
Comparing Elliptic Curve Cryptography and

RSA on 8-bit CPUs

Nils Gura, Arun Patel, Arvinderpal Wander, Hans Eberle, and
Sheueling Chang Shantz

Sun Microsystems Laboratories
{Nils.Gura, Arun.Patel,Arvinderpal.Wander,Hans.Eberle,

Sheueling.Chang}@sun.com
http://www.research.sun.com/projects/crypto

Abstract. Strong public-key cryptography is often considered to be too
computationally expensive for small devices if not accelerated by crypto-
graphic hardware. We revisited this statement and implemented elliptic
curve point multiplication for 160-bit, 192-bit, and 224-bit NIST/SECG
curves over GF(p) and RSA-1024 and RSA-2048 on two 8-bit micro-
controllers. To accelerate multiple-precision multiplication, we propose a
new algorithm to reduce the number of memory accesses.
Implementation and analysis led to three observations: 1. Public-key
cryptography is viable on small devices without hardware acceleration.
On an Atmel ATmega128 at 8 MHz we measured 0.81s for 160-bit ECC
point multiplication and 0.43s for a RSA-1024 operation with exponent
e = 216 + 1. 2. The relative performance advantage of ECC point multi-
plication over RSA modular exponentiation increases with the decrease
in processor word size and the increase in key size. 3. Elliptic curves
over fields using pseudo-Mersenne primes as standardized by NIST and
SECG allow for high performance implementations and show no perfor-
mance disadvantage over optimal extension fields or prime fields selected
specifically for a particular processor architecture.

Keywords: Elliptic Curve Cryptography, RSA, modular multiplica-
tion, sensor networks.

1 Introduction

As the Internet expands, it will encompass not only server and desktop systems,
but also large numbers of small devices ranging from PDAs and cell phones
to appliances and networked sensors. Inexpensive radio transceivers, integrated
or attached to small processors, will provide the basis for small devices that
can exchange information both locally with peers and, through gateway devices,
globally with entities on the Internet. Deploying these devices in accessible en-
vironments exposes them to potential attackers that could tamper with them,
eavesdrop communications, alter transmitted data, or attach unauthorized de-
vices to the network. These risks can be mitigated by employing strong cryp-
tography to ensure authentication, authorization, data confidentiality, and data



integrity. Symmetric cryptography, which is computationally inexpensive, can be
used to achieve some of these goals. However, it is inflexible with respect to key
management as it requires pre-distribution of keys. On the other hand, public-
key cryptography allows for flexible key management, but requires a significant
amount of computation. However, the compute capabilities of low-cost CPUs are
very limited in terms of clock frequency, memory size, and power constraints.

Compared to RSA, the prevalent public-key scheme of the Internet today,
Elliptic Curve Cryptography (ECC) offers smaller key sizes, faster computation,
as well as memory, energy and bandwidth savings and is thus better suited for
small devices. While RSA and ECC can be accelerated with dedicated cryp-
tographic coprocessors such as those used in smart cards, coprocessors require
additional hardware adding to the size and complexity of the devices. Therefore,
they may not be desirable for low-cost implementations. Only few publications
have considered public-key cryptography on small devices without coprocessors.
Hasegawa et al. implemented ECDSA signature generation and verification on
a 10MHz M16C microcomputer [11]. The implementation requires 4KB of code
space and uses a 160-bit field prime p = 65112∗2144−1 chosen to accommodate
the 16-bit processor architecture. Signatures can be generated in 150ms and ver-
ified in 630ms. Based on the ECC integer library, the authors also estimate 10s
for RSA-1024 signature generation and 400ms for verification using e = 216 + 1.
Bailey and Paar suggest the use of optimal extension fields (OEFs) that enable
efficient reduction when subfield primes are chosen as pseudo-Mersenne primes
close to the word size of the targeted processor [2]. An implementation of this
concept for elliptic curve point multiplication over GF ((28 − 17)17) on an 8-bit
8051 processor architecture is described by Woodbury, Bailey and Paar in [17].
On a 12MHz 8051 with 12 clock cycles per instruction cycle, the authors mea-
sured 8.37s for general point multiplication using the binary method and 1.83s
for point multiplication with a fixed base point. The code size was 13KB and 183
bytes of internal and 340 bytes of external RAM were used. Pietiläinen evaluated
the relative performance of RSA and ECC on smart cards [16].

This paper focuses on implementation aspects of standardized RSA and ECC
over NIST/SECG GF (p) curves and evaluates the algorithms with respect to
performance, code size, and memory usage. We consider software and hardware
optimization techniques for RSA and ECC based on implementations on two
exemplary 8-bit microcontroller platforms: The 8051-based Chipcon CC1010 [6],
and the Atmel AVR ATmega128 [1].

