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Abstract. Cryptographic algorithms implemented in embedded devices
must withstand Side Channel Attacks such as the Differential Power
Analysis (DPA). A common method of protecting symmetric crypto-
graphic implementations against DPA is to use masking techniques.
However, clever masking of non-linear parts such as S-Boxes is difficult
and has been the flaw of many countermeasures. In this article, we take
advantage of some remarkable properties of the Fourier Transform to
propose a new method to thwart DPA on the implementation of every
S-Box. After introducing criteria so that an implementation is qualified
as DPA-resistant, we prove the security of our scheme. Finally, we apply
the method to FOX and AES S-Boxes and we show in the latter case
that the resulting implementation is one of the most efficient.
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1 Introduction

In 1996, Kocher introduced the concept of Side Channel Analysis which
utilizes side channel leakage of embedded devices such as timing execu-
tion to obtain Information about sensitive data [18]. This concept was
pushed one step further in [17]. In this paper, Kocher et al. use power
consumption measurements of the device during the execution of sensi-
tive operations, allowing two kinds of Power Attacks: the Simple Power
Analysis (SPA) and the Differential Power Analysis (DPA). The first at-
tack consists in directly interpreting power consumption measurements
and the second attack also involves statistical tests. From then on, many
papers describing either countermeasures or attack improvements have
been published (see [1,4,6,21] for example).

In the case of symmetric cryptosystems such as DES [11] and AES [10],
the most critical part when securing implementations against DPA is to



protect their non-linear operations (i.e. the calls to the S-Boxes). Indeed,
all the other operations are more or less linear and can be protected in
a straightforward manner (see [1] for instance). To protect the calculus
of the output of an S-Box against DPA, three main kinds of methods
have been proposed in the literature. The first one, called the duplication
method [6,13], consists in randomly splitting every piece of sensitive data
in a constant number of blocks. Then, the computation can be securely
carried out by performing calculations with these random blocks. The
second method, called the re-computation method [1,2,29], involves a re-
computation of the lookup tables corresponding to the S-Box with one or
several random value(s) which must be changed each time the algorithm
is executed. The third generic method, that we call here S-Box secure

calculation, has been essentially applied to protect AES implementations
[5,15,28,32] due to the strong algebraic structure of the AES S-Box. In this
case, S-Box outputs are not directly obtained by accessing a lookup table
but are computed by using a mathematical representation of the S-Box.
All the logical operations involved during this calculation are resistant to
DPA.

In this paper, we present a new, secure and generic S-Box calcula-
tion method based on the discrete Fourier transform. In Section 2, we
formalize DPA attacks on S-Boxes and we introduce a model allowing
us to measure the efficiency of such attacks. We also exhibit criteria so
that an implementation is qualified as DPA-resistant. In Section 3, we
briefly present the Fourier transform and we use its properties to intro-
duce a new S-Box secure calculation. We then prove that our method is
DPA-resistant in accordance with the criteria established in Section 2. In
Section 4, we apply our method to AES and FOX and we compare its
efficiency with other existing countermeasures.

2 On the Notion of DPA-resistant Implementation of
S-Boxes

S-Boxes aim to ensure confusion of Information in many symmetric cryp-
tosystems. Since they manipulate sensitive data, their implementation
in embedded devices must withstand side-channel cryptanalysis such as
DPA. During the last decade, several ways of securely implementing S-
Boxes have been proposed. For some of them, no proof of resistance to
DPA has been established and sometimes Information about the secret
is recovered. In such cases, there is a need to quantify the relevance of
the leaked Information from the attacker’s point of view. In the following,



we introduce a new notion called Advantage which allows us to measure
how much DPA on the S-Box implementation impacts the security of
the whole embedded cryptosystem. Even if we focus on block cipher al-
gorithms, our study is valid for every symmetric cryptosystem involving
S-Boxes.

