
Concurrent Error Detection Schemes for
Involution Ciphers

Nikhil Joshi1, Kaijie Wu1, and Ramesh Karri2

Department of Electrical and Computer Engineering, Polytechnic University
Brooklyn, NY 11201 USA

1{njoshi01, kwu03}@utopia.poly.edu
2ramesh@india.poly.edu

Abstract. Because of the rapidly shrinking dimensions in VLSI, transient and
permanent faults arise and will continue to occur in the near future in increasing
numbers. Since cryptographic chips are a consumer product produced in large
quantities, cheap solutions for concurrent checking are needed. Concurrent Error
Detection (CED) for cryptographic chips also has a great potential for detecting
(deliberate) fault injection attacks where faults are injected into a cryptographic
chip to break the key. In this paper we propose a low cost, low latency, time
redundancy based CED technique for a class of symmetric block ciphers whose
round functions are involutions. This CED technique can detect both permanent
and transient faults with almost no time overhead. A function F is an involution
if F(F(x))=x. The proposed CED architecture (i) exploits the involution prop-
erty of the ciphers and checks if x=F(F(x)) for each of the involutional round
functions to detect transient and permanent faults and (ii) uses the idle cycles in
the design to achieve close to a 0% time overhead. Our preliminary ASIC syn-
thesis experiment with the involutional cipher KHAZAD resulted in an area
overhead of 23.8% and a throughput degradation of 8%. A fault injection based
simulation shows that the proposed architecture detects all single-bit faults.

Keywords: Concurrent Error Detection (CED), Fault Tolerance, Involutional
ciphers, KHAZAD

1 Introduction

Because of the rapidly shrinking dimensions in VLSI, faults arise and will continue to
occur in the near future in increasing numbers. Faults can broadly be classified in to
two categories: Transient faults that die away after sometime and permanent faults that
do not die away with time but remain until they are repaired or the faulty component is
replaced. The origin of these faults could be due to the internal phenomena in the
system such as threshold change, shorts, opens etc. or due to external influences like

electromagnetic radiation. The faults could also be deliberately injected by attackers in
order to extract sensitive information stored in the system. These faults affect the
memory as well as the combinational parts of a circuit and can only be detected using
Concurrent Error Detection (CED). This is especially true for sensitive devices such as
cryptographic chips. Hence, CED for cryptographic chips is growing in importance.
Since cryptographic chips are a consumer product produced in large quantities, cheap
solutions for concurrent checking are needed. CED for cryptographic chips also has a
great potential for detecting (deliberate) fault injection attacks where faults are injected
into a cryptographic chip to break the key [1 2 3 4]. A Differential Fault Attack tech-
nique against AES and KHAZAD was discussed in [5]. It exploited the faults in bytes.
It was shown that if the fault location could be chosen by the attacker, it required only
2 ciphertexts for a successful attack. CED techniques could help prevent such kind of
attacks.

Until now some of the following CED methods for cryptographic algorithms
are known. In [6] a CED approach for AES and other symmetric block ciphers that
exploits the inverse relationship between the encryption and decryption at the algo-
rithm level, round level and individual operation level was developed. This technique
had an area overhead of 21% and a time overhead up to 61.15%. In [7] this inverse-
relationship based technique was extended to AES round key generation. A drawback
of this approach is that it assumes that the cipher device operates in a half-duplex
mode (i.e. either encryption or decryption but not both are simultaneously active).
In [8] a parity-based method of CED for encryption algorithms was presented. The
technique adds one additional parity bit per byte resulting in 16 additional bits for the
128-bit data stream. Each of the sixteen 8-bit×8-bit AES S-Boxes is modified into 8-
bit×9-bit S-Boxes. In addition, this technique adds an extra parity bit per byte to the
outputs of the Mix-Column operation because Mix-Column does not preserve parity of
its inputs at the byte-level.

In this paper, we propose a low cost, low latency CED technique for involu-
tion-based symmetric block ciphers. Any function F is an involution if F(F(x))=x. An
involutional symmetric block cipher is one in which each round operation of the cipher
is an involution. Usually, in symmetric block ciphers, the decryption operation differs
significantly from encryption. Although it is possible to implement decryption in such
a way that it has the same sequence of operations as encryption, round level opera-
tions such as S-Box etc are different. With involutional ciphers, all the operations are
involutions. So, it becomes possible to implement the decryption in such a way that
only the round keys used are different from that for encryption. Besides the implemen-
tation benefit, an involutional structure also implies equivalent security for both en-
cryption and decryption [9].

