TTS: High-Speed Signatures on a Low-Cost Smart Card

Bo-Yin Yang', Jiun-Ming CheR, and Yen-Hung Cheh

1 Mathematics Department, Tamkang University, Tamsui, &ailvy @rosci t 0. or g
2 Chinese Data Security Inc. & National Taiwan Universitgchen@rat h. nt u. edu. t w
3 Comp. Sci. & Info. Eng., Nat'l Taiwan U., Taipei, Taiwan92014@si e. nt u. edu. t w

Abstract. TTS s a genre of multivariate digital signature schemespirgposed
in 2002. Its public map is composed of two affine maps sandngchTame Map
which is a map invertible through serial substitution anldisg linear equations.
We implement the signing and key generation operations Tar&instance with
20-byte hashes and 28-byte signatures, on popular extanbcontroller cores
compatible to the Intel 8051. Our tests demonstrates th& dah be even faster
than SFLASH?, which is known for its celerity. The sample scheme TT5 28)

is fast enough for practical deployment on a low-end 805etaembedded de-
vice. A really low-end part like a stock Intel 8051AH runniag3.57 MHz can
sign in just 170ms. A better 8051-compatible chip will taketdess time.
Security requirements today demand on-card key generatiahthe big public
keys of a multivariate PKC create a storage problem. TTSusuwal in that public
keys can be synthesized on-card at a decent pace for blebkebl output, using
some minimal information kept on-card. Since this doesala much more time
than the 1/0 needed to transmit the public key to a reader,ameagoid holding
the entire public key in the limited memory of a smart card. dhew that this to
be a gain for multivariate PKC'’s with relatively few termsrppentral equation.
The literature is not rich in this kind of detailed descmyptiof an implementation
of a signature scheme — capable of fast on-card public kegrgénn, on a low-
cost smart card without a co-processor, and at NESSIE-apgsecurity levels.
We look into other theory issues like safeguarding agaiiagt-shannel attacks,
and using unusual techniques for linear algebra underugespace restrictions,
which may help implementations of other multivariate PK€lish as SFLASH.

Keywords: Multivariate public-key cryptosystem, finite field, smaard, 8051.

1 Introduction

For most adopters of Public-Key Infrastructure, the quarémtury-old RSA still re-
mains the public-key cryptosystem of choice. We see thas albt perfect:

RSA is too slow to be used on a smart card and this keeps thetyethieved
by smart card solutions insufficient: unable to implemerga public key sig-
nature. ... N. Courtoist al ([1], 2003).

This must be taken in context as a historical perspectiveeptable signing speed on
smart cards with reasonably long RSA keys has become feamiblind the turn of the
millennium, especially with special-purpose hardwargooeessors.

However, cost of deployment is still an obstacle, and thei@darly room for im-
provement: Chips must get even faster and cheaper, or thatalgs need revamping.

Traditionally, Public-Key Infrastructure (PKI) implemians stick to well-established
Public-Key Cryptosystems (PKC) based on RSA, occasiorialyC. However these
are comparatively slow, so cryptologists sought fasteradttives, among which are
the “multivariate PKC”, cryptosystems that use substitwinto quadratic polynomials
as a public map. The currently best known scheme of this tySFLASH? ([15]), a
derivative ([14]) of the prototypé€™ ([9], broken in 1995 by [12]). Multivariate cryp-
tosystems (more literature on the extended family: [3, 8])7are usually conceded to
be faster than RSA and other traditional alternatives wiglige algebraic structure. Un-
fortunately, the only such scheme to get a mention in thenthcannounced NESSIE
final recommendations ([11]) is SFLASH and only grudgingly:

...not recommended for general use but this signature seewery efficient
on low cost smart cards, where the size of the public key isroainstraint.

Granted NESSIE was more concerned about SFLASH's untriagtisgthan size of its
public keys, but still this rather sells SFLASHand other multivariate PKC'’s short.

We aim to provide another example of how a multivariate PKiCm@vide superior
performance for less. Our sample scheme, unlike@he-derived SFLASH?, is a
digital signature scheme from the different family of TT3,([7]). Techniques shown
here are applicable to other multivariate PKC's, however @st results on 8051-
compatible microcontrollers are tabulated along with gathlished by the NESSIE
project ([11]) and other recent sources (e.g. [1]). It shases TTS well:

Scheme | Platform (T number)| Clock Pr.Key | Code RAM |Signature
Intel 8032AH (12) 1.4kB 144 ms
TTS(20,28) [Intel 8051AH (12) 14kB [| ~\p| 128B [170ms
Winbond W77E58 (4) 3.57 MHz ' 64 ms
ESIGN Intel 8051AH (12) 336B | 3.0kB 800 B 120(7)2
SFLASH? 24KkB | 33KB | 344B

Infineon SLE66 (2) | 10 MHz

RSA-PSS many s
(1024 bits) NEC PD789828*(12) 40 MHz | 320B 100 ms
_ 5 MHz N/A >1kB 230 ms
RSA-2048 | Infineon SLE66*(2) 640 B 11 s
ECDSA-191 10 MHz 24 B 180 ms
NTRU-Sign Philips 8051 (6) 16 MHz 100 B 5kB N/A 160 ms

Table 1.8051-compatible results for various digital signatureesohls (* = with co-processor)

Special Note:8051-compatible parts running at the same nominal clocjuieacy have
widely divergent speeds on the same program. On every 80Bipatible part, a ma-
jority of common instructions execute in the same amouninoé t which is called the
instruction cyclefor this part. Every instruction executes in an integral bhemof in-
struction cycles. The ratio of one instruction cycle to olozk cycle is called the “T
number”. So a Siemens-Infineon SLE66 is up to six and usuallyiches faster than a
8051 at the same clock rate. Some platforms also have extoakeas including crypto-
graphic co-processors, so some care is needed in intenptbs tabulated results.

