Improving SHA-2 Hardware Implementations

Ricardo Chaves'?, Georgi Kuzmanov?, Leonel Sousa', and Stamatis
Vassiliadis?

! Instituto Superior Técnico /INESC-ID. Rua Alves Redol 9, 1000-029 Lisbon,
Portugal. http://sips.inesc-id.pt/
? Computer Engineering Lab, TUDelft. Postbus 5031, 2600 GA Delft,
The Netherlands. http://ce.et.tudelft.nl/

Abstract. This paper proposes a set of new techniques to improve the
implementation of the SHA-2 hashing algorithm. These techniques con-
sist mostly in operation rescheduling and hardware reutilization, allowing
a significant reduction of the critical path while the required area also
decreases. Both SHA256 and SHA512 hash functions have been imple-
mented and tested in the VIRTEX II Pro prototyping technology. Exper-
imental results suggest improvements to related SHA256 art above 50%
when compared with commercial cores and 100% to academia art, and
above 70% for the SHA512 hash function. The resulting cores are capable
of achieving the same throughput as the fastest unrolled architectures
with 25% less area occupation than the smallest proposed architectures.
The proposed cores achieve a throughput of 1.4 Gbit/s and 1.8 Gbit/s
with a slice requirement of 755 and 1667 for SHA256 and SHA512 re-
spectively, on a XC2VP30-7 FPGA.

Keywords: Cryptography, Hash functions, SHA-2 (256, 512), FPGA

1 Introduction

Cryptography is becoming an essential part of most electronic equipments
that require data storing or manipulation. However, the algorithms used
to enforce this security are too demanding to be implemented in software
for the current required processing speeds. To achieve the require pro-
cessing capability hardware components have to be used. These hardware
cores are usually implemented either in dedicated ASIC cores [1-3] or in
reconfigurable devices [4-7]. In this paper we propose a new hardware im-
plementation of the SHA-2 algorithm, used in authentication systems and
in the validity check of data. Several techniques have been proposed to
improve the implementation of the SHA-2 algorithm. The most relevant
are:

— the usage of parallel counters or well balanced Carry save Adders
(CSA), in order to improve the partial additions. In technologies, like

reconfigurable devices that have dedicated data paths for improving
addition, this technique is not always beneficial;

— unrolling techniques that optimize the data dependency. This tech-
nique allows for an improvement in the throughput, however, it usu-
ally significantly increases the required circuit area [2,6,8];

— delay balancing and the usage of improved addition units, since in this
algorithm this is the critical operation;

— the usage of embedded memories to store the required constant values
(K);

— use of pipelining techniques, to achieve higher working frequencies.
Due to highly dependent data computation the resulting throughput is
usually not improved and more complex control logic is required [2,9].

However, the performance of the SHA-2 algorithm can be further im-
proved with other techniques. To achieve this goal, this paper proposes
operation rescheduling, that allows for an efficient use of a pipelined struc-
ture without an increase in area, and hardware reutilization techniques
that allow for resource saving.

Both implementations of the SHA256 and SHA512 hash functions
suggest:

— throughput per Slice efficiency metric improvement of 53% compared
to commercial SHA256 cores, and more than 100% to current SHA256
academia art, and 77% for SHA512 implementations;

— a throughput of 1.4 Gbit/s for SHA256 and 1.8 Gbit/s for SHA512,
with 755 and 1667 slices, on a XC2VP30-7 FPGA, respectively;

— 150 times speedup with respect to the software implementation.

The paper is organized as follows, Section 2 presents the SHA-2 al-
gorithms. Section 3 describes the proposed design. The characteristics of
FPGA implementations are presented in section 4. Section 5 presents the
obtained results and compares them to related art. Section 6, concludes
the paper with some final remarks.

2 SHA-2 Hash algorithm

In 1993 the Secure Hash Standard (SHA) was first published by the NIST.
In 1995 this algorithm was reviewed in order to eliminate some of the
initial weakness, and in 2001 new Hashing algorithms were proposed.
This new family of hashing algorithms known as SHA-2, use larger digest
messages, making them more resistent to possible attacks and allowing
them to be used with larger blocks of data, up to 2'2® bits, e.g. in the case

of SHA512. The SHA-2 hashing algorithm is the same for the SHA256,
SHA224, SHA384, and SHA512 hashing functions, differing only in the
size of the operands, the initialization vectors, and the size of the final
digest message.

