
TTS: High-Speed Signatures on a Low-Cost Smart Card

Bo-Yin Yang1, Jiun-Ming Chen2, and Yen-Hung Chen3

1 Mathematics Department, Tamkang University, Tamsui, Taiwan,by@moscito.org
2 Chinese Data Security Inc. & National Taiwan University,jmchen@math.ntu.edu.tw
3 Comp. Sci. & Info. Eng., Nat’l Taiwan U., Taipei, Taiwan,r92014@csie.ntu.edu.tw

Abstract. TTS is a genre of multivariate digital signature schemes first proposed
in 2002. Its public map is composed of two affine maps sandwiching aTame Map,
which is a map invertible through serial substitution and solving linear equations.
We implement the signing and key generation operations for aTTS instance with
20-byte hashes and 28-byte signatures, on popular extant microcontroller cores
compatible to the Intel 8051. Our tests demonstrates that TTS can be even faster
than SFLASHv2, which is known for its celerity. The sample scheme TTS(20, 28)
is fast enough for practical deployment on a low-end 8051-based embedded de-
vice. A really low-end part like a stock Intel 8051AH runningat 3.57 MHz can
sign in just 170ms. A better 8051-compatible chip will take alot less time.
Security requirements today demand on-card key generation, and the big public
keys of a multivariate PKC create a storage problem. TTS is unusual in that public
keys can be synthesized on-card at a decent pace for block-by-block output, using
some minimal information kept on-card. Since this does not take much more time
than the I/O needed to transmit the public key to a reader, we can avoid holding
the entire public key in the limited memory of a smart card. Weshow that this to
be a gain for multivariate PKC’s with relatively few terms per central equation.
The literature is not rich in this kind of detailed description of an implementation
of a signature scheme — capable of fast on-card public key generation, on a low-
cost smart card without a co-processor, and at NESSIE-approved security levels.
We look into other theory issues like safeguarding against side-channel attacks,
and using unusual techniques for linear algebra under serious space restrictions,
which may help implementations of other multivariate PKC’ssuch as SFLASH.
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1 Introduction

For most adopters of Public-Key Infrastructure, the quarter-century-old RSA still re-
mains the public-key cryptosystem of choice. We see that allis not perfect:

RSA is too slow to be used on a smart card and this keeps the security achieved
by smart card solutions insufficient: unable to implement a real public key sig-
nature. . . . N. Courtoiset al ([1], 2003).

This must be taken in context as a historical perspective: Acceptable signing speed on
smart cards with reasonably long RSA keys has become feasible around the turn of the
millennium, especially with special-purpose hardware co-processors.



However, cost of deployment is still an obstacle, and there is clearly room for im-
provement: Chips must get even faster and cheaper, or the algorithms need revamping.

Traditionally, Public-Key Infrastructure (PKI) implementers stick to well-established
Public-Key Cryptosystems (PKC) based on RSA, occasionallyECC. However these
are comparatively slow, so cryptologists sought faster alternatives, among which are
the “multivariate PKC”, cryptosystems that use substitution into quadratic polynomials
as a public map. The currently best known scheme of this type is SFLASHv2 ([15]), a
derivative ([14]) of the prototypeC∗ ([9], broken in 1995 by [12]). Multivariate cryp-
tosystems (more literature on the extended family: [3, 5, 7,8]) are usually conceded to
be faster than RSA and other traditional alternatives with alarge algebraic structure. Un-
fortunately, the only such scheme to get a mention in the recently announced NESSIE
final recommendations ([11]) is SFLASHv2, and only grudgingly:

. . . not recommended for general use but this signature scheme is very efficient
on low cost smart cards, where the size of the public key is nota constraint.

Granted NESSIE was more concerned about SFLASH’s untried security than size of its
public keys, but still this rather sells SFLASHv2 and other multivariate PKC’s short.

We aim to provide another example of how a multivariate PKC can provide superior
performance for less. Our sample scheme, unlike theC∗−-derived SFLASHv2, is a
digital signature scheme from the different family of TTS ([2, 17]). Techniques shown
here are applicable to other multivariate PKC’s, however. Our test results on 8051-
compatible microcontrollers are tabulated along with datapublished by the NESSIE
project ([11]) and other recent sources (e.g. [1]). It showcases TTS well:

Scheme Platform (T number) Clock Pr. Key Code RAM Signature

TTS(20, 28)
Intel 8032AH (12)

3.57 MHz
1.4 kB

1.4 kB
128 B

144 ms
Intel 8051AH (12)

1.6 kB
170 ms

Winbond W77E58 (4) 64 ms
ESIGN

Intel 8051AH (12)
336 B 3.0 kB 800 B 12.0 s

SFLASHv2 2.4 kB 3.3 kB 344 B
1.07 s

Infineon SLE66 (2) 10 MHz
59 ms

RSA-PSS
(1024 bits)

320 B
N/A ≥1kB

many s
NECµPD789828*(12) 40 MHz 100 ms

Infineon SLE66*(2)
5 MHz

230 ms
RSA-2048 640 B 1.1 s

ECDSA-191 10 MHz 24 B 180 ms
NTRU-Sign Philips 8051 (6) 16 MHz 100 B 5 kB N/A 160 ms

Table 1.8051-compatible results for various digital signature schemes (* = with co-processor)

Special Note:8051-compatible parts running at the same nominal clock frequency have
widely divergent speeds on the same program. On every 8051-compatible part, a ma-
jority of common instructions execute in the same amount of time, which is called the
instruction cyclefor this part. Every instruction executes in an integral number of in-
struction cycles. The ratio of one instruction cycle to one clock cycle is called the “T
number”. So a Siemens-Infineon SLE66 is up to six and usually 4-5 times faster than a
8051 at the same clock rate. Some platforms also have extras goodies including crypto-
graphic co-processors, so some care is needed in interpreting the tabulated results.



