Fast Generation of Prime Numbers on
Portable Devices: An Update

Marc Joye''* and Pascal Paillier?

1 Thomson R&D France
Technology Group, Corporate Research, Security Laboratory
1 avenue Belle Fontaine, 35576 Cesson-Sévigné, France
marc.joye@thomson.net
2 (Gemalto, Security Labs
34 rue Guynemer, 92447 Issy-les-Moulineaux Cedex, France
pascal.paillier@gemalto.com

Abstract. The generation of prime numbers underlies the use of most
public-key cryptosystems, essentially as a primitive needed for the cre-
ation of RSA key pairs. Surprisingly enough, despite decades of intense
mathematical studies on primality testing and an observed progressive
intensification of cryptography, prime number generation algorithms re-
main scarcely investigated and most real-life implementations are of dra-
matically poor performance.

We show simple techniques that substantially improve all algorithms
previously suggested or extend their capabilities. We derive fast imple-
mentations on appropriately equipped portable devices like smart-cards
embedding a cryptographic coprocessor. This allows onboard generation
of RSA keys featuring a very attractive (average) processing time.

Our motivation here is to help transferring this task from terminals where
this operation usually took place so far, to portable devices themselves in
near future for more confidence, security, and compliance with network-
scaled distributed protocols such as electronic cash or mobile commerce.

Keywords: Public-key cryptography, RSA, primality testing, prime num-
ber generation, embedded software, efficient implementations, cryptopro-
cessors, smart cards, PDAs.

1 Introduction

Undoubtedly, the lack of efficient prime number generators severely restricts the
development of public-key cryptography in embedded environments. Several al-
gorithms that generate prime numbers do exist, some of them being well-known
and popular [5,6,8,17], but most of them are hardly adapted to the compu-
tational context of portable devices like smart cards or PDAs, where memory
capabilities and processing power are somewhat limited. A noticeable exception
is found in a recent heuristic algorithm by Joye, Paillier and Vaudenay [13].

* This work was done while the author was with Gemalto (formerly Gemplus).

In this paper, we improve their algorithm in multiple directions. First, we
give a more general description with extended parameter choices that fit any
(crypto-)processor architecture. Second, we present new techniques that speed up
the entire process and reduce the standard statistical deviation, especially in the
generation of so-called units. Third, we consider the issue of length extendability,
that is, algorithmic solutions for obtaining primes of arbitrary and dynamically
chosen bitsize.

The way prime numbers are selected during (e.g., RSA) key generation is
critical towards the security of generated key pairs. Therefore we investigate the
mathematical properties fulfilled by our improved algorithms. Using an analogue
of Gallagher’s empiric law on the distribution of primes in arithmetic progres-
sions [10, 11], we accurately evaluate the output entropy of our generators. We
also analyze the probability that two outputs are identical, i.e., that one gets the
same prime number when running the generation twice with randomly selected
independent inputs. It is shown that the output entropy is nearly optimal (the
entropy loss is < 0.61 bits compared to uniform distribution) and that collisions
remain extremely unlikely.

The prime number generation algorithms we consider here find their main
application in the generation of RSA keys on embedded platforms. This context
of use implies the additional condition on a prime ¢ being generated, that ¢ — 1
be coprime to a prescribed public RSA exponent e. We show how our algorithm
may automatically fulfill this latter condition at negligible cost, at least for small
or smooth values of e. Further, as an additional application of our techniques,
we show how to efficiently generate a random safe (resp. quasi-safe) prime. This
answers a problem left open in [13].

The rest of the paper is organized as follows. In the next section, we present
our improved prime generation algorithms. We then provide a security analysis
in Section 3. In Section 4, we apply our techniques to the generation of RSA
keys and of safe primes. Finally, we conclude in Section 5.

2 Efficient Generation of Prime Numbers

This section describes efficient (trial-division free as opposed to [3,6,8,17]) al-
gorithms for producing a prime ¢ uniformly distributed in some given interval
[@min, Gmax] Or a sub-interval thereof; ¢min and gmax being two arbitrarily chosen
integers and gmin < gmax- Our proposal actually consists of a pair of algorithms:
the prime generation algorithm itself and an algorithm for generating invertible
elements, also called units [13]. We assume that a random number generator is
available, and that some fast (pseudo-)primality (resp. compositeness [2,4, 14,
20, 22,25, 19]) testing function T is provided as well.