The following describes the SHA-2 algorithm applied to the SHA256
hash function, followed by the description of the SHA512 hash function,
which differs mostly in the size of the operands, using 64-bit words in-
stead of 32-bit. Note that SHA224 and SHA384 are computed as SHA256
and SHA512, respectively, with the final hash value truncated to the cor-
responding size, the Initialization Vector also differs.

SHA256 Hash function: The SHA256 Hash function produces a
final digest message of 256 bits, that is dependent of the input message,
composed by multiple blocks of 512 bits each. This input block is ex-
panded and fed to the 64 cycles of the SHA256 function in words of 32
bits each (denoted by W}). In each cycle or round of the SHA-2 algorithm
the introduced data is mixed with the current state. This data scrambling
is preformed by additions and logical operations, such as bitwise logical
operations and bitwise rotations. The computational structure of each
round of this algorithm is depicted in Figure 1. The several functions
presented in this figure are described in Appendix I. The value W; is the
32-bit data word, for the ¢ round, and the K; value represents the 32-bit
constant that also depends on the round.

; ﬂ’ﬂﬂ

Fig. 1: SHA-2 round calculation.

The 32-bit values of the A to H variables are updated in each round
and the new values are used in the following round. The initial values
of these variables is given by the 256-bit constant value specified in [10],
this value is only set for the first data block. The consecutive data blocks
use the intermediate hash value, computed for the previous data block.
Each 512 data block is processed for 64 rounds, after which the values
of the variables A to H are added to the previous digest message, in
order to obtain partial digest message. To better illustrate this algorithm
a pseudo code representation is depicted in Figure 2. The final Digest
Message (DM) for a given data stream, is given by the result of the last
data block.

for each data_block i do

W = expand(data_block)
E =DM, ;F =DM;s;G=DMs;H= DM,

for t= 0, t< 63 {79}, t=t+1 do
Ti=H+Y) ,(E)+Ch(E,F,G)+ K, + W,
T = Zo(A) +Maj(A7B:C)
H=G;G=F;F=F,;

E=D+T
D=C;C=B;B=A
A=T+T,

end for

DMO=A+DMO,DM1=B+DM1
DM2=C+DM2;DM3=D+DM3
DM4:E+DM4;DM5:C+DM5
DM¢ =D + DMs ; DM7 = E + DM

end for

Fig. 2: Pseudo Code for SHA-2 algorithm.

In some higher level applications like the efficient implementation of
the keyed-Hash Message Authentication Code (HMAC) [11] or when a
message is fragmented, the initial hash value (IV) may differ from the
constant specified in [10]. In these cases, the variables A to H are initial-
ized by a variable Initialization Vector (IV').

SHAS512 Hash function: The SHA512 hash function computation
is identical to that of the SHA256 hash function, differing in the size of
the operands, that are of 64 bits and not 32 bits as for the SHA256, the
size of the Digest Message, that has twice the size being composed by 512
bits, and in the X' functions described in Appendix I. This Appendix also

describes the functions ¢ used in the message schedule. The value W; and
K, are of 64 bits and the each data block is composed by 16 64-bit words,
having in total 1024 bits.

Message schedule: In the SHA-2 algorithm the computation de-
scribed in Figure 1 is performed for 64 rounds for the SHA256 (80 rounds
for the SHA512), in each round a 32-bit word (or 64-bit for SHA512) ob-
tained from the intermidiate hash value is used. However each data block
only has 16 32-bits words for SHA256 or 16 64-bit words for SHA512, re-
sulting in the need to expand the initial data block to obtain the remaining
words. This expansion is performed by the computation described in (1),

where Mt(i) denotes the first 16 words of the i-th data block.

MY 0<t<15
w, = { M) (1)
o1(Wi—2) +Wi_r+00(Wi—15)+Wi_16,16 < t < 63 {or 79}

Message padding: In order to assure that the input message in a
multiple of 512 bits, as required by the SHA256 hash function, or 1024
for the SHA512 hash function, it is necessary to pad the original message.
This message padding also comprises the inclusion of the original mes-
sage dimension to the padded message. This operation can be efficiently
implemented in software with a minimal cost.

3 Proposed design

In the SHA-2 algorithm, the operations that have to be performed are
simple, however the data dependency of this algorithm does not allow for
much parallelization. Each round of the algorithm can only be computed
after the values A to H of the previous round have been calculated (see
figure 2), imposing a sequentiality to the computation. It should be no-
ticed that in each round the computation is only required to calculate
the values of A and F, since the remaining values are obtained directly
from the values of the previous round, as depicted in the pseudo code of
Figure 2.

