
SHARK
A Realizable Special Hardware Sieving Device

for Factoring 1024-bit Integers

Jens Franke1, Thorsten Kleinjung1, Christof Paar2, Jan Pelzl2,
Christine Priplata3, and Colin Stahlke3

1 University of Bonn, Department of Mathematics,
Beringstraße 1, D-53115 Bonn, Germany,
{franke,thor}@math.uni-bonn.de

2 Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany,
{cpaar,pelzl}@crypto.rub.de

3 EDIZONE GmbH, Siegfried–Leopold–Straße 58, D-53225 Bonn, Germany,
{priplata,stahlke}@edizone.de

Abstract. Since 1999 specialized hardware architectures for factoring
numbers of 1024 bit size with the General Number Field Sieve (GNFS)
have attracted a lot of attention ([Ber], [ST]). Concerns about the feasi-
bility of giant monolytic ASIC architectures such as TWIRL have been
raised. Therefore, we propose a parallelized lattice sieving device called
SHARK, which completes the sieving step of the GNFS for a 1024-bit
number in one year. Its architecture is modular and consists of small
ASICs connected by a specialized butterfly transport system. We esti-
mate the costs of such a device to be less than US$ 200 million. Because
of the modular architecture based on small ASICs, we claim that this
device can be built with today’s technology.

Keywords: integer factorization, GNFS, lattice sieving, RSA 1024 bit,
special hardware.

1 Introduction

The General Number Field Sieve (GNFS) is asymptotically the best known al-
gorithm to factor numbers with large factors. In practice it seems to be the best
algorithm for both software and hardware for factoring 1024-bit numbers, such
as they appear in RSA based cryptographic protocols. The GNFS has two expen-
sive parts: the sieving part and the matrix step. This paper describes SHARK, a
specialized hardware architecture which completes the sieving step of the GNFS
for a 1024-bit number in one year. It is much cheaper than general purpose hard-
ware that solves the same problem (e.g. personal computers). The architecture
consists of 2300 identical isolated machines sieving in parallel. In the following
we describe one of these machines.

We estimate the costs of one machine to be US$ 70 000. It uses lattice sieving.
The actual sieving is done in very fast accessible memory (“cache”). If this
memory would be extremely cheap, we could construct a machine that sieves in
some extremely large memory chip. Since this kind of memory is expensive we
only use 32 MB of sieving cache memory.

The sieving area is split into many small parts such that each part fits in
the sieving cache. After the sieving of one small part is completed, the machine
moves on to the next part until the whole sieving area has been scanned.

The tricky part is to sort the sieving contributions such that all sieving con-
tributions for a certain part are loaded into the sieving cache just before the
sieving of that part starts. To achieve this, the data produced by the lattices
corresponding to the larger primes of the factor base are sent through a special-
ized transport system with butterfly topology.

The output of the sieve consists of potential sieving reports that still need
to be checked for smoothness. This is done (after a quick compositeness test) by
special hardware devices using the Elliptic Curve Method (ECM). The algorithm
has been adapted for hardware implementations (see [FKPPPSS]). The use of
ECM in special hardware is preferable for lowering the costs of the machine.
However, in this paper we use a choice of parameters with a moderate ECM
support in order to focus on the sieving part of the machine. There are better
choices with much more ECM, as indicated at the end of Section 3. Notice
that the importance of using special hardware for factoring the potential sieving
reports grows with the bit length of the number to be factored.

The estimated costs of computing power for factoring 1024-bit numbers have
been derived from software experiments. Together with the experience from re-
cent factoring records in software (see [RSA576] and [RSA200]), this leads to a
realistic choice of parameters and good estimates for the amount of computing
power and storage needed by each part of the machine.

Section 2 summarizes the necessary background on the GNFS and, in partic-
ular, on lattice sieving. It also discusses parameter choices. The SHARK archi-
tecture is introduced in Section 3 and an overview of the whole machine is given.
A detailed description of the hardware modules and a cost estimate is presented
in Section 4. We finish with some conclusions and remarks in Section 5.

