks. At key recovery, the
adversary then evaluates a mixture of densities for each key dependent internal
state [20].

It is still an open research question whether an adversary with incomplete
knowledge at profiling is capable of mounting a multivariate side channel anal-
ysis on unbiased masked cryptographic implementations. This paper provides a
solution for this problem based on the use of Gaussian mixture models.

2 Owur Model

We consider a two-stage side channel attack on a masked cryptographic im-
plementation of a symmetric primitive, e.g., a block cipher. In the first stage
of the attack, i.e., the profiling stage, the adversary aims at learning the data
dependent probability density function (p.d.f.) of the side channel leakage em-
anating from the masked implementation at run-time. In the second stage, i.e.,
the key recovery stage, the adversary applies statistics gained from the profiling
stage in order to recover an unknown secret key from the masked cryptographic
implementation.

The cryptographic implementation of a symmetric primitive is assumed to ap-
ply a boolean masking scheme, i.e., the cryptographic key k € {0,1}¢ is masked
with an unpredictable uniformly distributed random number y € {0,1}? that
is internally generated by the cryptographic device. As result of masking, the
internal state k is randomly mapped to k& y at run-time, i.e, one random repre-
sentation of the overall parameter space. Therefore, internal states are no longer
predictable by solely guessing on the key k thereby preventing both single-order
simple and differential side channel attacks.

Higher-order analysis, however, considers both multiple internal states and
multiple side channel observations of each internal state. Though our algorithms



are also applicable for multiple internal states, in this contribution we restrict
to two internal states, i.e., y and y @ k for simple side channel attacks and y and
y ® k @ x for differential side channel attacks with 2 € {0,1}? being a known
random number. It is assumed that the mask y is freshly generated and used
only once.!

Let I(z,k,y) = (I1,...,I,)T be an m-dimensional side channel observable
with i(z, k,y) = (i1,...,%m)T representing one particular measurement outcome
of I(z,k,y). Each vectorial sample includes some hidden physical leakage on the
two internal states y and y ® k & x.

We make the following assumptions regarding the side channel adversary A.

— Adversary’s input of the profiling stage: A is given N vectorial samples
i(x, k,y) produced from the measurement setup M during run-time of the
implementation of the cryptographic primitive P operating on random num-
bers z, k, and y.

— Adversary’s a-priori knowledge in the profiling stage: A knows input z €
{0,1}¢ and key k € {0, 1} that was processed by P at each of the N samples.

— Adversary’s output of the profiling stage: A outputs a multivariate p.d.f.
f@k) of the side channel leakage for each pair of (z, k).

— Adversary’s input of the key recovery stage: A 1is given N° vectorial samples
i(x, k°,y) produced from the measurement setup M during run-time of the
implementation of the cryptographic primitive P operating on a fixed key
k° and random numbers x and y.

— Adversary’s a-priori knowledge in the key recovery stage: A knows z that
was processed by P at each of the N° samples. A knows the multivariate
p.dfs f(**) for the side channel leakage for each pair of (z,k) from the
profiling stage.

— Adwversary’s output of the key recovery stage: A’s output is a key guess k*.

— Adversary’s success at the key recovery stage: A is successful if k* = k°. If
key recovery is repeated multiple times the success rate of the adversary is
the percentage of correct key guesses.?

One may think of A being an administrative user who is able to load test keys
into one instance of a set of identical cryptographic devices and to run the cryp-
tographic primitive P. As common in side channel attacks .4 has physical access
to the cryptographic device. A does not know the details of the cryptographic
implementation and A is not able to modify or tamper with the cryptographic
implementation. Further, A is not assumed to have any a-priori knowledge on
the physical leakage function of P, i.e., the impact of internal states on the side
channel leakage®.

! Note that weak masking schemes may re-use the mask in subsequent iterations of,
e.g., a round function. In such a case the use of multiple internal states may be
favorable.

2 Note that the success rate also depends on N and N°.

3 Because of that, A is not restricted to any specific leakage models such as the Ham-
ming weight model.



It is assumed that the measurement vector z := i(x, k, y) € R™ is distributed
according to an m-variate Gaussian density
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where p is the mean vector, X the covariance matrix of the normally distributed
random variable Z with ¥ = (0 )1<uv<m and oy, = E(Z,Z,) — E(Z,)E(Z,),
|2| denotes the determinant of ¥ and X! its inverse. A Gaussian distribution
is completely determined by its parameters (u, ). Note that both parameters
can depend on the data (z, k, y), therefore enabling side channel leakage.