The CED technique we propose exploits the involution property of the round
operations of this class of symmetric block ciphers and checks if x=F(F(x)) for each of
the involutional round functions to detect the faults in the system. It offers optimum
trade-off between area and time overhead, performance and fault detection latency.
Further, it requires minimal modification to the encryption device and is easily applica-
ble to all involution-based symmetric block ciphers. Traditionally, time redundancy
based CED schemes cannot detect permanent faults but usually entail >100% time

overhead. Although the CED scheme we propose is time redundancy based, it entails
almost zero time overhead.

The paper is organized as follows. In section 2 we will recapitulate Involution-
based symmetric block ciphers. In section 3 we will describe the involution based CED
architecture and the error detection capability of the proposed method. To obtain the
area overhead and the additional time delay, we modeled the method using VHDL and
synthesized using cadence ASIC synthesis tool PKS. The results of this implementa-
tion are presented in section 4. The error detection capabilities of the proposed meth-
ods are discussed in section 5 and finally, Conclusions are reported in section 6.

2 Involutional Block Ciphers

A substitution permutation network (SPN) symmetric block cipher is composed of
several rounds and each round consists of a non-linear substitution layer (S-Box), a
linear diffusion layer and a layer to perform exclusive-or operation with the round key.
The linear diffusion layer ensures that after a few rounds all the output bits depend on
all the input bits. The nonlinear layer ensures that this dependency is of a complex and
nonlinear nature. exclusive-or with the round key introduces the key material. Re-
cently, several SPN symmetric block ciphers that are composed of involution functions
have been proposed and analyzed [10,11,12,13,14]. In an involutional SPN cipher, the
non-linear S-Box layer and the linear diffusion layer are involutions. An advantage of
using involutional components is that the encryption data path is identical to the de-
cryption data path. In an involutional SPN cipher, the round key generation algorithm
for decryption is the inverse of the round key generation algorithm for encryption.

In this paper we will consider the 64-bit involutional SPN cipher KHAZAD[10]
shown in Figure 1 as a running example. The involutional SPN cipher KHAZAD uses
seven identical encryption/decryption rounds (?) with each encryption/decryption
round composed of an involutional non-linear byte substitution ? (i.e. ?(?(x)) = x), an
involutional linear diffusion layer ? (i.e. ?(?(x)) = x) and exclusive-or with key s which
is an involution as well (i.e. s(s(x)) = x).

s

Round ?2

Round ?7

?

Round ?1

s

Plaintext

Ciphertext

K0

K1

K2

K7

K8

s

?

?

Register

Register

Register

Round Input

Round Output

Key

(a) (b)

Fig. 1. (a) Khazad Cipher (b) Round Function ?[Key](x) = sKey (?(?(x)))

2.1 The non-linear substitution function γ

 The involutional non-linear substitution layer ? of KHAZAD uses eight 8x8 involu-
tional S-Boxes, each of which is constructed from three layers of 4x4 involutional P-
Boxes and Q-Boxes as shown in Figure 2. The truth tables for the P-Box and the Q-Box
are given in Table 1. Observe that the P-Box and the Q- box are also involutions. We
implemented the P-Box and Q-box as ROMs and the ? layer uses a total of 24 P-Boxes
and 24 Q-Boxes.

P Q

Q P

P Q

PP QQ

QQ PP

PP QQ

Input 8-bit

Output 8-bit

S-Box

Fig. 2. S-Box in the non-linear layer ? of KHAZAD

Table 1. 4x4 involutional P-Box and Q-Box

2.2 The linear diffusion layer ?

The diffusion layer ? is a linear mapping based on the [16, 8, 9] MDS code with genera-
tor matrix GH = [I H], and H = had(01x, 03x, 04x, 05x, 06x, 08x, 0bx, 07x)
 i.e. ? (a) = b ó b = a × H, where

x P(x) Q(x)
0 3 9
1 F E
2 E 5
3 0 6
4 5 A
5 4 2
6 B 3
7 C C
8 D F
9 A 0
A 9 4
B 6 D
C 7 7
D 8 B
E 2 1
F 1 8

































01x03x 04x 05x 06x 08x 0Bx 07x
03x01x 05x 04x 08x 06x 07x 0Bx
04x05x 01x 03x 0Bx 07x 06x 08x
05x04x 03x 01x 07x 0Bx 08x 06x
06x08x 0Bx 07x 01x 03x 04x 05x
08x06x 07x 0Bx 03x 01x 05x 04x

