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Abstract. 8-bit microcontrollers like the 8051 still hold a considerable
share of the embedded systems market and dominate in the smart card
industry. The performance of 8-bit microcontrollers is often too poor
for the implementation of public-key cryptography in software. In this
paper we present a minimalist hardware accelerator for enabling elliptic
curve cryptography (ECC) on an 8051 microcontroller. We demonstrate
the importance of removing system-level performance bottlenecks caused
by the transfer of operands between hardware accelerator and external
RAM. The integration of a small direct memory access (DMA) unit
proves vital to exploit the full potential of the hardware accelerator. Our
design allows to perform a scalar multiplication over the binary extension
field GF(2191) in 118 msec at a clock frequency of 12 MHz. Considering
performance and hardware cost, our system compares favorably with
previous work on similar 8-bit platforms.

1 Introduction

Embedded systems made up of hardware and software components constitute
the fastest growing segment of the semiconductor industry with products rang-
ing from mobile phones over MP3 players to automotive braking systems. The
traditional design techniques (i.e. separate treatment of hardware and software)
do not cope with the complexity of today’s embedded systems and the steadily
increasing time-to-market pressure. Sloppily speaking, “building a machine and
seeing whether it works” is not feasible due to unpredictable design times when
heterogeneous applications are getting integrated to create a complex system
[23]. A promising approach to deal with the complexity of modern embedded
systems is hardware/software co-design, i.e. the concurrent (or simultaneous)
design of hardware and software components with the goal to meet system-level
objectives [5]. This includes the analysis of different boundaries and interfaces
between hardware and software and the evaluation of design alternatives in a
reasonable amount of time [8].

Hardware/software co-design is gaining in importance since the boundary
between hardware and software becomes more and more blurred. One factor
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behind this trend is the advent of flexible architectures that combine general-
purpose processors with custom, customizable, or reconfigurable logic. In recent
years, major FPGA vendors started to offer special devices consisting of a pro-
cessor core, on-chip memories, peripherals, and large amounts of reconfigurable
logic for the implementation of application-specific hardware. In addition, some
of these devices contain application-specific building blocks like fast multipliers
for digital signal processing (e.g. Altera Stratix). Therefore, devices consisting
of a processor core, application-specific parts, and reconfigurable logic are an
ideal co-design platform for heterogenous embedded systems that may comprise
several applications domains such as signal processing, networking, and security.
Recently, the security domain has attracted particular interest since more and
more embedded devices store or transmit sensitive data. This makes a strong
case for applying hardware/software co-design techniques to the implementation
of cryptographic primitives [20, 21].

In this paper we investigate the co-design of elliptic curve cryptography on
embedded 8-bit platforms, in particular on the 8051 microcontroller. Elliptic
curve cryptography (ECC) is highly computation-intensive as it involves arith-
metic operations in finite fields of large order (typically about 160 bits) [3]. The
results from previous work [12, 16, 24] show that a “pure” software implemen-
tation of ECC does not allow to reach sub-second performance on a standard
8051 clocked at 12 MHz. Therefore, some kind of hardware acceleration of the
performance-critical operations carried out in ECC is necessary. Elliptic curve
cryptography offers a multitude of implementation options for both field and
curve (group) arithmetic, respectively [13]. In addition, a number of different
boundaries between hardware and software are possible, which allows a system
designer to find the proper trade-off between performance and silicon area. One
could, for instance, implement the point addition/doubling in hardware and the
rest in software [15]. An alternative approach is to implement the field arith-
metic in hardware and the curve/point arithmetic in software [1, 2, 7, 14]. Fur-
thermore, hardware acceleration at the granularity of instruction set extensions
for the finite field multiplication has also been investigated [6, 11, 17]. Besides
the hardware/software boundary, the interface between hardware accelerator
and host processor is essential for the system performance, especially for “low-
cost” accelerators without local storage since they require a high number of data
transfers.