Sometimes TTS(20, 28) need to hash just once while ESIGN or SFLASHv2, re-
peated hashes must be taken. Without worrying about details, all told TTS(20, 28) is 6
times faster on the same resources than SFLASHv2, which in turn was noted for being
faster without a coprocessor than the traditional alternatives with a coprocessor.

This paper details an implementation of TTS(20, 28) on an 8051 compatible micro-
controller. Sec. 2 describes the mathematics. Sec. 3 summarizes the 8051 platform (with
a more complete review provided in Appendix A). Sec. 4 and in particular Secs. 4.4—
4.6 give the innards of the algorithm. Sec. 5 discusses technical issues, including side-
channel attack concerns. Some unusual maneuvers in linear algebra help to manage the
large amounts of data efficiently during key generation on RAM-poor smart cards. We
also explain why TTS can signandgenerate keys quickly and efficiently. The real-time
on-card public key generation capability ameliorates a problem affecting most multi-
variateseven when the keys are not stored on-card, i.e., the large public key makes
on-card key generation frequently infeasible and key management difficult (cf. [16]).

2 Principles of TTS and Our Sample Scheme TTS(20, 28)

In a multivariate PKC, usually the public map is a composition V = φ3 ◦ φ2 ◦ φ1 with
bothφ1 : w 7→ x = M1w+c1 andφ3 : y 7→ z = M3y+c3 being affine and invertible.
All arithmetic is done over a finite field (thebase field) which in TTS isK = GF(28).

A digital signature scheme is considered to be in the TTS family ([2]) if φ2 is a
tame map, a polynomial mapwith relatively few terms in the equations, easily invert-
ible through serial substitution or solution of linear equations, but without a low degree
explicit inverse. Tame maps extend the concept ofTame Transformationsfrom alge-
braic geometry ([10]), and may be said to combine the traits of triangular constructs
(introduced to cryptography in [5], cf. also [6, 17]) and Oil-and-Vinegar ([7, 8]).

We refer the reader to [2] for some background, and [17] for a topical assessment of
TTS. We will use for illustration the TTS instance exhibitedin [17] with the following
central mapφ2 : x = (x0, x1, . . . , x27) 7→ y = (y8, y9, . . . , y27):

yi = xi +
∑7

j=1 pijxjx8+(i+j mod 9), i = 8 · · · 16;

y17 = x17 + p17,1x1x6 + p17,2x2x5 + p17,3x3x4

+p17,4x9x16 + p17,5x10x15 + p17,6x11x14 + p17,7x12x13;

y18 = x18 + p18,1x2x7 + p18,2x3x6 + p18,3x4x5

+p18,4x10x17 + p18,5x11x16 + p18,6x12x15 + p18,7x13x14;

yi = xi + pi,0xi−11xi−9 +
∑i

j=19 pi,j−18 x2(i−j) xj

+
∑27

j=i+1 pi,j−18 xi−j+19 xj , i = 19 · · · 27.

This central map works with20-byte hashes and28-byte signatures, and the corre-
sponding TTS instance will be henceforth called TTS(20, 28).

To Generate Keys: Assign non-zero random values inK = GF(28) to parameters
pij ; generate random nonsingular matricesM1 ∈ K28×28 andM3 ∈ K20×20 (usu-
ally via LU decomposition) and vectorc1 ∈ K28. ComposeV = φ3 ◦ φ2 ◦ φ1;
assignc3 ∈ K20 so thatV has no constant part. Save quadratic and linear coeffi-
cients ofV as public key (8680 bytes). FindM−1

1 , M−1
3 ; save them withc1, c3, and

the parameterspij as the private key (1399 bytes).



To Sign: From the messageM , first take its digestz = H(M) ∈ K20, then compute
y = M

−1
3 (z − c3), then compute a possiblex ∈ φ−1

2 (y) as follows:
1. Randomly assignx1, . . . , x7 and try to solve forx8 to x16 in the first 9 equa-

tions. Since the determinant (for anyx2 · · ·x7) of this system is a degree-9
polynomial inx1, there can only be at most9 choices ofx1 out of 256 to make
the first system degenerate. Keep trying until we find a solution.

2. Solve serially forx17 andx18 using the next two equations (y17 andy18).
3. Assign a randomx0 and try to solve forx19 throughx27 from the last 9 equa-

tions. Again, at most 9 values ofx0 can make the determinant of the system
zero. So keep trying new values ofx0 until a solution is found.

Our desired signature isw = M
−1
1 (x − c1). Release(M,w).

To Verify: On receiving(M,w), computez = H(M) and match withV (w).

3 Summary of the 8051 Hardware Platform

The reader may find the details of the key-generation and signing processes (particu-
larly those of Sec. 4.5) tedious, but all the contortions arenecessitated by the fact that
EEPROM memory cannot be reliably read from soon after it is written to. This is not un-
common in the embedded realm. This section provides an executive summary for those
unfamiliar with the 8051 chip. Those who are already familiar with the 8051 can skip
the rest of this section. Those interested in such things canplease refer to the appendix.

