Secure Data Management in Trusted Computing

Ulrich Kiihn', Klaus Kursawe?, Stefan Lucks?, Ahmad-Reza Sadeghi*, and
Christian Stiible*

! Deutsche Telekom Laboratories, Technical University Berlin, Germany
ukuehn@acm.org
2 ESAT - COSIC, KU Leuven, Belgium
klaus.kursawe@esat.kuleuven.ac.be

3 Theoretische Informatik, University of Mannheim, Germany
lucks@th.informatik.uni-mannheim.de

4 Horst Gortz Institute, Ruhr-University Bochum, Germany

sadeghi@crypto.rub.de, stueble@acm.org

Abstract. In this paper we identify shortcomings of the TCG speci-
fication related to the availability of sealed data during software and
hardware life cycles, i.e., software update or/and hardware migration. In
our view these problems are major obstacles for large-scale use of trusted
computing technologies, e.g., in e-commerce, as adopters are concerned
that the use of this technology might render their data inaccessible.

We propose both software and hardware solutions to resolve these prob-
lems. Our proposals could be easily integrated into the TCG specification
and preserve the interests of involved parties with regard to security and
availability as well as privacy.

1 Introduction

The increasing global connectivity and distributed applications both for business
and personal use require I'T-systems that guarantee confidentiality, authenticity,
integrity, privacy, as well as availability. On the technical side, cryptographic
and IT security research provide a variety of technical security measures such
as encryption and strong authentication mechanisms, firewalls and so forth, to
achieve these security targets. However, these measures provide only partial so-
lutions as long as the underlying computing platforms still suffer from security
problems.

These issues are addressed by a new generation of computing platforms em-
ploying both supplemental hardware and software. Concretely, these initiatives
are the TCG (Trusted Computing Group), an IT-industry alliance, and Mi-
crosoft’s NGSCB (Next-Generation Secure Computing Base); however, so far
only the TCG has published specifications [17, 16].

According to the TCG the primary goal of this architecture is to improve
the security and the trustworthiness of computing platforms [4,5,12,13]. To
this end, the conventional PC architecture is extended by new mechanisms to
(i) protect cryptographic keys, (ii) authenticate the configuration of a platform

(attestation), and (iii) cryptographically bind confidential data to a certain sys-
tem configuration (sealing), i.e., the data can only be accessed (unsealed) if the
corresponding system can provide the specific configuration for which the data
has been sealed.

In this paper we identify shortcomings of the TCG specification related to
software and hardware life cycles and propose solutions to resolve these problems.
More precisely, we are concerned with the following two problem areas regarding
the management of sealed data:

First, the TCG specification defines the sealing functionality in a way that
an update or security patch to the trusted computing base can render sealed
data inaccessible, even when keeping the same level of security. We propose
possible solutions to this problem that preserve security for all involved parties,
i.e. owners, users, and remote parties (e.g. content providers), in the sense of
multilateral security.

Second, the TCG specification contains a (optional) protocol to partially
migrate the TPM-internal data to another TPM of the same vendor (lock-in).
However, to our knowledge this protocol is not implemented in any of the existing
TPMs. Our proposal allows to securely migrate all data to a different platform
without requiring to either tolerate loss of potentially important data or involve
all remote parties while at the same time avoiding potential privacy violations.

Our proposals are based on exercising decentralized control of the update or
migration procedure where a party trusted by both the system owner as well as
remote parties ensures that their respective interests are served.

This paper is structured as follows: In Section 4 we give a summary of the
TCG specification as far as needed for the purpose of this paper. We continue
in Section 5 with a brief description of the problems regarding the handling of
sealed data during software and hardware life-cycles. Section 6 describes a basic
system model that we consider suitable to support our solution proposals. In
Sections 7 and 8 we describe our proposals for solutions to the software update
and the hardware migration problems.

2 Related Work

To our knowledge, only few articles are publicly available that discuss improve-
ments of the TCG specification in the context of platform changes and migration.

In [15] the authors present a security measurement architecture for Linux
that measures all executable content upon loading and protects the table of
measurements using the TPM’s functionality. Remote parties can first verify
the integrity of the table of measurements using remote attestation, and can
then decide if the current platform configuration is trustworthy. This is applied
to remote access where a client configuration is verified before allowing it to
access the network [14]. However, platform updates and platform migration is
not addressed in [15,14], and, as the PCR values are employed to protect the
current list of measurements, working with sealed data seems difficult, or results
in the same problems as discussed in Section 5.