We have co-designed an elliptic curve cryptosystem over binary extension
fields using the Dalton 8051 [22] as host controller which executes the software
part of our design. The hardware part consists of an elliptic curve acceleration
unit (ECAU) and an interface with direct memory access (DMA) to enable fast
data transfer between the ECAU and the external RAM (XRAM) attached to the
8051 microcontroller. Our design goal is to achieve a maximum of performance
with a “minimalist” hardware accelerator—the ECAU—composed of a bit-serial
multiplier for binary extension fields of order ≤192 bits and a supporting register
infrastructure. The ECAU allows to perform a full scalar multiplication over the
field GF(2191) in about 118 msec, assuming that the Dalton 8051 is clocked
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with 12 MHz. A scalar multiplication over the field GF(2163) takes less than
100 msec, which is more than 25 times faster than the co-design for hyperelliptic
curve cryptography (HECC)1 presented by Batina et al. at CHES 2005 [2]. The
hardware cost of the ECAU and the DMA controller is 12,65k gates altogether
when synthesized with a 0.35 µm standard cell library.

1.1 Improvements over Previous Work

During the past five years, numerous papers dealing with the hardware/software
co-design of (hyper)elliptic curve cryptography on 8-bit platforms (e.g. AVR or
8051) have been published [1, 2, 6, 7, 14, 15, 17]. However, the co-design approach
for ECC presented in this paper differs from previous work in two important
aspects. First, we pay special attention to the efficient implementation of the
data transfer between the hardware accelerator and the external RAM attached
to the 8051. Second, our approach uses a (limited) scalable hardware accelerator
able to perform field arithmetic in all binary fields GF(2m) with m ≤ 192 and
not just in a single field.

The efficiency of the data transfer between ECAU and XRAM impacts the
overall performance since the ECAU is a low-cost hardware accelerator, which
means that it does not contain local storage for intermediate results. Conse-
quently, all intermediate results occurring during a scalar multiplication have to
be transferred between the ECAU and the XRAM2. Unfortunately, a standard
8051 only provides 8-bit I/O ports and a serial interface for the communication
with the “world outside,” both of which are rather slow. There are two principal
options to alleviate the communication bottleneck. One possibility is to equip
the ECAU with local storage for the intermediate results. The second option is
to design a dedicated interface with direct memory access (DMA). We opted for
the latter since the former would entail a considerable increase in silicon area. In
addition, we have also integrated an I/O register into the ECAU which allows
to overlap data transfer and computation phases.

A second point in which our co-design approach differs from previous work
is scalability, i.e. the ability to process operands of any size without the need to
modify or re-design a given implementation [19]. The ECAU contains a 192-bit
multiplier that can be used for any binary extension field GF(2m) of degree up
to 192, e.g. for the field GF(2191) or GF(2163). This means that our system is
limited scalable similar to the cryptographic processor described in [9], but does
not provide the high scalability of the ECC hardware from [19]. We emphasize
that attaining scalability in hardware/software co-design affects all abstraction
levels and layers between hardware and software (including the operand trans-
fers), and is not a “pure” hardware design issue as in [19]. For instance, when

1 Batina et al. presented a hyperelliptic curve cryptosystem of genus 2 over the field
GF(283). The security level of this HECC system is approximately 166 bits, and
thus it is comparable to the ECC system over the field GF(2163) that we have used.

2 We store the intermediate values in the XRAM since the internal RAM of a standard
8051 microcontroller has a size of only 128 bytes (see Appendix A).
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using a “small” field like GF(2163), only 21 bytes per operand need to be trans-
ferred between ECAU and XRAM. Furthermore, all software routines have an
additional parameter specifying the degree m of the field. To the best of our
knowledge, this paper presents the first hardware/software co-design approach
for elliptic curve cryptography providing a certain level of scalability.

2 Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) has a number of advantages over the tradi-
tional public-key cryptosystems based on the integer factorization problem or
the discrete logarithm problem in finite fields. The most important advantage
is the absence of a subexponential-time algorithm that could solve the discrete
logarithm problem in a properly selected EC group. As a consequence, elliptic
curve cryptosystems can use much shorter keys, which results in faster imple-
mentations and lower memory and bandwidth requirements [3].