Memory: The 8051 has 128 bytes of fast directly-addressable RAM on-board, called
data. Somedata locations are used as architectural stack and registers including
the important registersR0 andR1. The rest hold important system and user data.
Most extant 8051-compatibles have 128 bytes more fast RAM onboard, only ad-
dressable indirectly through the registersR0 andR1. As thedata can also be ac-
cessed this way, all 256 bytes are together calledidata. In theory the 8051 can
address 64kB of immutable memory (code) and 64kB of off-board RAM or EEP-
ROM (xdata), both indirectly using theDPTR register. Thecodecannot be written
to and can be accessed with an offset for table lookups. In practice usually all ex-
ternal memory are accessed identically. Accessingcodeandxdata takes twice as
much time asdata andidata besides being harder to set up for.
EEPROM and flash memory are accessed just like RAM except thatone must wait,
usually for a few milliseconds, before accessing a recentlywritten EEPROM loca-
tion. A write followed too soon by another access results in an error.

ALU: The Arithmetic-Logic Unit has many specialized registers (the most important
being the accumulatorA and the Data PointerDPTR) and instructions. There is
an integer multiply and divide, and instruction to increment – but not decrement
– DPTR, so large arrays are best accessed in increasing order. Eachinstructions
execute serially in a fixed number ofinstruction cycles(cf. paragraph after Tab. 1).

Resources: I/O is through specialized latches, andcommunication to a computer or
other device must be done through a reader unit, often attached to a PC on a USB
port. The access is serial and slow say 1 kB/s.Hardware random-numbergeneration
can be added cheaply to most cards. Cheap smart cards today have 4 kB or more
in ROM and EEPROM, and a little RAM – sometimes 256B, frequently 0.5kB,
sometimes 1 kB. 1.5kB or more RAM is mostly available in heavyweight cards.



4 Actual Performance and Implementation Details

We recompiled portable C code for TTS(20, 28) (cf. [17]), with C51, a popular em-
bedded compiler. A few routines were rewritten in assembly.Test results from standard
development kits are given in Sec. 4.2 and implementation details in Sec. 4.4–4.6.

4.1 Hardware Resource Requirements

As mentioned in Appendix A.3, a low-end card can either just sign or do both key
generation and signing. We list our requirements in RAM (data, idata and external
RAM or xdata, see Appendix A.1), EEPROM, total ROM, etc.:

To Sign: 128 bytes of RAM (19 bytes ofdata for state, 109 more bytes indata/idata
or xdata for temporary storage), 1.3kB of EEPROM for private keys, 1.6kB of fur-
thercodespace (0.8kB of program, 0.8kB of tables). For controllers with 256 bytes
of on-board RAM (idata), it is an option to keep all the data for the Gaussian elim-
ination in theidata, which means shorter code (no need to move things between
idata andxdata) at 1.4kB (0.2kB less) and at least a 12% speed up. Since we must
have some RAM to put the matrix for the elimination stage, a plain-vanilla Intel
8051 will be assumed to have least 128 bytes ofxdata RAM storage.

Both To Sign and To Generate Keys:There are two choices:
– On EEPROM-poor cards, we do not store the entire public key. During setup

only the private key and some critical intermediate data aregenerated and
stored in EEPROM, enough that chunks of the public key can be computed
and output on-the-fly as requested. This requires 2.7 kB of EEPROM (1399B
in the private key plus 1212B in intermediate data, plus someleft-over wasted
space) plus 4.2 kB morecodespace (in ROM or EEPROM) is required. There
is 3.8 kB in the program for both key generation and signing, 0.4 kB in sub-
sidiary I/O, including 0.8kB for tables as above.

– We can compute and store the entire public key for later retrieval. This takes
11.3kB of EEPROM space, plus 4.2 kB more ROM or EEPROMcodespace.

In both cases we need 128 bytes indata, idata or xdata storage. If we need block-
writes to EEPROM or do block-outputs from the smart card, we will also need 128
more bytes of RAM for buffer. When we can afford to usually we do the entire
Gaussian elimination fromidata. PC access provided through USB-port device.

4.2 Performance Data and Brief Description of Programs

The signing portion of the program is straightforward and can be implemented straight
out of Sec. 2.On average, signing takes about 170ms on a 3.57MHz stock Intel 8051AH
(a really low-end part).Every other part is faster than the 8051AH. The same code
running on a 3.57MHz (“4T”) WinBond W77E58 only takes 64ms.

For reference, of the 170ms average time taken by the signingoperation on the Intel
8031/32 at 3.57MHz is divided as follows: Theφ3 portion takes 34ms,φ2 71ms, and
φ1 65ms. On a Winbond W77E58, the times are 13ms, 27ms, 24ms respectively.Using



10MHz parts, the speedup is almost linear. The W77E58 takes about 23ms to sign and
the Intel 8032AH takes 61ms — 51ms if we run the entire elimination from idata.

Once we get to 16MHz or faster clocks, some instructions require extrainstruction
cyclesto execute, and I/O times start to dominate, so the scaling isa lot less than linear.

The process for key generation is a lot more complicated and slower than signing.
When the smart card is initialized, we must first generateM1, M

−1
1 , M3, M

−1
3 via LU

decomposition, store to EEPROM, then generate(pij)8≤i≤27 andc1, computec3 and
store everything in EEPROM along the way. Note thatc3 = M3 (φ2(c1)) and hence:

(c3)k =

n−1
∑

ℓ=n−m



(M3)k,(ℓ−n+m)



(c1)ℓ +
∑

p xαxβ in yℓ

p (c1)α(c1)β







 . (1)

The sum is over each termp xαxβ in the equation foryℓ. We may end the setup process
here, and the generated information is enough to compute thecoefficients of the public
key polynomials, 20 at a time. In this mode, the card awaits anappropriate outside input
before signing or computing and emitting the public key in small chunks on-the-fly.

Setting up on an Intel 8032AH at 3.57MHz (computing the private key and interme-
diate data) takes 7.7 seconds, including a little error checking. The process takes 3.6
seconds on a 3.57MHz Winbond W77E58.