2 The General Number Field Sieve and Lattice Sieving

In GNFS we are given two homogeneous polynomials Fi ∈ ZZ[X,Y], i = 1, 2,
satisfying certain conditions. The task of the sieving step is to collect sufficiently
many coprime pairs of integers (a, b), b > 0, such that both integers Fi(a, b)
decompose into prime factors smaller than a given bound L. Such pairs (a, b)
are also called relations. The number of relations needed depends on the bound
L. Collecting 2π(L) ≈ 2L

logL relations is usually far more than enough. For more
details on GNFS see [LL].

The collection of relations is usually done by a combination of a sieving
technique and a method for factoring smaller numbers, e.g. ECM or MPQS.

For this purpose we choose two factor bases Fi each consisting of pairs (p, r),
where p < Bi is a prime and r an integer such that p divides Fi(a, b) whenever
p | a − br. The sieving technique identifies pairs (a, b) such that both values
Fi(a, b) are divisible by many primes < Bi. The cofactors (Fi(a, b) divided by all
prime factors < Bi) are subsequently handled by a factoring method for small
numbers. If both decompose into prime factors < L a relation is found.

Our proposed sieving device will carry out the collection of relations by lattice
sieving in the way described in [FK] (see also The lattice sieve by J.M. Pollard
in [LL]). Let the dimensions of the sieving rectangle be I × J and let (q, s) be a
special q, i.e. q is a prime and s an integer such that q divides F1(a, b) whenever
q | a − bs. We consider the lattice Λ(q,s) := {(α, β) ∈ ZZ2 | α ≡ βs (mod q)}
associated to (q, s), calculate a reduced basis (a1, b1), (a2, b2) of Λ(q,s) and define
the sieving rectangle to consist of the points i(a1, b1) + j(a2, b2) for − I2 ≤ i <

I
2

and 0 < j ≤ J .
The factor base elements (p, r) with p ≤ I have to be adapted to the lattice

given by (q, s), yielding (p, r̃). Then we proceed with (p, r̃) the same way as in
line sieving. The factor base elements (p, r) with p > I are handled differently.
First, we transform the elements to obtain vectors v and w which allow us to
quickly identify the points of the intersection of the sieving rectangle and the
lattice Λ(p,r) corresponding to (p, r). This is done by starting at the point (0, 0)
and continuing from there by a sequence of additions of either v or w or v + w
by a simple rule as described in [FK]. At each of these locations we have to add
a contribution of log p to the sieving array. We are interested in those points of
the sieving array where the sum of all contributions is bigger than some bound.

In GNFS we have to perform two sieves, an algebraic sieve and a rational
sieve. Moreover, we perform a trial division sieve which is a modification of
[GLM] described in [FK].

For estimating the costs of a factorization of a 1024-bit number we use the
following parameters which are based on the polynomial pair of degree 5 and 1
of [ST]. The factor base bounds are B1 = 4 · 1010 on the algebraic side (1.7 · 109

prime ideals) and B2 = 2 · 1010 on the rational side (9 · 108 prime ideals). The
size of the sieving rectangle is 220 × 219. If a point of the sieving rectangle
passes both sieves and both cofactors are at most 2125, we check for smoothness
(and aborting as soon as it fails) by quick compositeness tests and ECM. If
this is successful and all factors are at most L = 242 we obtain a relation. We
will do lattice sieving for all 3.7 · 109 special q in [4 · 1010, 1.33 · 1011] which we
estimate to yield 2.7·1011 relations. The last number was obtained by integrating
smoothness probabilities over sieving rectangles. In the whole process, about
1.7 · 1014 numbers are processed by ECM.

If one desires a smaller matrix, more relations are needed. In this case, we
propose to do lattice sieving for all 4.4 · 109 special q in [4 · 1010, 1.5 · 1011] which
we estimate to yield 3.1 · 1011 relations. This increases the number of machines
needed for the sieving from 2300 to 2800.

As for cost estimates for other sieving devices the costs will be reduced if one
spends more effort in finding a good polynomial pair.

3 SHARK – Architectural Overview

The SHARK machine consists of parts I, II, III and a transport system (see
Figure 1). The sieving area is split into small parts consisting of 214 lattice
points. For the sieving process one byte per point has a sufficient precision to
sum up the logarithms of the primes. Therefore, sieving one part is done in
16 kB of fast accessible memory (comparable to the first level cache of a general
purpose CPU).