Sometimes TT&0, 28) need to hash just once while ESIGN or SFLASHre-
peated hashes must be taken. Without worrying about degdliteld TTS(20, 28) is 6
times faster on the same resources than SFL&Swhich in turn was noted for being
faster without a coprocessor than the traditional altérastvith a coprocessor.

This paper details an implementation of T(E§, 28) on an 8051 compatible micro-
controller. Sec. 2 describes the mathematics. Sec. 3 sumeadne 8051 platform (with
a more complete review provided in Appendix A). Sec. 4 andartipular Secs. 4.4—
4.6 give the innards of the algorithm. Sec. 5 discusses teahssues, including side-
channel attack concerns. Some unusual maneuvers in lilgedora help to manage the
large amounts of data efficiently during key generation orvVRgoor smart cards. We
also explain why TTS can siggndgenerate keys quickly and efficiently. The real-time
on-card public key generation capability ameliorates @lgm affecting most multi-
variateseven when the keys are not stored on-cawl, the large public key makes
on-card key generation frequently infeasible and key mamemt difficult (cf. [16]).

2 Principles of TTS and Our Sample Scheme TT&0, 28)

In a multivariate PKC, usually the public map is a composifio= ¢3 o ¢3 o ¢1 with
both¢, : w — x = Myw-+c¢; andgs : y — z = M3y +c3 being affine and invertible.
All arithmetic is done over a finite field (tHease field which in TTS isk = GF(2%).

A digital signature scheme is considered to be in the TTSHa(fR]) if ¢- is a
tame map, a polynomial mapvith relatively few terms in the equations, easily invert-
ible through serial substitution or solution of linear edions, but without a low degree
explicit inverse Tame maps extend the conceptTaime Transformationom alge-
braic geometry ([10]), and may be said to combine the trditsimngular constructs
(introduced to cryptography in [5], cf. also [6, 17]) and-@itd-Vinegar ([7, 8]).

We refer the reader to [2] for some background, and [17] fopécal assessment of
TTS. We will use for illustration the TTS instance exhibiiad17] with the following

central mapp, : x = (xo, Z1,--., T27) — Y = (Ys, Y9, - - -, Y27):

7 .
Yi = @i + 3 i1 PijTiTs 4 (i+j mod 9), 8 = 8+ 16;
Y17 = Z17 + P17,1T1%6 + P17,2T2T5 + P17,3T3%L4
+D17,409%16 + P17,5T10%15 + P17,6211%14 + P17,7T12T13;

Y18 = Z18 + P18,1T2X7 + P18,2T3%6 + P18,3T4Z5
+D18,4C10T17 + P18,5%11%16 + P18,6T12%15 + P18,7T13%14;

i
Yi = Ti + Pi0Ti-11Ti—9 + D19 Pij—18 T2(i—j) Tj
27 .
+ 2 init1 Pij—18 Tij19 Tj, 0 = 19---2T.

This central map works witR0-byte hashes arn@B-byte signatures, and the corre-
sponding TTS instance will be henceforth called TI®28).

To Generate Keys: Assign non-zero random values i = GF(2%) to parameters
pij; generate random nonsingular matridés € K28%28 andM3 € K20%20 (usu-
ally via LU decomposition) and vectar; € K28. Composel = ¢3 o ¢3 o ¢1;
assignes € K?° so thatV has no constant part. Save quadratic and linear coeffi-
cients ofV” as public key (8680 bytes). Fird; *, M5 *; save them witfe,, c3, and
the parameters;; as the private key (1399 bytes).

To Sign: From the messag/, first take its digest = H(M) € K?°, then compute
y = M3 (z — c3), then compute a possiblec ¢, ' (y) as follows:

1. Randomly assigmy, ..., x7 and try to solve fors to z14 in the first 9 equa-
tions. Since the determinant (for any - - - 27) of this system is a degree-9
polynomial inz1, there can only be at mostchoices ofr; out of 256 to make
the first system degenerate. Keep trying until we find a smhuti

2. Solve serially forr;7 andx;g using the next two equationg;¢ andy;s).

3. Assign a random and try to solve fotr19 throughaxo; from the last 9 equa-
tions. Again, at most 9 values af, can make the determinant of the system
zero. So keep trying new valuesf until a solution is found.

Our desired signature is = M; ' (x — c;). Releasé M, w).
To Verify: On receiving(M, w), computez = H (M) and match with/ (w).

3 Summary of the 8051 Hardware Platform

The reader may find the details of the key-generation andrgjgorocesses (particu-
larly those of Sec. 4.5) tedious, but all the contortionsregeessitated by the fact that
EEPROM memory cannot be reliably read from soon after it ig@m to. This is notun-
common in the embedded realm. This section provides an eixesummary for those
unfamiliar with the 8051 chip. Those who are already familéth the 8051 can skip
the rest of this section. Those interested in such thingplease refer to the appendix.

Memory: The 8051 has 128 hytes of fast directly-addressable RAMaard called
data. Somedata locations are used as architectural stack and registeligding
the important registem®0 andR1. The rest hold important system and user data.
Most extant 8051-compatibles have 128 bytes more fast RAbbard, only ad-
dressable indirectly through the regist®® andR1. As thedata can also be ac-
cessed this way, all 256 bytes are together caifieda. In theory the 8051 can
address 64kB of immutable memormode and 64kB of off-board RAM or EEP-
ROM (xdata), both indirectly using th®PTR register. Theodecannot be written
to and can be accessed with an offset for table lookups. ketipeausually all ex-
ternal memory are accessed identically. Accessinde andxdata takes twice as
much time aglata andidata besides being harder to set up for.