Parameter setup. Let 0 < € < 1 denote a quality parameter (a typical value for
£ is 1072). Let also ¢ denote Euler’s totient function. Our setup phase requires
to choose a product of primes, IT =[], p;, such that there exist integers ¢, v, w
satisfying

-1
(P1) 1—e< ———— <1;

Gmax — Gmin

(PZ) vll +t = Gmin ;
(P3) (U + ’UJ)H +t—-1 < Gmax 3
(P4) the ratio ¢(IT)/II is as small as possible .

N
v
X’&
X @ﬂ\
X
o o
Q‘ wll — 1 \‘
| |
I 1
Gmin Gmax

Fig. 1. e-approximated output domain.

The primes output by our algorithm lie, in fact, in the sub-interval [vIT +
t,(v +w)I +t — 1] C [¢min,Gmax] as illustrated on Fig. 1. The error in the
approximation is captured by the value of € meaning that a smaller value for
gives better results (cf. Property (P1)). The minimality of the ratio ¢(II)/II in
Property (P4) ensures that IT contains a maximum number of distinct primes
and that these primes are as small as possible. Given any tuple (¢min, Gmax;, €),
computing the tuple (IT,v,w,t) that best matches Properties (P1)—(P4) is ex-
perimentally easy.

Prime number generation. We now proceed to describe our prime number gen-
eration algorithm in its most generic version, as depicted on Fig. 2.

Parameters: ¢, v, w and a € (Z/mZ)" \ {1}

Output: a random prime ¢ € [Gmin, Gmax)
1. Compute ! «— vIl and m «— wll

2. Randomly choose k € (Z/mZ)*

3. Set g« [(k—¢t) modm]+t+1

4. If (T(q) = false) then

(a) Set k<« a-k (mod m)
(b) Go to Step 3
. Output gq

[¢)]

Fig. 2. Generic prime generation algorithm for ¢ € [¢min, Gmax]-

The first step requires the random selection of an integer k € (Z/mZ)* (see
Section 2.2) where m = wlIl is a smooth integer. At this stage, it is worth-
while noticing that since a € (Z/mZ)*, k remains coprime to m and also to
IT throughout the algorithm —remember that II contains a large number of
prime factors by Property (P4). This, in turn, implies that ¢ is coprime to IT
as ¢ = [(k—t)modm]+t+1 =k (mod II) and k € (Z/IIZ)*. Hence, this
technique ensures built-in coprimality of our prime candidate ¢ with a large set
of small prime numbers. Consequently, the probability under which q is prime at
Step 3 is in fact quite high. When ¢ is found to be composite, a new candidate
is derived by “recycling” ¢ in a way that preserves its coprimality to II.

2.1 An implementation example

The previous algorithm is actually very general and can be adapted in numer-
ous ways, depending on hardware capabilities of the targeted processor archi-
tecture. Public-key crypto-processors generally allow super-fast (modular) addi-
tions, subtractions and multiplications over large integers, and this renders other
types of computations comparatively prohibitive, unless specific hardware is in-
tegrated to support these. We now give a possible implementation to illustrate
this, in which we attempt to increase our algorithm’s performance to its upper-
most level while running on a general-purpose crypto-processor. Other choices
of parameters may lead to better results on specific platforms.