Formally, an elliptic curve cryptosystem operates in a group of points on an
elliptic curve defined over a finite field. Most practical ECC implementations
use special types of finite fields to improve performance; among these special
field types are binary extension fields GF(2m), prime fields GF(p), and optimal
extension fields (OEFs), i.e. extension fields GF(pm) whose characteristic p and
extension degree m are specifically selected [13]. The latter two field types allow
for efficient software implementation, especially on processors equipped with a
fast integer multiplier. For hardware implementation, on the other hand, binary
extension fields GF(2m) are generally the better choice. Therefore, we shall only
consider binary extension fields in the rest of this paper.

An elliptic curve over a binary field GF(2m) can be defined as the set of all
solutions (x, y) ∈ GF(2m)×GF(2m) to the (affine) Weierstraß equation

y2 + xy = x3 + ax2 + b with a, b ∈ GF(2m) (1)

A tuple (x, y) ∈ GF(2m)×GF(2m) satisfying Equation 1 is called a point on the
curve. The set of all points, together with a special point O (referred to as the
“point at infinity”), allows to form an Abelian group with O acting as identity
element. The group operation is the addition of points, which can be performed
through arithmetic operations (addition, multiplication, squaring, and inversion)
in the underlying field GF(2m) according to well-defined formulae [13].

A basic building block of all elliptic curve cryptosystems is scalar multipli-
cation, an operation of the form k · P where k is an integer and P is a point on
the curve. In its simplest form, a scalar multiplication can be realized through
a sequence of point additions and doublings, respectively. There exist a number
of advanced algorithms for point multiplication; one of the most efficient was
proposed by López and Dahab in [18]. Their algorithm requires to carry out
4blog2 kc+6 additions, 2blog2 kc+4 multiplications, 2blog2 kc+2 squarings and
2blog2 kc+1 inversions in the underlying finite field GF(2m) to obtain the result
of k · P [18, Lemma 4].
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Table 1. Overview of arithmetic operations when using LD projective coordinates

Operation #Field Add #Field Mul #Field Sqr #Field Inv

Point addition (Madd) 2 4 1 0
Point doubling (Mdouble) 1 2 4 0
Conv. affine to proj. coord. 1 0 2 0
Conv. proj. to affine coord. 6 10 1 1
Scalar multiplication k · P 3blog2 kc+7 6blog2 kc+10 5blog2 kc+3 1

Inversion is generally the most demanding—and hence slowest—arithmetic
operation in GF(2m). Therefore, it is prudent to use an algorithm for scalar mul-
tiplication that minimizes the number of inversions. If the points on the curve
are represented in projective coordinates [3], then the inversion operation can
be almost completely avoided at the cost of additional field multiplications and
some extra storage for auxiliary variables. Only one inversion is needed for the
re-conversion from projective to affine coordinates. The point addition and dou-
bling in López-Dahab (LD) projective coordinates can be calculated as shown
in Algorithm Madd and Mdouble in [18, Appendix A], respectively. Table 1 spec-
ifies the overall number of field arithmetic operations for point addition, point
doubling, re-conversion from projective to affine coordinates, and a full scalar
multiplication. A special property of the LD scalar multiplication algorithm is
the fact that it performs exactly one Madd and one Mdouble operation for each
bit of the scalar k. Consequently, the total number of Madd/Mdouble operations
depends only on the bitlength of k, but not on its Hamming weight, i.e. the
number of “0” and “1” bits in the binary representation of k. This property
helps to prevent certain side-channel attacks like simple power analysis (SPA)
attacks and timing attacks [13].

The elements of a binary extension field GF(2m) can be represented by binary
polynomials of degree up to m− 1. Addition in GF(2m) is simply a logical XOR
operation, while the multiplication of two field elements is performed modulo an
irreducible polynomial p of degree m. Hardware multipliers for GF(2m) produce
the product of two field elements by generation and addition of partial products
as well as generation and addition of multiples of p. Squaring in GF(2m) is a
special case of multiplication and can be implemented in hardware in one clock
cycle when p is fixed and has a low weight. Finally, the inversion can be realized
either by using the extended Euclidean algorithm (EEA) or with help of Fermat’s
theorem by calculating a−1 = a2m

−2 mod p, which results in a sequence of field
multiplications and squarings, respectively. Therefore, a “minimalist” hardware
accelerator should be able to perform addition and multiplication in GF(2m).