EEPROM and flash memory are accessed just like RAM excepbtieatust wait,
usually for a few milliseconds, before accessing a recemtiifen EEPROM loca-
tion. A write followed too soon by another access results in arrerro

ALU: The Arithmetic-Logic Unit has many specialized registeh® (most important
being the accumulatoh and the Data PointdDPTR) and instructions. There is
an integer multiply and divide, and instruction to incrernerbut not decrement
— DPTR, so large arrays are best accessed in increasing order.ifstolctions
execute serially in a fixed numberioktruction cycles(cf. paragraph after Tab. 1).

Resources: /O is through specialized latches, andmmunication to a computer or
other device must be done through a reader unit, often agtd¢b a PC on a USB
port. The access is serial and slow say 1 kBigtdware random-number generation
can be added cheaply to most cards. Cheap smart cards today k& or more
in ROM and EEPROM, and a litle RAM — sometimes 256B, freqlye@t5kB,
sometimes 1 kB. 1.5kB or more RAM is mostly available in heagight cards.

4 Actual Performance and Implementation Details

We recompiled portable C code for T2, 28) (cf. [17]), with C51, a popular em-
bedded compiler. A few routines were rewritten in assenikdygt results from standard
developmentkits are given in Sec. 4.2 and implementatitaildén Sec. 4.4—4.6.

4.1 Hardware Resource Requirements

As mentioned in Appendix A.3, a low-end card can either jugh ©r do both key
generation and signing. We list our requirements in RAMLt§, idata and external
RAM or xdata, see Appendix A.1), EEPROM, total ROM, etc.:

To Sign: 128 bytes of RAM (19 bytes afata for state, 109 more bytes thata/idata
or xdata for temporary storage), 1.3kB of EEPROM for private key8kB. of fur-
thercodespace (0.8kB of program, 0.8kB of tables). For controlleith @56 bytes
of on-board RAM {data), it is an option to keep all the data for the Gaussian elim-
ination in theidata, which means shorter code (no need to move things between
idata andxdata) at 1.4kB (0.2kB less) and at least a 12% speed up. Since we mus
have some RAM to put the matrix for the elimination stage,arplanilla Intel
8051 will be assumed to have least 128 bytesdifta RAM storage.

Both To Sign and To Generate Keys:There are two choices:

— On EEPROM-poor cards, we do not store the entire public keyirg setup
only the private key and some critical intermediate datagmeerated and
stored in EEPROM, enough that chunks of the public key candoepated
and output on-the-fly as requested. This requires 2.7 kB ¢fHEEM (1399B
in the private key plus 1212B in intermediate data, plus stafiever wasted
space) plus 4.2 kB mommodespace (in ROM or EEPROM) is required. There
is 3.8 kB in the program for both key generation and signing,KB in sub-
sidiary I/O, including 0.8kB for tables as above.

— We can compute and store the entire public key for laterenedti This takes
11.3kB of EEPROM space, plus 4.2 kB more ROM or EEPRGMespace.

In both cases we need 128 byteslata, idata or xdata storage. If we need block-
writes to EEPROM or do block-outputs from the smart card, wkalso need 128
more bytes of RAM for buffer. When we can afford to usually wettle entire
Gaussian elimination frondata. PC access provided through USB-port device.

4.2 Performance Data and Brief Description of Programs

The signing portion of the program is straightforward and lba implemented straight
out of Sec. 20n average, signing takes about 170ms on a 3.57MHz stodiBbBd AH
(a really low-end part) Every other part is faster than the 8051AH. The same code
running on a 3.57MHz (“4T") WinBond W77E58 only takes 64ms.

For reference, of the 170ms average time taken by the sigiuagation on the Intel
8031/32 at 3.57MHz is divided as follows: Thkg portion takes 34msp, 71lms, and
¢1 65ms. On a Winbond W77E58, the times are 13ms, 27ms, 24msatasgly. Using

10MHz parts, the speedup is almost linear. The W77E58 tabest23ms to sign and
the Intel 8032AH takes 61ms — 51ms if we run the entire elitioin&romidata.

Once we get to 16MHz or faster clocks, some instructionsirecaxtrainstruction
cyclesto execute, and I/O times start to dominate, so the scaliadasless than linear.

The process for key generation is a lot more complicated knveks than signing.
When the smart card is initialized, we must first genekéte M;l, Ms, Mgl via LU
decomposition, store to EEPROM, then gene(aig)s<i<27 andcy, computecs and
store everything in EEPROM along the way. Note #at= M3 (¢2(c1)) and hence:

n—1
()= Y |M)kqeomim) | (c)e+ D ple)alc)s]| (@
l=n—m P TaTg Ny

The sum is over each terpw, 25 in the equation fog,. We may end the setup process
here, and the generated information is enough to compuistficients of the public
key polynomials, 20 at a time. In this mode, the card awaitsmoropriate outside input
before signing or computing and emitting the public key irafirohunks on-the-fly.

Setting up on an Intel 8032AH at 3.57MHz (computing the peikay and interme-
diate data) takes 7.7 seconds, including a little error dtieg. The process takes 3.6
seconds on a 3.57MHz Winbond W77ES58.

The rest of public-key generation is to compute for eéglji) the coefficients of
w;w; or w? or w; in 2, for everyk at once. To show that this is possible, we will
follow Imai and Matsumoto ([9]) and divide the coefficientsvdlved in each public
key polynomial into linear, square, and crossterm portamollows:

2k = Z Pirw; + Z Qlkwf + Z Rijrww;. (2
i i 1>7
The coefficient§ Py, Qix, Riji) are related td1,, Ms, ¢1, and the paramete(s;;)s<i<27
as follows, where each sum is over the tepms,z s in the equation foy,:

n—1
P =Y [(Ma)kmnsm) [(M1)ei + D p ((M1)ai(c1)s + (€1)a(M1)3:)]|(3)
l=n—m L P xTaTginyg
n—1 [
Qi = Y |(Ma)k.(e-ntm) Y pM)ai(Mi)s 4)
l=n—m L P TaTg Ny,
n—1 [
Riji= Y (M) emmsmy | D P (M1)ai(Mi)g; + (M1)aj(M1)g0)|| ()
l=n—m L P TaTg Ny,

Herem = 20, n = 28. For a smart card equipped with a lot of EEPROM or flash,
we need not compute and emit the public key piecemeal. It ssipte to compute
everything right there and write everything to EEPROM, todsd at a later time.