N(z, p, %) =

3 Gaussian Mixture Models

In the profiling stage A determines the multivariate p.d.f. of i¢(z, k,Y") for each
combination of (, k) and the random variable Y, i.e., in total 22 p.d.f.s. In prac-
tice, one may argue that this number can be reduced to 2% p.d.f.s characterizing
i(x®k,Y).

For each (x, k) A observes a mizture p.d.f.
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that consists of 2¢ m-variate Gaussian component p.d.f.s N(z,u§m’k),2§x’k)).
Herein, j denotes the mask with a; being the probability to indeed observe
mask j. The «; satisfy
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A Gaussian mixture p.d.f. is completely defined by parameters

e(m,k) _ (Oégm7k), /L(()IJC), Eéz,k), . a(m,k) (z,k) Z(I,k)) . (4)

tt 2d,17/1’2d,1; 2d_1

Example 1. Fig. 1 provides an illustration of the mixing of p.d.f.s considering
x,k,y € {0,1} that was generated from measurement samples for = ® k = 0.
It can be seen that separating the distributions for y = 0 and y = 1 from the
mixed distribution is not a trivial problem as both p.d.f.s significantly overlap.

Finite mixture models are well known from cluster analysis and pattern recog-
nition [7,13,3,18,8]. In a typical problem, features from known observations
have to be learnt and statistical classifiers have to be trained by using means
of similarity. These classifiers are then available for recognition of unknown ob-
servations. This two-stage procedure is very similar to applying a two-stage side



p.d.f. for mask bit y=1

Mixture of p.d.f.s
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Fig. 1. Two-dimensional p.d.f.s extracted from experimental data. The = and y coordi-
nates represent the measurement outcomes at two instants ¢1 (y leaks) and t2 (y® k@
leaks). The plot on the right shows a mixture of p.d.f.s as it can be recognized by A at
profiling. A more powerful adversary knowing masks y at profiling can determine the
original two p.d.f.s on the left side. The measurement outcomes were initially standard-
ized with z; := (2z; — ps)/s; wherein p; is the mean value and s; the standard deviation
for each scalar component of z;.

channel attack. In more detail, a powerful adversary in the position of building
templates is given labelled samples and complete knowledge about processed
data. This context is also known as supervised learning. Such a powerful ad-
versary knowing v, e.g., the developer of the cryptographic implementation, can
build m-variate Gaussian densities N (z, u(**¥) B(=*9)) for each tuple (z, k, ),
i.e., 23¢ templates. Accordingly to A, it may be assumed that this powerful ad-
versary can also manage with 22¢ templates N (z, u(*®%¥) 3(=®k.v)) The adver-
sary A considered in this contribution, however, observes the system response
on input patterns, but has incomplete knowledge about the internal state of
the system, especially A does not know any labels of samples. This problem of
unsupervised learning is the more difficult one.

The problem statement for A is at follows. Given an observation of a mix-
ture of f(z,0")) in (2) estimate the parameters in (4) for the observed multi-
modal?. p.d.f..

Some side information make the estimation easier for A if compared to other
problems of pattern recognition:

4 A density is said to be multi-modal if it includes several local maxima.



— The number of component p.d.f.s is known to be 2¢.
— The component p.d.f.s are uniformly distributed in an efficient masking

scheme:

o) 9 (5)

Further, A does not need to identify the labels of the component p.d.f.s for key
recovery, cf. Section 3.2.

This contribution considers four different variants for use at high-order side
channel analysis. Three variants come from assumptions in order to reduce the
number of unknown parameters in this scheme.

— Variant 1: The list of free parameters (4) is reduced to

T x,k z,k
B = (i, ®
— Variant 2: The list of free parameters (4) is reduced to
T x,k x,k x,k z,k
9( ’k) = (Oég )7N8 )7---aaéd_)17uéd—)1) : (7)

— Variant 3: The list of free parameters (4) is reduced to

0 = (af™, uf™ el i =) ®)

wherein ¥ denotes one common covariance matrix.
— Variant 4: All parameters are unknown. The list of parameters is given in (4).

