
HIGHT: A New Block Cipher Suitable for

Low-Resource Device ?

Deukjo Hong1, Jaechul Sung2, Seokhie Hong1, Jongin Lim1, Sangjin Lee1,
Bon-Seok Koo1, Changhoon Lee1, Donghoon Chang1, Jesang Lee1, Kitae

Jeong1, Hyun Kim4, Jongsung Kim1, and Seongtaek Chee3

1 Center for Information Security Technologies (CIST),
Korea University, Seoul, Korea

{hongdj,hsh,jilim,sangjin,bskoo,crypto77,
pointchang,jslee,kite,joshep}@cist.korea.ac.kr

2 Department of Mathematics, University of Seoul, Seoul, Korea
jcsung@uos.ac.kr

3 National Security Research Institute (NSRI),
161 Gajeong-dong, Yuseong-gu, Daejeon 305-350, Korea

chee@etri.re.kr
4 Korea Information Security Agency (KISA),

78 Karak-dong, Songpa-gu, Seoul 138-160, Korea
hkim@kisa.or.kr

Abstract. In this paper, we propose a new block cipher HIGHT with
64-bit block length and 128-bit key length. It provides low-resource hard-
ware implementation, which is proper to ubiquitous computing device
such as a sensor in USN or a RFID tag. HIGHT does not only consist
of simple operations to be ultra-light but also has enough security as
a good encryption algorithm. Our hardware implementation of HIGHT
requires 3048 gates on 0.25 µm technology.

Keywords: Block Cipher, Ubiquitous, Low-Resource Implementation

1 Introduction

Cryptographic applications providing various security services such as confiden-
tiality, integrity, protection of privacy, and so on, are admitted as core tech-
nologies for advances in digital information society based on internet. Recently,
ubiquitous computing system is in a matter of concern and interest, and design-
ing cryptographic algorithms and applications suitable for such environment is
an interesting research issue. For example, radio frequency identification (RFID)
systems are useful for the automated electronic toll collection system, identify-
ing and tracing pets, the administration of physical distribution, and so on,
while the radio frequency communication between a reader and a tag causes

? This research was supported by the MIC(Ministry of Information and Communi-
cation), Korea, under the ITRC(Information Technology Research Center) support
program supervised by the IITA(Institute of Information Technology Assessment).

the problems about confidentiality and privacy. Such problems have been con-
sidered as obstacles to the advancement of RFID technology. However, since
such ubiquitous computing technology has low-cost low-power light-weight plat-
form, existing cryptographic algorithms can be hardly implemented under such
resource constraint.

Recently, research on cryptographic protocols based on AES (Advanced En-
cryption Standard) [1] for resource-constraint environment is receiving a lot of
attention. Further essentially, a few low-resource ASIC implementations of AES
are presented [11, 12].

In this paper, we propose a new block cipher HIGHT (high security and
light weight) with 64-bit block length and 128-bit key length, which is suitable
for low-cost, low-power, and ultra-light implementation. HIGHT has a 32-round
iterative structure which is a variant of generalized Feistel network. The promi-
nent feature of HIGHT is that it consists of simple operations such as XOR,
addition mod 28, and left bitwise rotation. So, it is hardware-oriented rather
than software-oriented. We checked that HIGHT can be implemented with 3048
gates on 0.25 µm technology. Our circuit processes one round encryption per one
clock cycle, thus its data throughput is about 150.6 Mbps at a 80 MHz clock rate.
This performance is much faster than those of recently proposed low-resource
hardware implementations of AES [11, 12].

The embedded CPU to sensor nodes in sensor networking system is 8-bit
oriented. In case of 8-bit oriented software implementation, HIGHT is far faster
than AES. The key schedule algorithm of HIGHT is designed to keep the original
value of the master key after generating all whitening keys and all subkeys. Due
to this property, the subkeys are generated on the fly in both encryption and
decryption processes.

The paper is organized as follows. In Section 2, we present the specification
and the design principle of HIGHT. Section 3 presents the design principles of
HIGHT. In Section 4, we give the security analysis and statistical randomness
tests of HIGHT against various existing attacks including differential and lin-
ear cryptanalysis. Section 5 treats the hardware implementation of HIGHT. In
Section 6, we conclude this paper.