2 Public-Key Algorithms ECC and RSA

ECC and RSA are mature public-key algorithms that have been researched by
the academic community for many years; RSA was conceived by Rivest, Shamir
and Adleman in 1976 and Koblitz and Miller independently published work on
ECC in 1985. The fundamental operation underlying RSA is modular exponen-
tiation in integer rings and its security stems from the difficulty of factoring
large integers. ECC operates on groups of points over elliptic curves and derives



its security from the hardness of the elliptic curve discrete logarithm problem
(ECDLP). While sub-exponential algorithms can solve the integer factorization
problem, only exponential algorithms are known for the ECDLP. This allows
ECC to achieve the same level of security with smaller key sizes and higher com-
putational efficiency; ECC-160 provides comparable security to RSA-1024 and
ECC-224 provides comparable security to RSA-2048.

2.1 Implementing RSA

RSA operations are modular exponentiations of large integers with a typical size
of 512 to 2048 bits. RSA encryption generates a ciphertext C from a message M
based on a modular exponentiation C = Me mod n. Decryption regenerates the
message by computing M = Cd mod n 1. Among the several techniques that
can be used to accelerate RSA [3], we specifically focused on those applicable
under the constraints of 8-bit devices.

Chinese Remainder Theorem RSA private-key operations, namely decryp-
tion and signature generation, can be accelerated using the Chinese Remainder
Theorem (CRT). RSA chooses the modulus n as the product of two primes p
and q, where p and q are on the order of

√
n (e.g. for a 1024-bit n, p and q

are on average 512 bits long). Using the CRT, a modular exponentiation for
decryption M = Cd mod n can be decomposed into two modular exponentia-
tions M1 = Cd1

1 mod p and M2 = Cd2
2 mod q, where C1, d1, C2 and d2 are

roughly half the size of n. Assuming schoolbook multiplication with operands

of size m
2 = ⌈log2(n)⌉

2 , modular multiplications can be computed in roughly 1
4 of

the time as m-bit modular multiplications. Thus the CRT reduces computation
time by nearly 3

4 resulting in up to a 4x speedup.

Montgomery Multiplication An efficient reduction scheme for arbitrary mod-
uli n is Montgomery reduction which computes C ′ ∗ r−1 mod n instead of C ′

mod n. Appendix B shows a simple algorithm for Montgomery reduction of a
2m-bit integer C ′ to an m-bit integer C on a processor with a word size of
k bits. Using schoolbook multiplication, an m × m-bit multiplication requires
⌈m

k ⌉2 k× k-bit multiplications and Montgomery reduction requires ⌈m
k ⌉2 + ⌈m

k ⌉
k× k-bit multiplications. Therefore, the total cost of an m×m-bit Montgomery
multiplication is 2⌈m

k ⌉2 + ⌈m
k ⌉.

Optimized Squaring The squaring of a large integer A, decomposed into
multiple k-bit words (An−1, ..., A0), can take advantage of the fact that partial
products AiAj , i 6= j occur twice. For example, a squaring of A = (A1, A0)
needs to compute the partial product A1A0 only once since A2 = (A1 ∗ 2k +
A0) = A1A1 ∗ 22k + 2A1A0 ∗ 2k + A0A0. Thus m × m-bit squarings including

1 A detailed description and a proof of mathematical correctness can be found e.g. in
[3].



Montgomery reduction require only 3
2⌈m

k ⌉2 + 3
2⌈m

k ⌉ k × k-bit multiplications,
reducing computational complexity by up to 25%.

2.2 Implementing ECC

The fundamental operation underlying ECC is point multiplication, which is de-
fined over finite field operations2. All standardized elliptic curves are defined over
either prime integer fields GF (p) or binary polynomial fields GF (2m). In this pa-
per we consider only prime integer fields since binary polynomial field arithmetic,
specifically multiplication, is insufficiently supported by current microprocessors
and would thus lead to lower performance. The point multiplication kP of an
integer k and a point P on an elliptic curve C : y2 = x3 + ax + b over a prime
field GF (p) with curve parameters a, b ∈ GF (p) can be decomposed into a se-
quence of point additions and point doublings. Numerous techniques have been
proposed to accelerate ECC point multiplication. Since we do not make assump-
tions about the point P in a point multiplication kP , optimization methods for
fixed points cannot be applied. In the following, we will describe the most impor-
tant optimization techniques for general point multiplication on elliptic curves
over GF (p) standardized by either NIST or SECG.

Projective Coordinate Systems Cohen et al. found that mixed coordinate
systems using a combination of modified Jacobian and affine coordinates offer the
best performance [7]. A point addition of one point in modified Jacobian coor-
dinates P1 = (X1, Y1, Z1, aZ4

1 ) and one point in affine coordinates P2 = (x2, y2)
resulting in P3 = (X3, Y3, Z3, aZ4

3 ) is shown in Formula 1 and a point doubling
of a point in modified Jacobian coordinates P1 is shown in Formula 2.

X3 = −H3 − 2X1H
2 + r2, Y3 = −Y1H

3 + r(X1H
2 −X3), Z3 = Z1H

aZ4
3 = aZ4

3 with H = x2Z
2
1 −X1, r = y2Z

3
1 − Y1

(1)

X3 = T, Y3 = M(S − T )− U,Z3 = 2Y1Z1, aZ4
3 = 2U(aZ4

1 )

with S = 4X1Y
2
1 , U = 8Y 4

1 ,M = 3X2
1 + (aZ4

1 ), T = −2S + M2
(2)

Using the above formulas, point addition requires 9 multiplications and 5 squar-
ings and point doubling requires 4 multiplications and 4 squarings as the most
expensive operations.