A block cipher is the iteration of several rounds, each round involving
S-Boxes. The rounds are parameterized by round-keys which are derived
from a secret parameter usually called master key. A round-key RK can
be viewed as an uplet of small vectors, called sub-keys, which are used
separately by the S-Boxes. In the following, we denote by n the bit-length
of the sub-keys and by N the bit-length of the round-keys.

In a well-designed block cipher algorithm, recovering a sub-key K

must be as difficult as recovering the whole round-key RK by brute force
attack. An implementation of such an algorithm is said to be secure if
this fundamental property is not only satisfied by the algorithm but also
by its implementation.

When an S-Box implementation thwarts DPA, recovering the sub-key
by attacking the S-Box calculus is as difficult as recovering the round-
key itself (and thus requires around 2N suppositions). In this case, the
security of the cryptosystem is not impacted by DPA on the S-Boxes
implementations.

On the contrary, when the S-Box implementation has some draw-
backs from a DPA point of view, some Information about the sub-key is
obtained. In this case, the efficiency of the attack depends on the amount
of Information on K which has leaked:

– in the best case, the attack allows the attacker to get K completely.
– in less favorable situations, the attacker does not recover the sub-key

directly, but some useful Information on it is obtained (for instance
the Hamming weight of the sub-key or a linear relation which must
be satisfied by some of its bit-coordinates [19]).

Let RK denote the round-key an attacker tries to recover by DPA. By
performing a DPA for every S-Box which manipulates a sub-key extracted
from RK, the attacker succeeds in isolating the round key in a proper
subset of the key-space. Therefore, the attacker does not need to test all
theN -bit round-keys but only a subset of them to recover RK. Depending
on the efficiencies of the localized DPAs, the cardinality ε of this subset
ranges from 1 (the best case from the attacker viewpoint) to 2N (when
all the attacks failed).

To compare the efficiency of different countermeasures against DPA,
we introduce the notion of Advantage which aims to evaluate the at-



tacker’s capacity to recover a secret round-key RK manipulated partially
by one or several S-Box(es), each of them being implemented through a
method M.

Definition 1. Let RK be a N -bit secret value. The Advantage of an
adversary in recovering the secret RK by DPA is the value Adv defined

by:

Adv(M) = 2N − ε , (1)

where ε denotes the cardinality of the subset of FN2 containing all the

candidate round-keys isolated by DPA.

When DPA allows the attacker to unambiguously recover all the sub-
keys, the whole round-key is straightforwardly deduced and ε equals 1. On
the contrary, when power consumption measurements give no Information
on K, then ε equals 2N . We deduce 0 ≤ Adv(M) ≤ 2N − 1.

Proposition 1. An S-Box implementationM is such that Adv(M) = 0
if and only if M thwarts DPA. Such an implementation is said to be

DPA-resistant.

A first step in securing an S-Box implementation against DPA consists
in masking the sensitive data manipulated at input and at output of the
S-Box calculation. This is usually performed by securely adding random
values to these data [6]. Then, while the S-Box computation is performed
with the masked input, other operations must be involved (in parallel
or as pre-computations) allowing the so-called mask-correction and the
introduction of a new mask for the output. Let op denote either the
bitwise-addition or a modular addition and let F denote the S-Box, an
S-Box secure calculationM can be viewed as a process allowing to get the
pair (F (X) op R2, R2) from the input pair (X op R1, R1). So, a generic
solution to securely perform an S-Box calculation can be depicted by the
following generic procedure:

Procedure 1 S-Box calculation

Inputs: A random value R1, a masked value X̃ = X op R1 (with X a sensitive data),
a function F representing the S-Box, a methodM
Output: The pair (F (X) op R2, R2) with R2 a random value

1. Generate a random value R2

2. Compute result←M(X̃, R1, R2, F ) [result = F (X) op R2]

3. Return (result, R2)



Remark 1. We assume throughout this paper that the distribution of the
generated random values is uniform which is a prerequisite for security.