Property-based attestation as proposed in [10, 8] extends the remote attes-
tation protocol such that, on a more abstract operating system layer, properties
are attested instead of binary representations of platform configurations. While
[10, 8] focus on remote attestation, we will show in Section 7.3 that this approach
is also well-suited for what we call property-based sealing.

3 Conventions

Basic Notation. A (public key) encryption scheme is denoted with the tuple
(Enc(), Dec()) for encryption and decryption algorithms. The tuple (PK x, SK x)
denotes the public and private key of a party X. Further, a digital signa-
ture scheme is denoted by a tuple (Sign(), Verify()) of signing and verification
algorithms. With o « Signgx (m) we denote the signature on a message
m using the signing key SK x. The return value of the verification algorithm
ind « Verifypg (o) is a Boolean value ind € {true, false}. A certificate on a
quantity @) with respect to a verification key PK x is a signature generated by
applying the corresponding signing key (not something complex such as a X.509
certificate). A hash function is denoted by Hash().

Roles. Throughout the paper we refer to the following subjects/roles:

— Owner: The owner O of a system P, e.g. a PC, is an entity who defines,
by its security policy SPe, the allowed configurations of the underlying
platform, also including patches/updates. Typical examples are an enterprise
represented by an administrator or an end-user owning a personal platform.

— User: The user U of a computing platform P is an entity interacting with
‘P under the platform’s security policy SPo. Examples are employees using
enterprise-owned hardware; user and owner might also be identical.

— Remote party: This refers to any party trying to assess the trustworthiness of
a system, e.g. for licensing content to the system’s owner. The remote party’s
security policy SPr defines access control rules attached to the content. An
example might be a party licensing classified data to the system’s owner that
wants to ensure that its access policy is also enforced locally.

4 Main Aspects of the TCG Specification

In this section we briefly review the main functionalities of the trusted computing
technology proposed in specifications version 1.1b [17] and 1.2 [16] of the Trusted
Computing Group (TCG).

The main components of the TCG proposal are a hardware component
Trusted Platform Module (TPM), a kind of (protected) pre-BIOS (Basic I/0
System) called the Core Root of Trust for Measurement (CRTM), and a support
software called Trusted Software Stack (TSS) which performs various functions
like communicating with the rest of the platform or with other platforms.

Trusted Platform Module. A TPM is the main component of the specifica-
tion providing a secure random number generator, non-volatile tamper-resistant
storage, key generation algorithms, cryptographic functions like RSA encryp-
tion/decryption, and the hash function SHA-1°. A TPM can be abstractly de-
scribed by the tuple (EK,SRK,T): the endorsement key EFK, an encryption
key that uniquely identifies each TPM; the Storage Root Key SRK or Root of
Trust for Storage (RTS), uniquely created inside the TPM. Its private part never
leaves the TPM, and it is used to encrypt all other keys created by the TPM;
the TPM state 7 contains further security-critical data shielded by the TPM
(see Section 8.1).

The TPM provides a set of registers called Platform Configuration Registers
(PCR) that can be used to store hash values. The hardware ensures that the value
of a PCR register can only be modified as follows: PCR,11 < SHA1(PCR;|I),
with the old register value PCR;, the new register value PCR; 1, and the input
I (e.g. a SHA-1 hash value). This process is called extending a PCR.

There are three different types of asymmetric keys a TPM can create:

— Migratable keys (MK): Migratable keys are those cryptographic keys that
can only be trusted by the party who generates them (e.g. the user of the
platform). However, a third party has no guarantee that such key has indeed
been generated on a TPM.

— Non-migratable keys (NMK): Contrary to a migratable key, a non-migratable
key is guaranteed to be kept in a TPM-shielded location. A TPM can create
a certificate stating that a key is an NMK.

— Certified-migratable keys (CMK): Introduced in version 1.2 of the TCG spec-
ification, this type of key allows a more flexible key-handling. Upon creation
of such a key with the TPM_CMK_CreateKey command, a trusted Migration
Authority (MA) can be selected, to which decisions to migrate the key are
delegated. To migrate a CMK to another platform, the TPM command
TPM_CMK_CreateBlob expects a certificate of an MA approving of the mi-
gration to the destination. Another trusted party, the Migration Selection
Authority (MSA) may be involved in the process, which only controls the
migration, but never gets in contact with any migrated data. In both cases
the certificate of the CMK that is used by the owner/user to prove that it
was really created by a TPM contains information about the identity of the
MA resp. MSA.