A first improvement is to choose w = 1 and to let the value of ¢ varying as a
random multiple of I, say t = bII for some integer b, instead of fixing it. This
allows to compute modulo I7, resulting in faster arithmetic. Also, the constant a
may be chosen such that performing a multiplication by a modulo m turns out
to be a somewhat trivial operation. In the end, the best possible choice is a = 2,
because multiplying by 2 then amounts to a single bit shift or addition, possibly
followed by a subtraction. Unfortunately, 2 must belong to (Z/mZ)* and owing
to Property (P4), 2 is a factor of II, a contradiction. A simple trick here consists
in choosing m odd (so that 2 € (Z/mZ)*) and in slightly modifying the above
framework in order to ensure that a prime candidate ¢ is always odd. We require
II =T, pi (with p; # 2) and integers bmin, bmax, v satisfying:

(bmax - bmin + 1)H -1 <

(P1) 1—¢e< <1;

@max — Jmin
(P2) vII + byin Il = gmin ;
(P3) (v 4 1)II + byaxI — 1 < Gmax;
(P4) the ratio ¢(IT)/II is as small as possible .
Putting it all together, we obtain the algorithm shown on Fig. 3.% Note that if

k+t+1is even then IT—k+t+1is odd since [—k+t+l = I+ (k+t+) =1 =1
(mod 2). Hence, as before, any candidate ¢ belonging to our search sequence is

3 Stricly speaking, the algorithm of Fig. 3 is a particular case of the generic algorithm
of Fig. 2 only if, at Step 6(b), we go to Step 3 (instead of Step 4).

coprime to 2IT: we get ged(q,2) = 1 as ¢ is odd. Also, ged(q, IT) =1 as ¢ = +k
(mod IT) and +k € (Z/II7Z)*.

Parameters: II odd, bmin, Omax, ¥

Output: a random prime q € [qmin7ql'nax]

1. Compute ! « vIl

2. Randomly choose k € (Z/IIZ)*

3. Randomly choose b € {bmin,--.,bmax} and set t «— bII
4. Set q—k+t+1

5. If (q even) then q«— Il —k+t+1

6. If (T(q) = false) then

(a) Set k « 2k (mod IT)
(b) Go to Step 4
. Output gq

~

Fig. 3. Faster prime generation algorithm.

2.2 Generation of units

All prime generation algorithms presented in this paper require the random
selection of some element k € (Z/mZ)* in the spirit of [13]. This section provides
an algorithm that efficiently produces such an element with uniform output
distribution. We base our design on the next two propositions, making use of
Carmichael’s function .

Proposition 1 (Carmichael [7]). Let m > 1 and let k be any integer modulo
m. Then k € (Z/mZ)* if and only if k*(™ =1 (mod m). O

Proposition 2. Let k,r be integers modulo m and assume ged(r,k,m) = 1.
Then
[k + 71— E"™) mod m] € (Z/mZ)* .

Proof. Let [], p;% denote the prime factorization of m. Define w(k,r) := [k +
r(1 — kM) mod m| € Z/mZ. Let p; be a prime factor of m. Suppose that
p;i | k then w(k,r) =r # 0 (mod p;) since ged(r, p;) divides ged(r, ged(k, m)) =
ged(r, k,m) = 1. Suppose now that p; { k then k)™ = 1 (mod p;) and so
w(k,r) =k £ 0 (mod p;). Therefore for all primes p; | m, we have w(k,r) Z 0
(mod p;) and thus w(k,r) # 0 (mod p;%), which, invoking Chinese remainder-
ing, concludes the proof. a

We benefit from these facts by devising the unit generation algorithm shown
on Fig. 4.

Parameters: m and A(m)
Output: a random unit k € (Z/mZ)*

1. Randomly choose k € [1,m]

2. Set U — (1 —k*™) mod m

3. If (U#0) then
(a) Choose a random r € [1,m]
(b) Set k<« k+rU (mod m)
(c) Go to Step 2

4. Output k

Fig. 4. Our unit generation algorithm.

This algorithm is self-correcting in the following sense: as soon as k is rel-
atively prime to some factor of m, it remains coprime to this factor after the
updating step k < k+rU. This is due to Proposition 2. What happens in simple
words is that, viewing k as the vector of its residues k mod p;% for all p;% | m
(i.e., the RNS representation of k based on m, see [9]), non-invertible coordinates
of k are continuously re-randomized until invertibility is reached for all of them.
This ensures that the output distribution is strictly uniform provided that the
random number generator is uniformly distributed over [1,m].