The cost of the mask-correction is usually not negligible compared to
the one of the entire block-cipher algorithm. Indeed, as it can be seen in
[25] or [31] for instance, it induces a very high (timing and/or memory)
overhead, especially because one must always ensure that the sensitive
data are securely manipulated and that the mask-correction algorithm
itself thwarts DPA.

For an S-Box calculation as depicted in Procedure 1, the method M
is DPA-resistant if the computation of F (X) op R2 from X op R1, R1

and R2 is performed without revealing any useful Information for DPA.
In order to design such a method, random values independent of the
input X are usually involved when manipulating sensitive data during
the calculation of the output stored in result.

By using and adapting ideas of [3], we decompose M into d steps
at the unit level 3. The intermediate results of the d steps are denoted
by I1(X,Z1), · · · , Id(X,Zd), where X is the sensitive input of the S-Box
and where Zi denotes an uplet of random variables involved to securely
manipulate the i-th intermediate data.

Let us assume that a methodM is such that every intermediate value
Ii(X,Zi) is independent of the sensitive input X. Then, the power con-
sumption resulting from the manipulation of the values Ii(X,Zi) gives
no Information on X. Based on this remark, we introduce a proposition
characterizing the methods M for which Adv(M) = 0:

Proposition 2. Let d denote the number of steps at the unit level of an

S-Box implementationM. Then, Adv(M) is null if and only if for every
i = 1, · · · , d, the random variables X and Ii(X,Zi) are independent.

Remark 2. The Mutual Information can be used to formalize the notion
of independency between two variables (see [22] for instance).

In the particular case of the AES algorithm, some S-Box implementa-
tions have been proved to be DPA-resistant [3,23]. Nevertheless, as they
rely on the algebraic structure of the AES S-Box, they are not generic.
In the next section, we present a new DPA-resistant method which can
be applied to every S-Box.

3 In hardware terms, this level is based on the contents of registers.



3 A New Method to Protect S-Boxes Access from DPA

In this section we firstly recall some basics about the Fourier transform.
Then, we exhibit an interesting property of this function from which a
new S-Box secure calculation method is deduced. Finally, we prove that
the corresponding implementation is DPA-resistant, i.e. the Advantage
of an adversary over this implementation is equal to zero.

3.1 Fourier Transform

Let us recall the definition of the Fourier transform of a function defined
from an abelian group G into C.

Definition 2. Let G be an abelian group and let Ĝ denote the dual space

of G. Let C[G] denote the set of applications from G into C. Then, the

Fourier transform on C[G], denoted by F , is defined by:

F : C[G]→ C[Ĝ]

F 7→ F̂
, (2)

where F̂ is defined by:

∀χ ∈ Ĝ, F̂ (χ) =
∑

X∈G

F (X)χ(X) . (3)

In this paper, we use the Fourier transform in the particular case
G = Fn2 . When G is a n-dimensional vector space over F2, its dual group

Ĝ is the set of characters χA : X 7→ (−1)A·X , where · denotes the scalar
product defined by A · X =

∑
i∈{0,...,n−1}Ai · Xi mod 2. So, if G = Fn2

then Relation (3) is equivalent to:

∀χA ∈ Ĝ, F̂ (χA) =
∑

X∈G

F (X)(−1)A·X . (4)

The Fourier transform of a function F defined on Fn2 satisfies F = 1
2n
̂̂
F ,

that is:

∀X ∈ Fn2 , F (X) =
1

2n

∑

χA∈Ĝ

F̂ (χA)(−1)
A·X . (5)

For simplicity reasons, the value F̂ (χA) is denoted by F̂ (A) and the
summation in Relation (5) is computed for A ∈ G.



3.2 DPA-resistant Implementation of S-Boxes Access

The new method. Relation (5) is the starting point of our study about
how to find a new solution to protect S-Box access from DPA. From this
relation and the involutive property of the Fourier transform, we observe
that the image of a message X through a function F can be computed
from a masked message X̃ and the corresponding mask.