Table 1. Comparison the hardware implementation of HIGHT with AES’s.

Algorithm Technology Area throughput Max frequency

(µm) (GEs) (Mbps) (MHz)

AES [12] 0.35 3400 9.9 80

HIGHT 0.25 3048 150.6 80

????????

Initial Transform

?

Round1

????????

????????

Plaintext

????????

Round32

????????

Final Transform

????????

?
Ciphertext

SK3,SK2,SK1,SK0�

�SK127,SK126,SK125,SK124

????????????????

????????????????

?

?

Key Schedule

�

Master Key

Master Key

WK3,WK2,WK1,WK0

�WK7,WK6,WK5,WK4

Fig. 1. Encryption process of HIGHT

2 Specification

2.1 Notations

We use the following notations for the description of HIGHT. The 64-bit plain-
text and ciphertext are considered as concatenations of 8 bytes and denoted by
P = P7|| · · ·P1||P0 and C = C7|| · · ·C1||C0, respectively. The 64-bit intermediate
values are analogously represented, Xi = Xi,7|| · · ·Xi,1||Xi,0 for i = 0, · · · , 32.
The 128-bit master key is considered as a concatenation of 16 bytes and denoted
by MK = MK15|| · · · ||MK0. The followings are notations for mathematical op-
erations:

¢ : addition mod 28

¯ : subtraction mod 28

⊕ : XOR (eXclusive OR)
A≪s : s-bit left rotation of a 8-bit value A

We focus on the encryption process in the description of the specification
of HIGHT because the decryption process is explained in the similar to the
encryption process. The encryption process of HIGHT HightEncryption consists
of key schedule, initial transformation, round function, and final transformation.
Its description is as follows.

HightEncryption(P,MK) {
KeySchedule(MK,WK,SK);
HightEncryption(P,WK,SK) {

InitialTransfomation(P,X0,WK3,WK2,WK1,WK0);
For i = 0 to 31 {

RoundFunction(Xi, Xi+1, SK4i+3, SK4i+2, SK4i+1, SK4i);
}
FinalTransfomation(X32, C,WK7,WK6, ,WK5,WK4);

}
}

WK and SK mean whitening keys and subkeys, respectively.

2.2 Key Schedule

The key schedule KeySchedule for HightEncryption consists of two algorithms,
WhiteningKeyGeneration which generates 8 whitening key bytes WK0, · · · ,WK7,
and SubkeyGeneration which generates 128 subkey bytes SK0, · · · ,SK127.

KeySchedule(MK,WK,SK) {
WhiteningKeyGeneration(MK,WK);
SubkeyGeneration(MK,SK);

}

Whitening Key Generation HIGHT uses 8 whitening key bytes WK0, · · · ,WK7

for the initial and final transformations. The algorithm WhiteningKeyGeneration

generates them as follows.

WhiteningKeyGeneration {
For i = 0 to 7 {

If 0 ≤ i ≤ 3, then WKi ← MKi+12;
Else, WKi ← MKi−4;

}
}

Subkey Generation 128 subkeys are used for 1 computation of HightEncryption,
4 subkeys per round. The algorithm SubkeyGeneration uses the subalgorithm
ConstantGeneration to generate 128 7-bit constants δ0, · · · , δ127, and then gener-
ates the subkeys SK0, · · · SK127 with the constants.

δ0 is fixed as 10110102. This is also the initial state (s6, · · · , s0) of 7-bit
LFSR h. The connection polynomial of h is x7 + x3 + 1 ∈ Z2[x]. The algorithm
ConstantGeneration uses the LFSR h to produce δ1, · · · , δ127 from δ0 as follows.

ConstantGeneration {
s0 ← 0; s1 ← 1; s2 ← 0; s3 ← 1;
s4 ← 1; s5 ← 0; s6 ← 1;
δ0 ← s6||s5||s4||s3||s2||s1||s0;
For i = 1 to 127 {

si+6 ← si+2 ⊕ si−1;
δi ← s6||s5||s4||s3||s2||s1||s0;

}
}

Since x7+x3+1 is a primitive polynomial in Z2[x], the period of h is 2
7−1 = 127

and so δ0 = δ127.
The algorithm SubkeyGeneration generates the subkeys as follows.