Based on this functionality, the TCG specification defines four mechanisms
called integrity measurement, attestation, sealing, and maintenance which are
explained briefly in the following:

® SHA-1 [6] generates 160-bit hash values from an input of (almost) arbitrary size.
One of the stated security goals for SHA-1 is: finding any collision must take 2%
units of time. Recently, Wang et. al. [18] claimed an algorithm to find such collisions
in time 2%, see also [3]. Though attacking SHA-1 would be challenging, SHA-1
clearly has failed its stated security goals. In contrast to some applications, full
collision-resistance is essential in Trusted Computing. Hence, we anticipate revised
specifications to switch to another hash function.

Integrity measurement € Platform Configuration. Integrity measure-
ment is done during the boot process by computing a cryptographic hash of the
initial platform state. For this purpose the CRTM computes a hash of (“mea-
sures”) the code and parameters of the BIOS and extends the first PCR register
by this result. A chain of trust is established if an enhanced BIOS and boot-
loader also measure the code they are transferring control to, e.g. the operating
system. The security of the chain relies strongly on explicit security assumptions
about the CRTM. Thus, the PCR values PCRy, ..., PCR,, provide evidence of
the system’s state after boot. We call this state the platform’s configuration,
denoted by S; := (PCRy, ..., PCR,,).

Attestation. The TCG attestation protocol is used to give assurance about the
platform configuration S; to a remote party. To guarantee integrity and freshness,
this value and a fresh nonce provided by the remote party are digitally signed
with an asymmetric key called Attestation Identity Key (AIK) that is under
the sole control of the TPM. A trusted third party called Privacy Certification
Authority (Privacy-CA) is used to guarantee the pseudonymity of the AIKs. In
order to overcome the problem that this party can link transactions to a certain
platform, version 1.2 of the TCG specification defines a cryptographic protocol
called Direct Anonymous Attestation DAA [1], eliminating this CA.

Sealing. Data D can be cryptographically bound to a certain platform con-
figuration Sy by using the TPM_Seal command. Given an asymmetric key pair
(SK,PK), we denote this function abstractly with [D]§X — Seal(So, PK, D)
meaning that D is sealed for the configuration Sy. The TPM_Unseal command
releases the decrypted data only if for the current configuration S{, holds Sj = S,
or, abstractly, D = Unseal([D]§¥) < ([D]§F — Seal(So, PK, D) A (S; = So)).

According to the current TCG specification [16], TPM_Seal only accepts
NMKs and it is unclear how the CMKs can be used. As we will see in Section 7
sealing using CMKs would be useful.

Maintenance. The maintenance functions can be used to migrate the SRK
to another TPM: The TPM owner can encrypt the SRK under a public key of
the TPM vendor using the TPM_CreateMaintenanceArchive command. In case
of a hardware error the TPM vendor can extract the encrypted SRK from the
maintenance archive, decrypt it, and load it into another TPM.

Unfortunately, the maintenance function is only optional and, to our knowl-
edge, not implemented by currently available TPMs. Furthermore, the mainte-
nance function works only for TPMs of the same vendor.

5 Problem Description

The integrity measurement mechanism securely stores the platform’s initial con-
figuration into the registers (PCRs) of the TPM. Any change to the measured
software components results in changed PCR values, making sealed data inacces-
sible under the changed platform configuration. While this is desired in the case

of an untrustworthy software suite or malicious changes to the system’s software,
it may become a major obstacle for applying patches or software updates. Such
updates do generally not change the mandatory security policy enforced by an
operating system (in fact, patches should close an existing security weakness not
included in the system specification). Nevertheless, the altered PCR values of
the operating system make the sealed information unavailable under the new
configuration.

We see here a major issue with the current TCG proposal, since the semantic
of the sealing operation is too restrictive to efficiently support sealed information
through the software life-cycle including updates / patches. The main problem
is the lack of a mapping between the security properties provided by a platform
configuration and its measurements. This difficulty is also pointed out in [13]:
“[...] to recognize which reported PCR values were good, given the myriad
platforms, operating system versions, and frequent software patches”.

A further problem we see with the TCG’s proposal is how to handle hardware
replacements in a computing platform. Such replacements are necessary due
to outdated or faulty hardware. In corporate contexts, hardware is typically
replaced every few years. Any sealed data bound to a given TPM cannot directly
be transferred to another TPM, because it is encrypted with a key protected
by the SRK, which in turn is stored within the TPM. While this is intended to
prohibit unauthorized copying, it also effectively prohibits the owner of a system
to migrate the data to a replacement hardware.