In this paper, we propose a new operation rescheduling technique,
a new form to initialize the algorithm, and a more efficient hardware
reutilization scheme.

Operation rescheduling: In our proposal, we identified the part
of the computation of a given round ¢ that can be computed ahead in
the previous round f—1. Only the values that do not depend on the val-
ues computed in the previous round can be computed ahead. Unlike the

rescheduling technique proposed in [12] for the SHA1 algorithm, where
the inter round data dependency is low, in the SHA-2 algorithm the data
dependency is more complex, as depicted in Figure 1. While the variables
B,C,D,F,G, and H are obtained directly from the values of the round,
not requiring any computation, the values of A and E require computa-
tion and depend on all the values. In other words, the values A and F for
round t can not be computed until the values for the same variables have
been computed in the previous round have, as shown in (2).

Et_|_1 :Dt—FEl(Et)—i- Ch(EmFmGt)‘F Ht+ Kt—|- Wt (2)
At_|_1 =X (At)+ Maj(Bt,Ct,Dt)—FZl (Et)+ Ch(Et,Ft,Gt)‘i— Hi+ K+ W,

Taking into account that the value Hy; is given directly by G which
in its turn is given by F;_1, the precalculation of H can thus be given by
H;, 1 = F;_1. Since the value of K; and W; can be precalculated and are
simply used in each round, (2) can be rewritten as:

(St :Ht + Kt + Wt = thl + Kt + Wt;
Ei1 =Dy + X1 (Ey) + Ch(Ey, Fy, Gt) + 03 (3)
At+1 :EO(At) + Maj(Bt, Ct, Dt) + El(Et) + Ch(Et, Ft, Gt) + 5t,

where the value J; is calculated in the previous round. The value ;41 can
be the result of a full addition or the Carry and the Save vectors from a
Carry Save Addition. With this computational separation the calculation
of the SHA-2 algorithm can be divided into two parts, allowing the cal-
culation of § to be rescheduled to the previous clock cycle, depicted by
the grey area in Figure 3. Thus the critical path of the resulting hardware
implementation can be reduced. Since the computation is now divided by
a pipeline stage, the calculation of the SHA-2 requires an additional clock
cycle, to perform all the rounds. In the case of the SHA256 hash func-
tion 65 clock cycles are necessary to calculate the 64 rounds. As specified
in the SHA-2 algorithm and depicted in Figure 2, after all rounds have
been computed, the internal variables (A to H) have to be added to the
previous Digest Message.

Hash value addition and initialization: As mentioned after the
computation of a given data block, the internal variables have to be added
to the intermediate hash value. If this addition were to be implemented
in a straightforward manner, 8 adders would be required, one for each in-
ternal variable, of 32 or 64 bits depending if SHA256 or SHA512 is being
implemented. However, some hardware reuse can be achieved. By analyz-
ing the data dependency and the fact that most of the internal variables

do not require any computation, since their value is given directly by the
previous values of the other variables, taking into account that:

Hy =Gy = F;_9=E;_3; (4)
Dy =Ci1=DB; o= A3, (5)

the computation of the Digest Message for the data block 7 can be calcu-
lated from the internal variables A and F, as:

DM7«L = Ef,_3 + DM7Z'_1 H DM3¢L = At_g + DM3i_1;
DM6; =E; o+ DM6; 1 ; DM2;,=A; o+ DM2; 1;
DMb5;,=E; 1+ DMb;_1 ; DM1l;,=A;1+DM1;_;. (6)

Thus the calculation can be performed by only 2 addition units, as:

DM(j+4)i =FE;_31; + DM(j +4)i1 ;1<j<3
DM (j); =As—3+; + DM(j)i—1 ;1<j<3. (7

The selection of the corresponding part of the Digest Message (DMj),
could be performed by a multiplexer. However, taking into account the
sequentiality in which the values of DMj are used, a shifting buffer can
be used, as depicted in the right most part of Figure 3. Since the values
A; and E; require computation and the final value is only calculated in
the last clock cycle, the calculation of the values DMO0; and DM4; is
performed in a different manner. Instead of using one full adder, after the
calculation of the final value of A and FE, the Digest Message (DM) is
added during the calculation of their final values, by a Carry Save Adder
(CSA). Since the value of the previous Digest Message is known, the value
can be added during the first stage of the pipeline, not being on the critical
path, located in the second stage of the pipeline, where the full adders
are used. In the last round the value of A and F is not calculated, being
directly calculated the value of the Digest Message. During the normal
round calculation only the values A; and E; can be computed, in these
cases the input of the used CSA is put to zero, as depicted in Figure 3.
After each data block has been computed, the internal values A to
H have to be re-initialized with the newly calculated Digest Message.
This is performed by a multiplexer that selects either the new value of
the variable of the Digest Message, as depicted in the left most side of
Figure 3. Once more the values A and E are the exception. Since the final
value computed for these two variables is already the Digest Message, the
values are already loaded in the registers. An enable signal is used in

DMQ

M] H
t+1
DMz U > H >
X
FGr ™
DM, 7] . EFG E
Ul e Reset
F‘»L nable
— CE; CPA E E
DM' | S| t+1 t
2y M F SE—| +
U F > —
Er B
X DM, 0
4
BrAM| LKt MUX

DM:,»

CSA CSA CE;
b + ‘ + D SE
t

Fo Tt totio o b

M D Hesr
U» D>
x| Reset - CSA :D:CA‘
+
DM, [T c SA(
U chbt
Bﬁi EFG: E MUX
N DM, 0
DM':1 M
> B
U» B>
A7 X CA_ | CPA | Awm A A
- SA—] +
Enable
Reset Nofo e
ReseJL ABC: A 2 4

Fig. 3: SHA-2 round architecture.

the A and FE registers, in order to maintain these values during the re-
initialization of the other values.

In the first round the values of A to H also have to be initialized.
All variables, except A and E, are simply loaded with the values in the
DM registers, depicted in the leftmost part of Figure 3. For the A and E
variables the value is fed through the round logic. In this case the, all the
variables are set to zero (Reset) except the DMy and DM, inputs. Thus
the resulting value for the A and E registers will be the initialization
values of the DM registers.

In the standard for the SHA-2 algorithm the initial value of the Digest
Message (loaded to the A to H variables) is a constant value, that can be
loaded by using set/reset signals in the registers. If the SHA-2 algorithm
is to be used in a wider set of applications and in the computation of
fragmented messages, the initial Digest Message is no longer a constant
value. In these cases the initial value is given by the I'V that has to be
loaded. This loading can be performed by multiplexers at the input of
the Digest Message registers. In order to optimized the architecture the
calculation structure for the Digest Message can be used to load the IV,

not being directly loaded into all the registers. The value of the A1 and
FE1 registers is set to zero during this loading, thus the existing structure
acts as a circular buffer, where the value is only loaded into one of the
registers, and shifted to the others.

This circular buffer can also be used to more efficiently read the final
Digest Message, in a structure with an interface with smaller output ports,
since the values are simply shifted and less multiplexes are required.

4 SHA-2 FPGA Implementation

In order to evaluate the proposed design, the resulting SHA256 and
SHA512 hash functions cores have been implemented in a Xilinx VIRTEX
IT Pro (XC2VP30-7) FPGA using the Xilinx ISE (6.3) and SimplifyPro
(8.4) tools. All the values presented for our cores were obtained after
Place and Route. A Custom Computing Unit (CCU) using these SHA-2
cores, has also been designed for the Molen polymorphic computational
model [13], in order to fully test the cores.

In order to fully exploit the capabilities of the reconfigurable device,
some design adaptation can be made. The main one lays in the use of
fast carry chains for Carry Propagate Adders (CPA) instead of CSA in
both the first and in the second pipeline stage, since they are able to
achieve the same performance in FPGA, with less area resources. For
ASIC technologies, the structure depicted in Figure 3 is more suitable.
When implementing the SHA256 hash function, a single BRAM can be
used, since the 64 32-bits fit in a single 32-bit port embedded memory.
However, in the SHA512 hash function the operands have 64 bits, includ-
ing the constant K;. Since the existing BRAMs do not have 64-bit ports,
more than one would be required. However, they have a dual output ports
of 32 bits each. Thus the 80 64-bit constants can be mapped as two 32-bit
words: one port addresses the low part of the memory, with the lower 32
bits of the constant and the other the high part of the memory with the
higher 32 bits of the same constant. With this, only one BRAM is used
to generate the 64 bit constant.

For the message schedule in the FPGA technology considered, CPA
are also used instead of CSA. The structure of the data expansion com-
ponent is represented in Figure 4.