0Bx07x 06x 08x 04x 05x 01x 03x
07x0Bx 08x 06x 05x 04x 03x 01x

H =

The H matrix is symmetric and unitary and therefore ? is an involution. For efficient
hardware implementation the ? layer was described in [15] as follows:

)()()(

)()()(

)()()(

)()()(

)()()(

)()()(

)()()(

)()()(

21
3

5430
2

6310764107

30
3

5421
2

7210765106

30
3

7321
2

4321654325

21
3

7630
2

5320754324

65
3

7410
2

7542543203

74
3

6510
2

6543543212

74
3

6532
2

7650762101

65
3

7432
2

7641763100

aaXaaaaXaaaaXaaaaab

aaXaaaaXaaaaXaaaaab

aaXaaaaXaaaaXaaaaab

aaXaaaaXaaaaXaaaaab

aaXaaaaXaaaaXaaaaab

aaXaaaaXaaaaXaaaaab

aaXaaaaXaaaaXaaaaab

aaXaaaaXaaaaXaaaaab

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕=

where a7-a0 and b7-b0 are the eight input bytes and the eight output bytes of the diffu-
sion layer ?.
Assuming that a(7),a(6),a(5),a(4),a(3),a(2),a(1) and a(0) are the eight bits in an input
byte a, the three byte level functions X(a), X2(a)=X(X(a)) and X3(a)=X(X(X(a))) can be
defined as follows:

)5(),6(),5()7(),5()6()0(),5()6()7()1(),6()7()2(),7()3(),4(

))0(),1(),2(),3(),4(),5(),6(),7((

)6(),7(),6()0(),6()7()1(),6()7()2(),7()3(),4(),5(

))0(),1(),2(),3(),4(),5(),6(),7((

)7(),0(),7()1(),7()2(),7()3(),4(),5(),6(

))0(),1(),2(),3(),4(),5(),6(),7((

3

2

aaaaaaaaaaaaaaaaa

aaaaaaaaX

aaaaaaaaaaaaaa

aaaaaaaaX

aaaaaaaaaaa

aaaaaaaaX

⊕⊕⊕⊕⊕⊕⊕⊕⊕=

⊕⊕⊕⊕⊕⊕=

⊕⊕⊕=

It can be seen that if bit a(7) is “0” then function X(a) reduces to a single bit left rotate.
Similarly, the function X2(a) reduces to a 2-bit left rotate when a(7) and a(6) are “0” and
finally, the function X3(a) reduces to a 3-bit left rotate when a(7), a(6) and a(5) are “0”.

2.3 The exclusive -or function σ

The key addition s layer consists of bitwise exclusive-or of the 64-bit round-key Kr
with the input to the module. Hence, s is also an involution.

3 Concurrent Error Detection of Involution Functions

We will first describe a simple CED scheme that exploits the involution property of any
involution function and then extend it to the involutional SPN cipher KHAZAD.

If a hardware module implements a function F that satisfies the involution property,
faults in this module can be detected by checking if x=F(F(x)). At the beginning of
operation, the input x is buffered. The output of the hardware module implementing F
is fed back to the input of the module F. The result is compared to the original input x
and a mismatch indicates an error. Figure 3 shows this basic idea behind CED scheme
for an involutional function.

Fig. 3. CED scheme for an involution function

We will show how this CED scheme can be incorporate into a non-pipelined archi-

tecture for KHAZAD. Since symmetric block ciphers are frequently used in one of
three feedback modes: Cipher Block Chaining (CBC), Output FeedBack (OFB) or Ci-
pher Feedback (CFB), such a non-pipelined architecture is indeed reasonable. The
proposed scheme works even in a non-feedback Electronic Code Book (ECB) mode to
facilitate pipelining, with an appropriately modified architecture. If a pipelined architec-
ture is implemented, the scheme can result in increased throughput at the cost of a
little extra hardware compared to the non-pipelined version owing to a more complex
controller. Also, ECB mode is not popularly implemented. Hence, we will consider a
non-pipelined version. In the non-pipelined KHAZAD architecture, each KHAZAD
round ? takes three clock cycles to finish with round operation ?, round operation ?
and round operation s completing in clock cycles 1, 2 and 3 respectively.