A 3.57MHz Intel 8051 or 8032AH averages about 150ms to gémer®20-byte
block of the public key from the intermediate datal signal that it is ready to ser@n
a 3.57MHz Winbond W77E58 with sufficient storage, genegdtie entire public key
takes 33 secondh.takes somé5 seconds to transmit everything from card to PC.

4.3 Finite Field Arithmetic and Other Details

As in any other multivariate PKC, we need to represent eagiment ofGF(2%) as an
integer between 0 and 255 (amsi gned char). We choose the “Standard” repre-
sentation used by AES ([4]), but we could choose any encaalirigng as addition can
be represented as a bitwiser .

A standard way of implementing finite field multiplicationteschoose a fixed prim-
itive element ¢ € GF(28) and store logarithm and exponential look-up tables in base
g, intending to multiply non-zere andy aszy = g1°8s #+108, ¥) mod 255 \We will do
a lot of manipulations of data ilog-form, which means we represent the zero of the
field GF(28) by the byted, and any other field elemeatby the unique positive integer
x < 255 that satisfies, = ¢*. Note: 1 is represented ag>°, not¢°.

In implementing the signing portion of the algorithm, we dédke following data
in ROM: 256-byte log-table in basge 512-byte table of exponentiation (~ ¢*), this
can be shortened to 256 bytes at a roughly 15% speed penalty.

The private key comprises the matriq@d?) ! and(M%)~1, parametergp;;) of
the central map, and the vectars cs. We store everything except the vectegsand
cs3 in log,-form, and the matrices column-first (as indicated by thespased notation).

The intermediate key-generation data &¢, M1 (in column-first, log,-form),
and a componentwise log @f. The public key consists of coefficient®;), (Qix),
(Rijk)i>;,» With each block arranged in order of increasing, thenk.

4.4 The Signing Process

The actual signing program operates on a 20-byte ariayidata in three stages, cor-
responding tap; !, ¢, *, and¢; . Due to the amount of array access in the Gaussian
eIimination,¢g1 takes most of the time. If we put the entire system matrixiata we

can save at least 10 percent upwards of running time, butoftest we forego that and
do it mostly fromxdata due to memory resource problems.

1. Do(¢3)~1, which is essentially a matrix multiplication, as follows:

(a) Zero outa 20-byte argaand replace by z’, the componentwise log @f + z;

(b) looping overi = 19, 18- - -0 and do the following loop it; # 0:

(c) Loopingoverj = 19---0, when(Ms);; # 0, add &or) g(#iHlog, (Ma);i) mod 255
into y;4s. Note: M3 is stored in log-form and transposed so that it can be ac-
cessed sequentially, and we can comgiite- A) mod 255 in only two instruc-
tions:add A, R (add registerk to the accumulatof) thenadc A, #0 (add
the carry from the last add into accumulator).

The inner loop of this routine reads coefficients off a tabialtiplies to a variable,

then adds them to different components of a vector (cf. ats0 5.3).

2. Do(¢2)~1, which is performed as follows:

(@) Fori =1---7, generate randomly and save (inidata array)log, =;, again
with the proviso thab represents 0, not 1 which is represented by 255.

(b) Establish in a 90-byte blocRA (in xdata or idata) of RAM the first linear
system to be solved farg, . . ., z16 by doing the following fori = 8 - - - 16:

* We chose ag the canonical generator of the AES field representation.

i. The constant of each equation locati@a[(0(: — 8) + 9]) is filled with ;.
ii. Looping overj = 1..7, insert into the location corresponding to the coef-
ficient of ;4 j (mod 9))+s (locationBA[10(i — 8) + (i + j (mod 9))]).
iii. xor BA[10(i — 8) + (i + 1 (mod 9))] with 1.
iv. LetBA[10(7—8)+ (i+8(mod 9))] = BA[10(i—8)+ (1+9(mod 9))] = 0.
(c) Run elimination on 9 variables to get, ..., =16, then findz,7; andxs by
solving for them in the next two equations (a}l will be stored in log-form).
(d) Establish another system of equation8Mby looping overi = 19 - - 27:
i. Inserty; +piox;—112,—9 as the constant term (locatida[10(i — 19) +9]).
ii. Loopingoverj =0---i— 19, letBA[10(i — 19) + j] = pi j+1223—j—19)-
iii. Loopingoverj =i —19---8, letBA[10(: — 19) + j] = ps j+1%i—;-
iv. Xxor BA[10(i — 8) + (¢ + 1(mod 9))] with 1.
(e) Run elimination on 9 variables to obtaify, . .., 227 (again in log-form).
3. Do(¢1)~1, another matrix multiplication liképs)~!, with different parameters.

4.5 Key Generation, First Half: GeneratingM,, M3, and Their Inverses

The following routine computes and stoeg, (M¥)~%, MT, (MI)~1, (p;;) for 8 <
i<18,1<j<6andl9 <i<27,0<j<09, ¢y, log,ci, andes. Total EEPROM
space required is 2768 bytes, with 1399 bytes in private kay§)1, (MZ)~1, the
(pij), c1, c3) and 1212 bytes of intermediate data to be used to producputbiéc
keys. There are 157 bytes used and erased. No more RAM tha56heytes ofdata

is needed; in fact, only 128 bytes are necessary if a writebisfnot needed. Of course,
extra RAM helps. Recall that matricel;, M; ', M3, Mgl are stored transposed and
in log-form (cf. Sec. 4.3) for convenience.