Non-Adjacent Forms Non-adjacent forms (NAFs) are a method of recoding
the scalar k in a point multiplication kP in order to reduce the number of non-
zero bits and thus the number of point additions [14]. This is accomplished by
using digits that can be either 0, 1 or -1. For example, 15P = (1 1 1 1)2P can be
represented as 15P = (1 0 0 0 -1)2P . The NAF of a scalar k has the properties

2 For a detailed introduction to ECC the reader is referred to [10].



of having the lowest Hamming weight of any signed representation of k, being
unique, and at most one bit longer than k. By definition, non-zero digits can
never be adjacent resulting in a reduction of point additions from m−1

2 for the
binary method to m

3 for NAF-encoded scalars. Negative digits translate into
point subtractions, which require the same effort as point additions since the
inverse of an affine point P = (x, y) is simply −P = (x,−y).

Curve-Specific Optimizations NIST and SECG specified a set of elliptic
curves with verified security properties that allow for significant performance
optimizations [15] [4]. For all NIST and most SECG curves, the underlying field
primes p were chosen as pseudo-Mersenne primes to allow for optimized modu-
lar reduction. They can be represented as p = 2m − ω where ω is the sum of a
few powers of two and ω ≪ 2m. Reduction of a 2m-bit multiplication result C ′

split into two m-bit halves c′1 and c′0 can be computed based on the congruence
2m ≡ ω:

C ′ = (c′1, c
′
0) = A ∗B

while (c′1 6= 0)
(c′1, c

′
0) = c′1 ∗ ω + c′0

C = c′0 mod p
Since pseudo-Mersenne primes are sparse, multiplication by ω is commonly im-
plemented with additions and shifts. It is important to note that compared to
Montgomery reduction, reduction for pseudo-Mersenne primes requires substan-
tially less effort on devices with small processor word sizes k. As described in
Section 2.1, Montgomery reduction of a 2m-bit product to an m-bit result re-
quires ⌈m

k ⌉2 +⌈m
k ⌉ k×k-bit multiplications. The ratio ⌈m

k ⌉
2

grows by the square
as the processor word size k is decreased. Reduction for NIST/SECG pseudo-
Mersenne primes, however, typically only requires two multiplications with a
sparse ω. The number of corresponding additions and shifts scales linearly with
the decrease of k. For example, if n multiplications were needed for Montgomery
reduction on a 32-bit processor, 16n multiplications would be needed on an 8-bit
processor. On the other hand, if a additions were needed for pseudo-Mersenne
prime reduction on a machine with a 32-bit processor, only 4a additions would
be needed on an 8-bit processor. Other ECC operations such as addition and
subtraction also scale linearly. As a result, implementations of ECC exhibit a
relative performance advantage over RSA on processors with small word sizes.
Assuming a constant number of addends in the pseudo-Mersenne field primes,
the advantage of ECC over RSA on devices with small word sizes likewise grows
with the key size.

All NIST and some SECG curves further allow for optimization based on
the curve parameter a being a = −3. Referring to point doubling Formula 2, M
can be computed as M = 3X2

1 − 3Z4
1 = 3(X1 − Z2

1 ) ∗ (X1 + Z2
1 ) and aZ4

3 as
aZ4

3 = 6UZ4
1 . As a result, aZ4

3 does not have to be computed in point addition
Formula 1 such that point doublings can be performed with 4 multiplications
and 4 squarings and point additions can be performed with 8 multiplications



and 3 squarings. Similar optimizations were used by Hitchcock et al. [12] and
Hasegawa et al. [11].

3 Optimizing Multiplication for Memory Operations

Modular multiplication and squaring of large integers are the single performance-
critical operations for RSA and ECC as we will show in Section 4. Therefore,
high-performance implementations need to focus specifically on optimizing these
operations. On small processors, multiple-precision multiplication of large inte-
gers not only involves arithmetic operations, but also a significant amount of
data transport to and from memory due to limited register space. To reduce
computational complexity, we considered Karatsuba Ofman [13] and FFT mul-
tiplication, but found that the recursive nature of these algorithms leads to
increased memory consumption and frequent memory accesses to intermediate
results and stack structures. In addition, Karatsuba Ofman and FFT multipli-
cation cannot be applied to Montgomery reduction due to dependencies of the
partial products. We therefore decided to focus on optimizing schoolbook multi-
plication. For schoolbook multiplication of m-bit integers on a device with a word
size of k bits, the multiplication effort for m-bit integers is fixed to n2 = ⌈m

k ⌉2
k × k-bit multiplication operations plus appendant additions.

Therefore, computation time can mainly be optimized by reducing the num-
ber of non-arithmetic operations, specifically memory operations. Table 1 illus-
trates and analyzes three multiplication strategies with respect to register usage
and memory operations. It shows exemplary multiplications of n-word integers
(an−1, . . . , a1, a0) and (bn−1, . . . , b1, b0). The analysis assumes that multiplicand,
multiplier and result cannot fit into register space at the same time such that
memory accesses are necessary.