Table 1. Number of free parameters in the Gaussian mixture model.

|Variant|| ch-x’k) |u§x’k)|2§x’k)or2(z’k)| Total |
1 X 29m X 29m
29 — 1] 29m X 29(1+m) -1

2
3 29 — 1] 29m (m2+m)/2 2d(1+m)+(m+m2)/2—1
4 |29 — 1] 29m [27(m? + m)/2| 27(1 +3m/2 + m?/2) — 1

Ezample 2. If d = 1 and m = 2 (smallest reasonable mixture) the number of
free parameters is 4 for Variant 1, 5 for Variant 2, 8 for Variant 3, and 11 for
Variant 4.

Note that the estimation of component p.d.f.s is required for each (z,k),
respectively for each (x @ k). For the estimation of the component densities, the
number of available measurements at profiling is on average reduced to

N

z,k) ~
N¢ >N27d (9)



for the characterization of i(x,k,Y") and to

. N
N@Ok) oT (10)

considering #(x @ k,Y).
Ezample 3. If d = 1 one obtains N@* ~ & and N@®* ~ ¥ However, if
d = 8 this yields to N@* ~ L and N@®*) ~ X thereby drastically reducing

the number of measurements that are available for the estimation of component
p.d.f:s for each (x, k).

N
4

3.1 The EM Algorithm

For the estimation of the free parameters we propose to use the expectation-
maximization (EM) algorithm that is based on a maximum-likelihood estimation
and most favorable for practical applications [14,7,18].

The likelihood function is the product of f(z1,0®F) . f(zg,0@F) . ... .
f (2N ,0@®F). This likelihood function is aimed to be maximized regarding
the free parameters for each variant under the constraints of (3). For practical
purposes one evaluates the logarithmic likelihood function

N(a:,k‘) N(m,k) 2d71
T T z,k z,k .,k
LR = 3" I fz,00) = 37 I [ Y al"PIN(zg, uloP, B0
i=1 i=1 =0

(11)

We treat the additional constraint of (5) as a soft constraint for Variant 2,

Variant 3, and Variant 4, i.e., the deviation of the parameters is controlled as

part of the estimation process and estimations with high deviations from (5) as
result of the EM Algorithm are withdrawn.

The EM algorithm is an iterative algorithm that requires initial values for the

set of parameters o\""*, ug-l’k) and Zg-l’k). We follow the recommendation of [3]

j
to initialize Egm’k) with the identity map I on R™. For agl’k)

distribution as in (5), and the initial value of ugz’k) is determined by randomly

we choose a uniform

selecting a start value in a given interval for each scalar component of u§-m’k). Each
estimation process is stopped if the maximization of (11) by using the estimators
0(=-%) of the (I+1)-th iteration converges if compared to the estimated parameters
6% of the I-th iteration [3,18]. For the convergence one evaluates whether the
growth of (11) is smaller than a pre-defined threshold, e.g., ¢ = 1076, after each
iteration. As the estimation process outcomes depend on the initialization, the
EM algorithm is repeated with many random initialization values for ug»l’k) and
the estimated parameters leading to the maximum likelihood in (11) are finally
selected as EM estimates.



Application to Variant 4: Each iteration includes the Expectation Step (E-
Step), the Maximization Step (M-Step), and the computation of (11) to check
for convergence of the estimated parameters [3, 18, 7].

Expectation Step (E-Step):

AT N (2, 78, 5000 .
Qjn 1= 22401 A(z k) N(zn ﬂ(z k) 2(@ )) ( )
Maximization Step (M-Step):
1 N (@)
NENI
6" = e D n (13)
n=1
N (@:Fk)
~ (x,k
N§' ) _ ZN(T — Z OjnZn (14)
n=1 @jn n=1

&(x,k 1 ~(z,k ~(z,k
509 = kS (el o)

Application to Variant 3 If the same covariance matrix 3 is used for all com-
ponent p.d.f.s equations (12) and (15) are modified to (16) and (17), respectively

[3]-

Uy = (16)
J Z?do 1 A(ac k) N( AZ(_I k), E(z,k))

Z

N@k) gd_q

B0 = N(z % > ) O‘m( Zn A(x k)) (Zn —/ft§-x’k))T (17)

n=1 j5=0

Application to Variant 2 This variant replaces (12) with (18) in the E-Step
and uses (13) and (14) in the M-Step.