3.1 CED Scheme 1

Consider a straightforward time redundancy based CED scheme (Scheme 1) wherein
round operation ? is performed in clock cycles 1 and 2 on the same input x both the
times. If ?(x) obtained at the end of clock cycle 1 = ?(x) obtained at the end of clock
cycle 2 (i.e. no transient fault is detected in module ?), round operation ? is performed
in clock cycles 3 and 4 on the same input ?(x). If ?(?(x)) at the end of clock cycle 3 =
?(?(x)) at the end of clock cycle 4 (i.e. no transient fault is detected in mo dule ?), round
operation s is performed in clock cycles 5 and 6 on the same input ?(?(x)). If s(?(?(x)))
at the end of clock cycle 5= s(?(?(x))) (i.e. no transient fault is detected in module s)
one KHAZAD round ? is successfully completed. This time redundancy based
scheme can only detect transient faults and entails >100% time overhead.

3.2 CED Scheme 2

As a first modification to the above CED scheme, we propose to integrate involution
based CED shown in Figure 4 into the non-pipelined KHAZAD (Scheme 2) as follows.
Round operation ? is performed in clock cycle 1 on input x followed by the corre-
sponding CED operation ?(?(x)) in clock cycle 2. If x= ?(?(x)) (i.e. no fault is detected in
module ?), round operation ? is performed in clock cycle 3 on ?(x) followed by the
corresponding CED operation ?(?(?(x))) in clock cycle 4. If ?(x)= ?(?(?(x))) (i.e. no fault
is detected in module ?) then round operation s is performed in clock cycle 5 on
?(?(x)) followed by the corresponding CED operation s(s(?(?(x)))) in clock cycle 6. If
?(?(x))= s(s(?(?(x)))) (i.e. no fault is detected in module s) one KHAZAD round ? is
successful. This modification can detect permanent faults in addition to the transient
faults. This is because, although the same mo dule is used twice, the data that it is
operating on is different in each case. This was possible due to the involution prop-
erty of the modules. The time overhead of this modified time redundancy based CED is
still >100%.

3.3 CED Scheme 3

During a complete KHAZAD encryption/decryption, round operation ? is busy in
clock cycles 1, 4, 7 … and idles in clock cycles 2, 3, 5, 6, 8, 9… Similarly, round opera-
tion ? is busy in clock cycles 2, 5, 8 ... and idles in clock cycles 1, 3, 4, 6, 7… Finally,
round operation s is busy in clock cycles 3, 6, 9 … and idles in clock cycles 1, 2, 4, 5, 7,
8 … The involution based CED scheme in Figure 4 can be adapted to the non-
pipelined KHAZAD architecture to exploit these idle clock cycles as follows (Scheme
3): Round operation ?(x) is performed in clock cycle 1. The corresponding CED opera-
tion for ?(x) i.e., ?(?(x)) is performed in clock cycle 2 concurrent with the round opera-
tion ?(?(x)). If x= ?(?(x)) then no fault was detected in module ? and hence no errors
are reported. The corresponding CED operation for ?(?(x)) i.e., ?(?(?(x))) is performed
in clock cycle 3 concurrent with round operation s(?(?(x))). If ?(x)= ?(?(?(x))) then no
fault was detected in module ?. At this point, one KHAZAD round ? is completed only

in 3 clock cycles in contrast to the 6 cycles consumed by the two other schemes de-
scribed above. Now, in clock cycle 4, the corresponding CED operation for s(?(?(x)))
i.e., s(s(?(?(x)))) is performed concurrent with the round operation ?(y) where y is the
input to the second round of the KHAZAD encryption/decryption given by y=
s(?(?(x))). If s(s(?(?(x))))= ?(?(x)) then no fault was detected in module s. The compari-
sons between the 3 schemes are presented in Table 2.