SubkeyGeneration(MK,SK) {
Run ConstantGeneration

For i = 0 to 7 {
For j = 0 to 7 {

SK16·i+j ← MKj−i mod 8 ¢ δ16·i+j ;
}
For j = 0 to 7 {

SK16·i+j+8 ← MK(j−i mod 8)+8 ¢ δ16·i+j+8;
}

}
}

2.3 Initial Transformation

InitialTransformation transforms a plaintext P into the input of the first RoundFunction,
X0 = X0,7||X0,6|| · · · ||X0,0 by using the four whitening-key bytes, WK0, WK1,
WK2, and WK3.

InitialTransfomation(P,X0,WK3,WK2,WK1,WK0) {
X0,0 ← P0 ¢WK0; X0,1 ← P1; X0,2 ← P2 ⊕WK1; X0,3 ← P3;
X0,4 ← P4 ¢WK2; X0,5 ← P5; X0,6 ← P6 ⊕WK3; X0,7 ← P7;

}

2.4 Round Function

RoundFunction uses two auxiliary functions F0 and F1:

F0(x) = x≪1 ⊕ x≪2 ⊕ x≪7,

F1(x) = x≪3 ⊕ x≪4 ⊕ x≪6.

For i = 0, · · · , 31, RoundFunction transforms Xi = Xi,7|| · · · ||Xi,0 into Xi+1 =
Xi+1,7|| · · · ||Xi+1,0 as follows.

RoundFunction(Xi, Xi+1, SK4i+3, SK4i+2, SK4i+1, SK4i) {
Xi+1,1 ← Xi,0; Xi+1,3 ← Xi,2; Xi+1,5 ← Xi,4; Xi+1,7 ← Xi,6;
Xi+1,0 = Xi,7 ⊕ (F0(Xi,6)¢ SK4i+3);
Xi+1,2 = Xi,1 ¢ (F1(Xi,0)⊕ SK4i+2);
Xi+1,4 = Xi,3 ⊕ (F0(Xi,2)¢ SK4i+1);
Xi+1,6 = Xi,5 ¢ (F1(Xi,4)⊕ SK4i);

}

2.5 Final Transformation

FinalTransformation untwists the swap of the last round function and trans-
forms X32 = X32,7|| X32,6|| · · · ||X32,0 into the ciphertext C by using the four
whitening-key bytes WK4, WK5, WK6, and WK7.

FinalTransfomation(X32, C,WK7,WK6,WK5,WK4) {
C0 ← X32,1 ¢WK4; C1 ← X32,2; C2 ← X32,3 ⊕WK5; C3 ← X32,4;
C4 ← X32,5 ¢WK6; C5 ← X32,6; C6 ← X32,7 ⊕WK7; C7 ← X32,0;

}

2.6 Decryption Process

The decryption process HightDecryption is done in the canonical way to invert
HightEncryption. Key schedule generates the subkeys in the reverse order. The
round function in the decryption process has ¯ instead of ¢ and byte-swap with
the opposite direction to that in the encryption process.

3 Design Principles

In this section we list brief description of design principles of HIGHT.

– The structure of HIGHT is generalized Feistel-like. This kind of structure
reduces restriction of designing inner auxiliary functions. Compared to SP-
like structure, the round function is light. Since encryption process is simply
converted into decryption process, implementation of the circuit supporting
both encryption and decryption processes does not require much more cost
than the encryption-only circuit.

– Every operation in HIGHT is 8-bit-processor-oriented. CPUs embedded into
the sensors in USN (Ubiquitous Sensor Network) are based on 8-bit proces-
sor. So, HIGHT has efficient performance in such environment. We checked
that in 8-bit-oriented software implementation HIGHT is faster than AES-
128.

– We intend to combine XOR and addition mod 28 alternatively. The combi-
nation of these quite different operations spread out the whole round of the
algorithm. It plays an important role for resistance against existing attacks.