A(z,k) N( Angk)yz(z’k))
Qjn = a1 (z (z (18)
212 01 (k) N(Znauz(' 7k)az(z’k))

Z

Application to Variant 1 This variant replaces (12) with (19) in the E-Step
and uses solely (14) in the M-Step [7].

a§x,k) N(Zn, ﬂ;z,k)7 E(I,k))
S ol Nz, ", B

K2

(19)

Oéjn =



3.2 Key Recovery

Key recovery is applied at the same implementation that is now loaded with a

fixed unknown key k°. Given the 2¢ component p.d.f.s N'(z, ugl’k), Zgl’k)) with

(k)

the associated probabilities o; the adversary computes
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for each of the 2¢ key hypotheses k using known z; € {0,1}% and decides in
favour of that key hypothesis k£* that leads to the maximum likelihood:

k* = argmkaxﬁg€ . (21)

Note that the decision strategy for key recovery in a template attack is done
in almost the same manner, just by replacing the estimated component p.d.f.s
with the ‘true’ component p.d.f.s, i.e., with the templates in (20).

4 Experimental Case Study

For the experimental evaluation we consider the simplest reasonable case, i.e.,
a two-dimensional (d = 1,m = 2) setting. Samples were obtained by measuring
the power consumption of an 8 bit microprocessor AT90S8515 while running a
boolean masking scheme. All random numbers z, k, and y are known so that
the results of the EM Algorithm (unsupervised learning) can be compared with
the use of templates (supervised learning).

We selected two instants (for the selection process see Section 4.1) of the
vectorial measurement sample. Instant ¢; leaks side channel information on bit
y and at t5 one finds side channel leakage on bit y @ k @ x. This scenario is
identical to the one introduced by Messerges for second-order DPA [15].

We assume that two conditional p.d.f.s f®®%) on i(z @ k,Y) are sufficient
for the characterization problem instead of four conditional p.d.f.s f(***) on
i(z,k,Y). In a template attack, the four resulting conditional-state p.d.f.s for
all possible combinations of (x ® k,y) are identifiable and illustrated in Fig. 2.
Fig. 3 shows the two mixed-state p.d.f.s for x ® k as they can be observed by A
due to its incomplete knowledge.

The EM algorithm was applied to the two mixed states for = @ k. In Table 2
the estimated parameters as result of the profiling stage are summarized for the
template algorithm and the four variants of the EM algorithm introduced in
Section 3. It can be seen that the results of the estimated parameters of the
EM algorithm depend on the specific variant. Table 2 shows that Variant 1 and
Variant 2 of the EM algorithm lead to quite similar results, the component p.d.f.s
are made of concentric circles in these cases. Also the results of Variant 3 and
Variant 4 are quite similar, however, the results form ellipsoids with different
parameters compared to the use of templates. Obviously, different parameter
settings can produce similar probability distributions.
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Fig. 2. Empirical component p.d.f.s for all four different combinations of bit y and bit
k @ z. The x-axis gives the normalized measurement values at instant ¢1 (y leaks) and
the y-axis shows the normalized measurement values at instant t2 (y ® k & x leaks).
The distribution is shown for k@2 =y =0in (a), for k®z =0 and y = 1 in (b), for
k®dz=1and y=0in (c), and for k®z =y = 1 in (d). One can recognize shifts of
the probability densities: to the left in (a) and (c), to the right in (b) and (d), to the
top in b) and (c) and to the bottom in (a) and (d).
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Fig. 3. Empirical mixed p.d.f.s for the two different values of bit = @ k using the same
data as in Fig. 2. It isz @k =01in (a) and 2  k = 1 in (b). In (a) one can recognize
a slight rotation of the distribution to the left and in (b) a slight rotation of the
distribution to the right which is an indication of a mixture.