Figure 1: High-Level Schema of the SHARK Sieving Machine

III III· · · 1024 · · ·

transport system with
butterfly topology

III’ III’

II I

output

II I

output

· · · 1024 · · ·

�� ��

// //

�� ��

�� ��

�� ��

We split the factor base into small, medium and larger primes which will be
dealt with in the three different parts of the machine. Part III of the machine
takes care of the larger primes, extracts the necessary data for the sieving process
and sends it through a specialized transport system with butterfly topology. The
transport system sends the data only to that part of the machine where it is
needed. Part III has 1024 small units working in parallel, each dealing with just
1/1024 of the sieving area. Therefore, the transport system has 1024 inputs.

Part II of the machine processes the medium primes. Since the lattices corre-
sponding to these primes are much denser, their data do not need to be sent to
all parts of the machine, but can be sorted locally. As visible in Figure 1, part II
consists of 1024 small parts, each dealing locally with a small part of the sieving
area. These 1024 parts do not communicate among each other.

Part I of the machine consists of 1024 small local units that do not communi-
cate among each other. It generates the very dense lattices for the small primes
of the factor base and sieves with these data on 214 lattice points. Additionally,
part I collects the sieving data from part II and part III that are necessary for
the sieving on the 214 lattice points and sieves with these data. The survivors

of this small part of the sieving area are potential sieving reports, and they are
sent as output to an ECM unit to be checked for smoothness. Then, part I turns
to the next 214 lattice points.

Within one year, 2300 such machines will output about 1.7 · 1014 potential
sieving reports that need to be tested for smoothness, e.g. with the Elliptic Curve
Method (ECM). This could be done by conventional PCs within the required
time.

As soon as special hardware for ECM becomes available (see [FKPPPSS]),
adapting the parameters of SHARK can save up to 50% of the overall costs,
depending on the efficiency of the ECM implementation. E.g. increasing the
bound for cofactors from 2125 to 2163 we only need 1300 machines producing
1.3 · 1016 potential sieving reports to be processed by ECM.

4 Description of the SHARK Modules

The key to the modular architecture is the partitioning of the sieving area and
of the factor base. This algorithmic aspect of the sieving is explained in the first
subsection, whereas the three parts of the machine (I, II and III), reflecting the
partitioning of the factor base, are described subsequently.

4.1 Sieving

In GNFS we have to perform two sieves: an algebraic sieve and a rational sieve.
Notice that we do not need to choose a linear polynomial, the following will also
work with two polynomials of degree > 1. These two sieving tasks are almost
identical except that for the second sieve we only consider the surviving points
of the first sieve. Since we want to know the factorizations of the polynomial
values for the surviving points, we also perform a trial division sieve to recover
the factors found by the sieves.

We divide a sieving task into three phases: the generation of sieving contri-
butions, the actual sieving, and the evaluation of the sieving area.

The first phase is the generation of triples (p, log p, e), where p is a prime,
log p the (scaled) logarithm of p, and e a position in the sieving area. If a prime
ideal has a contribution to a sieve location, a corresponding triple is produced. In
the second phase the contributions are summed up. A sieving array is initialized
by zero and for each triple, log p is added at position e, i.e., for each e the sum∑

(pi,log pi,ei) with ei=e

log pi

is calculated.
The evaluation phase isolates those sieving locations where the contribution

exceeds a certain bound (also depending on the location). For these survivors we
can perform a trial division sieve, creating for each survivor a list of its prime
divisors, in the following way. We clear the sieving array and fill the positions of

the survivors with different identifiers (1, 2, 3, . . .). Afterwards, for each triple the
prime p is stored in the list given by the identifier at position e (if the identifier
is not zero). Note that the generation of triples is only done once while they are
used twice: log p and e for the actual sieving and p and e for the trial division
sieve.