Let X, R1 and A be three elements of Fn2 and let X̃ denote the vector

X ⊕R1. As A ·X ⊕ X̃ ·R1 equals A · X̃ ⊕R1 · (X̃ ⊕A), one can re-write
Relation (5) as follows:

(−1)X̃·R1F (X) =
1

2n

∑

A∈F
n
2

F̂ (A)(−1)A·X̃⊕R1·(X̃⊕A) . (6)

The relation above is the core of our solution. When F denotes an S-
Box, it provides a way to compute ±F (X) from a boolean masked input
X̃. The most remarkable fact in Relation (6) is that the mask-correction is
performed on-the-fly during the computation of F (X). The induced over-
head is negligible compared to the whole calculus and the simplicity of the
mask-correction operations makes it easy to evaluate the DPA-resistance
of the method with the model introduced in Section 2. However, a direct
implementation of this relation is not secure since the output and some
intermediate results are unmasked. In particular, as R1 · X̃ equals R1 ·X
(where X denotes the two-complement of X), the scalar multiplication
R1 · X̃ has a flaw when X equals the all-one vector (see [12] for the de-
scription of an attack exploiting such a flaw). To circumvent this default,
the variable X̃ must be masked by a random value R2 independent of R1.

In the following, we present a modified version of Relation (6) whose
straightforward implementation is DPA-resistant (as proved in Section
3.3):

(−1)(X̃⊕R2)·R1F (X) +R3 =⌊
1
2n

(
R′ +

∑
A∈F

n
2
F̂ (A)(−1)A·X̃⊕R1·(X̃⊕A⊕R2)

)⌋
,

(7)

where R′ = 2nR3 +R4 with R3, R4 ∈ Fn2 . The 2n-bit vector R′ is used to
mask the intermediate results of the summation.

Implementation Aspects. In the following, we denote by SP a func-
tion which computes (−1)X·Y from a couple (X,Y ) and by AM2BM a
procedure which transforms an arithmetic masking into a boolean mask-
ing:

AM2BM : (sign, sign×X +R,R) 7→ X ⊕R , (8)



where sign = ±1.

From Relation (7), we deduce the following algorithm which computes
the boolean masked output of an S-Box from a boolean masked input:

Algorithm 1 Computation of a boolean masked S-Box output from a boolean masked
input

Inputs: A masked input X̃ = X ⊕R1, the input mask R1 and a lookup table F̂

Output: The couple (F (X)⊕R3, R3)

1. Pick up three n-bit random R2, R3 and R4

2. result← 2nR3 + R4

3. for A from 0 to 2n − 1 do

4. T1 ← SP(A, X̃) [T1 = (−1)A·X̃ ]

5. T2 ← X̃ ⊕A [T2 = X̃ ⊕ A]

6. T2 ← T2 ⊕R2 [T2 = X̃ ⊕ A⊕ R2]

7. T2 ← SP(R1, T2) [T2 = (−1)R1·(X̃⊕A⊕R2)]

8. T2 ← T1 × T2 [T2 = (−1)A·X̃⊕R1·(X̃⊕A⊕R2)]

9. T2 ← T2 × F̂ (A) [T2 = F̂ (A)(−1)A·X̃⊕R1·(X̃⊕A⊕R2)]

10. result← result + T2 [result = 2
n

R3 + R4 +
∑

i∈{0,A}

F̂ (i)(−1)
i·X̃⊕R1·(X̃⊕i⊕R2)

]

11. result← result >> n [result = (−1)(X̃⊕R2)·R1F (X) + R3]

12. T1 ← X̃ ⊕R2 [T1 = X̃ ⊕ R2]

13. T1 ← SP(T1, R1) [T1 = (−1)(X̃⊕R2)·R1 ]

14. result← AM2BM(T1, result, R3) [result = F (X)⊕ R3]

15. Return (result, R3)

In Algorithm 1, the lookup table F̂ is always accessed 2n times in
a way which is independent of the input X. The values X and R1 only
impact the combination of the values F̂ (A).