2.3 Efficiency

A complexity analysis for generating an ng-bit prime ¢ is easily driven from the
work of [13]. The expected number of calls to T, i.e., the number of primality or
compositeness tests required on average, heuristically amounts to

s o)

Naturally the exact, concrete efficiency of our implementation also depends
on hardware-related features. In any case, in practice, a spectacular execution
speed-up? is generally observed in comparison with usual, incremental and trial-
division-based prime number generators. It can be shown that the unit gen-
eration requires about 2.15 modular exponentiations z — 2*(™) mod m where
the bitsize of A(m) is much smaller than the bitsize of m, and experimentally
never exceeds |m|/3. For instance, one has [A(m)| ~ 160 when |m| = 512. Note
also that all computations fall into the range of operations easily and efficiently
performed by any crypto-processor.

We note that many previous works such as [24,16, 15] make use of trial-
divisions up to a large bound to decrease the number of calls to T. This common

4 which usually amounts to one order of magnitude.

technique is hardly adapted to cryptoprocessors where each and every modular
reduction may impose a prior, time-prohibitive modulus-dependent initializa-
tion. Experience shows that practical smart-card implementations are found to
impressively benefit from our above algorithm in comparison to these.

2.4 Length extendability

So far, our implementation parameters are II, a, the tuple (v, w, t) and A(m) with
m = wll. These values are chosen once and for all and heavily depend on ¢uin =
(2”0_1/ 21 and gmax = 2™, if ng denotes the bitsize of prime numbers being
generated. Now, the feature we desire here (and this is motivated by code size
limitations embedded platforms usually have to work with), consists in the ability
to use the parameters sized for ng to generate primes numbers of bitsize n # ng.
A performance loss is acceptable compared to the situation when parameters are
generated for both lengths.

We propose an implementation solving that problem for any n > ng, provided
that a was chosen odd and that arithmetic computations can still be carried out
over n-bit numbers on the processor taken into consideration. It is an extended
version of the algorithm depicted on Fig. 2. We exploit the somewhat obvious,
following facts:

1. Letting gmax () = 27 and guin(z) = [2°71/2], we have of course gmax(n) =
qmin(n0)2n—no and Qmin(n) ~ Qmin(n0)2n_n0§

2. Given II(ng) chosen as per Section 2, we take

1T(n) = H(no)

v(n) = v(ng)2" "0
w(n) = w(ng)2n—"0 '
t(n) = t(ng)2n—"o

hence I(n) = 1(ng)2" ™" and m(n) = m(ng)2"~";
3. a(n) = a(ng), hence a(n) € (Z/m(n)Z)* since a(ng) is taken odd;

4. Given A(ng) = A(m(ng)), it is easy to see that denoting A(n) = A(ng)2" "0,
we have again A(n) = A(m(n)), or at least A(n) o A(m(n)) which is a
sufficient condition for the unit generation algorithm to be effective.

These transformations happen to preserve Properties (P1), (P2) and (P3) we
required earlier, with £(n) = e(ng). It is easy to see that all parameters for some
bitsize n may, as a direct consequence, be replaced by the respective parameters
computed for ng multiplied by 2”70, except for I1(n) = II(ng). By performing
this replacement, we just accept to live with sub-optimized performances because
the ratio ¢(I1(n))/II(n) will not be chosen minimal. Still, our algorithm will
output n-bit primes in a correct manner, for any dynamic choice of n > ng, with
a 1-bit granularity.

Parameters: l(no) = v(no)ll(no), m(no) = w(ne)Il(ng),
t(no), alno) € (Z/m(no)Z)"\ {1}, no

Input: bitsize n = ng

Output: a random prime ¢ € [gmin(n), Gmax(n)]

1. Set m « m(ng)2" "0, t «— #(no)2" "% and [« l(ng)2" "0
2. Randomly choose k € (Z/mZ)*

3. Set q— [(k—t)modm]+t+1

4. If (T(q) = false) then

(a) Set k<« a(no)k (mod m)
(b) Go to Step 3
5. Output ¢

Fig. 5. Our scalable prime generation algorithm.