These cores have also been integrated as a CCU for the MOLEN
processor [13]. The MOLEN computational paradigm enables the SHA-
2 core to be embedded in a reconfigurable co-processor, tightly coupled
with the core General Purpose Processor (GPP). This, allows for a fast

Witz |Wygs
(o1

Fig. 4: SHA-2 data expansion module.

integration in existing software at a small cost in terms of additional
area. This polymorphic architecture uses the FPGAs embedded PowerPC
running at 300 MHz as a core GPP, with a main data memory running
at 100 MHz. The implementation is identical to the one described in [12].

5 Performance analysis and related work

Even though the SHA-2 cores have been developed with a VIRTEX II
Pro FPGA (XC2P30-7) as the target technology, they have also been
implemented on a VIRTEX (XCV400-6) and a VIRTEX II (XC2V2000-
6), in order to compare with the related art.

SHA 256 hash function core: The proposed SHA256 hash function
core has been compared with the most recent and most efficient related
art, for both the cores proposed in the academia and the best commercial
core currently available,as far as it is known by the authors. The obtained
comparison figures are presented in Table 1. When compared with the
most recent academic work [8,14] the results show higher throughputs,
from 17% up to 98%, while achieving a reduction in area above 25%
and up to 42%. These results suggest a significant improvement to the
Throughput per Slice (TP/Slice) metric in the range of 100% to 170%.
When compared with the commercial SHA256 core from Helion [15], the
proposed core suggests an identical area value (less 7%) while achieving
a 40% gain to the throughput, resulting in an improvement of 53% to
the Throughput per Slice metric. Note that from the analyzed cores,
ours is the only one capable of loading the Initialization Vector (IV).
In the proposed FPGA implementation the logic required for the IV
loading is located between registers as depicted in Figure 3. If the IV
loading mechanism were not present the reconfigurable logic located in
the CLB of the final register would be unused. Thus one can say that the
1V loading mechanism is implemented at zero cost. Since this loading is
performed with only an additional multiplexer located between registers,

Table 1: SHA256 core performance comparison

|Architecture [[Sklav [14]] Our [McEv. [8]] Our [|Helion [15]] Our |

Device XCV [XCV| XC2V |XC2V| XC2PV-7 |XC2PV-7
v cst yes cst yes cst yes
Slices 1060 764 1373 797 815 755
BRAMS >1 1 >1 1 1 1
Freq. (MHz) 83 82 133 150 126 174
Cycles n.a. 65 68 65 n.a. 65
ThrPut (Mbit/s) 326 646 1009 1184 977 1370
TP /Slice 0.31 [0.84| 0.74 |1.49 1.2 1.83

it does not influence the critical path of the circuit, as confirmed by the
implementation results. The structure proposed by McEvoy [8] also has
message padding hardware. This message padding is performed once to
the end of the message, and has no significant cost when implemented in
software. Thus the majority of the proposed cores and commercial core do
not include the hardware for this operation. McEvoy does not give figures
for the individual cost of this extra hardware. All the SHA256 cores have
the data expansion hardware.

SHA 512 hash function core: Table 2 presents the implementation
results for our core and the most significant related art. The figures pre-
sented also suggest a significant reduction to the required reconfigurable
area, from 25% up to 60%, while achieving a speedup to the hashing func-
tion. When compared with [14], the core that requires less area from those
compared, the proposed core requires 25% less reconfigurable logic while
a throughput increase of 85% is achieved, resulting in a Throughput per
Slice metric improvement of 165%. From the known proposed SHA512
cores, the unrolled core proposed by Lien in [16] is the only one capable
of achieving a higher throughput. However, this throughput is only 4%
higher, while requiring twice as much area (100% more) as the one pro-
posed in this paper. It should also be noticed that the results presented by
Lien in [16], do not include the data expansion module, that would most
likely influence the final throughput rate, not to mention the required
area. Even in this case the proposed core indicates a Throughput per
Slice metric 77% higher. All other analyzed cores have even lower values
for this efficiency metric. Table 2 also presents the values for the VIRTEX
IT Pro implementation, for which the core was originally developed.

! These values do not include the expansion data block, that in our architecture has
a cost of 224 slices.