1. Generate matricdd; and(M;)~! via LU decomposition.

(a) Generate and write to EEPROM entries (in log-form) ofdlagonal matrixD,
(28 non-zero bytes), the lower triangular matfix (28 x 27/2 = 378 bytes,
also in log-form), and the upper triangular matiix (same as above), and do so
in the area from the 1569th to 2352th bytes from the begin(tiegce, leaving
the first 1568 bytes empty). The entrieslodndU are generated in an unusual
format. We lineL up column-first, buty will be in column-first but reverse
order, i.e.:Llo, Log, ..., Lnfl’o, Loy,..., Lnfl’l, ceey Lnfl,nfg and
Un—2n-1,---, Usn—1, Un—3zn—2,..., Upn—2,..., Ua3, Uiz, Uya.

(b) InvertDy, Ly, U; and write to EEPROM (in the first 784 bytes). Invertibg
is easy. We inverL, into L;* (stored in the same format) as follows:

i. Repeat (ii.—v.)ovei=1,2,...,n—1:

ii. Read[(L1)ii-1,---, (L1)n—1,i—1] fromxdatainto [z, ..., z,] in idata.

iii. Foreachj =1,..., n—1wherez; # 0, replacez; by (log, z;) and do:

iv. Foreachk =j+1,..., n—1suchthatly; # 0, addg™ i to z.

v. Now [Zi, Ceey Zn] is the CO|Umf{10gg(Lfl)i’i,1, ey lOgg(Lfl)n,Li,l].
Write to EEPROM, or (for parts with special EEPROM/flash imgtrules)
copy to a 128-byte buffer and block-write only if the bufferfull.

The same subroutine can invért into U{l in the same inverted column order.

(c) ComputeM;* = U; Dy 'L and write to EEPROM in the next 784 bytes:

i. Read[logg((Dfl)jj)] into array[d;] in idata; repeat (ii.—v.) fori < n.
ii. Zerooutzgto z;—; (arrayzo, ..., z,—1 isinidata); letz; = d;; fori+1 <
j < n—1letz; = (dj+log,(Ly");i) mod 255. Note (cf. 1b) that
log(L71);: was stored serially.
iii. Loopingoverj =i,i+1,..., n— 1, do the following:
iv. Fork =0, ..., j—1, addg(zH1°8, (Ur)rs) mod 255 jntg -, Note thall/] !
is in reverse order. After thie-loop, replace;; by g*/.
v. Now (end ofj-loop) the[z;] array holds thé-th column ofM;. Take the
componentwise log, then write appropriately into EEPRORM1D).
Note that we used instead of28 because the same routines are used/fer
(d) Erase the first 784 bytes, the memory block usedipt, L, U .
(e) Compute (and write out to the freshly erased block of 38d¥)M, = L1 D, U;.
i. Read[log,((D1);5)] into array[d;] in idata; repeat (ji.—v.) fori < n.
ii. Read (log,(U1);i + dj) mod 255 to z; (inidata) for j = 0---i — 1.
ii. Letz; =d;.Forj=0---4,lety; = ¢g*,and zeroout); 11,..., Yn—1.
iv. Looping over0 < j < i, j < k < n, addg(*+ 18, (L)) mod 255 jniq)
v. The(log yy) is thei-th column oflog, My, write to EEPROM.
() Erase the 784-byte EEPROM block used for, L1, U;.
We should conclude with 1568 bytes of data and 784 freshiseeraytes.
. GenerataM3 and (M3)~! as above, reusing the memory from Step 1. We should
have written 800 bytes of data and have 400 recently eraged.by
. Generate and stofp;;) for§ < <18,1<j<7and19<:<27,0<;<9
(167 bytes), reusing the memory from Step 2.
. Generate; (28 bytes) and store in space left from Step 2. Compgt@0 bytes):
(a) Storing (inidata) in the arrays: andy the componentwise log af; .
(b) Reading from the parameter table, compaitéc,) by looping over all indices
i = 8---27, adding each cross-term into the approprigte
(c) Write thelog(cy),; to EEPROM. Take the logs @f; jump to the multiplication
routine in Sec. 4.2. The resulty) is written to EEPROM. We are done.

4.6 Key Generation, Second Half: Computing and Outputting he Public Key

After the process of Sec. 4.5, we can generate the publicrkayits of 20 bytes (see
Sec. 4.2). Generating the public key takes a long time, ltdhtine itself is simpler:

Generating R;;;: Itis more convenientto compute first the coefficientapd; in yy:

1. Read in the-th andj-th columns oflog, M; and place in the arraysandc’.
2. Zero out the array and loop over each cross-tepm:,zg in the equation for
y; (reading off parameter table) thusly:

3. Computep [(Ml)ai(Ml)ﬁj + (Ml)a]’(Ml)ﬁi] Vialogg (gca+c;a + 90;4’0[3),
addinglog,, p (read off the parameter table) and exponentiating. Adg.to

4. We now have the coefficient @fz; in y;. Take the logs and multiply by
and jump to the matrix multiplication routine (Sec. 4.2) & §;;;, for eachk.

Generating P;;: As above, except for initializing the arrayto [(M1)x:]x=s...27 in-

stead of zeroing out, and reading irc; and thei-th column ofM; instead of the
i-th andj-th columns ofM; .

Generating Q;x: Like the above, but we only need to read a single column ofthe
and it is faster because there is one fewer add and one fewgpiyin Eq. 4.

After each block of 20 is produced, write it to EEPROM or acalate for buffered
output as needed. Our test code outputs every 6 blocks toaetimoughput.

5 Discussions and Conclusion

We discuss some issues germane to our study including sadeehattack considera-
tions, optimization, and possible changes to the schemgtteraart cards better.