Our extended algorithm is depicted on Fig. 5. In Step 1, the random unit
generation is carried out with parameters m(ng)2"~ " and A(ng)2" ™ instead
of m(ng) and A(ng). This does not affect the algorithm whatsoever. Another
observation is that the order of a(n) modulo m(n) is necessarily larger than (or
equal to) the order of a(ng) modulo m(ng). It is therefore large enough for all
our choices of n provided that a(ng) was correctly chosen in the first place.

3 Security Analysis

We outline in this section a mathematical analysis of our generic prime gener-
ation algorithm (Fig. 2). The results are easily transposable to the other prime
generation algorithms presented in this paper. We answer the following critical
questions:

Question 1. Are output primes well distributed? How much entropy is there in
the output distribution?

Question 2. What is the probability that the same prime is output for two in-
dependently selected input values?
3.1 Output entropy

We accurately evaluate the entropy H of the output distribution which, following
Brandt and Damgard’s methodology [5], is considered as a quality measure of a
prime number generator.

Theorem 1. Let Hy,.x be the maximal possible value of H. Then, under Hardy
and Littlewoods’ prime r-tuple conjecture [11] and Gallagher’s heuristic [10], we

have for any n > 256,
1—
Hinax — H < —1 = 0.609949
In2
where v is the Euler-Mascheroni constant [22]. O

Theorem 1 shows that the entropy loss with respect to a perfectly uniform
generator is less that 0.61 bit for any prime bitlength. Due to lack of space, we
omit the proof here and refer the reader to the extended version of this work for
more detail [12].

Table 1 represents the concrete values for H, Hyyax and p = (Hpax—H)/Hmax
for various bitlengths n. We see that the output entropy of our generator is

Table 1. Output entropy H as a function of n.

n 256 384 512 640 768 896 1024
Hnax 246.767 374.179 501.762 629.439 757.176 884.953 1012.76
H 246.194 373.596 501.173 628.847 756.581 884.356 1012.16

Humax — H | 0.572795 0.583093 0.588773 0.592377 0.594834 0.59669 0.598092
p (%) 0.23212 0.155833 0.117341 0.094111 0.078559 0.067426 0.0590557

similar to the one of random search, in which one sets candidate ¢ to successive
random numbers until ¢ is prime. Our figures show that

— asymptotically, the output entropy gets arbitrarily close to its maximal pos-
sible value, and

— the gap is already negligibly small for concrete bitsizes of practical interest
256 < n < 1024.

3.2 Collision probability

Theorem 2. We denote by v the probability that the same prime number s

output twice for two uniformly and independently distributed random inputs.

Then
In2

1 .

Again, we refer to the extended version of this paper [12] for a detailed proof
of Theorem 2 and related insights. Table 2 displays v for common values of n.

V< n-27 "L

Table 2. Collision probability.

n 128 256 384 512 1024
r<[1.91-1077 3.30- 10712 4.28 - 10722 4.93-1073%¢ 549 .10~ 6

As a result, from Theorems 1 and 2, we conclude that our prime generation
algorithms are provably reliable.

4 Concrete Cryptographic Applications

We apply the prime number generators above to the concrete generation of RSA
primes, in which the public exponent e is fixed and set to a standard value. We
also consider the case of safe primes as they underly many variants of RSA and
other popular cryptosystems.

4.1 Generating RSA Primes

This section deals with the generation of an RSA prime ¢. Let e =], e;* denote
the prime factorization of a given public exponent e. Because the RSA primitive
(see Appendix A) induces a permutation (i.e., ged(e, A\(N)) = 1), it turns out
that ¢ must be such that ged(e;, ¢ — 1) = 1 for each prime e; dividing e.