In our opinion the existing mechanisms offered by the TCG specification are
insufficient:

Shortcomings of certified migratable Keys: CMKs allow platform owners
to migrate keys to another platform (see Section 4). Unfortunately, migration au-
thorities (MA) have to explicitly certify every single key that the platform owner
may want to migrate. Thus, complete migration of a TPM to another platform
would require an enormous amount of certificates and thus traffic. In our opin-
ion, it is unreasonable to assume that migration authorities can guarantee both
availability and security of their services under these conditions. Another draw-
back is that CMKs cannot be used as encryption keys for the sealing operation.
Thus, data bound to a configuration cannot be migrated using this approach.

Shortcomings of maintenance procedure: Although the maintenance func-
tion defined in the TCG specification protects platform owners against loss of
data, its current instantiation is unsatisfying: First, this mechanism is only op-
tional and not implemented until now. Second, the maintenance function requires
interaction with the TPM vendor. In our opinion, this fact is problematic from
both availability and free-enterprise perspectives: First, in case of a hardware
failure all data controlled by the TPM is affected, thus TPM vendors are in
the position to ask for high fees. Moreover, the TPM owner is lost if the TPM
vendor does not exist anymore. Second, the maintenance function does not allow
platform owners to migrate to a TPM of a different vendor.

6 Basic System Model

In this section, we propose an abstract system model that provides a practical
solution to the missing link problem between the security properties offered by
a platform and its configuration.

Typically, remote parties offering content do not want to limit the usability of
the content to only one platform configuration. Instead, they require that their
policy SPx attached to the content cannot be circumvented. Since such policies
can become rather complex, we propose a three-layered security architecture to
enforce them:

— Application layer: Remote parties can attach a piece of restricted code, a
policy checker, to their content that decides whether the requirements of the
policy SPr are fulfilled or not. Hence it is not necessary to define a general
policy language be used by all remote parties. Instead, remote parties can
explicitly or implicitly code the policy to be enforced into the policy checker.
Note that the purpose of the policy checker is similar to what is called a
trusted viewer [7]: The policy checker verifies that the underlying platform
fulfills the necessary properties, and can enforce a complex security policy.

— Operating-system layer: The operating system layer performs all tasks of
a usual operating system that cannot violate security policies of the involved
parties. This includes resource sharing (e.g. filesystems and user interfaces)
and non-critical device drivers.

— Security-kernel layer: As the policy checker enforces the security poli-
cies, the underlying TCB “only” has to guarantee that unauthorized entities
cannot manipulate the platform such that enforcement mechanisms can be
bypassed. This includes a strict separation between applications (isolation).
Here the sealing mechanism provided by the underlying trusted computing
hardware helps to ensure these elementary security properties. The security
kernel has to be trusted by all involved parties.

Obviously existing monolithic operating systems are not capable of fulfilling
these security requirements (e.g. they do not at all provide a secure isolation be-
tween processes). We therefore suggest a small Trusted Computing Base (TCB)
that offers the properties of the security-kernel layer. Examples of such architec-
tures are [2,9,11].

The advantage of this architecture is that the PCR values used by the under-
lying trusted computing technology (e.g. sealing, attestation) depends only on
the code of the security-kernel. Applications, e.g. a web server, and the operating
system layer can use more abstract services like property-based attestation [10,
8] provided by the TCB. This way changes of these higher layers (e.g. due to
patches) do not change the PCR values, keeping the architecture more flexible.

The reader should note that the software-based proposals in the following
sections assume the existence of such a security architecture providing a trusted
computing base that securely isolates different processes from each other. This
implies that the solutions do not translate to legacy operating systems, e.g. Linux
or Microsoft Windows, without weaker security guarantees.

7 Platform Updates

In our system model, updates of components outside of the TCB are easy as
no PCR values are affected. However, as discussed in Section 5, a configuration
change of the TCB involves more work. We consider the following security and
usability requirements that must be fulfilled by a computing platform providing
the sealing functionality:

— Security. A platform of configuration Sy can access sealed data [D]§5 only
if the attached security policy SPx defines Sy to be trustworthy. This rep-
resents the interests of the remote parties.

— Availability. Information sealed to a platform enforcing the security policy
SP should be available under all platforms that are capable of enforcing SP.
Thus, a software patch should not make the information inaccessible.

In the following, we propose three solutions to the platform update prob-
lem. The first one is based on an extended software function offered by the
operating system layer and allows to reuse existing TPM’s. The second solution
(Section 7.2) extends the TCG specification by a TPM command but allows
more flexible handling of sealed data. In Section 7.3 we discuss the advantages
of a property-based sealing mechanism and show how it can be implemented.