– The inner functions F0 and F1 of the round function provide bitwise diffu-
sion. These functions can be viewed as linear transformations from GF (2)8

to GF (2)8. We selected two among linear transformations which have best
diffusion.

– The 128-bit register used in the key schedule algorithm contains the master
key value both before and after running the algorithm. So, only one 128-bit
register is required for both encryption and decryption processes.

– The whitening keys are used in the first and the last rounds of HIGHT. If
the whitening keys are not used, then the inputs to F0 and F1 in the first
and the last rounds are directly revealed from plaintexts and ciphertexts.

– The sequence δ0, · · · , δ127 generated by the linear feedback shift register h
enhances randomness of subkey bytes. It also provides the resistance against
slide attack.

4 Security Analysis

We analyze the security of HIGHT against various attacks. As a result, we claim
that HIGHT is secure enough for cryptographic applications. In this subsection,
we present not only brief description of our analysis but also the result of the
statistical tests on HIGHT.

4.1 Differential Cryptanalysis

The resistance of a block cipher against differential cryptanalysis [6] depends on
the maximum probability of differential characteristics, which are paths from the
plaintext difference to the ciphertext difference. First of all, we have implemented
a simulation for finding the maximum differential characteristics of a small ver-
sion of HIGHT, Mini-HIGHT, which consists of four 8-bit input registers when
232 of all possible input values are given. As a result, we found two 8-round max-
imum differential characteristics α→ β with a probability of 2−28 in which there
always exist a difference pattern such that hamming weight is one at a particular
round, where (α, β) ∈ {(d0 00 ed 86x, 00 84 82 01x), (04 dc 20 e2x, 00 84 82 01x)}.
Since it is impossible for us to find all of the corresponding differential charac-

teristics of HIGHT for given 264 possible input values, we considered the above
difference pattern of Mini-HIGHT with a noticeable feature and then found
several 11-round differential characteristics α → β with probability 2−58 where
(α, β) ∈ {(11 89 25 e2 c8 01 00 00x, 45 02 01 00 00 91 29 95x), (c8 01 00 00 11 89 25
e2x, 00 91 29 95 45 02 01 00x)}. Each of them are constructed by setting a
difference of a particular intermediate variable to the starting point, and by
prepending and appending good one-round differential characteristics to it. We
expect that they have the best probability over all the 11-round differential
characteristics and that for r > 11, no r-round differential characteristic is use-
ful for differential cryptanalysis of HIGHT because we checked that there is no
any efficient iterative differential characteristic. Differential attack on 13-round
HIGHT without the final transformation recovers the subkeys of the 12th and
13th rounds with 262 plaintexts.

4.2 Linear Cryptanalysis

Linear cryptanalysis [17, 18] uses linear relations of the plaintext, ciphertext,
and key which hold with a probability. We call them, linear approximations. Let
p = 1/2+ ε be the probability of a linear approximation. ε is called, bias. If ε2 is
relatively high, the linear approximation is very useful for linear cryptanalysis.
We found several 10-round linear approximations with ε2 = 2−54. Similarly to
differential cryptanalysis of HIGHT, they were constructed by putting a 1-bit
position of an intermediate variable to the starting point, and by prepending
and appending good one-round linear approximations to it. We expect that they
have the best bias over all the 10-round approximations and that for r > 10,
no r-round linear approximation has good bias because we checked that there
is no any iterative linear approximation in HIGHT. Linear attack on 13-round
HIGHT without the final transformation recovers 36 bits of the subkeys of the
1st, 12th, and 13th rounds. It requires 257 plaintexts with the success rate 96.7%.

4.3 Truncated Differential Cryptanalysis

Truncated differential characteristic [15] is a path from a partial difference of
the input to a partial difference of the output. In order to find good truncated
differential characteristics, we computed the probabilities of all differential char-
acteristics with the following form:

00 α1 00 α2 00 α3 00 α4 → 00 β1 00 β2 00 β3 00 β4 (1)

where all αi, βj are 1-byte values. The truncated differential characteristics with
such form can be iterated, but their probabilities are terribly low. Even the sum
of them is too low to be applied to the attack.
As the second approach, we considered several 10-round truncated differen-

tial characteristics with probability 1. For example, one among them has the
following form: the input difference is 80 e9 00 00 00 00 00 00x and the output
difference is γ δ1 δ2 δ3 δ4 δ5 δ6 δ7 where γ is a nonzero 1-byte value and δi’s
are arbitrary 1-byte values. This truncated differential characteristic provides us
with only one information about the output difference that the left-most byte
of the output difference is nonzero. Since the probability of the characteristic
is 1, we have information enough for the attack on HIGHT. We can use the
truncated differential characteristic to recover 96 bits of the subkeys used from
the 11th round to the 16th round in 16-round HIGHT. The attack requires 214.1

plaintexts and 2108.69 encryptions of 16-round HIGHT.

4.4 Impossible Differential Cryptanalysis

We can construct a differential characteristic, which never occurs, by composing
two short truncated differential characteristics with the probability 1 which do
not meet in the middle. We call it an impossible differential characteristic [2].
Such differential characteristic can be used for attacks on block ciphers. Roughly

speaking, since a key candidate satisfies an impossible differential characteristic
is a wrong key, we can reduce the number of the key candidates by repeating
such tests. We investigated all of the possible characteristics for all of the possible
input differences and then found a 14-round impossible differential characteristic
α→β 6=γ←δ where α = (80 e9 00 00 00 00 00 00)x, β = (4, ?, ?, ..., ?)x (4 : a
nonzero), γ = (00, 00, ?, ?, ?, ?, ?, ?)x, and δ = (00 ? ? ? 00 00 00 00)x. We
can use this 14-round impossible differential characteristic to attack 18-round
HIGHT. This attack requires 246.8 chosen-plaintexts and 2109.2 encryptions of
18-round HIGHT.

4.5 Saturation Attack

The saturation attack [10, 16] uses a saturated multiset of plaintexts. The at-
tacker needs the property that XOR sum of particular parts of the corresponding
ciphertexts is zero. We call it a saturation characteristic. Saturation characteris-
tics useful for the attack are often found in block ciphers in which small portions
of the bits are interleaved by a strong nonlinear function while the main interleav-
ing stage is linear. There exist 12-round saturation characteristics with the prob-
ability 1 in HIGHT, e.g., α = (S,C,C,C,C,C,C,C)→β = (?, ?, ?, ?, B0, ?, ?, ?)
where S: a saturation set, C: a fixed constant, and B0: a balanced set for the
least significant bit. We can apply them to the attack on 16-round HIGHT. It
requires 242 plaintexts and 251 encryptions of 16-round HIGHT.

4.6 Boomerang Attack

The main idea behind the boomerang attack [20] is to use two short differential
characteristics with relatively high probabilities instead of one long differential
with low probability. The boomerang attack has been improved to the amplified
boomerang [14] and the rectangle [4, 5] attacks. This kind of attacks treat the
block cipher E as E = E1 ◦ E0 a cascade of E0 and E1. We assume that for E0

there exists a differential characteristic α → β with probability p and that for
E1 there exists a differential characteristic γ → δ with probability q. Then the
boomerang characteristic which is constructed from two differential characteris-
tics α→ β and γ → δ has probability p2q2. We applied the amplified boomerang
attack to 13-round HIGHT without final transformation. We build a 11-round
boomerang characteristic of HIGHT with probability 2−58 from two differential
characteristics — one with probability 2−12 decipted in Table 2 and the other
one with probability 2−17 decipted in Table 3. We use the 11-round boomerang
characteristic to recover the subkeys of the 13th round with 262 plaintexts.

4.7 Interpolation and Higher Order Differential Attack

Interpolation [13] and higher order differential [15] attacks are aimed against
block ciphers which have low algebraic degree. Since the degree of a round func-
tion of HIGHT is 8, the full-round HIGHT has a high degree as a vector Boolean

Table 2. The 5 rounds differential characteristics (the 1st round ∼ the 5th round)
with probability 2−12.