Time redundancy based CED

Clock
Cycle

Scheme 1 (Basic approach)
Transient faults only
100% time overhead

Scheme 2 (+involution)
Transient and permanent

faults
100% time overhead

Scheme 3 (+involution
+idle cycles)

Transient and perma-
nent faults almost 0%

time overhead
1 ?(x) of round 1 ?(x) of round 1 ? (x) of round 1
2 ?(x) of round 1+check ?(?(x)) of round 1+check ?(?(x))) of round 1,

?(?(x)) of round 1+check
3 ?(?(x)) of round 1 ?(?(x))) of round 1 s(?(?(x))) of round 1,

?(?(?(x))) of round
1+check

4 ?(?(x)) of round 1+check ?(?(?(x))) of round 1
+check

?(y)* of round 2,
s(s(?(?(x)))) of round 1

+check
5 s(?(?(x))) of round 1 s(? (?(x))) of round 1 ?(?(y))) of round 2,

?(?(y)) of round 2 +check
6 s(?(?(x))) of round 1

+check
s(s(?(?(x)))) of round 1

+check
s(?(?(y))) of round 2,

?(?(?(y))) of round 2
+check

* ‘y’ is the input to round 2

Table 2. Comparison between the three CED schemes during the first six clock cycles

As explained above, Scheme 3 uses idle clock cycles to re-compute the round op-
erations on the corresponding round outputs by feeding back the output as the input.
The result obtained is compared to the original input value stored in the buffer. These
two values should be equal since every round operation is an involution. If they are
not equal, an error is reported. As seen from Table 2, this time redundancy based CED
method (Scheme 3) entails almost no time overhead because one round operation is
completed per clock cycle. Another inherent advantage of the proposed CED method
is that we can detect permanent faults in the system even though the faults might not
affect the output, i.e. are not activated by current inputs. Consider a situation where a
faulty bit is stuck- at-1 and the output at that bit was supposed to be logic ‘1’. Now,
although the output is correct, the fault in the system will be detected because the
involution will not yield the correct result. This enhances the security of the implemen-
tation since any attempts to clandestinely attack the algorithm by an external agent
can be detected. This also improves the overall fault coverage as well as the error

detection latency. The CED architecture for Scheme 3 is shown in Figure 4 with the
hardware overhead shown by the shaded blocks in Figure 4.

?

?

? reg

? reg

s reg

Round Input

Round Output

Mux 1

Register

Mux 2

Register

Mux 3

Register

Comparator

Comparator

Comparator

ERROR

Key Mux

s 32 s 32

flipped
Key

Normal
Key

Fig. 4. KHAZAD round function ? with CED

An interesting observation in the figure 4 is the requirement of a second multiplexer
for the CED of the s operation. This is due to the fact that a direct involutional opera-
tion on the σ layer yields in a fault-coverage of only 50%. The σ function is a 64-bit
exclusive-or operation, and applying an involution operation on an XOR module will
not enable us to detect all faults. i.e, if an exclusive-or function has a stuck-at fault at
one of its output bits and a faulty output is obtained because of this fault, the result of
involution would in fact, be the correct input that was applied. For example, if the input
to the σ layer is 0x12345678 and the round key value is 0xABCDEF01, the normal out-
put would be 0xB9F9B979. If there is a fault in the system such that the 2nd LSB (Least
Significant Bit) of the exclusive-or output is stuck-at-1, instead of obtaining the cor-
rect result, we obtain 0xB9F9B97B which is a faulty output. But when we perform the
exclusive-or operation again on this faulty output, we get back 0x12345678. In such
cases, ordinary involution based CED fails. In such cases, ordinary involution based
CED fails. To solve this problem, we propose the following. The operands for all the
exclusive-or operators are exchanged. So, the 64-bit exclusive-or operation is now
divided into two parts, the left and the right with each part consisting of 32-bit exclu-
sive-or operations. Similarly the 64-bit exclusive-or operator is also divided into two

parts, the left and the right with each part consis ting of 32-bit exclusive-or operators.
During the normal computation, the left part of exclusive-or operation is allocated to
the left part of exclusive-or operator while the right part of exclusive-or operation is
allocated to the right part of exclusive-or operator. But for the involution based CED,
we interchange the operators. i.e., the right part is allocated to the left and vice-versa.
Fault simulation shows the single-bit fault coverage of this scheme is 100%.