7.1 Software-Supported Updates

To guarantee availability of sealed data when the TCB’s configuration S; is
changed to a S; offering the same security properties, the TCB must provide a
service we call Update Manager (UM). The main task of the UM is to seal the
data for the new configuration S; before the TCB update happens. Note that
the UM has to be invoked whenever components of the TCB are to be changed.
There are several requirements on the UM to correctly update sealed data:

1. The sealed data [D]QK must be available to the update manager, i.e. in
a central store, so that the UM can re-seal them. Alternatively the TCB
could be implemented such that it uses only one sealed cryptographic key to
encrypt all data under configuration S;. As a consequence, only one sealed
key has to be updated by the UM.

2. The PCR values for the new configuration S; must be known to the UM.
This implies that the binary representation of the module to be updated is
available such that the UM can pre-calculate the expected configuration.

3. Only data that is sealed for S; can be updated. This implies that the UM
cannot update data sealed for a different configuration S..

4. The update manager must have some means to ensure that the new config-
uration S; offers the same security properties as the old one with respect
to SPr. Several solutions to this problem are imaginable. We suggest to
introduce a trusted party that is responsible for certifying that two confi-
gurations S; and S; offer the same security properties. The identity of the

trusted party could be, e.g., hard-coded into the TCB resulting in a unique
platform configuration that depends on this party. Thus, by sealing data for
that configuration, remote parties explicitly agree with the TTP selected by
the platform owner.

5. The whole process must be failsafe, i.e. the process must recover if it is
disturbed, e.g. due to user-interruption or power-failure.

Remark 1. The underlying assumption of our model is that the TCB is small
and independent enough such that updates appear only rarely. However, on a
system not conforming to our system model, such as typical monolithic systems,
severe problems may occur: First, system updates occur frequently, since the
TCB is very complex and device drivers are part of it. Second, the UM would
need to ensure that the update process does not violate any policy required
by the respective remote party. Therefore, the UM has to know which security
assurances are necessary for which sealed data. Currently, there is no means in
the TCG proposal to specify the required assurances for sealed information.

The update process proposed above has the drawback that data can only be
updated if it can be accessed under the current configuration. This complicates
updates of core components like the BIOS or the bootloader, since sealed data for
every possible configuration needs separate handling before the new component
is installed. The solutions in the next two sections avoid this shortcoming.

7.2 Hardware-Supported Updates

Our second proposal is based on a new TPM command TPM UpdateSeal that
re-seals data for another platform configuration based on an update certificate.
This TPM command works independently of the current platform configuration.
Thus, it is possible to update all sealed data under one configuration, regardless
of whether the current configuration can access the sealed data. We expect that
such a command could be easily integrated into existing TPM designs.

We assume that a trusted party called Update Certification Authority (UCA)
with a key pair (SK yca, PKyca). It issues update certificates certypgate =
Signgsx 0. (i, Sj) that vouch for configurations S; and S; offering the same se-
curity properties.® Obviously, the UCA has to be trusted by all involved parties
to fulfill the requirements of a secure update function. In the sense of multilateral
security, both the user/owner and the remote party have to agree on an UCA
before data is sealed. Our solution can be applied in two different ways:

— The TPM internally binds the identity Iyyca = Hash(PK yca) of the UCA
to the CMK key pair (SK, PK). By means of a certificate (a signature) on
(PK, Iyca) by the TPM, remote parties can verify that the data encrypted
under this key can be updated based on certificates of that UCA. As this is
based on certified migratable keys (CMKs), using a UCA instead of an MA,
we require them to be usable as sealing keys.”

5 A UCA could be, e.g., an existing authority already involved in software certification.
" Here a new type of updatable sealing key could be introduced that has exactly this
functionality.

— Remote parties can define the UCA that is allowed to update data they have
sealed by securely binding an identifier of the UCA to the data to be sealed
(like the platform configuration under which the data can be accessed).

To provide multilateral security, the user or platform owner should be par-
ticipating in defining the UCA. Otherwise, remote parties could force them to
accept an untrusted one. Therefore, we prefer the first approach.

We now specify the proposed TPM command. Let the following entities and
quantities be given: a TPM, a UCA with public key PK yca, and an update
certificate certupdate := SigNgr 0, (Sis S5)-

As prerequisites, let the user/owner have identified a UCA by Iyca- =
Hash(PK yca-) upon creation of a new CMK key pair (SK, PK) used for seal-
ing, and let the CMK certificate cert.n,; state that PK is generated by a valid
TPM and that it can be updated based on certificates issued by UCA™.

Command specification (TPM_UpdateSeal).

Parameters: [D]ISJOK sealed with PK bound to Iyca«, certupdate, PK vca

Command Description: The TPM

checks the update certificate’s validity: Verify py, . (certupdate) true.
checks that Hash(PK yca) = Tyca~.

checks certypdate covers [D]goK, i.e. that Sop = S;.

returns an error if any of the above checks fails,

computes and returns [D]§.