α −→ β

82 01 00 00 00 00 00 00x −→ 00 90 95 ca 01 00 00 00x

00 00 00 00 82 01 00 00x −→ 01 00 00 00 00 90 95 cax

Table 3. The 6 rounds differential characteristics (the 6th round ∼ the 11th round)
with probability 2−17

γ −→ δ

42 82 01 00 00 00 00 00x −→ 00 90 95 ca 01 00 00 00x

00 00 00 00 42 82 01 00x −→ 01 00 00 00 00 90 95 cax

function. Furthermore, we believe that the result of higher order differential at-
tack on HIGHT is less than the result of saturation attack on HIGHT because
saturation attack can be viewed as a special and more effective case of higher
order differential attack.

4.8 Algebraic Attack

In order to apply the algebraic attack [9] to block ciphers, we should derive an
over-defined system of algebraic equations. Since a round function of HIGHT is
the degree 8 as a vector Boolean function, it may be impossible to convert any
equation system in HIGHT into an over-defined system.

4.9 Slide and Related-Key Attacks

Slide [7, 8] and related-key [3] attacks use some weakness of key schedule. The
subkey generation algorithm of HIGHT has a simplicity and a linearity but
resistance enough to frustrate those attacks due to the use of the round function
with strong non-linearity and avalanche effect. It is known that the iterated
ciphers with identical round functions, that is, equal structures and equal subkeys
in the round functions, are vulnerable to slide attacks. However, since HIGHT
uses the different constant for each round, it is secure against slide attack.
We are also convinced that the key schedule and round function of HIGHT

makes related-key attacks difficult although the relation between two master keys
is known and the corresponding relations between the subkeys can be predeter-
mined due to linearity of the key schedule. To find long related-key differential
characteristics with high probability and mount a successful distinguishing at-
tack, we must keep the number of additions small. This can be done by trying
to cancel out differences in XORs and additions but this work is not easy. So,
by trial and error, we constructed 18-round related-key boomerang distinguisher
which is composed of two short related-key differential characteristics with rel-
atively high probability; one is the first 8 rounds, (2c 00 80 00 00 00 00 00)x →

(00 00 00 00 43 80 00 00)x under the related-key difference (00 00 80 2c 00, ..., 00)
with probability 2−6 and the other one is 10 rounds, (08 9e 6f 80 2c 00 80 00)x
→ (2c 00 80 00 00 00 00 00)x under the related-key difference (80 2c 00 00, ..., 00)
with probability 2−23. This is useful to attack on 19 rounds HIGHT but can be
used to attack on full-round HIGHT.

4.10 Weak Keys

Originally, a weak key is defined as a key under which the encryption function
is involution [19]. We checked that there does not exists any equivalent or weak
key in HIGHT. In a broad sense, a weak key can be defined as a key under which
the resistance of the block cipher against any attacks falls off. We suppose that
it is very difficult to find such kind of weak keys in HIGHT.

Table 4. Results of HIGHT

Statistical Test Proportion

High Density Low Density

Frequency 0.994(Pass) 0.986(Pass)

Block Frequency (m = 100) 0.993(Pass) 0.991(Pass)

Runs 0.990(Pass) 0.982(Pass)

Long Runs of Ones 0.990(Pass) 0.994(Pass)

Rank 0.988(Pass) 0.992(Pass)

Spectral DFT 1.00(Pass) 0.990(Pass)

Non-overlapping Templates (m = 9) 0.990(Pass) 0.990(Pass)

Overlapping Templates (m = 9) 0.978(Pass) 0.984(Pass)

Universal 0.992(Pass) 0.980(Pass)

Lempel-Ziv Complexity 0.986(Pass) 0.980(Pass)

Linear Complexity (M = 500) 0.984(Pass) 0.994(Pass)

Serial (m = 5) 0.992(Pass) 0.985(Pass)

Approximate Entropy (m = 5) 0.986(Pass) 0.990(Pass)

Cusum 0.992(Pass) 0.988(Pass)

Random Excursions 0.986(Pass) 0.990(Pass)

Random Excursions Variant 0.989(Pass) 0.987(Pass)

4.11 Random Test

We show the results of the NIST statistical test on HIGHT. We use 500 samples
of about 106 bit sequences for each test. Consequently, 500 (sample) × 106

(sequence) bits are used for each test. The Table 4 shows results of HIGHT. Here

input parameters used in these tests has been included in parenthesis beside the
name of the statistical test. From the Table 4, it is clear that the statistical test
results for HIGHT don’t indicate a deviation from random behaviour.