3 Hardware/Software Boundaries and Trade-Offs

Efficient software implementation of ECC on 8-bit platforms is a challenging
task, in particular if the order of the underlying field is beyond 160 bits. Recent
research has shown that highly-optimized software implementations can reach
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sub-second performance on the ATmega128 [12], but not on a standard 8051
microcontroller, at least not if the order of the finite field is 160 bits or more
[12, 16, 24]. The main reason is the rather poor performance of a standard 8051
in relation to the ATmega128 (see Appendix A). Hardware/software co-design
offers numerous possibilities for speeding up ECC at the cost of a moderate
increase in silicon area. A survey of the recent literature allows to identify three
basic co-design approaches for enabling ECC on 8-bit processors. In this section
we discuss the different hardware/software boundaries and analyze the pros and
cons of these approaches.

One way to partition between hardware and software is to assign a full
point addition/doubling operation to the hardware part and the rest to the
software part. A concrete implementation following this approach was reported
by Janssens et al. in [15]. They implemented the field arithmetic operations in
hardware, together with local RAM for storing intermediate results and dedi-
cated state machines to control the point addition/doubling operations. While
this approach is very fast (there are no operand transfers during a point addi-
tion/doubling), it suffers from high hardware cost. Furthermore, implementing
the point addition/doubling in hardware does not allow to respond to progress
in ECC, e.g. when more efficient addition/doubling formulae are developed.

A second way to draw the line between hardware and software is to offload
the field arithmetic operations from the host processor and execute them in a
dedicated hardware accelerator like a co-processor. All other operations, i.e. point
addition/doubling and scalar multiplication, are implemented in software and
executed on the host processor. In general, this approach offers high flexibility,
including the ability to integrate the latest countermeasures against side-channel
attacks into the algorithm for scalar multiplication. On the other hand, this
approach may entail a significant communication overhead, especially when the
accelerator hardware does not provide local storage for auxiliary variables. The
fastest implementations following this approach have been reported by Ernst et
al. [7] and Aigner et al. [1]. The latter implements all field arithmetic operations
in hardware (including squaring and inversion) and uses affine coordinates. Other
implementations are described in [17] and in [2, 14], whereby the latter two are
based on hyperelliptic curve cryptography (HECC). Detailed performance figures
of all these works can be found in Table 5 in Section 5. Our co-design for ECC
presented in the next section also follows this approach.

Finally, the boundary between hardware and software can also be defined at
the level of custom instructions that are specifically designed to accelerate the
field arithmetic, most notably the field multiplication [11]. Hardware/software
co-design at the granularity of instruction set extensions provides the highest
flexibility and requires the least amount of extra hardware of all approaches dis-
cussed in this section. It was demonstrated in [6] that instruction set extensions
enable an ATmega128 to execute a scalar multiplication over GF(2163) in 290
msec (at a clock frequency of 8 MHz). However, it is highly questionable whether
similar performance can be reached on a standard 8051 microcontroller where
one instruction cycle takes 12 clock cycles (see Appendix A).
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4 Implementation Details

In the following, we describe the hardware accelerator that we implemented to
enable fast ECC on the Dalton 8051 microcontroller [22]. We begin with a system
overview. Then, the Elliptic Curve Acceleration Unit (ECAU), the interface to
the external RAM (XRAM), and the system software are presented.

4.1 System Overview

The overall system structure is depicted in Figure 1. It consists of four major
parts: The Dalton 8051 microcontroller core, the Elliptic Curve Acceleration Unit
(ECAU) with a separate datapath and control unit, and the DMA interface to
the XRAM.

External
RAM

DMA
Dalton
8051

ECAU
datapath

ECAU
control

EC Acceleration Unit (ECAU)

Fig. 1. System block diagram

The control unit inside the ECAU is responsible for generating appropriate
control signals for the ECC datapath and provides busy signals to the DMA
interface. The ECAU and the DMA interface support operand lengths of up to
192 bits, but can be configured at runtime for smaller operands.