Table 2. Estimated parameters for the Gaussian component p.d.f.s by building tem-
plates and applying the EM algorithm. The terms p; and p2 denote the estimated
mean value of the leakage at instant ¢; and ¢2, respectively, 011, 022, and 012 = 21 are
the estimated entries of the covariance matrix. The samples were normalized before
statistics was applied. It was IV = 20, 000 for the profiling stage.

|z @ k| Yy I m | e | on | o2 Jow2=o02]
Templates
0 0 -0.343609(-0.264896|0.890693|0.929354| 0.027368
0 1 0.363384 | 0.258210 |0.849087(0.890358| 0.046014
1 0 -0.353654| 0.255177 |0.885363|0.943963| 0.042504
1 1 0.349743 |-0.267222(0.877618(0.965020| 0.062675
EM Algorithm, Variant 1
T ® k|component no. j” 1 | 2 | o11 | 022 |012 =091
0 0 -0.228378 —0.222345| 1.0 1.0 0.0
0 1 0.252548 0.218852| 1.0 1.0 0.0
1 0 0.152021 —0.158530| 1.0 1.0 0.0
1 1 -0.173202[0.166899 | 1.0 1.0 0.0
EM Algorithm, Variant 2
) k|component no. j” w1 | w2 | o11 | 022 |012 =02
0 0 0.234364 | 0.203658 1.0 1.0 0.0
0 1 -0.249685(-0.243648| 1.0 1.0 0.0
1 0 0.163380 |-0.170083| 1.0 1.0 0.0
1 1 -0.162391] 0.156246 1.0 1.0 0.0
EM Algorithm, Variant 3
T ® k|c0mp0nent no. j” w1 | w2 | o11 | 022 |012 = 091
0 0 -0.579599| 0.066857 |0.680029 0.973863| 0.165637
0 1 0.543903 —0.063088|0.680029 0.973863| 0.165637
1 0 -0.634439| 0.133956 |0.653078 0.977233| 0.009398
1 1 0.529548 —0.108166|0.653078 0.977233| 0.009398
EM Algorithm, Variant 4
) k|component no. j” 1 2 | o11 | 022 |012 =021
0 0 0.625019 —0.019519|0.636527 0.926563| 0.143675
0 1 -0.520327| 0.013980 |0.695991 1.022322| 0.134543
1 0 0.610178 —0.093003|0.610554 0.937405|-0.025781
1 1 -0.549292| 0.088531 |0.695000 1.024076| 0.006803 |




Though not explicitly stated in Table 2 also second-order DPA requires a
profiling stage to recover the sign of the leakage signal for each instant unless a
further assumption is made that the adversary knows this sign, e.g., because the
sign of a side channel leakage portion is predictable.?

Key Recovery Efficiency The decision strategy of Section 3.2 is applied here
for the key hypotheses k € {0,1}. For d = 1 (20) simplifies to

NO

Ly := Zln (0.5-N(z, i, 257) + 0.5 - N (24, u77, 277)) and (22)
=1
NO

L1:= (0.5 N(zi, ug" , 25%) + 0.5 N(zi, 7™, X7%))  (23)

=1

assuming a uniform distribution of y; € {0,1}.

Table 3. Success rate at key recovery by using the estimated p.d.f.s for the different
methodical approaches. All samples were normalized before applying statistics.

Templates EM Algorithm Second-Order DPA

N° Variant 1|Variant 2|Variant 3|Variant 4|
10| 58.17 % || 58.77 % | 58.60 % | 59.00 % | 58.49 % 54.84 %
20| 62.82 % || 61.63 % | 61.73 % | 61.06 % | 62.26 % 56.74 %
50| 68.43 % || 67.90 % | 67.81 % | 68.51 % | 68.26 % 61.67 %
100|| 75.33 % || 74.59 % | 74.19 % | 74.80 % | 74.52 % 67.46 %
200|| 83.85 % || 81.22 % | 81.561 % | 81.92 % | 83.13 % 73.93 %
400(| 91.59 % || 89.52 % | 89.36 % | 91.07 % | 91.05 % 81.89 %
600|| 95.88 % || 93.57 % | 93.561 % | 94.65 % | 95.33 % 86.89 %
800|| 97.86 % | 96.75 % | 96.02 % | 97.16 % | 97.39 % 89.77 %
1000(| 98.88 % || 98.09 % | 97.73 % | 98.44 % | 98.68 % 92.77 %
1500(| 99.74 % || 99.52 % | 99.52 % | 99.71 % | 99.68 % 96.60 %
2000(| 99.94 % || 99.91 % | 99.86 % | 99.95 % | 99.95 % 98.44 %

Success rates were empirically determined by applying the 2-variate Gaussian
p-d.f.s of Table 2. For second-order DPA the correlation coefficient of z; ® k and
|zi,0 — 2i,1], i-e., the absolute difference of the two scalar components of z; is
computed as suggested by Messerges [15]. Results are presented in Table 3. One
can observe that the key recovery efficiency of EM estimates is very close to
templates. Further, there are only small decreases in the success rate for the
variants based on a reduced set of free parameters. Another result of Table 3 is

% The microcontroller used in this case study does not follow the Hamming weight
model. Therefore, the sign of the side channel leakage at each instant has to be
examined in advance.



that using second-order DPA one needs about twice the number of samples for
a comparable success rate.