Random values R3 and R4 aim at masking the content of the buffer
result. Before the right-shift operation of Step 11, the least significant half
part of result contains the value R4. After Step 11, the content of result

equals the value (−1)(X̃⊕R2)·R1F (X) +R3 left-padded with zeros.

Computation performed in Step 14 (cf. Relation (8)) is essentially a
transformation of an arithmetic masking into a boolean masking. Goubin
[14] and Coron et al. [7] proposed DPA-resistant implementations of such
a computation. To implement AM2BM we use a slightly modified version
of Goubin’s method which outputs (X ⊕R,R) from (X −R,R). To take
into account the sign parameter, we use Goubin’s algorithm with (sign×
(sign×X +R),−sign×R) as input.

Efficiency of Algorithm 1 is strongly related to the dimension n of
the S-Box since the lookup table F̂ contains 2n signed integers belonging



to [−22n; 22n] and is accessed 2n times. For n = 8, F̂ requires at most
544 bytes of ROM (which is reduced to 512 bytes if all the values F̂ (A)
are even, which is often the case for cryptographic functions F ) and it
is accessed 256 times for each execution of Algorithm 1. The overhead
becomes significantly smaller when n = 4: in this case only 16 access to
the 18-byte lookup table F̂ are required (if all the values F̂ (A) are even,
F̂ can be stored over 16 bytes).

3.3 Security Analysis

In this section we analyse the security of Algorithm 1. From Proposition 2,
Algorithm 1 is DPA-resistant if and only if all the intermediate values
Ii(X,Zi) are independent of the input X.

We do not focus on Step 14 since Goubin shows in [14, §4.3] that all
the intermediate values that appear during the execution of his algorithm
are independent of the input.

In Table 1, we list the different sensitive intermediate results Ii(X,Zi)
which appear during the execution of Algorithm 1. The values which only
depend on the loop counter or on a random value are obviously omitted:

Step i Instruction Intermediate results Ii(X, Zi) Zi

4.1 reg ← X̃ X̃ R1

4.2 T1 ← SP(A, X̃) (−1)A·X̃ R1

5 T2 ← X̃ ⊕A X̃ ⊕A R1

6 T2 ← T2 ⊕R2 X̃ ⊕A⊕R2 (R1, R2)

7 T2 ← SP(R1, T2) (−1)R1·(X̃⊕A⊕R2) (R1, R2)

8 T2 ← T1 × T2 (−1)A·X̃⊕R1·(X̃⊕A⊕R2) (R1, R2)

9 T2 ← T2 × F̂ (A) F̂ (A)(−1)A·X̃⊕R1·(X̃⊕A⊕R2) (R1, R2)

10 result← result + T2 2nR3 + R4 (R1, R2, R3, R4)

+
∑

i F̂ (i)(−1)i·X̃⊕R1·(X̃⊕i⊕R2)

11 result← result >> n (−1)(X̃⊕R2)·R1F (X) + R3 (R1, R2, R3)

12 T1 ← X̃ ⊕R2 X̃ ⊕R2 (R1, R2)

13 T1 ← SP(T1, R1) (−1)(X̃⊕R2)·R1 (R1, R2)

Table 1. The different sensitive values manipulated during Algorithm 1.

To establish the independency of these intermediate values Ii(X,Zi)
with X, we use the following lemma:

Lemma 1. Let α ∈ Fn2 be arbitrary and let β be uniformly distributed

over Fn2 and independent of α. The variable α⊕β is uniformly distributed

and independent of α. The same holds for (−1)α⊕β if n = 1.