We will use lattice sieving which means that we often change the lattice
corresponding to a special q. At every change we have to carry out initializations
for all elements of the factor base (see [FK]). These initializations amount to
roughly one inversion and one half of an extended gcd per factor base element.
They are done locally at the places of the machine where the factor base elements
are stored. The machine is divided into (roughly) three parts: Part I deals with
the small elements (p, r) of the factor base (1 < p < 214), part II with the
medium elements and part III processes the large elements (222 < p).

We now describe the general structure of the components of the machine and
their interaction over time. Our sieving area has size 220 × 219. Since we omit
those pairs for which both coordinates are even we will sieve over three subareas
of size 219 × 218. We divide these subareas into 32 parts, each of size 219 × 213.
These are called ranges and have the following meaning: During a certain period
of time all parts of the machine with the exception of part I will prepare data for
the algebraic sieve for the n-th range. In the next period of time these parts will
do the same for the rational sieve for the n-th range while part I will complete
the algebraic sieve for range n using the data prepared in the previous period of
time. The rational sieve for range n will be completed in the next period of time
by part I while the other parts prepare data for the algebraic sieve for range
n+ 1 etc. Hence there is a need to buffer the prepared data for two sieves over
a range.

Each range is divided into 1024 parts of size 219 × 23 which we will call do-
mains. There are also 1024 identical parts of the machine (one for each domain),
which will handle sieving contributions of prime ideals of type I and II. The
contributions of prime ideals of type III are processed in a different way. These
prime ideals are split into 1024 parts and for each part all contributions for a
range are prepared and sent to the correct part of the machine. This sorting will
be done by a transport system with butterfly topology.

Sieving for a domain is done in 256 steps handling 214 points each. For this
purpose, data for prime ideals of type II and III (which have to be stored anyway)
are written to the correct array out of 256 arrays. Data for prime ideals of type
I are generated on the fly and combined with the data from the corresponding
array.

We now describe the individual parts in more detail.

4.2 Part III

This part generates triples for prime ideals of type III. It consists of 1024 identical
units each containing 64 MB DRAM and a generation unit. The DRAM is used
to hold the factor bases and related information. For each element (p, r) of the

factor bases we store an 8-tuple (p, r, log p, vx, vy, wx, wy, e) where
(
vx
vy

)
= v and(

wx
wy

)
= w are vectors used to update the contribution location and e is the next

contribution location for this prime ideal. For our choice of parameters we can
store such an 8-tuple in 25 byte using 36 bit for p and r, 8 bit for log p, 20 bit
for vx, vy, wx, wy and 40 bit for e.

The generation unit has two tasks. After changing a special q it calculates
for each prime ideal the values vx, vy, wx and wy for this lattice and sets e to
the first location where the prime ideal contributes. During the sieving phase it
reads all 8-tuples one by one, generates the triples for all locations in the sieved
domain where this prime ideal has a contribution, and writes the 8-tuple back
to memory (actually only e will change). The generated triples are sent to the
transport system.

For the initialization task the generation unit has to perform calculations
of the complexity of an extended gcd. The actual generation of triples requires
only simple instructions such as conditional additions or load/store operations.
Accessing the DRAM does not need to be faster than in a conventional PC. The
same is true for parts I and II as well.

4.3 Transport System

The transport system has 1024 input channels and 1024 output channels. The
purpose of the transport system is to deliver each triple (p, log p, e) from an input
channel to a certain output channel determined by 10 bits of e. Triples have a
size of at most 80 bit and may arrive simultaneously at different input channels.
We will tolerate a small loss of triples arising from data collisions. For instance,
the loss of one triple out of 240 will at most affect one potential sieving report
per special q.

Figure 2: Butterfly Topology of Width 8

���������

?????????

���������

?????????

���������

?????????

���������

?????????

OOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOO

oooooooooooooooo

oooooooooooooooo

OOOOOOOOOOOOOOOO

OOOOOOOOOOOOOOOO

oooooooooooooooo

oooooooooooooooo

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

We now describe a structure which will comply to the requirements above (see
Figure 2). It consists of 11 ·1024 simple nodes connected in a butterfly topology,
i.e., nodes Ni,j and Ni′,j′ (0 ≤ i, i′ < 11, 0 ≤ j, j′ < 1024) are connected if
i′ = i − 1 and either j′ = j or j′ = j xor 2i

′
. Data always flow from nodes Ni,j

with a higher i to those with a lower i. A typical node consists of two input lines
where each is connected to a small buffer such that they can simultaneously
receive triples, two output lines and a logic which reads a triple from an input
buffer, examines a certain bit of e and delivers this triple to the corresponding
output line. For the nodes Ni,j in the top layer (i.e. i = 10) one of the input
lines is an input channel of the transport system and the other input line is not
connected. The nodes in the bottom layer (i.e. i = 0) send all output to one
output line which is the output channel of the transport system.

In order to avoid long cable lengths, the transport system of width 1024
should not be realized in a plane but in a cube (of side length around 1 meter).
Each of the 1024 inputs receives 80 bit every 50 ns on average, at peak times
every 10 ns. The output rate is more balanced. Using 8 bit wide connections, the
clock rate needs to be 1 GHz, or 100 MHz for 80 bit buses. It is also possible to
balance the inputs using buffers in part III, such that the needed clock rate can
be reduced.

This still might be technically difficult. But for a physical realization it is
not necessary to manufacture a separate chip for each node or to strictly adhere
to the topology. We might also group several nodes on a chip or implement a
different sorting structure as long as the performance is not worse than that
of the butterfly topology. Grouping several nodes will also reduce the costs for
connecting them. Perhaps the whole transport system could be realized as a
mesh which sorts the data.

4.4 Part III’

This part also consists of 1024 identical units each of which handles triples for
one domain of the processed range. Each unit connects directly to an output
channel of the transport system and receives triples which are to be sorted and
stored in a double buffer via a 64 kB cache. The double buffer has a size of
2 · 16 MB DRAM and each half is used to store triples from prime ideals of type
III generated for one domain. They are stored in one of 256 arrays according to
8 bit of e. Since at this stage 18 bit of e are fixed we can omit them and store a
triple in 7 byte. Therefore it is possible to store 9300 triples per array which is
far more than the expected 7700 triples per array on average. The two halves of
the double buffer are written alternately by this part. While one half is written,
the other half is read by part I (see below) at a rate of not more than 4 GBit
per second.

4.5 Part II

Part II again consists of 1024 identical units. Each unit is responsible for the
generation of triples for prime ideals of type II for one domain of the processed
range. Since it will generate triples in a line sieve like fashion, it is essentially
a simplified version of part III and part III’. The output rate is not more than
4 GBit per second.

This unit consists of 8 MB DRAM, a generation unit, a sorter and a 64 kB-
cached double buffer of size 2·12 MB DRAM. The 0.6 million factor base elements
of type II (size between 214 and 222) can be stored in 8 MB, each using 14 byte.
These 14 byte take into account some auxiliary data needed for line sieving and
the change from one domain of a range to the corresponding domain in the next
range. The generation unit has a slightly easier initialization task than that of
part III but the actual generation tasks are comparable. It sends the generated
triples to a sorting unit which stores them via a 64 kB cache in one half of the
double buffer. For prime ideals of type II 5 byte per triple are sufficient such
that each array can hold 9800 triples which is more than the 7400 needed on
average.

4.6 Part I

This part again appears in 1024 identical units. Each unit has more complex
tasks than the units in the other parts of the machine. It generates triples for
prime ideals of type I, adds up these contributions, adds up the contributions
from prime ideals of type II and III generated by the other parts of the machine,
combines these sums and evaluates them. This process is now described in more
detail.

In this part the sieving for a domain will be done in 2 · 256 steps: first, 256
algebraic sieves, each over an area of 214, and then 256 rational sieves over the
same areas. Each of these sieving steps consists of several phases: first, an ini-
tialization of the sieving caches, then the actual summation of the contributions,
then an evaluation, and finally the trial divison sieve. The speed needed to access
the sieving caches is the same as for conventional processors accessing their first
level cache.

The prime ideals of type I together with auxiliary data are stored in less
than 50 kB DRAM. A generation unit comparable to that of part II accesses
this memory and generates triples for a sieving area of size 214. These triples are
directly sent to a sieving unit which performs the actual sieving in a cache of
214 byte. Since there is no buffering of the triples they have to be generated a
second time during the trial division sieve. The initialization of the cache with
zeros is also done by the sieving unit.