CU LN

This proposed TPM command allows users/owners to control who is responsible
for the creation of update certificates. Further, it is multilaterally secure with
regard to remote parties who can decide if they are willing to accept the UCA.

7.3 Property-Based Sealing

While the TCG-specified trusted boot process allows to efficiently detect changes
to the code, it neither allows any conclusion if a certain set of PCR values cor-
responds to a trustworthy system, nor does it provide any evidence if a change
in the values represents a property-preserving update or an attempt to subvert
the system. Since the software-supported and the hardware-supported update
function are based on this so-called binary attestation, they both have the draw-
back that sealed data has to be re-sealed whenever the platform’s configuration
intentionally changes.

In [10, 8], property-based attestation builds on attestation of abstract proper-
ties instead of binary representations of the platform configuration. Informally, a
property of a platform describes an aspect of its behavior with respect to certain
requirements, such as security-related requirements, e.g., that a platform has
built-in measures for Multi-Level Security (MLS) mechanism, or built-in pri-
vacy preserving measures conforming to privacy laws; or, more suitable to our
context here, a property could be the fact that the TCB guarantees the secure

execution of a policy checker (see Section 6). In general a property can be viewed
as a model, and any platform complying to this model is said to provide this
property.

Providing property-based sealing allows to bind data to properties instead of
hash values of binaries. This approach has several advantages: First, if data is
only bound to an abstract property, it is no longer necessary to re-seal the data
during software upgrade if the underlying property does not change. Second,
the UCA (see Section 7.2) would only certify that a software release provides
a certain property instead of issuing update certificates between each two such
releases. Third, property-based sealing allows users to use sealed data under
several different platform configurations providing the same properties. Fourth,
remote parties do not have to care about the concrete platform configuration of
the user, since they only have to bind the data to the desired property. Fifth,
remote parties are unable to discriminate certain platform configurations (e.g.
Open-Source software) since the concrete configuration is kept secret.

In practice, property-based services can be provided by a small TCB (see
Section 6) that depends on conventional binary attestation. As a result the large
amount of applications that are using this service (e.g. a web server) do not have
the problems with sealed data discussed in Section 5. In Appendix A we describe
a possible realization of property-based sealing based on update certificates.

The difficulty with property-based attestation and sealing is to define the
concrete semantics of a property, different remote parties may desire to bind their
data to different properties, and a concrete platform configuration may provide
properties that do not exactly match those desired properties. Our system model
(see Section 6) moves the handling of complex property analyses to policy checker
executed on the application-layer, so the only remaining property the TCB has
to provide is to guarantee a secure execution of the policy checker.

8 Migrating to Another Hardware Platform

In Section 5 we discussed the shortcomings of the currently-specified mainte-
nance mechanism. To remedy this we propose to extend the TCG specification
by a multilateral-secure migration mechanism that fulfills the following require-
ments:

— Completeness: Platform owners should be able to move the secret state
7, (see Section 8.1) of a source TPM , to a destination T'PM 4. This implies
that the source TPM is reliably cleared afterwards, so that only a single
instance of the state exists.

— Security: Migration from TPM ; to TPM 4 should only be possible if TPM 4
has the same level of security as TPM ;.

— Fairness: The specification must not dictate the involved parties which TTP
defines the security relations between different TPMs. Moreover, migration
should be possible without the need to interact with the TPM vendors.

To fulfill these requirements, we suggest reasonable modifications and exten-
sions of the current TCG specification, among them that all security-critical

TPM-data can be securely extracted in a non-discriminating manner. Section
8.2 describes how the idea underlying certified migratable keys (CMKs) can be
used in a fail-safe protocol to securely migrate the state of a TPM to another
one that provides the same security properties.

8.1 Sharing the TPM’s State

Migration of a TPM’s state to another TPM is only meaningful if all security-
critical parts of the TPM’s state can be migrated. The maintenance mechanism
allows platform owners to export TPM-protected storage, including the SRK
and the owner’s authorization data. Unfortunately, the current TCG specifi-
cation [16] does neither define mechanisms to securely export the state of the
non-volatile (NV) memory, nor the values of the monotonic counters (MC). Cur-
rently, if migration is an issue, these protected resources cannot be used to store
security-critical data.