4 Implementation based validation

We implemented KHAZAD with involution based CED using IBM 0.13 micron library.
The modeling of the architecture was done using VHDL, and Cadence Buildgates PKS
was used to do the synthesis and place route. KHAZAD without CED datapath was
also implemented using the same library and design flow. Table 3 shows the details of
the overhead. The second row shows the area used by both designs. An inverter of
this library takes 32 units area. The area overhead of the CED design is 23.8%. The
third row shows the minimum clock period of synthesized designs. Due to the multi-
plexers inserted in the datapath, the clock period of CED design is 3.3% more than the
normal design. The fourth row shows that the CED design takes one more clock cycle
than the normal design. This is because in the CED design, the re-computation of a
round operation lags one clock cycle to the normal computation. This means that if we
ignore the CED only for the σ layer in the last round, the normal architecture and the
involution based CED architecture in fact take the same number of clock cycles to
complete i.e., no time overhead. Finally the throughput comparison is shown in the
fifth row. The throughput is calculated as the number of bits encrypted per second, i.e.
the # of text / (the # of clock cycles × clock period).

 Normal Involution based CED
(scheme 3 above)

Overhead

Area 27453 34024 23.8%
Clock period 4712.69 ps 4870.99 ps 3.4%
#clock cycles 22 23 4.5%
Throughput 0.62 Gbps 0.57 Gbps 8%

Table 3. Overhead for the CED computation

5 Fault Injection Simulation

5.1 Single-bit Faults

To check the error detection capability, we modeled our implementation using C. A
stuck-at fault at a function output was injected by adding a multiplexer at the output of
the function as shown in Figure 5.

Fault,
0 or 1

Output with a
fault injected

Function F

Original output

Fault injection
control

1 0

Fig. 5. Fault injection on the output of the function

By setting the fault injection control to 1, a stuck-at fault (either 0 or 1) is injected at
the output of the function. Similarly, a stuck-at fault can be injected at the input of a
function. Therefore, the number of connections between gates/functions gives the
number of possible single-bit faults. Note that in this simulation we treat Function F as
a black box and only consider the faults at inputs and outputs. If we break down the
Function F into smaller components and consider the inputs and outputs of these
smaller components, the number of single-bit faults is increased. In our simulation we
consider the P-Box and Q-box of an S-Box, and the exclusive-or for the functions θ
and σ as the black box operations. The number of single-bit faults is shown in Table 4.
For example, as shown in figure 2, since an S-Box consists of three 4x4 P-Box and three
4x4 Q-Boxes, the total number of connections of an S-Box is 4 × 3 (for P-Box) + 4 × 3
(for Q-Box) + 8 (the number of inputs to S-Box) = 32. Since the γ function of KHAZAD
consists of 8 S-Boxes, the total number of connections and hence the total number of
single-bit faults is 256. We ran simulations for random 1.5 million inputs, and for every
input we simulated all the possible single-bit faults, i.e. only one bit is stuck at 1 or 0.
Table 4 shows the fault coverage. The lowest level of fault injection in the design was
performed at the bit-wise exclusive-or level. As seen from the table, all the single-bit
faults are detected.

Function
Module

of possible
single bit faults

of inputs
applied

Fault
coverage

γ 256 1500000 100%

θ 1072 1500000 100%

σ 192 1500000 100%

Table 4. Fault Coverage of the Implementation

5.2 Multiple-bit Faults

The injection of random multiple bit faults into the system yielded an overall fault
coverage of approximately 99% over a random 1.5 million input test simulation run. The
reason for not achieving 100% fault coverage with multiple-bit faults is because in
some exceptionally rare cases, the fault in the system gets nullified in the case of the ?
and s layers. Consider a single S-Box component of the non-linear ? layer. If we have
an input of 0xD5 to the S-box, the output obtained is 0x11. After involution, we get
back 0xD5, which was the original input applied. Hence, the system will not report an
error. Now, if a fault occurs in the system such that the two LSBs of the P-box are
stuck at logic 1, then after 0xD5 is passed through the S-Box, 0x71 is obtained, which is
a faulty output. Interestingly, the involution output obtained in this case is also 0xD5.
Since this value is equal to the original input, the system fails to report an error. This
implies that in extremely rare cases as the one explained above, the CED method that
we propose does not yield accurate results. Problems like the one described above do
not affect the ? layer because ? is a diffusion layer and every bit in the output is de-
pendent on every bit in the input. Hence, on performing involution, all multiple-bit
errors are also detected, giving 100% fault coverage.