At the same time another sieving unit which also controls a cache of 214

byte reads the triples generated by parts II and III of the machine and does
the actual sieving in this cache. Since parts II/III and part I are processing
on different sieving sides (i.e., algebraic/rational) there will be no conflict in

accessing the double buffers. Reading the triples will also be fast since triples for
an area of size 214 are stored in one array.

Apart from those units described so far there is a more complex evaluation
processor which has 8 MB DRAM. It is also connected to the two sieving units
and to their caches (see Figure 3). During the actual sieving phase it computes
thresholds for the evaluation phase. After all triples have been processed by the
sieving units, the processor evaluates the sieving area by adding up correspond-
ing bytes of the two sieving caches and comparing the result to a previously
computed threshold. Whenever the sum surpasses the threshold the position is
marked in both sieving caches, otherwise it is set to zero (in a sieve on the ratio-
nal side we also set to zero a position which has not survived the corresponding
algebraic sieve). When this has been done for the whole area of size 214, the trial
division phase begins. The sieving units read (resp. receive) again triples and
send those triples which correspond to a marked position in the sieving area to
the evaluation processor which stores them in its DRAM. After a trial division
sieve on the rational side has been finished, the evaluation processor outputs
the survivors and all data obtained from the trial division sieves for this sieving
area.

Figure 3: Block Diagram of Part I

RAM I
�� ���� �� gen I siever I

sieving cache I
�� ��
�� ��

evaluator

RAM
�� ���� ��

from buffer II

from buffer III

siever II/III

sieving cache II/III
�� ��
�� ��

output

//oo //

ggggggggggg

33

WWWWWWWWWWW

++

��

OO

OO

��

jjjjjjjjjjjjjjjjj

44

TTTTTTTTTTTTTTT

**

xxxxxxxxxxxxxxxxxxxxxxxxxx

<<

||

FFFFFFFFFFFFFFFFFFFFFFFFFF

""

bb

��

OO

��

4.7 Cost Estimates

The width of the transport system is crucial for the costs of the whole machine.
We first give a simple analysis of the behaviour of costs (money × time) for
varying widths. The total costs consist of the costs for the transport system,
the costs for memory and the costs for the ASICs outside the transport system.
The third summand remains constant since doubling the width of the transport
system will double the number of these ASICs but also halve the time spent for
one special q. Furthermore the total memory of the machine remains constant.
This has the consequence that doubling the width of the transport system will
decrease the costs as long as standard memory chips of smaller size get cheaper.
Notice that we want to use standard memory chips, because we assume these to
be cheaper than customized memory ASICs. The first summand always grows
when doubling the width, since a transport system of width 2n+1 consists of two
systems of width 2n and its top layer together with all connections of the top
layer. There will be a certain width for which minimal costs will be attained. In
our design this will probably be bigger than 1024 but this is technically more
demanding. Therefore we chose a width of 1024.

Apart from a few PCs for controlling the sieving process and collecting the
output, one machine consists of 136 GB DRAM, 160 MB cache and various
ASICs. Most of the ASICs only perform quite simple tasks. Only the evaluator
needs a considerable area (around 20 mm2). We estimate that all ASICs of one
of the 2300 machines occupy a third of the area of a 300 mm wafer. Even taking
into account a whole wafer, the silicon costs including memory are less than
US$ 30 000. Doubling this number for overhead (packaging, cooling, ...) and
adding US$ 10 000 for the PCs and special ECM hardware we obtain US$ 70 000
per machine. Notice that the costs for the ECM hardware for this choice of
parameters are just a few dollars and thus negligible.

At a clock frequency of 1 GHz one machine takes around 20 s per special
q such that 2300 machines are needed for 3.7 · 109 special q. This amounts to
production costs of US$ 160 million (without development). Considering the
ASIC area, we estimate that each machine has a power consumption of at most
30 kW which induces a power bill of US$ 60 million per factorization.