The rest of public-key generation is to compute for each(i, j) the coefficients of
wiwj or w2

i or wi in zk for everyk at once. To show that this is possible, we will
follow Imai and Matsumoto ([9]) and divide the coefficients involved in each public
key polynomial into linear, square, and crossterm portionsas follows:

zk =
∑

i

Pikwi +
∑

i

Qikw2
i +

∑

i>j

Rijkwiwj . (2)

The coefficients(Pik, Qik, Rijk) are related toM1, M3, c1, and the parameters(pij)8≤i≤27

as follows, where each sum is over the termsp xαxβ in the equation foryℓ:

Pik =

n−1
∑

ℓ=n−m



(M3)k,(ℓ−n+m)



(M1)ℓi +
∑

p xαxβ in yℓ

p ((M1)αi(c1)β + (c1)α(M1)βi)







(3)

Qik =

n−1
∑

ℓ=n−m



(M3)k,(ℓ−n+m)





∑

p xαxβ in yℓ

p (M1)αi(M1)βi







 (4)

Rijk =

n−1
∑

ℓ=n−m



(M3)k,(ℓ−n+m)





∑

p xαxβ in yℓ

p ((M1)αi(M1)βj + (M1)αj(M1)βi)







 (5)

Herem = 20, n = 28. For a smart card equipped with a lot of EEPROM or flash,
we need not compute and emit the public key piecemeal. It is possible to compute
everything right there and write everything to EEPROM, to beread at a later time.

A 3.57MHz Intel 8051 or 8032AH averages about 150ms to generate a 20-byte
block of the public key from the intermediate dataand signal that it is ready to send.On
a 3.57MHz Winbond W77E58 with sufficient storage, generating the entire public key
takes 33 seconds.It takes some15 seconds to transmit everything from card to PC.



4.3 Finite Field Arithmetic and Other Details

As in any other multivariate PKC, we need to represent each element ofGF(28) as an
integer between 0 and 255 (anunsigned char). We choose the “Standard” repre-
sentation used by AES ([4]), but we could choose any encodingas long as addition can
be represented as a bitwisexor.

A standard way of implementing finite field multiplication isto choose a fixed prim-
itive element4 g ∈ GF(28) and store logarithm and exponential look-up tables in base
g, intending to multiply non-zerox andy asxy = g(logg x+logg y) mod 255. We will do
a lot of manipulations of data inlog-form, which means we represent the zero of the
field GF(28) by the byte0, and any other field elementa by the unique positive integer
x ≤ 255 that satisfiesa = gx. Note: 1 is represented asg255, notg0.

In implementing the signing portion of the algorithm, we need the following data
in ROM: 256-byte log-table in baseg; 512-byte table of exponentiation (x 7→ gx), this
can be shortened to 256 bytes at a roughly 15% speed penalty.

The private key comprises the matrices(MT
1 )−1 and(MT

3 )−1, parameters(pij) of
the central map, and the vectorsc1, c3. We store everything except the vectorsc1 and
c3 in logg-form, and the matrices column-first (as indicated by the transposed notation).

The intermediate key-generation data areM
T
1 , M

T
3 (in column-first,logg-form),

and a componentwise log ofc1. The public key consists of coefficients(Pik), (Qik),
(Rijk)i>j , with each block arranged in order of increasingi, j, thenk.

4.4 The Signing Process

The actual signing program operates on a 20-byte arrayz in idata in three stages, cor-
responding toφ−1

1 , φ−1
2 , andφ−1

3 . Due to the amount of array access in the Gaussian
elimination,φ−1

2 takes most of the time. If we put the entire system matrix inidata we
can save at least 10 percent upwards of running time, but mostoften we forego that and
do it mostly fromxdata due to memory resource problems.

1. Do(φ3)
−1, which is essentially a matrix multiplication, as follows:

(a) Zero out a 20-byte areay and replacez byz
′, the componentwise log ofc3+z;

(b) looping overi = 19, 18 · · ·0 and do the following loop ifz′i 6= 0:
(c) Looping overj = 19 · · ·0, when(M3)ji 6= 0, add (xor) g(z′

i+logg(M3)ji) mod 255

into yj+8. Note: M3 is stored in log-form and transposed so that it can be ac-
cessed sequentially, and we can compute(R+A)mod 255 in only two instruc-
tions:add A,R (add registerR to the accumulatorA) thenadc A,#0 (add
the carry from the last add into accumulator).

The inner loop of this routine reads coefficients off a table,multiplies to a variable,
then adds them to different components of a vector (cf. also Sec. 5.3).

2. Do(φ2)
−1, which is performed as follows:

(a) Fori = 1 · · · 7, generate randomly and save (in anidata array)logg xi, again
with the proviso that0 represents 0, not 1 which is represented by 255.

(b) Establish in a 90-byte blockBA (in xdata or idata) of RAM the first linear
system to be solved forx8, . . . , x16 by doing the following fori = 8 · · · 16:

4 We chose asg the canonical generator of the AES field representation.



i. The constant of each equation location (BA[10(i−8)+9]) is filled with yi.
ii. Looping overj = 1..7, insert into the location corresponding to the coef-

ficient ofx(i+j (mod 9))+8 (locationBA[10(i − 8) + (i + j (mod 9))]).
iii. xor BA[10(i − 8) + (i + 1(mod 9))] with 1.
iv. Let BA[10(i−8)+(i+8(mod 9))] = BA[10(i−8)+(i+9(mod 9))] = 0.

(c) Run elimination on 9 variables to getx8, . . . , x16, then findx17 andx18 by
solving for them in the next two equations (allxi will be stored in log-form).