3.1 Row-Wise Multiplication

The row-wise multiplication strategy keeps the multiplier bi constant and multi-
plies it with the entire multiple-precision multiplicand (an−1, . . . , a1, a0) before
moving to the next multiplier bi+1. Partial products are summed up in an accu-
mulator consisting of n registers (rn−1, . . . , r1, r0). Once a row is completed, the
last register of the accumulator (r0 for the first row) can be stored to memory as
part of the final result and can be reused for accumulation of the next row. Two
registers are required to store the constant bi and one variable aj . In the above
implementation, row-wise implementation requires n + 2 registers and performs
n2 + 3n memory accesses3. That is, for each k × k multiplication one memory
load operation is needed. On processor architectures that do not have sufficient
register space for the accumulator, up to n2 +1 additional load and n2−n addi-
tional store operations are required. On the other hand, processors that can hold

3 Additional registers may be required for pointers, multiplication results and tempo-
rary data storage. We do not consider them in the analysis since they depend on the
processor architecture.



both the accumulator and the entire multiplicand in register space can perform
row-wise multiplication with 2n + 1 registers and only 4n memory accesses. In
addition to memory accesses, pointers to multiplicand, multiplier and result may
have to be adjusted on implementations using indexed addressing. If multipli-
cand and multiplier are indexed, one pointer increment/decrement is needed for
each load operation, which is true for all three multiplication algorithms.

3.2 Column-Wise Multiplication

The column-wise multiplication strategy sums up columns of partial products
aj ∗ bi, where i + j = l for column l. At the end of each column, one k-bit word
is stored as part of the final multiplication result. Column-wise multiplication
requires 4 + ⌈log2(n)/k⌉ registers, the fewest number of all three algorithms. It
is interesting to note that the number of registers grows only negligibly with the
increase of the operand size n. Column-wise multiplication is thus well suited for
architectures with limited register space. However, 2n2 + 2n memory operations
have to be performed, which corresponds to two memory load operations per
k× k multiplication. Implementations of column-wise multiplication require ad-
vancing pointers to both multiplicand aj and multiplier bi once for every k×k-bit
multiplication.

3.3 Hybrid Multiplication

We propose a new hybrid multiplication strategy that combines the advantages
of row-wise and column-wise multiplication. Hybrid multiplication aims at opti-
mizing for both the number of registers and the number of memory accesses. We
employ the column-wise strategy as the “outer algorithm”and the row-wise strat-
egy as the “inner algorithm”. That is, hybrid multiplication computes columns
that consist of rows of partial products. The savings in memory bandwidth stem
from the fact that k-bit operands of the multiplier are used in several mul-
tiplications, but are loaded from memory only once. Looking at column 0 in
the example, b0 and b1 are used in two multiplications, but have to be loaded
only once. Register usage and memory accesses depend on the the number of
partial products per row (or column width) d. The hybrid method equals the
column-wise strategy for d = 1 and it equals the row-wise strategy for d = n,
where the entire multiplicand is kept in registers. d can be chosen according to
the targeted processor; larger values of d require fewer memory operations, but
more registers to store operands and to accumulate the result. To optimize the
algorithm performance for r available registers, d should be chosen such that
d = max{i|1 ≤ i ≤ n, r ≥ 3i+ ⌈log2(n/i)/k⌉}. Note that the number of registers
grows only logarithmically with the increase in operand size n. Therefore, for a
fixed value of d, hybrid multiplication scales to a wide range of operand sizes
n without requiring additional registers. This is important for implementations
that have to support algorithms such as RSA and ECC for multiple key sizes.
The hybrid multiplication algorithm is shown in pseudo code in Appendix A.



Row-Wise Multiplication

a0b0
row a1b0
0 a2b0

a3b0
a0b1

row a1b1
1 a2b1

a3b1
. a0b2
. a1b2
. a2b2

a3b2
a0b3

a1b3
a2b3

a3b3

... r2 r1 r0 r3 r2 r1 r0

accumulator

accumulator
registers n
operand
registers 2
memory
loads n2 + n
memory
stores 2n

registers n + 2
memory ops n2 + 3n

Column-Wise Multiplication

col 0 a0b0
col 1 a1b0

a0b1
col 2 a2b0

a1b1
a0b2

col 3 a3b0
a2b1
a1b2
a0b3

... a3b1
a2b2
a1b3

a3b2
a2b3

a3b3

← r2 r1 r0

accumulator

2 + ⌈log2(n)/k⌉

2

2n2

2n

4 + ⌈log2(n)/k⌉
2n2 + 2n

Hybrid Multiplication (d = 2)

col 0 a0b0
row 0 a1b0

a0b1
row 1 a1b1

col 1 a2b0
row 0 a3b0

a2b1
row 1 a3b1

a0b2
row 2 a1b2

a0b3
row 3 a1b3

a2b2
a3b2
a2b3

a3b3

← r4 r3 r2 r1 r0

accumulator

2d + ⌈log2(n/d)/k⌉

d+1

2⌈n2/d⌉

2n

3d + ⌈log2(n/d)/k⌉
2⌈n2/d⌉+ 2n

Table 1. Multiple-precision multiplication of integers with n = 4 words.