The proof of this lemma is straightforward and therefore omitted.
The sensitive values Ii(X,Zi) can be divided into two groups:

1. the ones which are masked by adding or by XORing a random value:
X̃, X̃ ⊕A, X̃ ⊕A⊕R2, X̃ ⊕R2 and result in Steps 10 and 11,

2. the other values: (−1)A·X̃ , (−1)(X̃⊕R2)·R1 , (−1)R1·(X̃⊕A⊕R2),

(−1)A·X̃⊕R1·(X̃⊕A⊕R2) and (−1)A·X̃⊕R1·(X̃⊕A⊕R2)F̂ (A).

The values belonging to the first group have a boolean or an arithmetic
mask which is chosen uniformly at random, so it is obvious that they are
independent of the input.

Now, let us analyse the values belonging to the second group:

– In the case A = 0, the variable (−1)A·X̃ = (−1)A·(X⊕R1) is always
equal to 1 and so it is independent of X. When A 6= 0, the inde-
pendency of the variables (−1)A·X⊕A·R1 and A · X is established by
applying Lemma 1 to α = A · X and β = A · R1. Since the variable
X only appears in the term A ·X, one deduces that (−1)A·X⊕A·R1 is
independent of X.

– By noticing that (X̃⊕R2)·R1 = X ·R1⊕R2·R1, one deduces in a similar

way from Lemma 1 that variables (−1)(X̃⊕R2)·R1 and (−1)R1·(X̃⊕A⊕R2)

are independent of X.
– As A·X̃+R1 ·(X̃⊕A⊕R2) equals A·X⊕X ·R1⊕R2 ·R1, Lemma 1 im-

plies that the variables (−1)A·X̃+R1·(X̃⊕A⊕R2) and X are independent.

The same conclusion holds for (−1)A·X̃+R1·(X̃⊕A⊕R2)F̂ (A).

We proved above that all the values Ii(X,Zi) manipulated during the
execution of Algorithm 1 are independent of the input X. From Propo-
sition 2, we thus deduce that our method is DPA-resistant, i.e. that its
Advantage is null.

In the next section, we apply our method to protect S-Boxes access
of AES and FOX. In the first case, we compare its performances with the
ones of two other well-known countermeasures.

4 Applications

4.1 DPA-resistant AES Implementation

Before the final choice for the Advanced Encryption Standard (AES)
[10], several papers had investigated the security of the AES candidates
against side-channel attacks, especially DPA [5,9,20]. Since 2000, many
countermeasures have been proposed to counteract DPA on AES4.
4 A survey of the proposed countermeasures is done in [8].



To counteract DPA, Kocher proposed in [18] a very simple and generic
solution which can be applied to protect an AES implementation. It con-
sists in using the lookup table F ∗ defined by X 7→ F [X⊕R1]⊕R2, where
R1 and R2 are two random values generated for each new execution of
the algorithm. The main drawback of this solution is the large amount of
RAM required to store F ∗. Indeed, this kind of memory is very limited
on embedded devices.

Another method called Transformed Masking Method (TMM) has
been presented in [1]. However, it has a weakness when computing the
AES S-Box (cf. [12]). In order to fix this flaw, several papers have been
published (cf. [12,23] for example).

In the two methods above, the AES S-Box, which performs an inver-
sion in F28 with 0 being mapped to 0, is implemented through a lookup
table. Rijmen presented in [27] an alternative idea which essentially con-
sists in using efficient combinational logic. In this approach, each element
a of F28 is represented as a linear polynomial ahx + al over F24 . The
inversion of such a polynomial can be computed as follows when it is
different from zero: (ahx + al)

−1 = a′hx + a′l where a
′
h = ah × d−1 and

a′l = (ah + al) × d−1 with d = (a2
h × {e}) + (ah × al) + a2

l and with {e}
denoting the hexadecimal value 0x0E (cf. [26, §3.3]).

Rijmen’s remark has been used in [24,23,32,30] to fix the flaw of TMM
when accessing S-Box: the so-called Tower Field Methods perform the
inversion in F28 by using masked multiplications and masked inversions
in F24 or F22 .