5.1 Why does TTS have Faster Key Generation?

The state-of-the-art in key generation for multivariate@¥is probably the kind of
procedures as given by C. Wolf ([16]). At least, we can find attdr, and he managed to
save 30% of running time from previous algorithms. Howeveif\states, and it seems
commonly agreed to, that computations of the public polyiabusing interpolation for
large field multivariates, i.e. HFE ([13]) @r*-derivatives where the private map really
operates on some googol-sized field, take time proportimnaf. A cursory look at
Egs. 3-5 will reveal that the number of multiplications irylgeneration is about*
(really m?n?) times the average number of terms in an equatiogeinhenceO(n*).
So we expect key generation in TTS to run at about a few hurtdnes the speed that
SFLASH might need if they use the same dimensions.

Timings given in [2, 17] support this hypothesis. We do nairal to be anywhere
close to as good 8051 programmers as the authors of [1], buatior ofn? vs. nf
gives an edge that makes on-card key generation passaloly agliopposed to snail-
like. In general, a multivariate PKC can be calleane-like([17]) if its central map
has relatively few terms per equation and has a fast inv&se. 4.6 and Eqgs. 3-5
demonstrate tame-like-ness are useful for a smart card.

5.2 Side Channel Attack Considerations

In [1], the authors discuss defending against a possiblerdiitial-power attacks. The
structure of SFLASH is somewhat simpler, but we can take similar precautionimiagya
DPA probes to those in [1]. The steps for a DPA-safe signieg ar

1. Start out with hash value Take a random vectat € K™. Computez’ = z+z’.

2. Computey’ = (M3)~1(z' — c3) andy” = (M3)~'z”. We see thay =y’ +y”.

3. Take random bytes;, =/ fori = 0--- 7. Loop until the systems are solvable.

4. Construct linear systems as in Sec. 4.4, except that wenirse as large a RAM
buffer, putin two systems: One filled in using thleandy;, one with ther; andy;’.
Note: Step 2(b)iii of Sec. 4.4 only needs to be performed anaifrihe matrices.

5. Run a “conjoined Gaussian” with the two matrices. A keyrafien is division by
the sum of the two coefficients at the pivot position. If theg g, # ¢, then we
can achieve division by the pivot coefficidiaf, +c/;) through dividing successively
with ¢, and then by(1 + ¢/, /¢};). For9 x 9 matrices, this means slightly less than
triple the number of multiplications and is time-consumimgt we eventually come
downto(zg - - - g, xl - - - zg), Wherex! + =/ = z;.

6. Fori = 17 and18, do the following so that; = z + z/.

o=yl + Zp (xa + xoxy);) —yZ—I—Zp (zpal + zx). (6)
PTox N Y; PTox INY;
7. Similarly fori = 19 - - - 27 we do the “conjoined Gaussian”. We have fouticand

x’" that sum to thex of Sec. 2 at about one-quarter speed.
8. Computew’ = (M;)~'x" andw” = (M;)~}(x” — c;). Outputw = w’ + w"’.

Since TT$20,28), like SFLASH'? uses each byte of the entire key continuously, it
should be as safe as SFLASHunder the same attacks. The signing code expands to
about 3.2 kB, and the speed is between a third and a quartenatfitwvas (still ok).
This is obviously not optimal programming and we should He &bhoptimize it better.

5.3 Optimization Concerns

Since we are only doing proof-of-concept work we used C5iymited code with only
a few key routines hand-coded 8051 assembly. This is not ptiemal performance
available from our hardware, but is a lot better than usirgg {£51, and saves many
man-hours compared to doing assembly from the ground up.eéletiat we are not
giving up much in the way of performance because this is compnactice in software
design. A local expert on the 8051 offered his opinion thahvight be able to improve
it by a factor of two in pure assembly. However, the quaintrlqu8051 architecture
severely restricts our options. There is only so much ptessitth our limited resources,
especially the single pointer int@ata. Some notes on optimization possibilities:

— Of particularly note is the idiosyncratic ways the arraysen@ranged in memory.
We do not have hard proofs but believe that this arrangenseatréady correctly
optimized under the circumstances.

— If the uC has access to 1.5kB aflata RAM, all the temporary data can stay in
RAM and we need not erase from EEPROM at all during key geiweratven 1
kB RAM would make life easier.

— Thenovx A, @R command that use the output late@ for the high byte of the
address line and the regist® or R1 for the low byte is seldom used, because 1/0
lines from the outside often get in the way, changing theealithe latch when it
shouldn’t. With custom solutions, it is possible to havegreams up to 20% faster
by using these specialized commands.

— Ann — log,(1 + ¢") table can help. Let this table & When computing?;;

(Sec. 4.6), we need to dPogg (gcﬁcé + gC;+Cﬁ) + log, p} mod 255. Instead,

we can save Iookupsvi[dca + ¢j) +Eleg, + ¢ — (ca + cj)] + log, p} mod 255.

— We never really rewrote our programs for parts with dDRITR's. With proper
utilization, this is said to increase the speed by some 25%rfay-heavy code.

— With the base field = GF(27), the signing can run with the exponential table
in idata (did the designer of SFLASH think of this?). More extremeljith K =
GF(2%), both the log and the exponential table can fit intoitiza. We can change
to a (GF(27))?® — (GF(27))%¢ version of TTS for speed if key size and extra
RAM storage is not a problem. Preliminary tests show that @élijout 13% faster.

5.4 Conclusion

We believe that our test result shows the TTS family of matiate signature schemes
in general and TT0, 28) in particular to be very speedy. Not only is it fast, but itals
consumes little enough resources that it definitely meuitkher attention as an on-card
solution. The family of schemes has great potential for uskw-cost smart cards,
especially those without a cryptographic coprocessor.