Therefore we suggest to extend the TCG specification such that all resources
offered by the TPM can be exported in order to make migration possible.®

8.2 Migration Protocol

The purpose of our migration protocol is to allow platform owners to migrate
a TPM’s contents while not breaking the security guarantees it provides. Our
migration protocol is based on the idea of making Storage Root Keys (SRK)
migratable under tightly controlled circumstances similar to Certified Migratable
Keys (CMK): For this, we introduce a trusted party called TPM Migration
Authority (TMA). Its purpose is to decide about the migration of the SRK; the
TMA shall be bound to the SRK upon its creation by the TPM_TakeOwnership
command.

The decision whether a TPM provides at least the same level of security as
another TPM is highly security-critical since if TPM owners were capable of
migrating their data to a less secure TPM, remote parties could not trust TPMs
at all. Therefore, a TMA needs to be trusted by both the platform owner and
remote parties. In practice, a TMA could be an institution that does security
evaluation and certification. For privacy reasons the choice of a TMA should
remain with the involved parties only. Since remote parties need to know this
TMA, we further suggest to include the TMA’s identity (e.g. a hash of its public
key) into the AIK certificates.

The parties involved are a source TPM, = (EK,7;,SRK), a destination
TPM, = (FEK 4,74, SRK ;) and a TMA identified by PK 7p4. We explicitly
assume that the complete TPM state 7 including NV and MC can be extracted
encrypted under the TPM’s SRK (see Section 8.1).

8 This would also solve another problem stemming from the NV and MC being limited
resources: An operating system might allocate all these resources, so that other
operating systems installed on the same system would be precluded from using them.

We assume as prerequisites:

— Upon taking ownership of TPM g, a TMA is identified by Hash(PK 7p4+).

— The owner of TPM has obtained from the TMA a migration certificate
certmig = Signpg,,,,(Hash(EK rpyy,), Hash(EK 1pys,)) on the hashes of the
endorsement keys of the TPMs. To do so, the owner proves the authenticity
of both TPMs by sending the corresponding vendor certificates on TPM to
the TMA.

Then the migration protocol consists of the following steps, involving a new
command Migrate():

1. The owner extracts the encrypted TPM state Cz, := Encpk g, (Ts) (see
Sect. 8.1).

2. The owner extracts the endorsement key EK'ppy, , from the destination
TPM 4.

3. Upon invocation of Migrate(certyig, EK tpa,, PK 7asa), TPM s checks that

— certpmig is valid, i.e. Verifypy, (certyiy) — OK,

— the TMA issuing cert,,;, has the correct identity, i.e. Hash(PK ra4) =
Hash(PKTMA*),

— the contents of certy, is consistent with its endorsement key EK rpas,
resp. the supplied EK rpys, using the respective hash values.

4. TPM; encrypts SRK s under EK 4, yielding Csrk . := Encgk,(SRK). This
is sent to the platform with T PM,.

5. TPM g switches into a persistent state that allows only two TPM com-
mands: The command TPM_ExtractMigrationData, which returns Cgsri,
(the SRK encrypted under TPM ;’s endorsement key), and the command
TPM_OwnerClear, which deletes the state 7, and SRK .

6. The encrypted TPM state and SRK, i.e. C'7, and Cgsrk,, are loaded into
TPM . If an error occurs, steps 5 and 6 can be repeated.

7. After successful migration to TPM 4 the owner invokes TPM_OwnerClear on
TPM to clear its state and SRK.

9 Summary and Conclusion

In this paper we addressed problems arising from management of sealed data
with respect to software as well as hardware life-cycles that result from the
current TCG specification. In our view these problems are major obstacles for
large-scale use of trusted computing technologies, e.g. in e-commerce applica-
tions.

Our proposed solutions to both problem areas are based on the principle of
multilateral security and decentralized control, where only the involved parties
agree on trusted parties that help to mediate between the interests of the involved
parties, without a central authority like the TCG prescribing a trusted party.
Furthermore, this principle protects the privacy of a system’s owner and user as
well as the security interests of remote parties.

For the problem of maintaining availability of sealed data after a software
update we proposed a several solutions, one purely in software, a second by
augmenting the TPM with an additional command, and a third one based on
abstract (security) properties. While the software solution would work with cur-
rent hardware, it imposes several strict requirements on the operating system
design. The other solutions would open up room for advanced trusted computing
concepts using abstract security properties.

Our proposal for a hardware migration method would allow to move the
contents of one TPM to another one providing multilateral security. It requires
some changes to the TPM, but these should be easy to integrate into the design
while respecting the security interests of all involved parties.

To conclude, our proposals can resolve the identified shortcomings in the cur-
rent TCG specifications regarding management of sealed data during software
and hardware lifecycles. We suggest to introduce them into the TCG standard-
ization process.