5 Hardware Implementation

We designed a simple circuit of HIGHT in order to check the hardware com-
plexity on 0.25µm CMOS technology. The circuit consists of three parts: Round-

Function, KeySchedule, and Control Logic. RoundFunction processes whitening-
key addition or round function with 64-bit input data and 4-byte round key, and
KeySchdule generates 4-byte round key (four byte whiteningkeys or subkeys).
Control Logic controls RoundFunction and KeySchedule to process HIGHT algo-
rithm. The total size corresponds to 3048 NAND gates as you see in Table 5.
Our circuit processes one round encryption per one clock cycle, thus its data
throughput is about 150.6 Mbps at a 80 MHz clock rate. Note that our circuit is
not area-optimized, and in order to reduce the gate count, we can simply modify
it to process 1/2 or 1/4 of one round operation per a clock cycle. In the case
of 1/4 round design, we estimate the minimized circuit would require much less
than 3000 gates on 0.25µm technology and its data throughput would be about
37.6 Mbps at a 80 MHz clock rate. Meanwhile the last hardware implementa-
tion result of AES-128 [12] requires about 3400 gates and its data throughput is
about 9.9 Mbps under the same clock rate.

Table 5. Gate count for hardware implementation of HIGHT

Component Gate Count

RoundFunction 838

KeySchedule 1648

Control Logic 562

Total 3048

6 Conclusion

We proposed a block cipher HIGHT with 64-bit block length and 128-bit key
length. HIGHT was designed to be proper to the implementation in the low-
resource environment such as RFID tag or tiny ubiquitous devices. From security
analysis, we are sure that HIGHT has enough security. Our implementation
circuit processes one HIGHT encryption with 34 clock and requires 3048 gates.
The data throughput of the circuit is about 150.6 Mbps under the operating
frequency 80 MHz.

References

1. National Institute of Standards and Technology (NIST), FIPS-197: Advanced En-
cryption Standard, November 2001. http://www.itl.nist.gov/fipspubs/

2. E. Biham, A. Biryukov and A. Shamir, “Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials,” Advances in Cryptology - EUROCRYPT’99,
J. Stern, Ed., LNCS 1592, Springer-Verlag, pp. 12-23, 1999.

3. E. Biham, “New Types of Cryptanalytic Attack Using Related Keys,” Journal of

Cryptology, Volume 7, Number 4, pp. 156–171, 1994.
4. E. Biham, O. Dunkelman, N. Keller, “The Rectangle Attack – Rectangling the

Serpent,” Advances in Cryptology – EUROCRYPT 2001, LNCS 2045, Springer-
Verlag, pp. 340–357, 2001.

5. E. Biham, O. Dunkelman, N. Keller, “New Results on Boomerang and Rectangle
Attacks,” FSE 2002, LNCS 2365, Springer-Verlag, pp. 1–16, 2002.

6. E. Biham, A. Shamir, “Differential Cryptanalysis of the Data Encryption Stan-
dard,” Springer-Verlag, 1993.

7. A. Biryukov, D. Wagner, “Slide Attacks,” Advances in Cryptology – FSE’99, LNCS
1687, Springer-Verlag, pp. 244-257, 1999.

8. A. Biryukov, D. Wagner, “Advanced Slide Attacks,” Advances in Cryptology –

EUROCRYPT 2000, LNCS 1807, Springer-Verlag, pp. 589–606, 2000.
9. N. Courtois, J. Pieprzyk, “Cryptanalysis of Block Ciphers with Overdefined Sys-

tems of Equations,” Advances in Cryptology – ASIACRYPT 2002, LNCS 2501,
Springer-Verlag, pp. 267–287, 2002.

10. J. Daemen, L. Knudsen and V. Rijmen, “The Block Cipher SQUARE,” FSE’97,
LNCS 1267, Springer-Verlag, pp. 137–151, 1997.

11. M. Feldhofer, S. Dominikus, and J. Wolkerstorfer, “Strong Authentication for
RFID Systems Using the AES Algorithm,” CHES’04, LNCS 3156, pp. 357–370,
Springer-Verlag, 2004.