5 Conclusions and Remarks

Conclusions. SHARK appears to be the first proposal for an architecture for
sieving a 1024-bit number within a year which is realizable with conventional
technology and costs less than a thousand million US$. The main difference to
other proposed architectures is (in contrast to a giant monolytic ASIC) its mod-
ular design composed of small ASICs connected by conventional data buses. The
modularity is achieved by dividing the factor base into several parts and sorting
the sieving data with a butterfly transport system. All choices of parameters are
a result of intense software experiments with a complete implementation of the
GNFS for factoring large numbers.

Remarks. Our architecture permits many reasonable modifications: the size
of the transport system could be smaller or larger, the partition of the factor
base in three parts could vary, ECM could be used more intensely to permit less
sieving, many other parameters could be changed. This permits using the ar-
chitecture also for other bit lengths. 768-bit numbers can be sieved by a similar
architecture. While scaling the system for larger numbers, the role of an effi-
cient hardware (like ECM in ASICs, see [FKPPPSS]) to factorize the cofactors
becomes more and more important. The transport system has to become very
large and at some point the complexity of the connections between the layers
will be practically impossible.

Future work. The efficiency of the machine heavily depends on the different
processing of factor base elements of different size. We will analyse different meth-
ods for processing very large elements, small prime powers and different classi-
fications of sizes in more than three categories. Some initializations and choices
of parameters can still be optimized. A crucial point for the scalability to larger
numbers than 1024 bit will be the size of the butterfly transport system. We will
investigate different realizations and try to make it larger than 1024 channels.
A large butterfly transport system can also be used for solving the matrix in
GNFS. We will analyse how to optimize the matrix step in this way and how to
lower the size of the butterfly transport system needed for solving the matrix.

References

[Ber] D. J. Bernstein, Circuits for Integer Factorization: A Proposal, Manu-
script, November 2001. http://cr.yp.to/papers.html#nfscircuit

[FK] J. Franke and T. Kleinjung, Continued Fractions and Lattice
Sieving, in: Special-Purpose Hardware for Attacking Cryptographic
Systems – SHARCS 2005, Paris, 2005.
http://www.ruhr-uni-bochum.de/itsc/tanja/SHARCS/talks/

FrankeKleinjung.pdf

[FKPPPSS] J. Franke, T. Kleinjung, C. Paar, J. Pelzl, C. Priplata,

M. Šimka and C. Stahlke, An Efficient Hardware Architecture for
Factoring Integers with the Elliptic Curve Method, in: Special-Purpose
Hardware for Attacking Cryptographic Systems – SHARCS 2005,
Paris, 2005. http://www.ruhr-uni-bochum.de/itsc/tanja/SHARCS/

talks/ecm_paper.pdf

[GS] W. Geiselmann and R. Steinwandt, Yet another sieving device, CT-
RSA 2004, LNCS 2964, Springer, 2004, 278–291.

[GLM] R. A. Golliver, A. K. Lenstra and K. S. McCurley, Lattice sieving
and trial division, in: Algorithmic Number Theory (ed. by L. M. Adle-
man, M.-D. Huang), LNCS 877, Springer, 1994, 18–27.

[LL] A.K. Lenstra and H.W. Lenstra, Jr. (eds.), The Development of
the Number Field Sieve, Lecture Notes in Math. 1554, Springer, 1993.

[LTSKDHL] A. K. Lenstra, E. Tromer, A. Shamir, W. Kortsmit, B. Dod-

son, J. Hughes and P. Leyland, Factoring Estimates for a 1024-bit
RSA Modulus, in: Proc. ASIACRYPT 2003, LNCS 2894, Springer, 2003,
55–74.

[RSA576] J. Franke, T. Kleinjung et al., RSA-576, Email announcement,
2003. http://www.crypto-world.com/announcements/rsa576.txt

[RSA200] J. Franke, T. Kleinjung et al., RSA-200, Email announcement, May
2005. http://www.crypto-world.com/announcements/rsa200.txt

[ST] A. Shamir and E. Tromer, Factoring Large Numbers with the TWIRL
Device, in: Proc. Crypto 2003, LNCS 2729, Springer, 2003, 1–26.
http://www.wisdom.weizmann.ac.il/~tromer/papers/twirl.ps.gz