Table 2: SHA512 core performance comparison

|Architecture [|Sklav [14][Lien [16][Lien [16]] Our [[McEv. [8][Our || Our |

Device XCV XCV XCV |XCV|| XC2V [XC2V||XC2VP
Expansion yes no no yes yes yes yes
v cst cst cst yes cst yes yes
Slices 2237 23841 35211 [1680 2726 1666 || 1667
BRAMS n.a. n.a. n.a. 2 >1 1 1
Freq. (MHz) 75 56 67 70 109 121 141
Cycles n.a. n.a. n.a. 81 84 81 81
ThrPut (Mbit/s) 480 717 929 889 1329 1534 || 1780
TP /Slice 0.21 0.3" | 0.26" |0.53]] 0.49 [0.92] 1.01

Polymorphic implementation of the SHA-2 cores: In order to
integrate the proposed core in the existing software applications and to
easily test the cores, they were integrated into the MOLEN polymorphic
processor [13]. In this processor the cores are integrated has a CCU,
that can directly access the main memory and communicates with the
GPP via a set of exchange registers. The core is evoked as the equivalent
software function call. In order to use the proposed cores as CCU units
for the MOLEN processor, some additional logic is required. The CCU
for the SHA256 core requires 994 Slices using in total 7% of the available
resources of the XC2VP30 FPGA. The CCU for the SHA512 core requires
1806 Slices using in total 13% of the available resources. In this functional
test, the CCU is running with same clock frequency as the main data
memory, operating at 100MHz. Table 3 presents the speedup achieved
with the use of this hardware core, when compared with the pure software
algorithm. The values presented are for the SHA256 kernel function. The

Table 3: SHA256 polymorphic performances

Hardware Software
(Mbps) (Mbps)| Kernel
Bits ||Cycles|ThrPut|| Cycles |ThrPut|{SpeedUp
512 || 354 434 30402 | 5.05 85
1024|| 552 556 60546 5.07 109
128Kk|| 50088 | 785 ||7718646| 5.09 153

values suggest a speedup up to 153 times for the SHA256 hash function,
which is achieved when the total size of the data is sufficiently large to
compensate the initialization of the core, achieving a throughput of 785

Mbit/s. When only one data block is hashed the initialization time is
still relevant, reducing the speedup to 85 times. When at least two data
block are sent, the initialization becomes less significant, allowing already
a speedup of 109%. The SHA512 CCU is capable of achieving a maximum
throughput of 1.2 Gbit/s.

6 Conclusions

The proposed hardware rescheduling and reutilization schemes for the
SHA-2 algorithm implementations, allow for an improvement of both per-
formance and area resources. With the operation rescheduling, we were
able to reduce the critical path in a similar manner as in the loop un-
rolling, without duplicating the required hardware neither using more
complex data expansion schemes. This rescheduling also allows the us-
age of a well balanced pipeline structure that does not need additional
control logic, and where both stages are always being used. The required
reconfigurable resources are also significantly reduced due to the way the
Digest Message is added to the intermediate values, requiring less multi-
plexers and adders. By adding and loading the variables A and E through
the round hardware, area can also be saved and one less computational
cycle is required to add the Digest Message. Experimental results shown
a significant gain compared to the existing commercial cores and related
academia art. For the SHA256 hash function, the proposed core is capa-
ble of achieving a 17% higher throughput with an area reduction of 42%.
When compared with the Helion commercial core a 40% higher through-
put is achieved while reducing the required area by 7%. As an efficiency
measure, the Throughput per Slice metric has been improved by 53% for
the considered commercial core and more than 100% when compared with
the related academic art. The SHA512 hash function implementation sug-
gest identical results, requiring 25% less reconfigurable resources than the
smallest related art while achieving a 85% higher throughput. Even when
compared with the unrolled architectures, the proposed core is capable of
achieving identical throughputs, only 4% slower than the fastest proposal,
which uses loop unrolling, for a 50% area reduction. These values indicate
an improvement to the Throughput per Slice metric of at least 77% and
up to 165%. On a VIRTEX II Pro FPGA, the proposed cores are capable
of a throughput of 1.37 Gbit/s for the SHA256 and 1.78 Gbit/s for the
SHA512, with only 755 and 1667 slices usage, respectively.

Appendix I - SHA-2 operations

In this appendix the several operations for the SHA2 algorithm are de-
scribed. In Table 4 the logical operations Ch, Maj, X;, and o; are pre-
sented, where @ represents the bitwise XOR operation, A the bitwise
AND operation, ROTR"™(z) the right rotation operation by n bits, and
SHR"(x) the right shift operation by n bits.