We note that TT80, 28) by current estimates should be at least as secure as RSA-
1024, and TT84, 32) at least as secure to RSA-1536 (cf. [17]). Even if this estima
is slightly off, the speed of the implementations shoulll stake TTS quite useful for
smart cards. Furthermore, TTS is clearly an extensiblerysind we did an implemen-
tation for the following central map ([17])

7 .
Yi = Ti + D j—1 PijTiT84(i+j+1 mod 10); ¢ = 8- 1T;
Yi = Ti + Pi1Ti—17%Ti—14 + Pi2Ti—16Ti—15 + Pi3Ti—10Ti—1 + PiaTi—9Ti—2
+DisTi—8%i—3 + DieTi—7Ti—a + PitTi—6Tis, ¢ = 18- --21;
i
Yi = Ti + Di,0Ti—10%i—14 + ijgz Pij—21 T2(i—j) Lj

31 .
+ D i1 Pij—21 Ti—j21 Tj, ¢ =22+ 31

This scheme has = 24 (192-bit hashes) and = 32. We tabulate our new test results
with the old. Again, only the8032AH code ran the elimination entirelyithata.

As we observed in Sec. 5.3, we expect to improve on our woltk Alii in all, we
think that we have shown TTS and similar variants are worthena¢tention.

PrivKey|SigningSigningKeygenKeygen gxira |Setur
Scheme |Controller Length| Time | Code | Time | Code |EEPROM Time
i8032AH 144ms| 1.5 kB 785 775

TTS(20,28) [¢8051AH|1399 B| 170ms 16kB ' 1.2kB|
WT77E58 60ms| ™ 38.3s 4.2 kB 3.6s
18032AH 191ms| 1.5 kB 134s ' 11.74

TTS(24,32) [i8051AH|1534 B| 227ms 16kB 1.6kB|™™
WT77E58 85ms| ™ 65.2s 5.4s

Table 2. Summary for TTS on a 8051
Acknowledgments

We thank Messrs. Po-Yi Huang and Sam Tsai of Solutioningidefbr technical assis-
tance, and to Messrs. Bo-Yuan Peng and Hsu-Cheng Tsai afiddiiaiwan University
for commentary and discussion. We thank the anonymousesdor their suggestions
and constructive criticism. The first author would also li@ghank his beloved Ping.

References

1. M. Akkar, N. Courtois, R. Duteuil, and L. Goubi#, Fast and Secure Implementation of
SFLASH PKC 2003,LNCS V. 2567, pp. 267-278.

2. J.-M. Chen and B.-Y. Yangh More Secure and Efficacious TTS Schel@éSC '03,LNCS
V. 2971, pp. 320-338; full version &t t p: / / epri nt . i acr. or g/ 2003/ 160.

3. D. Coppersmith, J. Stern, and S. Vauderidye Security of the Birational Permutation Sig-
nature Schemesournal of Cryptology, 10(3), 1997, pp. 207-221.
4. J. Daemen and V. RijmenThe Design of Rijndael, AES - The Advanced Encryption Stan-
dard. Springer-Verlag, 2002.
5. H. Fell and W. Diffie Analysis of a Public Key Approach Based on Polynomial Stulbsti,
CRYPTO85, LNCS V. 218, pp. 340-349.
6. L. Goubin and N. CourtoisCryptanalysis of the TTM CryptosystemSIACRYPT 2000,
LNCS V. 1976, pp. 44-57.
7. A. Kipnis, J. Patarin, and L. Goubijnbalanced Oil and Vinegar Signature Schemes
CRYPTO99, LNCS V. 1592, pp. 206-222.
8. A. Kipnis and A. Shamir,Cryptanalysis of the Oil and Vinegar Signature Scheme
CRYPTO98, LNCS V. 1462, pp. 257-266.
9. T. Matsumoto and H. ImaRublic Quadratic Polynomial-Tuples for Efficient Signagur
Verification and Message-EncryptioBUROCRYPT88, LNCS V. 330, pp. 419-453.
10. T. Moh,A Public Key System with Signature and Master Key FunctiGosnmunications in
Algebra, 27 (1999), pp. 2207-2222.
11. The NESSIE project webpadett p: / / www. cr ypt onessi e. or g.
12. J. PatarinCryptanalysis of the Matsumoto and Imai Public Key Schenteuodcrypt'88
CRYPTO95, LNCS V. 963, pp. 248-261.
13. J. PatarinHidden Fields Equations (HFE) and Isomorphisms of Polyraden(IP): Two New
Families of Asymmetric AlgorithmEUROCRYPT96, LNCS V. 1070, pp. 33-48.
14. J. Patarin, L. Goubin, and N. Courto®, , and HM: Variations Around Two Schemes of T.
Matsumoto and H. ImaiASIACRYPT98, LNCS V. 1514, pp. 35-49.
15. J. Patarin, N. Courtois, and L. GoubFi,,ASH, a Fast Multivariate Signature Algorithm
CT-RSA 2001 LNCs V. 2020, pp. 298-307. Updated version available at [11].
16. C. Wolf,Efficient Public Key Generation for Multivariate Cryptosss preprint, available
athttp://eprint.iacr.org/2003/089/.
17. B.-Y.Yang and J.-M. CheRank Attacks and Defence in Tame-Like Multivariate PK&®
http://eprint.iacr.org/2004/061.

A Architecture of 8051-Based Smart Cards

We summarize the specifics of our hardware platforms for@mantation and testing.
Some discussion about clock vs. actual execution speedectnubd in Sec. 1 (follow-
ing Tab. 388).