First, let us assume that e; | IT for all i. This happens in the most popular
scenario where e is some small prime (like 3 or 17) or when e is chosen smooth.
Let a be an integer such that

ged(a,m) = 1 and order(a mod e;,e;) =e; — 1 for each e; | e . (1)

In practice, the choice of a value for & may be done easily using Chinese re-
maindering. Note that for such an «, we get that order(a, e;) is simultaneously
even for all prime factors {e;};. We define et = ged(e, IT) = [[, e; and denote
by ko the initial value for k that the unit generation algorithm of Fig. 4 gets
by invoking the random number generator in Step 1. It is easily seen that if we
force

ko=a (mode™), (2)

then the unit k£ eventually output by the algorithm will also verify that k = «
(mod e™). This is due to the algorithm’s self-correctness. We then adapt the
generic prime generation algorithm by choosing a = «?. By doing so, every
candidate ¢ generated by the sequence will satisfy

¢g=a¥T (mode'),

for some integer j, because et | II. Hence we can never have ¢ = 1 (mod ¢;)
since « is of even order modulo e; and ¢ is an odd power of a. Consequently,
g # 1 (mod e;) for all ¢, which implies ged(q — 1,€) = 1.

So our technique works when e; | IT for all 4, that is, when e has only small
prime factors. To deal with cases when e; t IT for some e; | e, we face the
following options:

— either e is a prime number itself (like Fermat’s fourth prime 216 + 1) and we
add the verification step

q—1;7?é0 (mod e)

before or after the primality test T is applied; or

— e is not prime but its factorization is known. We already know that ¢ # 1
(mod e;) when e; | IT, so we have to ensure that the same holds when e; 1 IT.
To do this, we simply check that ¢ — 1 # 0 (mod e;) for all prime factors
e; 1 I, or equivalently (but preferably) invoke Proposition 1 and make sure
that

(g—1D*) =1 (mode™),

where e~ =[], e; for all e; { II.

In both cases, unfortunately, adding at least one additional test to the im-
plementation cannot be avoided.

Finally, forcing kg = «a (mod e*) in Eq. (2) is easily done by picking a
random number 7 and setting kg = a+ er (mod m).

4.2 Generating safe and quasi-safe primes

We now show how to apply our generic techniques to the specific case of gen-
erating safe primes or quasi-safe primes. A safe prime is a prime g such that
(g —1)/2 is also a prime. More generally, a d-quasi-safe prime is a prime g such
that (¢ — 1)/2¢ is prime.

All the point here resides in the way the search sequence is carried out. It
should ideally verify that each and every candidate ¢ be such that both ¢ and
(¢ — 1)/2 are always coprime to II. It is somewhat easy to guarantee that for ¢
by ensuring (like in previous sections) that

qg=ak (mod II)

for some a, k € (Z/mZ)*. However, the later constraint on (¢—1)/2 is a bit more
delicate. Our need here is to ensure that for each prime divisor p; of II, p; # 2,

¢#Z1 (mod p;) .

Our idea is to make sure that ¢ mod p; just cannot be an element of QR(p;),
the subgroup of quadratic residues modulo p;. Doing so, we ensure that ¢ # 1
(mod p;). We proceed in the following way. First, the constant a is chosen in
QR(m). Next, we choose once for all a parameter u € (Z/mZ)* such that

V(odd) p; [IT: u ¢ QR(p;) - (3)

From there on, the initial unit & (to avoid confusion, we denote it by ko) is
chosen as kg = ux? mod m for some random x € (Z/mZ)*. Then, as before,
we have at iteration j

qg=(a"ko—t) modm]+t+1 .

It is now easy to see that for each and every odd prime p; | IT, ¢ = a’ ux?
(mod p;) has a Legendre symbol different from 1, and consequently ¢ — 1 cannot
be 0 modulo p;, i.e., ¢ — 1 is coprime to II.

When 27 | m for some 7 > 2, we have to make sure, in addition to the above,
that ¢ = 3 (mod 4) meaning that the last two bits in the binary representation
of ¢ are forced to ...11s, thereby ensuring that (¢ — 1)/2 is an odd number and
consequently that (¢ —1)/2 € (Z/IIZ)*. This is done by forcing k =3 (mod 4)
and a =1 (mod 4).

The resulting algorithm is described on Fig. 6.