4.2 Elliptic Curve Acceleration Unit (ECAU)

Figure 2 shows the internal architecture and the I/O interface of the ECAU. The
heart of our EC accelerator is the GF(2m) arithmetic unit, which consists of a
bit-serial polynomial multiplier with interleaved reduction and several registers
for operands and the result. Furthermore, the GF(2m) arithmetic unit can also
be used for the addition (i.e. XOR) of two field elements.

The I/O register decouples the ECAU from the DMA interface, which makes
it possible to transfer data while the unit is performing a multiplication. The
DMA interface shifts data in and out of the I/O register in blocks of 8 bits each.
All other registers are accessed via the I/O register and support parallel data
transfer through an internal 192-bit bus.
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Multipliplier (a) Multiplicand (b)

I/O register

Result (r)

GF(2m)
arithmetic unit

Irreducible poly. (p)

Fig. 2. Elliptic Curve Acceleration Unit

The datapath of the GF(2m) arithmetic unit, shown in Figure 3, is based on
the structure proposed in [10]. It supports addition and multiplication in binary
extension fields GF(2m) with m ≤ 192 and puts no restriction on the form of the
irreducible polynomial, i.e. it works with any irreducible polynomial. The control
signal add/mul allows to switch between addition and multiplication mode.

In order to perform an addition, the first operand must be present inside
the result register. This is almost always the case during a scalar multiplication
since one of the two operands is the result of the previous arithmetic operation
(addition or multiplication). The second operand needs to be stored in the multi-
plicand register b. The GF(2m) arithmetic unit operates in addition mode if the
add/mul signal is set to 0 and the multiplier bit input is 1. This selects the up-
per inputs of the multiplexers and disables the reduction modulo the irreducible
polynomial p. The addition in GF(2m) is nothing else than a simple bit-wise
XOR of the coefficients and the sum is written back to the result register.

add/mul

r190r191

b191

p191

multiplier bit

b190

p190

... logical AND ... logical XOR

r1 r0

b1

p1

b0

p0

Fig. 3. Datapath of the GF(2m) arithmetic unit for operands up to 192 bits
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The multiplication in GF(2m) is realized through an MSB-first bit-serial
multiplier with interleaved reduction modulo the irreducible polynomial. Before
a multiplication can be started, the result register must be cleared and the
two operands need to be present in the multiplicand and multiplier register,
respectively. To enable the multiplication mode, the add/mul signal must be set
to 1. The control logic then causes the multiplier register to perform a 1-bit left-
shift operation in each cycle, which delivers one bit of the multiplier polynomial
a to the multiplier bit input, starting with the most significant bit am−1.

The partial products are calculated by a bit-wise logical AND operation be-
tween the multiplier bit and each bit of the multiplicand polynomial b. To get
the final result of the multiplication, a total of m partial products need to be
summed up. Together with the generation and addition of partial products, the
bit-serial multiplier performs 1-bit left-shift operations and reduces the interme-
diate result modulo the irreducible polynomial p in each cycle. The reduction
modulo p is performed by adding p to the intermediate value stored in the result
register whenever its most significant bit (MSB) is 1. An MSB of 1 means that
the intermediate result would have a degree of m after the next 1-bit left-shift
operation, and therefore the irreducible polynomial p must be added to reduce
the intermediate result to a degree of at most m− 1 (see [10] for details). Note
that the addition of the partial product, the 1-bit left-shift operation of the
intermediate result, and reduction step (i.e. the conditional addition of p) are
taking place simultaneously in each clock cycle. After the final coefficient of the
multiplier polynomial has been processed, the result of the multiplication resides
within the result register (after m clock cycles).

Because a required reduction is detected by checking if r191 = 1, all argu-
ments in the registers need to be left aligned. For example, if the field GF(2191)
is used, then all operands need to be shifted left by one bit, and for GF(2163)
by 29 bits. However, these shift operations have to be carried out only once at
the beginning of the scalar multiplication. All field arithmetic operations during
a scalar multiplication are performed with the shifted operands.