In the following algorithm, we present a new way to implement the
AES S-Box based on the method presented in Section 3. As this method
is much faster in F2n/2 than in F2n , we use Rijmen’s remark to perform

the computations in F24 instead of F28 . We denote by ÎnvF24
the Fourier

transform of the inverse over F24 where the element 0 is mapped to itself,
and by map the isomorphism defined in [26] which takes an element a
of F28 as input and outputs the coefficients of the corresponding linear
polynomial ahx+ al over F24 .

Algorithm 2 Inversion of a masked element ã = a⊕ma in F28

Inputs: (ã = a⊕ma, ma) ∈ F28
2

Output: (ã−1 = a−1 ⊕m′
a, m′

a)

1. Pick up three 4-bit random md, m′
h and m′

l

2. (mh, ml) ∈ F2
24 ← map(ma)

3. (ãh, ãl) ∈ F2
24 ← map(ã) [(ãh, ãl) = (ah ⊕mh, al ⊕ml)]

4. d̃← ãh
2 ⊗ {e} ⊕ ãh ⊗ ãl ⊕ ãl

2 ⊕md ⊕ ãh ⊗ml [d̃ = d⊕md]



⊕ ãl ⊗mh ⊕m2
h ⊗ {e} ⊕m2

l ⊕mh ⊗ml

5. (d̃−1, md−1)← Algorithm 1(d̃, md, ÎnvF
24
) [d̃−1 = d−1

⊕m
d−1 ]

6. ã′h ← ãh ⊗ d̃−1 ⊕m′
h ⊕mh ⊗ d̃−1 ⊕md−1 ⊗ ãh ⊕md−1 ⊗mh [ã′

h
= a′h ⊕m′h]

7. ã′l ← ãl ⊗ d̃−1 ⊕m′
l ⊕ ã′h ⊕ d̃−1 ⊗ml ⊕ ãl ⊗md−1 ⊕ m′

h ⊕ml ⊗md−1 [ã′
l

= a′l ⊕m′l]

8. m′
a ← map−1(m′

h, m′
l)

9. ã−1 ← map−1(ã′h, ã′l) [ã−1 = a−1
⊕m′a]

10. Return (ã−1, m′
a)

Steps 1 to 4 and Steps 6 to 9 have been proved to be DPA-resistant in
[23].

In the following table, we compare our method applied to AES with
two other countermeasures. The three implementations use boolean mask-
ing of the intermediate results except when accessing S-Boxes where we
use:
– Algorithm 2,
– Oswald et al.’s method [23,24]. It only differs from Algorithm 2 in its

approach to compute the inversion of d̃ ∈ F16. In [23,24], the inversion
is performed by going down to F4 and its complexity approximatively
equals the one of Algorithm 2 excluding the 5th Step which is replaced
by a square operation (since the inversion operation in F4 is equivalent
to squaring),

– Trichina et al.’s method [31] which uses log- and alog-tables.5

The timings were obtained with a CPU running at 8 MHz.

Method Timings (ms) RAM(bytes) ROM(bytes)

Straightforward implementation 5 32 1150

This paper (Algo. 2) 32 39 3100

Oswald et al. [23,24] 26 42 3400

Trichina et al. [31] 21 291 3050

Table 2. Comparison of several methods to protect AES against DPA.

To test the DPA-resistance of our method in practice, we mount a
DPA attack on the implementation described above. The results are given
in Appendix A.

4.2 DPA-resistant FOX Implementation

In [16], Junod and Vaudenay introduce a new family of block ciphers
called FOX. The non-linear part of a FOX-algorithm is ensured by an
5 Trichina et al.’s method seems to have a flaw with regard to the Zero Value Attack
(cf. [25]). Thus, its DPA-resistance is not well-established yet.