12. M. Feldhofer, J. Wolkerstorfer, and V. Rijmen, “AES Implementation on a Grain of
Sand,” IEE Proceedings on Information Security, Volume 152, Issue 1, pp. 13–20,
2005.

13. T. Jakoben and L. R. Knudsen, “The Interpolation Attack against Block Ciphers,”
FSE’97, LNCS 1267, Springer-Verlag, pp. 28–40, 1997.

14. J. Kelsey, T. Kohno, B. Schneier, “Amplified Boomerang Attacks Against Reduced-
Round MARS and Serpent,” FSE 2000, LNCS 1978, Springer-Verlag, pp. 75–93,
2001.

15. L. R. Knudsen, “Truncated and Higher Order Differential,” FSE 94, LNCS 1008,
Springer-Verlag, pp. 229–236, 1995.

16. S. Lucks, “The Saturation Attack – a Bait for Twofish,” FSE 2001, LNCS 1039,
Springer-Verlag, pp. 189-203, 2001.

17. M. Matsui, “Linear Cryptanalysis Method for DES Cipher,” Advances in Cryptol-

ogy – EUROCRYPT’93, T. Helleseth, Ed., LNCS 765, Springer-Verlag, pp. 386–
397, 1994.

18. M. Matsui, “The First Experimental Cryptanalysis of DES,” Advances in Cryp-

tology – CRYPTO’94, LNCS 839, Springer-Verlag, pp. 1–11, 1994.
19. A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography,

CRC Press, 1996.
20. D. Wagner, “The Boomerang Attack,” FSE’99, LNCS 1636, Springer-Verlag, pp.

156–170, 1999.

A Figure of Functions in HIGHT

16 11, 16 10, 16 9, 16 8()
i i i i

δ δ δ δ
+ + + +

16 15, 16 14, 16 13, 16 12()
i i i i

δ δ δ δ
+ + + +

16 7, 16 6, 16 5, 16 4()
i i i i

δ δ δ δ
+ + + +

16 3, 16 2, 16 1, 16()
i i i i

δ δ δ δ
+ + +

16 3, 16 2, 16 1, 16()
i i i i

SK SK SK SK
+ + +

16 7, 16 6, 16 5, 16 4()
i i i i

SK SK SK SK
+ + + +

16 11, 16 10, 16 9, 16 8()
i i i i

SK SK SK SK
+ + + +

16 15, 16 14, 16 13, 16 12()
i i i i

SK SK SK SK
+ + + +

Bytewise RotationBytewise Rotation

Bytewise Rotation

16 11, 16 10, 16 9, 16 8()
i i i i

δ δ δ δ
+ + + +

16 15, 16 14, 16 13, 16 12()
i i i i

δ δ δ δ
+ + + +

16 7, 16 6, 16 5, 16 4()
i i i i

δ δ δ δ
+ + + +

16 3, 16 2, 16 1, 16()
i i i i

δ δ δ δ
+ + +

16 3, 16 2, 16 1, 16()
i i i i

SK SK SK SK
+ + +

16 7, 16 6, 16 5, 16 4()
i i i i

SK SK SK SK
+ + + +

16 11, 16 10, 16 9, 16 8()
i i i i

SK SK SK SK
+ + + +

16 15, 16 14, 16 13, 16 12()
i i i i

SK SK SK SK
+ + + +

Bytewise RotationBytewise Rotation

Bytewise Rotation

Fig. 2. Subkey generation of HIGHT key schedule

� �F0
�

?

?

� �F1
�

?
� �F0

�
?

� �F1
�

?

? ? ? ? ? ? ?

Xi,0

Xi−1,7 Xi−1,6 Xi−1,5 Xi−1,4 Xi−1,3 Xi−1,2 Xi−1,1 Xi−1,0

?

SK4i−1

? ?

SK4i−2 SK4i−3

?

SK4i−4

Xi,7 Xi,6 Xi,5 Xi,4 Xi,3 Xi,2 Xi,1

Fig. 3. The i-th RoundFunction of HIGHT for i = 1, · · · , 32