Algorithm ATmega128 @ 8MHz CC1010 @ 14.7456MHz

time data mem code time data mem code

s bytes bytes s ext+int, bytes bytes

ECC secp160r1 0.81s 282 3682 4.58s 180+86 2166

ECC secp192r1 1.24s 336 3979 7.56s 216+102 2152

ECC secp224r1 2.19s 422 4812 11.98s 259+114 2214

Mod. exp. 512 5.37s 328 1071 53.33s 321+71 764

RSA-1024 public-key e = 216 + 1 0.43s 542 1073 > 4.48s

RSA-1024 private-key w. CRT 10.99s 930 6292 ∼ 106.66s

RSA-2048 public-key e = 216 + 1 1.94s 1332 2854

RSA-2048 private-key w. CRT 83.26s 1853 7736

Table 2. Average ECC and RSA execution times on the ATmega128 and the CC1010.

The execution time for the RSA-1024 private-key operation on the CC1010 was approximated as
twice the execution time of a 512-bit Montgomery exponentiation and the execution time for the
RSA-1024 public-key operation was estimated as four times the execution time of a 512-bit Mont-
gomery exponentiation using e = 216+1. Since only one 512-bit operand and no full 1024-bit operand
can be kept in internal memory, an actual implementation of the RSA-1024 public-key operation
would be even less efficient.



4 Implementation and Evaluation

We implemented ECC point multiplication and modular exponentiation on two
exemplary 8-bit platforms in assembly code. As the first processor, we chose
a Chipcon CC1010 8-bit microcontroller which implements the Intel 8051 in-
struction set. The CC1010 contains 32KB of FLASH program memory, 2KB of
external data memory and 128 bytes of internal data memory. As part of the
8051 architecture, 32 bytes of the internal memory are used to form 4 banks of 8
8-bit registers for temporary data storage. One 8-bit accumulator is the destina-
tion register of all arithmetic operations. The CC1010 is clocked at 14.7456MHz
with one instruction cycle corresponding to 4 clock cycles such that the clock
frequency adjusted for instruction cycles is 3.6864MHz.

As the second processor, we chose an Atmel ATmega128, a popular processor
used for sensor network research, for example on the Crossbow motes platform
[8]. The ATmega128 is an 8-bit microcontroller based on the AVR architecture
and contains 128KB of FLASH program memory and 4KB of data memory.
Unlike the CC1010, the ATmega128 implements a homogeneous data memory
that can be addressed by three 16-bit pointer registers with pre-decrement and
post-increment functionality. The register set consists of 32 8-bit registers, where
all registers can be destinations of arithmetic operations. The ATmega128 can
be operated at frequencies up to 16MHz, where one instruction cycle equals one
clock cycle.

Given the limited processor resources, we chose to focus our implementation
efforts on a small memory footprint using performance optimizations applicable
to small devices without significant increases in either code size or memory usage.
For ECC, we implemented point multiplication for three SECG-standardized el-
liptic curves, secp160r1, secp192r1, and secp224r1, including optimized squarings
and the techniques described in section 2.2. Inversion was implemented with the
algorithm proposed by Chang Shantz [5]. We evaluated the three multiplication
strategies with respect to processor capabilities. The CC1010 can access only
one bank of 8 registers at a time, where switching register banks requires multi-
ple instruction cycles. Looking at the hybrid multiplication strategy, at least 7
registers are required for the smallest column width of d = 2 and two registers
are needed to store pointer registers exceeding the number of available registers.
We therefore resolved to implementing the row-wise multiplication strategy and
unrolled parts of the inner multiplication loop4. On the ATmega128, the hybrid
multiplication method can be applied with a column width of up to d = 6 requir-
ing 19 registers. We chose d = 5 for secp160r1 accomodating a 20-byte operand
size and d = 6 for secp192r1 and secp224r1.

For RSA, we implemented RSA-1024 on both processors and RSA-2048 on
the ATmega128 incorporating the optimizations described in section 2.1. The
CC1010 implementation of Montgomery multiplication uses row-wise multipli-
cation, where the ATmega128 implementation employs the hybrid strategy using

4 A later analysis showed that implementing the column-wise strategy would save 9.5%
cycles in the inner multiplication loop by reducing the number of memory accesses.



the maximal column width of d = 6. Since the operand word size of 64 bytes for
RSA-1024 with CRT is not a multiple of d = 6, the implementation performs
a 528× 528-bit Montgomery multiplication, where optimizations could be made
at the cost of increased code size. For the RSA public-key operations we used a
small exponent of e = 216 + 1.

Table 2 summarizes performance, memory usage, and code size of the ECC
and RSA implementations. For both the CC1010 and the ATmega128, ECC-
160 point multiplication outperforms the RSA-1024 private-key operation by
an order of magnitude and is within a factor of 2 of the RSA-1024 public-key
operation. Due to the performance characteristics of Montgomery reduction and
pseudo-Mersenne prime reduction, this ratio favors ECC-224 even more when
compared to RSA-2048.