(d) Establish another system of equations inBA by looping overi = 19 · · ·27:
i. Insertyi +pi0xi−11xi−9 as the constant term (locationBA[10(i−19)+9]).
ii. Looping overj = 0 · · · i− 19, letBA[10(i− 19) + j] = pi,j+1x2(i−j−19).
iii. Looping overj = i − 19 · · · 8, letBA[10(i − 19) + j] = pi,j+1xi−j .
iv. xor BA[10(i − 8) + (i + 1(mod 9))] with 1.

(e) Run elimination on 9 variables to obtainx19, . . . , x27 (again in log-form).
3. Do(φ1)

−1, another matrix multiplication like(φ3)
−1, with different parameters.

4.5 Key Generation, First Half: GeneratingM1, M3, and Their Inverses

The following routine computes and storesM
T
1 , (MT

1 )−1, M
T
3 , (MT

3 )−1, (pij) for 8 ≤

i ≤ 18, 1 ≤ j ≤ 6 and19 ≤ i ≤ 27, 0 ≤ j ≤ 9, c1, logg c1, andc3. Total EEPROM
space required is 2768 bytes, with 1399 bytes in private keys((MT

1 )−1, (MT
3 )−1, the

(pij), c1, c3) and 1212 bytes of intermediate data to be used to produce thepublic
keys. There are 157 bytes used and erased. No more RAM than the256 bytes ofidata
is needed; in fact, only 128 bytes are necessary if a write buffer is not needed. Of course,
extra RAM helps. Recall that matricesM1, M

−1
1 , M3, M

−1
3 are stored transposed and

in log-form (cf. Sec. 4.3) for convenience.

1. Generate matricesM1 and(M1)
−1 via LU decomposition.

(a) Generate and write to EEPROM entries (in log-form) of thediagonal matrixD1

(28 non-zero bytes), the lower triangular matrixL1 (28 × 27/2 = 378 bytes,
also in log-form), and the upper triangular matrixU1 (same as above), and do so
in the area from the 1569th to 2352th bytes from the beginning(hence, leaving
the first 1568 bytes empty). The entries ofL andU are generated in an unusual
format. We lineL up column-first, butU will be in column-first but reverse
order, i.e.:L10, L20, . . . , Ln−1,0, L21, . . . , Ln−1,1, . . . , Ln−1,n−2 and
Un−2,n−1, . . . , U0,n−1, Un−3,n−2, . . . , U0,n−2, . . . , U23, U13, U12.

(b) InvertD1, L1, U1 and write to EEPROM (in the first 784 bytes). InvertingD1

is easy. We invertL1 into L−1
1 (stored in the same format) as follows:

i. Repeat (ii.–v.) overi = 1, 2, . . . , n − 1:
ii. Read[(L1)i,i−1, . . . , (L1)n−1,i−1] from xdata into [zi, . . . , zn] in idata.
iii. For eachj = i, . . . , n − 1 wherezj 6= 0, replacezj by (logg zj) and do:
iv. For eachk = j + 1, . . . , n − 1 such thatLkj 6= 0, addgm+Lkj to zk.
v. Now [zi, . . . , zn] is the column[logg(L

−1
1 )i,i−1, . . . , logg(L

−1
1 )n−1,i−1].

Write to EEPROM, or (for parts with special EEPROM/flash writing rules)
copy to a 128-byte buffer and block-write only if the buffer is full.

The same subroutine can invertU1 intoU−1
1 in the same inverted column order.

(c) ComputeM−1
1 = U−1

1 D−1
1 L−1

1 and write to EEPROM in the next 784 bytes:



i. Read[logg((D
−1
1 )jj)] into array[dj ] in idata; repeat (ii.–v.) fori < n.

ii. Zero outz0 to zi−1 (arrayz0, . . . , zn−1 is in idata); let zi = dj ; for i+1 ≤

j ≤ n − 1 let zj =
(

dj + logg(L
−1
1 )ji

)

mod 255. Note (cf. 1b) that
log(L−1

1 )ji was stored serially.
iii. Looping overj = i, i + 1, . . . , n − 1, do the following:
iv. Fork = 0, . . . , j−1, addg(zj+logg(U−1

1
)kj)mod 255 into zk. Note thatU−1

1

is in reverse order. After thek-loop, replacezj by gzj .
v. Now (end ofj-loop) the[zj ] array holds thei-th column ofM1. Take the

componentwise log, then write appropriately into EEPROM (cf. 1b).
Note that we usedn instead of28 because the same routines are used forM3.

(d) Erase the first 784 bytes, the memory block used forD−1
1 , L−1

1 , U−1
1 .

(e) Compute (and write out to the freshly erased block of 784 bytes)M1 = L1D1U1.
i. Read[logg((D1)jj)] into array[dj ] in idata; repeat (ii.–v.) fori < n.
ii. Read

(

logg(U1)ji + dj

)

mod 255 to zj (in idata) for j = 0 · · · i − 1.
iii. Let zi = di. Forj = 0 · · · i, let yi = gzi, and zero outyi+1, . . . , yn−1.

iv. Looping over0 ≤ j ≤ i, j ≤ k < n, addg(zk+logg(L1)kj)mod 255 into yk.
v. The(log yk) is thei-th column oflogg M1, write to EEPROM.

(f) Erase the 784-byte EEPROM block used forD1, L1, U1.
We should conclude with 1568 bytes of data and 784 freshly erased bytes.