4.3 Interface with Direct Memory Access (DMA)

The 8051 itself has too little internal RAM to hold the operands and auxiliary
variables needed during a scalar multiplication. Since the Dalton 8051 needs 17
clock cycles for each instruction cycle, it would require at least 17 · 192/8 = 408
cycles to transfer one 192-bit operand from XRAM to the ECAU and another
408 cycles to transfer the result back into XRAM (assuming only one instruction
cycle for XRAM access). This is unreasonably slow compared to the m clock
cycles needed for a multiplication in GF(2m) and the single-cycle execution of a
field addition. Therefore, we propose to use a DMA controller to facilitate fast
data transfers between the ECAU and XRAM, bypassing the slow 8051.

In order to load a whole 192-bit operand, one just needs to provide the start
address of the argument in the XRAM and then start the DMA controller. The
controller transfers the whole operand byte by byte in 85 clock cycles to the
I/O register. If operands shorter than 192 bits are used (e.g. 163 bits), then the
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Table 2. ECAU instructions and their execution times

Command Cycles Description

MUL m+ 4 Result ← Multiplicand × Multiplier mod p
ADD 4 Result ← Result + Multiplicand
LOAD IOR 4 I/O register ← Result register
CLEAR RR 4 Result ← 0
LOAD MDR 4 Multiplicand ← I/O register
LOAD MR 4 Multiplier ← I/O register
LOAD IPR 4 Irreducible Polynomial (p) ← I/O register

interface automatically clears all unused bits in the I/O register and aligns the
operand to the most significant byte. However, bit-wise alignments have to be
done in software.

4.4 Software

To control the ECAU, three special function registers (SFRs) are used. The
degree m of the binary field is set via the bitlength register. The status register
provides feedback about the current operation status of the ECAU and the DMA
interface. A third SFR is used to send instructions to the ECAU. Table 2 shows
all implemented instructions and their respective timings.

In order to take advantage of the additional hardware, the software must be
adapted accordingly. We have developed assembler-optimized functions that use
our hardware extensions. Wherever possible, data transfers to the I/O register
are interleaved with ECAU operations. By careful examination of the dataflow
during a scalar multiplication, transfer delays can be reduced to a minimum.

5 Implementation Results

In order to determine the size of the new hardware units, we have synthesized
the extended Dalton 8051 with a 0.35 µm standard-cell library from Austria Mi-
crosystems. The targeted delay for the critical path was set to 83 nsec (12 MHz).
The minimal possible critical path delay is about 13 nsec (77 MHz), whereby
the critical path is located within the ALU of the Dalton 8051. Our additional
units (DMA, ECAU) could be clocked at significantly higher frequencies than
the microcontroller.

Table 3 lists the size of the original Dalton 8051 microcontroller, the DMA
unit, and the components of the ECAU (control logic, datapath logic, as well
as datapath flip-flops). The size is given in absolute values in µm2 as well as in
gate equivalents (GE). The GE count has been derived from the absolute size
of the component divided by the size of a NAND gate with the lowest driving
strength from the used library.

Note that the internal RAM (IRAM) of the 8051 has been implemented as
flip-flops for our synthesis. In practice a part of the IRAM could be implemented
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Table 3. Hardware size and maximal clock frequency of the extended system

Size Size Max. Freq.
Component

µm2 GE MHz

8051 core (excl. IRAM, ROM) 272,145 4,984
77

8051 IRAM (as flip-flops) 647,574 11,860

DMA 56,202 1,029

333
ECAU control 39,203 718
ECAU datapath logic 228,246 4,180
ECAU datapath FFs 366,912 6,720

Total 1,610,282 29,491 77

with SRAM macros in order to save silicon area. The enhanced 8051 microcon-
troller has a size of about 30,000 GEs. The additional components for ECC are
about 75% of the original Dalton 8051’s size and account for about 43% of the
extended system.

Table 4. Execution times of operations for scalar multiplication over GF(2191)

Operation Cycles

Transfer of one 191-bit operand 85
Addition in GF(2191) excluding operand transfers 4
Multiplication in GF(2191) excl. operand transfers 195
Point addition (Madd) including operand transfers 2,623
Point doubling (Mdouble) incl. operand transfers 2,623
Full scalar multiplication over GF(2191) 1,416,000

Table 4 shows the execution times for diverse arithmetic operations with
191-bit operands. Table 5 compares the performance of ECC multiplication with
related work. Systems built around an AVR microcontroller are faster than sys-
tems using an 8051, which is caused by the generally better performance of AVR
devices (see Appendix A). The work by Aigner et al. uses affine coordinates
and has an additional squaring and inverter unit which can perform a squaring
operation in one clock cycle and an inversion in 2m clock cycles.