A.1 Storage Areas on an 8051-Based Smart Card

The general structure of an 8051-based 8-bit microcoetrgliC’) core is the same
across implementations. The chip usually has a CPU portishgome extra memory.
On a 8051-like device, we have the following different looas for data storage:

data The 128 bytes of on-chip high-speed RAM directly addresshilthe 8051 core
in one instruction cycle. Sometimes referred to as “RegR#&M” because in ef-
fect they are registers, like the zeroth page of the 6502 dmer @-bit CPUs. A
peculiarity of the 8051 instruction set is that sodaga can be accessed bitwise as
flags. This saves valuabilata space as well as instructions.

idata On-chip high-speed RAM that may be accessed in indirectesddnode through
a byte-long pointer (either of the special registd=r R1) in one instruction cycle.
Thedata can also be accessed this way and is considered part ifettae Almost
every 8051-compatibles has the 128 extra bytadath for 256 bytes total.

code ROM, not writable. May be only read indirectly through thet®Rointer DPTR)
register with a fixed latency (normally 2 instruction cyct@sa cheap part) via a
specialnovc command. An 8051-likeC' can address up to 64 kB 0bdeROM.

xdata Off-chip read-write memory, accessible only via thevx command, with indi-
rection through eitheDPTR or a combination of the 1/0 port registe® and either
of the special registd®0 andR1. Normallynovx takes 2 instruction cycles, but on
a high-end part there may be banks of memory with differeeniay, and a special
register to control the access time.

One expeckdata to be RAM, and because tivx/ novc commands both set sig-
nals lines, effectively adding an extra address line, arlL8ike part can theoretically
address 64kB of ROMcpde and 64kB of RAM kdata) for 128kB memory. However,
when theuC' does not use more than 64kB total, as a rule the control liresvaied
together for convenienéeand code and data are read identically. Another important
point is that read-write memory can be EEPROM or flash memswyell as RAM:

— RAM for a uC is usually costly SRAM. In theory there may be as much as 64kB,
but there is often only 256B, seldom more than 1kB and almegtnmore than
2kB. A smart card intended for RSA or ECC work will always have asiel kB
(usually 1.5kB), because there is a lot of data and co-pes@esalso need memory.

— We will use EEPROM and flash memory as synonyms like most geajthough
EEPROM can often be written to much faster and far more timas flash.

A pC may have no EEPROM at all or as much as 64kB. Reading EEPROM is
just like reading off-chip RAM, but completing a write intmwe EEPROM loca-
tion takes about 565 and erasing (resetting it into a writable state) takes much
longer, about 5ms per access. Often erasure and sometitibes must be byjines
which are units of access that may be 8 to 128 bytes each. @aignals from

the EEPROM can be polled via I/O port latches to tell the progner whether the
EEPROM is ready for writing or successfully writtessfter an EEPROM address

is written to but before the requisite amount of time (somgitStruction cycles or
more) has elapsed, reading that location generates unpteblie results.

There are several modes of writing into EEPROM/flash, andengpart normally does
only one. There are 8051 parts with safeguards against fqmsaer and a block-write

operation with a same latency of 5ms per 128-byte block, lhese tend to be very
expensive parts. In parts without the power-failure guard block-writing features,

EEPROM is essentially accessed like RAM, but the prograndsié®check manually
the signal lines. If you are safety-minded, you check firsttaxythen keep checking the
signals to make sure that it is done properly. A more cavdisigner would go about
his business after the write is issued, but would presunm@dlsome error-checking.

® movx also can often be faster thamvc on high-end parts for a speed advantage.

A.2 The 8051-Based Parts We Tested and Their Characteristsc

Intel 8051AH One of the original MCS-51 NMOS single-chip 8-bit microcatier
parts, with 32 1/O lines, 2 Timers/Counters, 5 Interrup®yrity Levels, and 128
bytes on-chip RAM (i.e. no extrigata). It has 2 kB of on-chip ROM.

Intel 8032AH A stripped-down 8052; just like the&8051 except for having 3 Timers
(Counters), 6 Interrupts/4 priority levels, no ROM and 1288re RAM on-chip.
Winbond W77E58 A more upscale CMOS part, with 36 1/O lines, 3 Timers/Couster

12 Interrupts/2 priority levels, and 256 bytes on-chip RAB2kB ROM built-in.
Its big pluses are: Dual Data Pointers (so that using twabii- memory blocks
is a lot faster), 1kB extra on-chip SRAM (appropriately ked for optimalmov x
access), and the fact that it is “4T", i.e., many frequentigdiinstructions takes 4
clock cycles to execute, so it is up to 3 times faster at theesamminal clock.

Dual Data Pointers is a common goodie in high-end 8051-ldtesp By toggling a
special flag bit, the programmer can switch between two pteBPTR's, which means
that theuC' can quickly access two different look-up tables, amongrdthiags.

A.3 Random Number Generation and Other I/O Concerns on an 805

For modern-day PKI applications, security concerns déctlaat keys be generated on-
card. The private key should stay there, never read by anyahuirhe public key can
be released off-card to a PC or other device when the apptemdmmands are issued.
A hardware random-number generator must be accessiblarorby the CPU for this
purpose. If only signing is needed, then the RNG does not tedg all that fast,
because with each signing action only around 8 bytes of ppisoneeded. During key
generation, it is better to have a faster RNG; it is feasibf & cryptography-grade
software PRNG be used, seeded with a hardware randomnese sibwould be slow,
but not overly so. According to local vendors, in practicernarginal cost of adding a
hardware RNG is very low, essentially nil.

Access to random number generation hardware is either imggiéed via an 1/0
port read or as special memory whence a random byte can abeagsad. Usually it is
as easy as using a singtevx instruction (takes about 4 instruction cycles including
setup). In our tests, the sampling of a random byte is impideteas a separate “black-
box” routine in assembly that returns a value after aboun%@uction cycles, because
we wish to account for slower hardware RNG implementations.

For signing, it is assumed that only the hash value of a messagds to be passed
into a smart card. For key generation, the smart card neelols &ble to save the key
to EEPROM (flash memory) or spitted out of the card in blockarohppropriate size.
In general, the smart card is wired up to transmit data onlglatks of 128 or 256
bytes (at most) at a time, and the transfer rate is about 9806,lwhich makes for an
effective bandwidth of at most 1 kB/s.