2. GenerateM3 and(M3)
−1 as above, reusing the memory from Step 1. We should

have written 800 bytes of data and have 400 recently erased bytes.
3. Generate and store(pij) for 8 ≤ i ≤ 18, 1 ≤ j ≤ 7 and19 ≤ i ≤ 27, 0 ≤ j ≤ 9

(167 bytes), reusing the memory from Step 2.
4. Generatec1 (28 bytes) and store in space left from Step 2. Computec3 (20 bytes):

(a) Storing (inidata) in the arraysc andy the componentwise log ofc1.
(b) Reading from the parameter table, computeφ2(c1) by looping over all indices

i = 8 · · · 27, adding each cross-term into the appropriateyi.
(c) Write thelog(c1)i to EEPROM. Take the logs ofyi; jump to the multiplication

routine in Sec. 4.2. The result (c3) is written to EEPROM. We are done.

4.6 Key Generation, Second Half: Computing and Outputting the Public Key

After the process of Sec. 4.5, we can generate the public key in units of 20 bytes (see
Sec. 4.2). Generating the public key takes a long time, but the routine itself is simpler:

GeneratingRijk: It is more convenient to compute first the coefficients ofwiwj in yk:
1. Read in thei-th andj-th columns oflogg M1 and place in the arraysc andc

′.
2. Zero out the arrayz and loop over each cross-termp xαxβ in the equation for

yi (reading off parameter table) thusly:

3. Computep [(M1)αi(M1)βj + (M1)αj(M1)βi] via logg

(

gcα+c′β + gc′α+cβ

)

,

addinglogg p (read off the parameter table) and exponentiating. Add tozi.
4. We now have the coefficient ofxixj in yk. Take the logs and multiply byM3

and jump to the matrix multiplication routine (Sec. 4.2) to getRijk for eachk.
GeneratingPik: As above, except for initializing the arrayz to [(M1)ki]k=8···27 in-

stead of zeroing outz, and reading inc1 and thei-th column ofM1 instead of the
i-th andj-th columns ofM1.



GeneratingQik: Like the above, but we only need to read a single column of theM1,
and it is faster because there is one fewer add and one fewer multiply in Eq. 4.

After each block of 20 is produced, write it to EEPROM or accumulate for buffered
output as needed. Our test code outputs every 6 blocks to get max throughput.

5 Discussions and Conclusion

We discuss some issues germane to our study including side channel attack considera-
tions, optimization, and possible changes to the scheme to suit smart cards better.

5.1 Why does TTS have Faster Key Generation?

The state-of-the-art in key generation for multivariate PKC’s is probably the kind of
procedures as given by C. Wolf ([16]). At least, we can find no better, and he managed to
save 30% of running time from previous algorithms. However Wolf states, and it seems
commonly agreed to, that computations of the public polynomial using interpolation for
large field multivariates, i.e. HFE ([13]) orC∗-derivatives where the private map really
operates on some googol-sized field, take time proportionalto n6. A cursory look at
Eqs. 3–5 will reveal that the number of multiplications in key generation is aboutn4

(really m2n2) times the average number of terms in an equation inφ2, henceO(n4).
So we expect key generation in TTS to run at about a few hundredtimes the speed that
SFLASH might need if they use the same dimensions.

Timings given in [2, 17] support this hypothesis. We do not claim to be anywhere
close to as good 8051 programmers as the authors of [1], but the factor ofn4 vs. n6

gives an edge that makes on-card key generation passably quick as opposed to snail-
like. In general, a multivariate PKC can be calledtame-like([17]) if its central map
has relatively few terms per equation and has a fast inverse.Sec. 4.6 and Eqs. 3–5
demonstrate tame-like-ness are useful for a smart card.

5.2 Side Channel Attack Considerations

In [1], the authors discuss defending against a possible differential-power attacks. The
structure of SFLASHv2 is somewhat simpler, but we can take similar precautions against
DPA probes to those in [1]. The steps for a DPA-safe signing are:

1. Start out with hash valuez. Take a random vectorz′ ∈ Km. Computez′′ = z+ z
′.

2. Computey′ = (M3)
−1(z′ − c3) andy

′′ = (M3)
−1

z
′′. We see thaty = y

′ + y
′′.

3. Take random bytesx′
i, x′′

i for i = 0 · · · 7. Loop until the systems are solvable.
4. Construct linear systems as in Sec. 4.4, except that we usetwice as large a RAM

buffer, put in two systems: One filled in using thex′
i andy′

i, one with thex′′
i andy′′

i .
Note: Step 2(b)iii of Sec. 4.4 only needs to be performed on one of the matrices.

5. Run a “conjoined Gaussian” with the two matrices. A key operation is division by
the sum of the two coefficients at the pivot position. If they are c′ii 6= c′′ii, then we
can achieve division by the pivot coefficient(c′ii+c′′ii) through dividing successively
with c′ii and then by(1 + c′′ii/c′ii). For9 × 9 matrices, this means slightly less than
triple the number of multiplications and is time-consuming, but we eventually come
down to(x′

8 · · ·x
′
16, x′′

8 · · ·x
′′
16), wherex′

i + x′′
i = xi.



6. Fori = 17 and18, do the following so thatxi = x′
i + x′′

i .

x′
i = y′

i +
∑

pxαxβ in yi

p · (x′
αx′

β + x′′
αx′′

β); x′′
i = y′′

i +
∑

pxαxβ in yi

p · (x′′
αx′

β + x′
αx′′

β). (6)

7. Similarly fori = 19 · · ·27 we do the “conjoined Gaussian”. We have foundx
′ and

x
′′ that sum to thex of Sec. 2 at about one-quarter speed.

8. Computew′ = (M1)
−1

x
′ andw

′′ = (M1)
−1(x′′ − c1). Outputw = w

′ + w
′′.