Batina at al. use in their work a HECC system of genus two over the field
GF(283), which provides roughly the same level of security as 163-bit ECC. Our
work reaches significantly better performance compared to Batina et al. mainly
due to efficient operand transfer between ECAU and XRAM thanks to direct
memory access. Hodjat et al. try to circumvent the performance bottleneck by
using a local storage unit of 256 bytes, which needs additional silicon area.

Table 6 compares our implementation with related work in terms of hardware
and code size. Our work needs more silicon area than the design by Batina
et al., but achieves a 16-fold better area-delay product. Also our code size is
considerable smaller, which directly translates into savings in silicon area when
the program code is stored in on-chip ROM.
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Table 5. Performance comparison with ECC/HECC scalar multiplication of related
work. The first six table entries refer to “pure” software implementations and the rest
to hardware/software co-designs.

Security Field Freq Performance
Reference Target Platform

Level Type MHz msec cycles

Woodb. [24] 8051 (SLE44C24S) ECC 134 bit GF(pm) 12.00 1,830.0 21.96M
Kumar [16] 8051 (CC1010) ECC 134 bit GF(pm) 3.69 2,999.8 11.06M
Gura [12] 8051 (CC1010) ECC 160 bit GF(p) 14.74 4,580.0 67.53M
Gura [12] 8051 (CC1010) ECC 192 bit GF(p) 14.74 7,560.0 111.48M
Gura [12] AVR (ATmega128) ECC 160 bit GF(p) 8.00 810.0 6.48M
Gura [12] AVR (ATmega128) ECC 192 bit GF(p) 8.00 1,240.0 9.92M

Ernst [7] a AVR (AT94K) ECC 113 bit GF(2m) 12.00 1.2 14.40k
Kumar [17] AVR (AT94K) ECC 163 bit GF(2m) 4.00 113.0 452.00k
Janssens [15] AVR (AT94K) ECC 192 bit GF(2m) 10.00 45.0 450.00k
Eberle [6] AVR (ATMega128) ECC 163 bit GF(2m) 8.00 290.0 2.32M
Aigner [1] a 8051 (SLE66CX) ECC 191 bit GF(2m) 10.00 44.3 443.86k
Batina [2] 8051 (Dalton) HECC 166 bit GF(2m) 12.00 2,488.0 29.86M
Hodjat [14] 8051 (Dalton) HECC 166 bit GF(2m) 12.00 656.0 7.87M

This work 8051 (Dalton) ECC 163 bit GF(2m) 12.00 99.2 1.19M
This work 8051 (Dalton) ECC 191 bit GF(2m) 12.00 118.0 1.42M

a Estimated performance figures.

Table 6. Comparison of hardware cost, code size, and XRAM requirements

Size Area-delay product Code size XRAM
Component

(norm.) Size (norm.) × msec Bytes Bytes

Dalton 8051 1.00
Batina [2] 1.15 2,861.2 11,524 936
This work (163 bit) 1.75 173.6 2,568 384
This work (192 bit) 1.75 206.5 2,568 336

6 Conclusions

In this paper we have presented a hardware/software co-design approach for
enabling ECC on 8-bit platforms using a minimalist hardware accelerator. We
have demonstrated the importance of a thorough analysis of the overall system
performance to remove bottlenecks. Communication overhead due to operand
transfers has been minimized by integration of a small DMA unit and through
the inclusion of an additional I/O register into the hardware accelerator. With
the help of our simple and fast finite field arithmetic unit, we can support scalar
multiplication over binary fields of degree up to 192. At the cost of about 12.65k
gates in hardware, ECC scalar multiplication requires 118 msec over GF(2191)
and 99.2 msec over GF(2163) on our enhanced 8051 system when clocked with
12 MHz. Considering performance gain in relation with hardware overhead, our
solution relates very well to previous work on comparable 8-bit platforms.
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A 8-bit Architectures for Embedded Systems

Most previous work dealing with co-design of ECC for embedded systems used
either an 8051-compatible microcontroller or an AVR-based processor to execute
the software. Both the 8051 and the AVR platform possess a significant share
of the worldwide smart card market and other security-critical segments of the
embedded systems industry, e.g. sensor nodes.