Parameters: [=vll, m=wll, m'=m/2",
t, a € QR(m) and u as above

Output: a random prime ¢ € [¢min,Gmax] With (¢—1)/2 prime
1. Randomly choose x € (Z/mZ)*

2. Set k «— 4dux?+ 3m’ mod m

3. Set g« [(k—t)modm]+t+1

4. If (T(q) =false or T((¢ —1)/2) = false) then

(a) Set k « ak (mod m)
(b) Go to Step 3
5. Output ¢

Fig. 6. Safe-prime generation algorithm for ¢ € [gmin, Gmax]-

It is straightforward to extend our algorithm to the case of d-quasi-safe prime
numbers whenever d < 7. In this case, the constraint ¢ = 3 (mod 4) has to be
extended to ¢ = 27 + 1 (mod 2¢+1).

A note on efficiency. Heuristically, about

(0 2201 (- a2 202)

primality tests are required for generating a mng-bit safe prime ¢. This is ~ 25
times faster than incremental search algorithms (where we iterate ¢ < ¢+2 until
q and (¢ —1)/2 are simultaneously prime) for 512-bit numbers. Another obvious
benefit of our technique resides in its simplicity when compared to classical
algorithms.

5 Conclusion

We devised and analyzed simple computational techniques that improve the
work of [13] in multiple ways. It is argued that our algorithms present much
better performances than previous, classical methods.

We also would like to stress that our prime generation algorithm may support
additional modifications mutatis mutandis in order to simultaneously reach other

properties on ¢ — for instance forcing the last bits of ¢ to fit the Rabin-Williams
cryptosystem with even public exponents. Independently, some applications re-
quire that the pair of primes satisfy specific properties such as being strong or
compliant with ANSI X9.31 recommendations [1]. We refer the reader to [13] for
a collection of mechanisms allowing to produce such primes. We point out that
our improvements may coexist perfectly with these.

We also proposed a specific implementation for generating safe prime num-
bers which really boosts real-life execution performances. We emphasize that,
implementing our techniques, a complete RSA key generation process can be
executed on any given crypto-enhanced embedded processor in nearly all cir-
cumstances and with extremely attractive running times.

References

1. ANSI X9.31. Public-key cryptography using RSA for the financial services indus-
try. American National Standard for Financial Services, draft, 1995.

2. A.O.L. Atkin and F. Morain. Elliptic curves and primality proving. Mathematics
of Computation, vol. 61, pp. 29-68, 1993.

3. D. Boneh and M. Franklin. Efficient generation of shared RSA keys. In Advances
in Cryptology — CRYPTO ’97, vol. 1294 of Lecture Notes in Computer Science,
pp. 425-439, Springer-Verlag, 1997.

4. W. Bosma and M.-P. van der Hulst. Faster primality testing. In Advances in Cryp-
tology — CRYPTO ’89, vol. 435 of Lecture Notes in Computer Science, pp. 652—
656, Springer-Verlag, 1990.

5. J. Brandt and I. Damgard. On generation of probable primes by incremental
search. In Advances in Cryptology — CRYPTO ’92, vol. 740 of Lecture Notes in
Computer Science, pp. 358-370, Springer-Verlag, 1993.

6. J. Brandt, I. Damgard, and P. Landrock. Speeding up prime number genera-
tion. In Advances in Cryptology — ASIACRYPT ’91, vol. 739 of Lecture Notes in
Computer Science, pp. 440-449, Springer-Verlag, 1991.

7. R.D. Carmichael. Introduction to the Theory of Groups of Finite Order, Dover,
1956.

8. C. Couvreur and J.-J. Quisquater. An introduction to fast generation of large
prime numbers. Philips Journal of Research, vol. 37, pp. 231-264, 1982.

9. C. Ding, D. Pei, and A. Salomaa. Chinese Remainder Theorem, Word Scientific,
1996.

10. P.X. Gallagher. On the distribution of primes in short intervals. Mathematica,
vol. 23, pp. 4-9, 1976.

11. G.H. Hardy and J.E. Littlewood. Some problems of ‘Partitio Numerorum’ III:
On the expression of a number as a sum of primes. Acta Mathematica, vol. 44,
pp. 1-70, 1922.