For point multiplication over secp160r1, over 77% of the execution time on
the ATmega128 and over 85% of the execution time on the CC1010 are spent on
multiple-precision multiplications and squarings not including reduction. This
underlines the need for focusing optimization efforts primarily on the inner mul-
tiplication and squaring loops. Confirming this observation, we found that an
optimized implementation on the CC1010 that unrolled loops for addition, sub-
traction, reduction and copy operations required 35% more code space while de-
creasing execution time by only 3%. Our numbers further show that on processor
architectures with small word sizes, the use of pseudo Mersenne primes reduces
the time spent on reduction to a negligible amount. Replacing the column-wise
with the hybrid method, we measured a performance improvement for ECC
point multiplication of 24.8% for secp160r1 and 25.0% for secp224r1 on the AT-
mega128. Non-adjacent forms accounted for an 11% performance increase on
both devices. Comparing the memory requirements, it is interesting to note that
while modular exponentiation requires relatively little memory, a full RSA im-
plementation with CRT requires additional routines and several precomputed
constants significantly increasing the memory requirements.

Table 3 shows the instruction decomposition for a 160-bit multiplication and
a 512/528-bit Montgomery multiplication on both platforms. Looking at the
amount of time spent on arithmetic operations, the small register set and the
single destination register for arithmetic operations lead to a low multiplica-
tion efficiency on the CC1010. Multiplication and addition instructions account
for only 38.2% of a 160-bit multiplication and 28.7% for a 512-bit Montgomery
multiplication. Despite the high multiplication cost of 5 instruction cycles, reg-
ister pressure results in frequent memory accesses and a large overhead of non-
arithmetic instructions. In comparison, 69.6% of the time for a 160-bit multipli-
cation and 72.6% of the time for a 528-bit Montgomery multiplication is spent
on arithmetic instructions on the ATmega128. This increase in efficiency can be
mostly attributed to the large register file and variable destination registers for
arithmetic operations. Furthermore, the homogeneous memory architecture and
post-increment and pre-decrement functionality for memory operations lead to
performance advantages for large key sizes.



We expect that performance improvements for ECC and RSA could be
achieved by employing window techniques for point multiplication / modular
exponentiation and by using Karatsuba Ofman multiplication. However, these
techniques would lead to significant increases in data memory usage and code
size and add to the complexity of the implementation.

5 Instruction Set Extensions

Table 3 shows that addition and multiplication instructions account for the ma-
jority of the execution time for both processors. Significant performance im-
provements can be achieved by combining one multiplication and two additions
into one instruction as proposed by Großschädl [9]. We refer to this instruction
as “MULACC” and define it to perform the following operation on a source
register rs, a destination register rd, a fixed architectural register rc and a non-
architectural register exc (all of bit-width k):

MULACC rd, rs : rd ← (rs ∗ rc + exc + rd)[k − 1..0]

exc ← (rs ∗ rc + exc + rd)[2k − 1..k]
(3)

MULACC multiplies the source register rs with an implicit register rc, adds
registers exc and rd and stores the lower k bits of the 2k-bit result in register
rd. The upper k bits are stored in register exc, from where they can be used
in a subsequent MULACC operation. We refer to exc as the “extended carry
register” since its function resembles the carry bit used for additions. Applied to
the row-wise or hybrid multiplication strategy, MULACC can generate a partial
product aj ∗ bi, add the upper k bits of the previous partial product aj−1 ∗ bi,
add k bits from an accumulator register and store the result in the accumulator
register in a single instruction. Since MULACC uses only two variable registers
and rc, exc are fixed, it is compatible with both the 8051 and AVR instruction
sets. Table 3 shows the instruction decomposition for a 160-bit multiplication
and 528-bit Montgomery multiplication using the MULACC instruction on the
ATmega128. Implemented as a 2-cycle instruction, MULACC reduces the exe-
cution time of a 160-bit multiplication by more than 36% resulting in a total
reduction of point multiplication time of 27.6% to 0.59s. The execution time
for 528-bit Montgomery multiplication is reduced by 39%. MULACC further re-
duces the number of registers needed for the inner multiplication loop such that
the hybrid multiplication method could be implemented with a column width
of d = 8, which would result in even higher performance gains. On the CC1010,
we measured a reduction in execution time of 39% to 2.78s for secp160r1 point
multiplication and 38% to 33.06s for 512-bit Montgomery exponentiation.

6 Conclusions

We compared elliptic curve point multiplication over three SECG/NIST curves
secp160r1, secp192r1, and secp224r1 with RSA-1024 and RSA-2048 on two 8-
bit processor architectures. On both platforms, ECC-160 point multiplication



Chipcon CC1010

160x160 mult. 512x512 Montg. mult.
Instruction type Opcodes Cycles/instr. Instr. cycles % Instr. cycles %

Register swap XCH A, B 2 2280 24.46 32512 12.60
Multiplication MUL 5 2000 21.46 41280 16.00
Addition ADD/ADDC 1 1560 16.74 32723 12.68
Data stores MOV ADDR, RX 1 1220 13.09 17057 6.61
Data loads MOV RX, ADDR 1 1025 11.00 41938 16.25
Pointer inc./dec. INC/DEC 1 895 9.60 33656 13.04
Dec. + branch DJNZ 3 297 3.19 24957 9.67
Data loads (ext.) MOVX 2 40 0.43 16934 6.56
Data stores (ext.) MOVX 2 0 0.00 16678 6.46
Other 4 0.04 307 0.12

Total 9321 100.00 258042 100.00
Time @ 14.7456MHz 2.53ms 70.00ms

ATmega128
160x160 mult. 528x528 Montg. mult.