A.1 The 8051 Microcontroller

The 8051 is an 8-bit microcontroller originally developed by Intel for use in
embedded systems. After its launch in 1980, the 8051 has quickly gained pop-
ularity in the 1980s and early 1990s, and is today generally considered as the
most widely used microcontroller of all times. There exist more than 20 inde-
pendent manufacturers of 8051-compatible microcontroller cores; among these
are leading semiconductor vendors like Atmel, Infineon, and Philips.

A typical 8051-compatible microcontroller includes 128 bytes of internal data
RAM (IRAM), 4 kB of internal program memory (ROM), four 8-bit I/O ports
and a serial port, two 16-bit timers/counters, and optionally an extended data
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RAM (XRAM). Numerous enhanced variants of the “original” 8051 have been
developed during the past 25 years. For instance, the 8052 features 256 bytes
of internal RAM instead of 128 bytes, 8 kB of ROM instead of 4 kB, and a third
16-bit timer. Other 8051 derivatives, such as the Infineon SLE44/SLE66 fami-
lies of smart card controllers, have additional 16-bit instructions and extended
addressing modes for smart card applications. Both the SLE44 and the SLE66
are referred to as 16-bit smart card controllers in the data sheets, but they are
fully opcode-compatible to the original 8051.

The 8051 has probably the widest range of derivatives of any embedded
microcontroller on the market today, and, as a consequence, the performance
of the different 8051 devices varies significantly, even when running at the same
clock frequency. Each instruction executed on an original 8051 microcontroller
takes either 1, 2, or 4 instruction cycles to complete, whereby a single instruction
cycle corresponds to 12 clock cycles. Therefore, the original 8051 is rather slow
as it can execute at most 1 million instructions per second when clocked with
12 MHz. Newer variants of the 8051 run at six, four, two, or even one clock cycle
per instruction cycle, and are able to operate at clock frequencies of 100 MHz
or even more. For example, the Infineon SLE66 executes instructions at a rate
of two clock cycles per instruction cycle, and thus it is up to six times faster than
a standard 8051 at the same clock frequency. On the other hand, the Dalton 8051
[22] requires 17 clock cycles per instruction cycle, which means that the Dalton
is even slower than the original 8051 developed some 25 years ago.

A.2 The ATmega128 Microprocessor

The AVR is an 8-bit RISC architecture with 32 general-purpose registers and
separate memories for program and data (Harvard architecture). All instructions
have a fixed length of 16 bits. The AVR instruction set is more regular than that
of the 8051, but not completely orthogonal. Arithmetic/logical instructions have
a two-operand format and allow to carry out operations between two registers
or between a register and an immediate (constant) value.

The AVR implementations by Atmel, such as the ATmega128, feature a two-
stage pipeline and execute most instructions in a single clock cycle. Multiply
instructions need a second cycle to complete. Any access to RAM requires two
cycles, while reading from program memory takes three cycles. The ATmega128
has 4 kB SRAM, 128 kB Flash memory, and 4 kB EEPROM. It can be clocked
with frequencies of up to 16 MHz and achieves throughputs approaching 1 MIPS
per MHz. Thus, the ATmega128 outperforms the original 8051 by more than an
order of magnitude at the same clock frequency. It was stated in [4] that, for
certain applications, an AVR core can be a whopping 28 times faster than an
8051 running at the same clock frequency. This must be taken into account
when comparing the execution times of elliptic curve cryptosystems on these
two platforms. Furthermore, the ATmega128 has certain architectural features
(e.g. large number of general-purpose registers, two-cycle multiply instruction)
which facilitate the efficient software implementation of long integer arithmetic
operations used in ECC.