12. M. Joye and P. Paillier. Fast generation of prime numbers on portable devices:
An update. Extended version of this work. Available on http://eprint.iacr.org.

13. M. Joye, P. Paillier, and S. Vaudenay. Efficient generation of prime numbers.
In Cryptographic Hardware and Embedded Systems — CHES 2000, vol. 1965 of
Lecture Notes in Computer Science, pp. 340-354, Springer-Verlag, 2000.

14. D.E. Knuth. The Art of Computer Programming - Seminumerical Algorithms,
vol. 2, Addison-Wesley, 2nd ed., 1981.

15. C. Lu and A.L.M. Dos Santos. A note on efficient implementation of prime gen-
eration in small portable devices. Computer Networks, vol. 49, pp. 476-491, 2005.

16. C. Lu, A.L.M. Dos Santos, and F.R. Pimentel. Implementation of fast RSA key
generation on smart cards. In 17th ACM Symposium on Applied Computing,
pp. 214221, ACM Press, 2002.

17. U. Maurer. Fast generation of prime numbers and secure public-key cryptographic
parameters. Journal of Cryptology, vol. 8, pp. 123-155, 1995.

18. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryp-
tography, CRC Press, 1997.

19. L. Monier. Evaluation and comparison of two efficient probabilistic primality test-
ing algorithms. Theoretical Computer Science, vol. 12, pp. 97-108, 1980.

20. H.C. Pocklington. The determination of the prime or composite nature of large
numbers by Fermat’s theorem. Proc. of the Cambridge Philosophical Society,
vol. 18, pp. 29-30, 1914.

21. J.-J. Quisquater and C. Couvreur. Fast decipherment algorithm for RSA public-
key cryptosystem. Flectronics Letters, vol. 18, pp. 905-907, 1982.

22. H. Riesel. Prime Numbers and Computer Methods for Factorization, Birkhauser,
1985.

23. R.L. Rivest, A. Shamir, and L.M. Adleman. A method for obtaining digital sig-
natures and public-key cryptosystems. Communications of the ACM, vol. 21,
pp- 120-126, 1978.

24. R.D. Silverman. Fast generation of random, strong RSA primes. Cryptobytes,
vol. 3, pp. 9-13, 1997.

25. R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. STAM Journal
on Computing, vol. 6, pp. 84-85, 1977.

A The RSA Primitive

RSA is certainly the most widely used public-key cryptosystem today. We give
hereafter a short description of the RSA primitive and refer the reader to the
original paper [23] or any textbook in cryptography (e.g., [18]) for further details.

Let N = pq be the product of two large primes. We let e and d denote a pair
of public and private exponents, satisfying

ed=1 (mod A(N)),

with ged(e, A(N)) = 1 and A being Carmichael’s function. As N = pg, we have
A(N) =lem(p — 1, — 1). Given = < N, the public operation (e.g., message en-
cryption or signature verification) consists in raising « to the e-th power modulo
N, i.e., in computing y = z° mod N. Then, given y, the corresponding private
operation (e.g., decryption of a ciphertext or signature generation) consists in
computing y% mod N. From the definition of e and d, we obviously have that
y? = x (mod N). The private operation can be carried out at higher speed
through Chinese remaindering (CRT mode [21,9]). Computations are indepen-
dently performed modulo p and ¢ and then recombined. In this case, private

parameters are {p, q,dp,dy, 7.} with

dp, =dmod (p—1),
dy =dmod (g —1), and

ig=¢ 'modp.

We then obtain y? mod N as
CRT(xp, zq) = x4+ ¢ [iq(xp — x4) mod p} ,

where z, = y% mod p and Tqg = y% mod gq. We expect a theoretical speed-up
factor close to 4 (see [21]), compared to the standard, non-CRT mode.

Thus, an RSA modulus N = pq is the product of two large prime numbers
p and q. If n denotes the bitsize of N then, for some 1 < ng < n, p must
lie in the range [[2n~m0=1/27 27| and ¢ in the range [[270~1/2], 2] so
that 27~! < N = pq < 2". For security reasons, so-called balanced moduli are
generally preferred, which means n = 2n.