Table 4: SHA256 and SHA512 functions

|Designation]| Function |
Maj(x,y,z) (zAy)®(zN2)D(YA2)
Ch(x,y,z) (zAy)®(TA=2)

1256} (2)| ROT R?(x) ® ROT R*®(x) ® ROT R*(xr)
138 (2)|ROT R™ (2) @ ROTR™ (z) ® ROT R ()
(r)| ROTR"(z) ® ROTR®(z) @ SHR?(x)
(x)| ROTR" (z) ® ROTR'®(z) ® SHR(x)
(z)|ROTR?®(x) ® ROTR>**(z) ® ROTR* (x)
B2 (0)|[ROTR™ (2) ® ROTR™(z) ® ROTR* (x)
(2)
(2)

ROTR'(x) ® ROTR®(x) ® SHR(x)
ROTR'Y(z) ® ROTR®* (x) @ SHR®(x)

References

10.

11.

12.

13.

14.

15.

16.

. Dadda, L., Macchetti, M., Owen, J.: The Design of a High Speed ASIC Unit for

the Hash Function SHA-256 (384, 512). In: DATE, IEEE Computer Society (2004)
70-75

Macchetti, M., Dadda, L.: Quasi-pipelined hash circuits. In: IEEE Symposium on
Computer Arithmetic, IEEE Computer Society (2005) 222-229

. Dadda, L., Macchetti, M., Owen, J.: An ASIC design for a high speed implementa-

tion of the hash function SHA-256 (384, 512). In Garrett, D., Lach, J., Zukowski,
C.A., eds.: ACM Great Lakes Symposium on VLSI, ACM (2004) 421-425
Grembowski, T., Lien, R., Gaj, K., Nguyen, N., Bellows, P., Flidr, J., Lehman,
T., Schott, B.: Comparative analysis of the hardware implementations of hash
functions SHA-1 and SHA-512. In Chan, A.H., Gligor, V.D., eds.: ISC. Volume
2433 of Lecture Notes in Computer Science., Springer (2002) 75-89

McLoone, M., McCanny, J.V.: Efficient single-chip implementation of SHA-384 &
SHA-512. proc. of IEEE International Conference on Field-Programmable Tech-
nology (2002) 311-314

Sklavos, N., Koufopavlou, O.: Implementation of the SHA-2 hash family standard
using FPGAs. The Journal of Supercomputing 31 (2005) 227248

Ting, K.K., Yuen, S.C.L., Lee, K.H., Leong, PH.W.: An FPGA Based SHA-256
Processor. In Glesner, M., Zipf, P., Renovell, M., eds.: FPL. Volume 2438 of Lecture
Notes in Computer Science., Springer (2002) 577-585

McEvoy, R.P., Crowe, F.M., Murphy, C.C., Marnane, W.P.: Optimisation of the
SHA-2 family of hash functions on FPGAs. IEEE Computer Society Annual Sym-
posium on Emerging VLSI Technologies and Architectures (ISVLSI’06) (2006)
317-322

Michail, H.E., Kakarountas, A.P., Selimis, G.N., Goutis, C.E.: Optimizing SHA-1
hash function for high throughput with a partial unrolling study. In Paliouras,
V., Vounckx, J., Verkest, D., eds.. PATMOS. Volume 3728 of Lecture Notes in
Computer Science., Springer (2005) 591-600

NIST: Announcing the standard for secure hash standard, FIPS 180-1. Technical
report, National Institute of Standards and Technology (1995)

NIST: The keyed-hash message authentication code (HMAC), FIPS 198. Technical
report, National Institute of Standards and Technology (2002)

(Omitted due to the blind review submission)

Vassiliadis, S., Wong, S., Gaydadjiev, G.N., Bertels, K., Kuzmanov, G., Panainte,
E.M.: The Molen polymorphic processor. IEEE Transactions on Computers (2004)
1363- 1375

Sklavos, N., Koufopavlou, O.: On the hardware implementation of the SHA-2
(256,384,512) hash functions. proc. of IEEE International symposium on Circuits
and systems (ISCAS 2003) (2003) 25-28

HELION: Fast SHA-2 (256) hash core for xilinx FPGA.
http://www.heliontech.com/ (2005)

Lien, R., Grembowski, T., Gaj, K.: A 1 Gbit/s partially unrolled architecture of
hash functions SHA-1 and SHA-512. In: CT-RSA. (2004) 324-338