4.1 Further Directions

Higher-Order Analysis: This experimental case study considers the simplest
two-dimensional case for higher-order side channel analysis, but this may also be
the only applicable case on an efficient masking scheme, especially in hardware.
The use of higher dimensions leads to an increase in the number of unknown
parameters for the component p.d.f.s. We expect that an increase of m, i.e.,
the number of instants considered in the multivariate p.d.f. can significantly
improve the success rates for key recovery. Increasing d results in two draw-
backs: (i) the number of free parameters increases exponentially (see Table 1)
and (ii) the number of measurements that are usable for an estimation decreases
exponentially (see (9) and (10)). The benefit of an improved signal-to-noise ratio
due to a higher number of predicted bits may be therefore thwarted. A similar
consideration holds for templates, i.e., a certain minimum number of measure-
ments is required for a sufficient characterization of the multivariate side channel
leakage [10].

How to find relevant instants without knowing the masks: First of all, for
m = 2 the EM algorithm is applicable at all combinations of instants to check for
significantly different component p.d.f.s. If successful at multiple combinations
the EM algorithm can be reapplied in order to determine component p.d.f.s
with m > 2. Further, for fixed parameters (z, k), the empirical variance of the
sample may indicate time instants where internal random numbers are used.
Another possibility to reduce the dimensions of the vectorial sample is principal
component analysis [2]. Second-order DPA [15,22] may also help to identify
suitable points in time.

5 Conclusion

This contribution introduces the use of multivariate Gaussian mixture models
for enhancing higher-order side channel analysis on masked cryptographic imple-
mentations. The proposed EM algorithm is applicable if an adversary does not
have access to masks used during profiling and provides estimates on the com-
ponent p.d.f.s. For a single-bit second-order setting it has been shown that the
attained efficiency in key recovery is very close to templates and clearly better
than the efficiency of second-order DPA.

As already outlined in previous contributions masking may not be sufficient
to secure cryptographic implementations. Beyond it, this contribution highlights
that even adversaries with incomplete knowledge at profiling can acquire ap-
propriate multivariate estimates on component probability densities. Auxiliary
countermeasures to decrease the signal-to-noise ratio of the side channel leakage



should be definitively foreseen. The effectiveness of these combined countermea-
sures can be tested by building templates or applying the EM algorithm to
mixture densities.

References

10.

11.

12.

. Dakshi Agrawal, Josyula R. Rao, Pankaj Rohatgi, and Kai Schramm. Templates as

Master Keys. In Josyula R. Rao and Berk Sunar, editors, Cryptographic Hardware
and Embedded Systems - CHES 2005, volume 3659 of LNCS, pages 15-29. Springer,
2005.

. Cédric Archambeau, Eric Peeters, Francois-Xavier Standaert, and Jean-Jacques

Quisquater. Template Attacks in Principal Subspaces. In Louis Goubin and
Mitsuru Matsui, editors, Cryptographic Hardware and Embedded Systems - CHES
2006, volume 4249 of LNCS, pages 1-14. Springer, 2006.

Hans Hermann Bock. Automatische Klassifikation: Theoretische und praktische
Methoden zur Gruppierung und Strukturierung von Daten (Cluster-Analyse). Van-
denhoeck & Ruprecht, 1974.

Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankay Rohatgi. Towards
Sound Approaches to Counteract Power-Analysis Attacks. In M. Wiener, editor,
Advances in Cryptology — CRYPTO 99, volume 1666 of LNCS, pages 398-412.
Springer, 1999.

Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template Attacks. In B. S.
Kaliski, ¢ Kog, and C. Paar, editors, Cryptographic Hardware and Embedded Sys-
tems, volume 2523 of LNCS, pages 13-28. Springer, 2003.