6 Conclusion

We proposed a low cost CED technique for involutional ciphers which exploits the
involution property of the cipher. For the involutional cipher the proposed technique
entails an additional 23.8% silicon area and degrades the throughput by less than 10%.
This technique entails a 4.5% time overhead (which can be reduced to 0% if the CED is
ignored only for the s layer in the last round of encryption/decryption). The fault in-
jection based simulation shows the proposed CED technique detects all single-bit
faults and around 99% of all multiple-bit faults.

KHAZAD round key generation algorithm expands the 128-bit user key K in to nine
64-bit round keys K0,K1…, K8. The round key Kr for the rth round is derived as

80,)]([21 ≤≤⊕= −− rKKcK rrrr ρ where, K-2 and K-1 are the most and least significant
parts of the key user key K and cr is a 64-bit constant for the rth round derived as

70,80],8[≤≤≤≤+= irirSc i
r

. Since round key generation uses the KHAZAD
round function ?, the CED method proposed in this paper can be applied to detect all
single-bit faults.
.

References

1. D. Boneh, R. DeMillo and R. Lipton, “On the importance of checking cryptographic proto-
cols for faults”, Proceedings of Eurocrypt, Lecture Notes in Computer Science vol 1233,
Springer-Verlag, pp. 37-51, 1997

2. E. Biham and A. Shamir, “Differential Fault Analysis of Secret Key Cryptosystems”, Pro-
ceedings of Crypto, Aug 1997

3. J. Bloemer and J.P. Seifert, “Fault based cryptanalysis of the Advanced Encryption Stan-
dard,” www.iacr.org/eprint/2002/075.pdf

4. C. Giraud, “Differential Fault Analysis on AES”, http://eprint.iacr.org/2003/008.ps
5. Jean-Jacques Quisquater, Gilles Piret, “A Differential Fault Attack Technique Against SPN

Structures, with Application to the AES and KHAZAD,”Fifth International Workshop on
Cryptographic Hardware and Embedded Systems (CHES 2003), Volume 2779 of Lecture
Notes in Computer Science, pages 77-88, Springer-Verlag, September 2003

6. R. Karri, K. Wu, P. Mishra and Y. Kim, “Concurrent Error Detection of Fault Based Side
Channel Cryptanalysis of 128-Bit Symmetric Block Ciphers,” IEEE Transactions on CAD ,
Dec 2002

7. G. Bertoni, L. Breveglieri, I. Koren and V. Piuri, “On the propagation of faults and their
detection in a hardware implementation of the advanced encryption standard,” Proceedings
of ASAP’02, pp. 303-312, 2002

8. G. . Bertoni, L. Breveglieri, I. Koren, and V. Piuri, “Error Analysis and Detection Procedures
for a Hardware Implementation of the Advanced Encryption Standard,” IEEE Transactions
on Computers, vol. 52, No. 4, pp. 492-505, Apr 2003

9. Joan Daemen, Vincent Rijmen, Paulo S.L.M. Barreto, "Rijndael: Beyond the AES," Mi-
kulášská kryptobesídka 2002 -- 3rd Czech and Slovak cryptography workshop, Dec. 2002,
Prague, Czech Republic

10. P.S.L.M. Barreto and V.Rijmen, “The KHAZAD legacy-level Block Cipher,” First open
NESSIE Workshop, Leuven, 13-14 November 2000

11. A. Biryukov, “Analysis of Involutional Ciphers: KHAZAD and ANUBIS,” Proceedings of
the 3rd NESSIE Workshop, Springer-Verlag pp. 45 – 53

12. J. Daemen, M.Peeters, G.Assche and V.Rijmen, “The Noekeon Block Cipher,” First Open
NESSIE workshop, November 2000

13. P.S.L.M. Barreto and V.Rijmen, “The ANUBIS Block Cipher,” Primitive submitted to
NESSIE, September 2000,available at www.cosic.esat.kuleuven.ac.be/nessie

14. F. Standaert, G. Piret, G. Rouvroy, “ICEBERG: an involutional cipher Efficient for block
encryption in Reconfigurable hardware,” FSE 2004, Springer-Verlag, February 2004

15. F. Standaert, G. Rouvroy, J. Quisquater, J.Legat, “Efficient FPGA Implementations of
Block Ciphers KHAZAD and MISTY1,” proceedings of the 3rd NESSIE Workshop, Mu-
nich, November, 2002