Instruction type Opcodes Cycles/instr. Instr. cycles % Instr. cycles %

Addition ADD/ADC 1 1360 43.79 29766 45.67
Multiplication MUL 2 800 25.76 17556 26.94
16-bit Register move MOVW 1 335 10.79 7262 11.14
Data loads LD/LDI 2 334 10.75 6169 9.47
Data stores ST 2 80 2.58 524 0.80
Jumps RJMP/IJMP 2 66 2.12 0 0.00
Function calls/rets CALL/RET 4 0 0.00 1452 2.23
Other 131 4.22 2442 3.75

Total 3106 100.00 65171 100.00
Time @ 8MHz 0.39ms 8.15ms

ATmega128 with MULACC instruction

160x160 mult. 528x528 Montg. mult.
Instruction type Opcodes Cycles/instr. Instr. cycles % Instr. cycles %

Multiply-accumulate MULACC 2 960 48.34 20328 51.27
Data loads LD/LDI 2 334 16.82 6169 15.56
Addition ADD/ADC 1 320 16.11 6292 15.87
Data stores ST 2 80 4.03 524 1.32
Jumps RJMP/IJMP 2 66 3.32 0 0.00
Function calls/rets CALL/RET 4 0 0.00 1452 3.66
Multiplication MUL 2 0 0.00 924 2.33
16-bit Register move MOVW 1 15 0.76 2 0.01
Other 211 10.62 3960 9.99

Total 1986 100.00 39651 100.00
Time @ 8MHz 0.25ms 4.96ms
Time reduction 36.06% 39.16%

Table 3. Decomposition of 160x160-bit multiplication and 512x512/528x528-bit Montgomery mul-
tiplication on the Chipcon CC1010 and the ATmega128.

Reduction for 160-bit multiplication and the conditional subtraction of the prime for Montgomery
multiplication are not included in the instruction counts.



outperforms the RSA-1024 private-key operation by an order of magnitude and
is within a factor of 2 of the RSA-1024 public-key operation.

We presented a novel multiplication algorithm that significantly reduces the
number of memory accesses. This algorithm led to a 25% performance increase
for ECC point multiplication on the Atmel AVR platform.

Our measurements and analysis led to fundamental observations: The rela-
tive performance of ECC over RSA increases as the word size of the processor
decreases. This stems from the fact that the complexity of addition, subtraction
and optimized reduction based on sparse pseudo-Mersenne primes grows lin-
early with the decrease of the word size whereas Montgomery reduction grows
quadratically. As a result, ECC point multiplication on small devices becomes
comparable in performance to RSA public-key operations and we expect it to
be higher for large key sizes.

In contrast to Hasegawa et al. and Woodbury, Bailey and Paar, our ob-
servations do not support the claim that field primes chosen specifically for a
particular processor architecture or OEFs lead to significant performance im-
provements over prime fields using pseudo-Mersenne primes as recommended by
NIST and SECG. Using pseudo-Mersenne primes as specified for NIST/SECG
curves, more than 85% of the time for secp160r1 point multiplication on the
8051 architecture and more than 77% on the AVR architecture was spent on
integer multiplication not including reduction. Therefore, further optimizing re-
duction would not lead to significant performance improvements. Woodbury,
Bailey and Paar represent field elements GF ((28 − 17)17 as polynomials with
17 8-bit integer coefficients. Polynomial multiplication in this field requires the
same number of 8x8-bit multiplications as 17-byte integer multiplication. The
algorithm for polynomial multiplication corresponds to integer multiplication
using the column-wise method, where optimized reduction is performed at the
end of each column. The hybrid or row-wise methods cannot be applied such
that we expect the performance of ECC over OEFs to be lower on architectures
such as the Atmel AVR.

We plan to continue our work on small devices towards a complete light-
weight implementation of the security protocol SSL/TLS.

References

1. Atmel Corporation. http://www.atmel.com/.
2. D. V. Bailey and C. Paar. Optimal Extension Fields for Fast Arithmetic in Public-

Key Algorithms. In Advances in Cryptography — CRYPTO ’98, volume 1462 of
Lecture Notes in Computer Science, pages 472–485. Springer-Verlag, 1998.

3. Ç. K. Koç. High-Speed RSA Implementation. Technical report, RSA Laboratories
TR201, November 1994.

4. Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters.
Standards for Efficient Cryptography Version 1.0, September 2000.

5. S. Chang Shantz. From Euclid’s GCD to Montgomery Multiplication to the Great
Divide. Technical report, Sun Microsystems Laboratories TR-2001-95, June 2001.