Jean-Sébastian Coron and Louis Goubin. On Boolean and Arithmetic Masking
against Differential Power Analysis. In C.K. Ko¢ and C. Paar, editors, Crypto-
graphic Hardware and Embedded Systems — CHES 2000, volume 1965 of LNCS,
pages 231-237. Springer, 2000.

Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. John
Wiley & Sons, 2001.

Mario A.T. Figueiredo and Anil K. Jain. Unsupervised Learning of Finite Mixture
Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24:381—
396, 2002.

Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic Analy-
sis: Concrete Results. In ¢ Kog, D. Naccache, and C. Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2001, volume 2162 of LNCS, pages 251—
261. Springer-Verlag, 2001.

Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar. Templates vs. Stochas-
tic Methods. In Louis Goubin and Mitsuru Matsui, editors, Cryptographic Hard-
ware and Embedded Systems - CHES 2006, volume 4249 of LNCS, pages 15-29.
Springer, 2006.

Marc Joye, Pascal Paillier, and Berry Schoenmakers. On Second-Order Differential
Power Analysis. In Josyula R. Rao and Berk Sunar, editors, Cryptographic Hard-
ware and Embedded Systems — CHES 2005, volume 3659 of LNCS, pages 293-308.
Springer, 2005.

Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In
M. Wiener, editor, Advances in Cryptology — CRYPTO 99, volume 1666 of LNCS,
pages 388-397. Springer, 1999.



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Geoffrey McLachlan and David Peel. Finite Mizture Models. John Wiley & Sons,
2000.

Geoffrey J. McLachlan and Thriyambakam Krishnan. The EM Algorithm and
Eztensions. John Wiley & Soms, 1997.

Thomas S. Messerges. Using Second-Order Power Analysis to Attack DPA Re-
sistant Software. In C.K. Kog¢ and C. Paar, editors, Cryptographic Hardware and
Embedded Systems — CHES 2000, volume 1965 of LNCS, pages 238-251. Springer,
2000.

Elisabeth Oswald and Stefan Mangard. Template Attacks on Masking — Resistance
is Futile. In Masayuki Abe, editor, Topics in Cryptology — CT-RSA 2007, The
Cryptographers’ Track at the RSA Conference 2007, volume 4377 of LNCS, pages
243-256. Springer, 2006.

Elisabeth Oswald, Stefan Mangard, Christoph Herbst, and Stefan Tillich. Practical
Second-Order DPA Attacks for Masked Smart Card Implementations of Block
Ciphers. In David Pointcheval, editor, Topics in Cryptology — CT-RSA 2006, The
Cryptographers’ Track at the RSA Conference 2006, volume 3860 of LNCS, pages
192-207. Springer, 2006.

Pekka Paalanen, Joni-Kristian Kédmaréinen, Jarmo Ilonen, and Heikki Kélvidinen.
Feature Representation and Discrimination Based on Gaussian Mixture Model
Probability Densities — Practices and Algorithms. Technical report, Lappeenranta
University of Technology, 2005. Available from: http://www2.lat.fi/~ jkamarai/
publications/downloads/laitosrap95.pdf.

Eric Peeters, Francois-Xavier Standaert, Nicolas Donckers, and Jean-Jacques
Quisquater. Improved Higher-Order Side-Channel Attacks with FPGA Experi-
ments. In Josyula R. Rao and Berk Sunar, editors, Cryptographic Hardware and
Embedded Systems — CHES 2005, volume 3659 of LNCS, pages 309-323. Springer,
2005.

Werner Schindler, Kerstin Lemke, and Christof Paar. A Stochastic Model for Dif-
ferential Side Channel Cryptanalysis. In Josyula R. Rao and Berk Sunar, editors,
Cryptographic Hardware and Embedded Systems — CHES 2005, volume 3659 of
LNCS, pages 30—46. Springer, 2005.

Kai Schramm and Christof Paar. Higher Order Masking of the AES. In David
Pointcheval, editor, Topics in Cryptology — CT-RSA 2006, The Cryptographers’
Track at the RSA Conference 2006, volume 3860 of LNCS, pages 208-225. Springer,
2006.

Jason Waddle and David Wagner. Towards Efficient Second-Order Power Analysis.
In M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and Embedded
Systems - CHES 2004, volume 3156 of LNCS, pages 1-15. Springer, 2004.