Since TTS(20, 28), like SFLASHv2 uses each byte of the entire key continuously, it
should be as safe as SFLASHv2 under the same attacks. The signing code expands to
about 3.2 kB, and the speed is between a third and a quarter of what it was (still ok).
This is obviously not optimal programming and we should be able to optimize it better.

5.3 Optimization Concerns

Since we are only doing proof-of-concept work we used C51-compiled code with only
a few key routines hand-coded 8051 assembly. This is not the optimal performance
available from our hardware, but is a lot better than using just C51, and saves many
man-hours compared to doing assembly from the ground up. We feel that we are not
giving up much in the way of performance because this is common practice in software
design. A local expert on the 8051 offered his opinion that wemight be able to improve
it by a factor of two in pure assembly. However, the quaint, quirky 8051 architecture
severely restricts our options. There is only so much possible with our limited resources,
especially the single pointer intoxdata. Some notes on optimization possibilities:

– Of particularly note is the idiosyncratic ways the arrays were arranged in memory.
We do not have hard proofs but believe that this arrangement is already correctly
optimized under the circumstances.

– If the µC has access to 1.5kB ofxdata RAM, all the temporary data can stay in
RAM and we need not erase from EEPROM at all during key generation. Even 1
kB RAM would make life easier.

– Themovx A,@Ri command that use the output latchP0 for the high byte of the
address line and the registerR0 or R1 for the low byte is seldom used, because I/O
lines from the outside often get in the way, changing the value of the latch when it
shouldn’t. With custom solutions, it is possible to have programs up to 20% faster
by using these specialized commands.

– An n 7→ logg(1 + gn) table can help. Let this table beE. When computingRijk

(Sec. 4.6), we need to do
[

logg

(

gcα+c′β + gc′α+cβ

)

+ logg p
]

mod 255. Instead,

we can save lookups via
[

(cα + c′β) + E[c′α + cβ − (cα + c′β)] + logg p
]

mod 255.
– We never really rewrote our programs for parts with dualDPTR’s. With proper

utilization, this is said to increase the speed by some 25% for array-heavy code.
– With the base fieldK = GF(27), the signing can run with the exponential table

in idata (did the designer of SFLASH think of this?). More extremely,with K =
GF(26), both the log and the exponential table can fit into theidata. We can change
to a (GF(27))28 7→ (GF(27))36 version of TTS for speed if key size and extra
RAM storage is not a problem. Preliminary tests show that it is about 13% faster.



5.4 Conclusion

We believe that our test result shows the TTS family of multivariate signature schemes
in general and TTS(20, 28) in particular to be very speedy. Not only is it fast, but it also
consumes little enough resources that it definitely merits further attention as an on-card
solution. The family of schemes has great potential for use in low-cost smart cards,
especially those without a cryptographic coprocessor.

We note that TTS(20, 28) by current estimates should be at least as secure as RSA-
1024, and TTS(24, 32) at least as secure to RSA-1536 (cf. [17]). Even if this estimate
is slightly off, the speed of the implementations should still make TTS quite useful for
smart cards. Furthermore, TTS is clearly an extensible system and we did an implemen-
tation for the following central map ([17])

yi = xi +
∑7

j=1 pijxjx8+(i+j+1 mod 10), i = 8 · · · 17;

yi = xi + pi1xi−17xi−14 + pi2xi−16xi−15 + pi3xi−10xi−1 + pi4xi−9xi−2

+pi5xi−8xi−3 + pi6xi−7xi−4 + pi7xi−6xi−5, i = 18 · · ·21;

yi = xi + pi,0xi−10xi−14 +
∑i

j=22 pi,j−21 x2(i−j) xj

+
∑31

j=i+1 pi,j−21 xi−j+21 xj , i = 22 · · · 31.

This scheme hasm = 24 (192-bit hashes) andn = 32. We tabulate our new test results
with the old. Again, only thei8032AH code ran the elimination entirely inidata.

As we observed in Sec. 5.3, we expect to improve on our work still. All in all, we
think that we have shown TTS and similar variants are worth more attention.

Scheme Controller
PrivKey
Length

Signing
Time

Signing
Code

Keygen
Time

Keygen
Code

Extra
EEPROM

Setup
Time

TTS(20, 28)
i8032AH

1399 B
144ms 1.5 kB

78.5 s

4.2 kB

1.2 kB
7.7s

i8051AH 170ms
1.6 kB

W77E58 60ms 38.3 s 3.6s

TTS(24, 32)
i8032AH

1534 B
191ms 1.5 kB

134 s
1.6 kB

11.7s
i8051AH 227ms

1.6 kB
W77E58 85ms 65.2 s 5.4s

Table 2.Summary for TTS on a 8051
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A Architecture of 8051-Based Smart Cards

We summarize the specifics of our hardware platforms for implementation and testing.
Some discussion about clock vs. actual execution speed can be found in Sec. 1 (follow-
ing Tab. 388).