6. Chipcon AS. http://www.chipcon.com/.



7. H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve exponentiation using
mixed coordinates. In ASIACRYPT: Advances in Cryptology, volume 1514 of
Lecture Notes in Computer Science, pages 51–65. Springer-Verlag, 1998.

8. Crossbow Technology, Inc. http://www.xbow.com/.
9. J. Großschädl. Instruction Set Extension for Long Integer Modulo Arithmetic on

RISC-Based Smart Cards. In 14th Symposium on Computer Architecture and High
Performance Computing, pages 13–19. IEEE Computer Society, October 2002.

10. D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptog-
raphy. Springer-Verlag, 2004.

11. T. Hasegawa, J. Nakajima, and M. Matsui. A practical implementation of ellip-
tic curve cryptosystems over GF (p) on a 16-bit microcomputer. In Public Key
Cryptography PKC ’98, volume 1431 of Lecture Notes in Computer Science, pages
182–194. Springer-Verlag, 1998.

12. Y. Hitchcock, E. Dawson, A. Clark, and P. Montague. Implementing an effi-
cient elliptic curve cryptosystem over GF(p) on a smart card. ANZIAM Journal,
44(E):C354–C377, 2003.

13. A. Karatsuba and Y. Ofman. Multiplication of Many-Digital Numbers by Au-
tomatic Computers. Doklady Akad. Nauk, (145):293–294, 1963. Translation in
Physics-Doklady 7, 595-596.

14. F. Morain and J. Olivos. Speeding up the computations on an elliptic curve using
addition-subtraction chains. Theoretical Informatics and Applications, 24:531–543,
1990.

15. National Institute of Standards and Technology. Recommended Elliptic Curves
for Federal Government Use, August 1999.

16. H. Pietiläinen. Elliptic curve cryptography on smart cards. Helsinki University of
Technology, Faculty of Information Technology, October 2000. Master’s Thesis.

17. A. D. Woodbury, D. V. Bailey, and C. Paar. Elliptic Curve Cryptography on Smart
Cards without Coprocessors. In The Fourth Smart Card Research and Advanced
Applications (CARDIS2000) Conference, September 2000. Bristol, UK.



A Algorithm for Hybrid Multiplication

The two outer nested loops describe column-wise multiplication and the two
inner nested loops describe row-wise multiplication. Multiplicand and multi-
plier are located in memory locations mem a and mem b and are temporarily
loaded into registers ad−1, . . . , a0 and b. The result is accumulated in registers
r2d−1+⌈log2(n/d)/k⌉, . . . , r0, where the lower d registers are stored to result mem-
ory location mem c at the end of each column.

Input:
n : operand size in words
d : column width
mem_a [⌈ n/d ⌉*d-1..0] : multiplicand A
mem_b [⌈ n/d ⌉*d-1..0] : multiplier B

Output:
mem_c [⌈ n/d ⌉*2d-1..0] : result C = A * B

for i=0 to ⌈ n/d ⌉-1
for j=0 to i

(ad−1,..., a0) = mem_a[(i-j+1)*d-1..(i-j)*d]
for s=0 to d-1

b = mem_b[j*d+s]
for t=0 to d-1

(r2d−1+⌈ log2(n/d)/k ⌉,..., r0) = (r2d−1+⌈ log2(n/d)/k ⌉,..., r0) +

at * b * 2k∗(t+s)

mem_c[(i+1)*d..i*d] = (rd−1,..., r0)
(rd−1+⌈ log2(n/d)/k ⌉,..., r0) = (r2d−1+⌈ log2(n/d)/k ⌉,..., rd)
(r2d−1+⌈ log2(n/d)/k ⌉,..., rd) = 0

for i=⌈ n/d ⌉ to 2⌈ n/d ⌉-2
for j=i-⌈ n/d ⌉+1 to ⌈ n/d ⌉-1

(ad−1,..., a0) = mem_a[(i-j+1)*d-1..(i-j)*d]
for s=0 to d-1

b = mem_b[j*d+s]
for t=0 to d-1

(r2d−1+⌈ log2(n/d)/k ⌉,..., r0) = (r2d−1+⌈ log2(n/d)/k ⌉,..., r0) +

at * b * 2k∗(t+s)

mem_c[(i+1)*d ..i*d] = (rd−1,..., r0)
(rd−1+⌈ log2(n/d)/k ⌉,..., r0) = (r2d−1+⌈ log2(n/d)/k ⌉,..., rd)
(r2d−1+⌈ log2(n/d)/k ⌉,..., rd) = 0
mem_c[(i+1)*d ..i*d] = (rd−1,..., r0)

B Algorithm for Montgomery Reduction

The algorithm below describes Montgomery reduction of a 2m-bit multiplication
result C ′ = A ∗B of two m-bit numbers A and B to C = C ′ ∗ r−1 mod n on a
processor with a k-bit word size.

n’ = -1/n mod 2k

for i=0 to ⌈ m/k ⌉-1

s=C’*n’ mod 2k

C’=C’+ s * n // last k bits of C’ become 0
C’=C’ >> k // division by 2^k

if C’>=n
C’=C’- n

return C=C’