S-Box S. It consists in a Läı-Massey scheme with three rounds taking
three different small S-Boxes as round functions; these functions, denoted
by S1, S2 and S3, operate on 4-bit words.

S2

or4 or4

S3S1

Fig. 1. Structure of the S-Box of FOX

In Figure 1, the or4 operation consists in a single round of a 4-bit
Feistel scheme with the identity function as round function: for every
X = (x0, x1, x2, x3) ∈ F4

2, we have or4(X) = (x2, x3, x0 ⊕ x2, x1 ⊕ x3).

For every n-bit vector X, let us denote by X l and Xr the two n
2 -bit

vectors such that X = X l||Xr. To thwart DPA attack during the S-
Box calculations, we perform the following algorithm which inherits the
security of Algorithm 1:

Algorithm 3 Secure computation of FOX S-Box

Inputs: X̃ = X ⊕R1 and R1 in F8
2

Output: S(X)⊕R2 and R2, where R2 is a random vector

1. T1 ← X̃l; T2 ← X̃r; T3 ← Rl
1; T4 ← Rr

1

2. for i from 1 to 3 do

3. (r̃esult,mask) ← Algorithm 1(T1 ⊕ T2,T3 ⊕ T4,Ŝi)

4. T2 ← r̃esult⊕ T2

5. T4 ← mask⊕ T4

6. if i 6= 3 then

7. T1 ← or4(r̃esult⊕ T1); T3 ← or4(mask⊕ T3)

8. else

9. T1 ← r̃esult⊕ T1; T3 ← mask⊕ T3

10. r̃esult← (T1 << 4)⊕ T2; mask← (T3 << 4)⊕ T4

11. Return (r̃esult,mask)

Because the S-Boxes Si of FOX operate on 4-bit vectors, computing
their outputs by use of Algorithm 1 only implies 16 lookup table’s access
for each Si. It is possible to check that this overhead is much smaller than
the overhead induced by previous S-Box secure calculation methods.



5 Conclusion and Perspectives

In this paper, we describe a new and generic method based on the Fourier
transform to obtain DPA-resistant S-Box implementations. After intro-
ducing a security model to resist DPA, we prove the resistance of our
proposal. Since our method does not rely on specific S-Box properties, it
can be applied to any symmetric cryptosystem. It is very efficient when
the S-Box is applied to small fields such as FOX’s or when the computa-
tions can be performed in vector spaces of small dimensions. In particular,
we apply our method to AES and we evaluate in practice the efficiency
and the resistance of the corresponding implementation.

This work raises two interesting open problems. The first one is to
upgrade our security model and our method to take into account high-
order DPA attacks. The second one is to find other transformations or
operators which allow us to compute a masked output of an S-Box from
a masked input, without revealing information on the sensitive data.
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A Practical Evaluation of Our Method Applied to AES

In this section we present the results of a practical evaluation of our
method applied to AES (cf. Section 4.1). The implementation was done
on a 8-bit smart card on which we do not activate the different hardware
countermeasures. Concerning the statistical treatment, we use an im-
provement of traditional DPA called Correlation Power Analysis (CPA)
(cf. [4]).

Firstly, we attack a straightforward implementation of the AES when
accessing the first S-Box during the first round. By using the selection
function equal to the Hamming weight of the output of the S-Box, we
obtain the result depicted in Figure 2 after 100 executions of the algo-
rithm. The value of the sub-key used by the S-Box is recovered with only
30 executions of the algorithm.
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Fig. 2. CPA on non-masked AES S-Box implementation using 100 ran-
dom plaintexts.

Secondly, we perform the same attack against our DPA-resistant method
(cf. Algorithm 2) by using 20 000 executions of the algorithm. As shown
in Figure 3, the attack fails. We also apply CPA by using several other
selection functions such as the Hamming weight of the input of the S-Box.
All these attacks fail in the same way.
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Fig. 3. CPA on Algorithm 2 using 20 000 random plaintexts.