A.1 Storage Areas on an 8051-Based Smart Card

The general structure of an 8051-based 8-bit microcontroller (µC) core is the same
across implementations. The chip usually has a CPU portion plus some extra memory.
On a 8051-like device, we have the following different locations for data storage:

data The 128 bytes of on-chip high-speed RAM directly addressable by the 8051 core
in one instruction cycle. Sometimes referred to as “Register RAM” because in ef-
fect they are registers, like the zeroth page of the 6502 and other 8-bit CPUs. A
peculiarity of the 8051 instruction set is that somedata can be accessed bitwise as
flags. This saves valuabledata space as well as instructions.



idata On-chip high-speed RAM that may be accessed in indirect address mode through
a byte-long pointer (either of the special registersR0 orR1) in one instruction cycle.
Thedata can also be accessed this way and is considered part of theidata. Almost
every 8051-compatibles has the 128 extra bytes ofidata for 256 bytes total.

code ROM, not writable. May be only read indirectly through the Data Pointer (DPTR)
register with a fixed latency (normally 2 instruction cycleson a cheap part) via a
specialmovc command. An 8051-likeµC can address up to 64 kB ofcodeROM.

xdata Off-chip read-write memory, accessible only via themovx command, with indi-
rection through eitherDPTR or a combination of the I/O port registerP0 and either
of the special registerR0 andR1. Normallymovx takes 2 instruction cycles, but on
a high-end part there may be banks of memory with different latency, and a special
register to control the access time.

One expectxdata to be RAM, and because themovx/movc commands both set sig-
nals lines, effectively adding an extra address line, an 8051-like part can theoretically
address 64kB of ROM (code) and 64kB of RAM (xdata) for 128kB memory. However,
when theµC does not use more than 64kB total, as a rule the control lines are wired
together for convenience5, and code and data are read identically. Another important
point is that read-write memory can be EEPROM or flash memory as well as RAM:

– RAM for a µC is usually costly SRAM. In theory there may be as much as 64kB,
but there is often only 256B, seldom more than 1kB and almost never more than
2kB. A smart card intended for RSA or ECC work will always have at least 1 kB
(usually 1.5kB), because there is a lot of data and co-processors also need memory.

– We will use EEPROM and flash memory as synonyms like most people, although
EEPROM can often be written to much faster and far more times than flash.
A µC may have no EEPROM at all or as much as 64kB. Reading EEPROM is
just like reading off-chip RAM, but completing a write into one EEPROM loca-
tion takes about 50µs and erasing (resetting it into a writable state) takes much
longer, about 5ms per access. Often erasure and sometimes writes must be bylines,
which are units of access that may be 8 to 128 bytes each. Control signals from
the EEPROM can be polled via I/O port latches to tell the programmer whether the
EEPROM is ready for writing or successfully written.After an EEPROM address
is written to but before the requisite amount of time (some 100 instruction cycles or
more) has elapsed, reading that location generates unpredictable results.

There are several modes of writing into EEPROM/flash, and a given part normally does
only one. There are 8051 parts with safeguards against loss of power and a block-write
operation with a same latency of 5ms per 128-byte block, but these tend to be very
expensive parts. In parts without the power-failure guard and block-writing features,
EEPROM is essentially accessed like RAM, but the program needs to check manually
the signal lines. If you are safety-minded, you check first, write, then keep checking the
signals to make sure that it is done properly. A more cavalierdesigner would go about
his business after the write is issued, but would presumablydo some error-checking.

5 movx also can often be faster thanmovc on high-end parts for a speed advantage.



A.2 The 8051-Based Parts We Tested and Their Characteristics

Intel 8051AH One of the original MCS-51 NMOS single-chip 8-bit microcontroller
parts, with 32 I/O lines, 2 Timers/Counters, 5 Interrupts/2Priority Levels, and 128
bytes on-chip RAM (i.e. no extraidata). It has 2 kB of on-chip ROM.

Intel 8032AH A stripped-down 8052; just like thei8051 except for having 3 Timers
(Counters), 6 Interrupts/4 priority levels, no ROM and 128Bmore RAM on-chip.

Winbond W77E58 A more upscale CMOS part, with 36 I/O lines, 3 Timers/Counters,
12 Interrupts/2 priority levels, and 256 bytes on-chip RAM.32kB ROM built-in.
Its big pluses are: Dual Data Pointers (so that using two off-chip memory blocks
is a lot faster), 1kB extra on-chip SRAM (appropriately latched for optimalmovx
access), and the fact that it is “4T”, i.e., many frequently used instructions takes 4
clock cycles to execute, so it is up to 3 times faster at the same nominal clock.

Dual Data Pointers is a common goodie in high-end 8051-like parts. By toggling a
special flag bit, the programmer can switch between two possibleDPTR’s, which means
that theµC can quickly access two different look-up tables, among other things.

A.3 Random Number Generation and Other I/O Concerns on an 8051

For modern-day PKI applications, security concerns dictate that keys be generated on-
card. The private key should stay there, never read by any human. The public key can
be released off-card to a PC or other device when the appropriate commands are issued.
A hardware random-number generator must be accessible on-card by the CPU for this
purpose. If only signing is needed, then the RNG does not needto be all that fast,
because with each signing action only around 8 bytes of entropy is needed. During key
generation, it is better to have a faster RNG; it is feasible that a cryptography-grade
software PRNG be used, seeded with a hardware randomness source. It would be slow,
but not overly so. According to local vendors, in practice themarginal cost of adding a
hardware RNG is very low, essentially nil.

Access to random number generation hardware is either implemented via an I/O
port read or as special memory whence a random byte can alwaysbe read. Usually it is
as easy as using a singlemovx instruction (takes about 4 instruction cycles including
setup). In our tests, the sampling of a random byte is implemented as a separate “black-
box” routine in assembly that returns a value after about 10 instruction cycles, because
we wish to account for slower hardware RNG implementations.

For signing, it is assumed that only the hash value of a message needs to be passed
into a smart card. For key generation, the smart card needs tobe able to save the key
to EEPROM (flash memory) or spitted out of the card in blocks ofan appropriate size.
In general, the smart card is wired up to transmit data only inblocks of 128 or 256
bytes (at most) at a time, and the transfer rate is about 9600 baud, which makes for an
effective bandwidth of at most 1 kB/s.