An interesting line of research might be to design protocols that employ zero-
knowledge techniques so that a platform owner and remote party can agree on
update and migration authorities without revealing the actual authority. Here a
remote party could issue a list of authorities it trusts, and the platform owner
gives a zero-knowledge proof of membership for the authority of his choice.

References

1. E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In Pro-
ceedings of the 10th ACM Conference on Computer and Communications Security,
Washington, DC, USA, Oct 2004. ACM Press.

2. P. England, B. Lampson, J. Manferdelli, M. Peinado, and B. Willman. A trusted
open platform. IEEE Computer, 36(7):55-63, 2003.

3. A. K. Lenstra. Further progress in hashing cryptanalysis, February 2005.
http://cm.bell-labs.com/who/akl/hash.pdf.

4. Microsoft Corporation. Building a secure platform for trustworthy computing.
White paper, Microsoft Corporation, Dec. 2002.

5. C. Mundie, P. de Vries, P. Haynes, and M. Corwine. Microsoft whitepaper on
trustworthy computing. Technical report, Microsoft Corporation, Oct. 2002.

6. National Institute of Standards and Technology (NIST), Computer Systems Lab-
oratory. Secure hash standard. Federal Information Processing Standards Publi-
cation (FIPS PUB) 180-1, Apr. 1995.

7. National Research Council. The Digital Dilemma, Intellectual Property in the
Information Age. National Academy Press, 2000.

8. J. Poritz, M. Schunter, E. Van Herreweghen, and M. Waidner. Property
attestation—scalable and privacy-friendly security assessment of peer computers.
Technical Report RZ 3548, IBM Research, May 2004.

9. A.-R. Sadeghi and C. Stiible. Taming “trusted computing” by operating system
design. In Information Security Applications, volume 2908 of Lecture Notes in
Computer Science, pages 286-302. Springer-Verlag, Berlin Germany, 2003.

10. A.-R. Sadeghi and C. Stiible. Property-based attestation for computing platforms:
Caring about properties, not mechanisms. In The 2004 New Security Paradigms
Workshop, Virginia Beach, VA, USA, Sept. 2004. ACM SIGSAC, ACM Press.

11.

12.

13.

14.

15.

16.

17.

18.

A.-R. Sadeghi, C. Stiible, and N. Pohlmann. European multilateral secure com-
puting base - open trusted computing for you and me. Datenschutz und Daten-
sicherheit DuD, Verlag Friedrich Vieweg € Sohn, Wiesbaden, 28(9):548-554, 2004.
D. Safford. Clarifying misinformation on TCPA. White paper, IBM Research, Oct.
2002.

D. Safford. The need for TCPA. White paper, IBM Research, Oct. 2002.

R. Sailer, T. Jaeger, X. Zhang, and L. van Doorn. Attestation-based policy enforce-
ment for remote access. In Proceedings of the 10th ACM Conference on Computer
and Communications Security, Washington, DC, USA, Oct. 2004. ACM Press.

R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation
of a TCG-based integrity measurement architecture. In Proceedings of the 11th
USENIX Security Symposium. USENIX, Aug. 2004.

Trusted Computing Group. TPM main specification, Version 1.2, Nov. 2003.
http://www.trustedcomputinggroup.org.

Trusted Computing Platform Alliance (TCPA). Main specification, Feb. 2002.
Version 1.1b.

X. Wang, Y. L. Yin, and H. Yu. Collision search attacks on SHA1, February 2005.
http://cryptome.org/sha-attacks.htm.

A Property-based Sealing using Update Certificates

In practice, properties could be represented by a random but fixed value, while
the mapping value — property defines the property assigned to that value. These
values can be used in the sealing process to define the PCR values S* of virtual
configurations which now describe properties instead of concrete binary systems.
If the TPM_UpdateSeal command (or an extension to TPM_Unseal with similar
functionality) is available, it can be employed to translate between a property
P; and a concrete configuration S;. This translation would work as follows:

— Remote parties seal data for a property P; represented by the virtual config-

uration S*, along with information which UCAs are allowed to certify that a
concrete configuration actually implements the security properties, resulting
in a sealed blob [D]EK.

— Given a configuration S; that actually implements the security properties of

S*, one obtains a certificate stating this fact. This certificate has the same
format as the update certificates of Section 7.2, i.e. U = Signgy, . (S*,50).

— The TPM_updateSeal command is used to translate [D]5X into a sealed blob

[D]EX which can then directly be used.

This way, also the update problem for patched system software would just

vanish, as all that is necessary to update to another concrete configuration S;
also implementing the properties of S* is to obtain a certification of this fact.

PK

Only [D]EX would be kept in long-term storage, possibly caching [D] s

