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Abstract. In the context of quantum-resistant cryptography, crypto-
graphic group actions offer an abstraction of isogeny-based cryptogra-
phy in the Commutative Supersingular Isogeny Diffie-Hellman (CSIDH)
setting. In this work, we revisit the security of two previously proposed
natural protocols: the Group Action Hashed ElGamal key encapsula-
tion mechanism (GA-HEG KEM) and the Group Action Hashed Diffie-
Hellman non-interactive key-exchange (GA-HDH NIKE) protocol. The
latter protocol has already been considered to be used in practical proto-
cols such as Post-QuantumWireGuard (S&P ’21) and OPTLS (CCS ’20).
We prove that active security of the two protocols in the Quantum Ran-
dom Oracle Model (QROM) inherently relies on very strong variants of
the Group Action Strong CDH problem, where the adversary is given
arbitrary quantum access to a DDH oracle. That is, quantum accessi-
ble Strong CDH assumptions are not only sufficient but also necessary
to prove active security of the GA-HEG KEM and the GA-HDH NIKE
protocols.
Furthermore, we propose variants of the protocols with QROM security
from the classical Strong CDH assumption, i.e., CDH with classical ac-
cess to the DDH oracle. Our first variant uses key confirmation and can
therefore only be applied in the KEM setting. Our second but consid-
erably less efficient variant is based on the twinning technique by Cash
et al. (EUROCRYPT ’08) and in particular yields the first actively se-
cure isogeny-based NIKE with QROM security from the standard CDH
assumption.
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1 Introduction

A non-interactive key exchange (NIKE) is a protocol that allows two parties
to establish a common secret key in a non-interactive way. The first and most
famous NIKE is the Diffie-Hellman key exchange [16] which forms the basis for a
lot of other cryptographic protocols like ElGamal [19]. Most notably however, the
existence of a secure NIKE implies secure key encapsulation mechanisms (KEM)
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(and hence public-key encryption) and authenticated key exchange (AKE) [21].
A NIKE can therefore be seen as one of the most basic and important primitives
in cryptography.

The emergence of quantum computing however continues to have an un-
precedented impact on public key cryptography. When scaled to a suitable size,
quantum computers pose a threat to almost all classical public-key primitives,
including Diffie-Hellman and ElGamal [36]. To mitigate this threat, researchers
started building quantum resisting public-key cryptography based on certain
quantum-hard problems on codes, lattices and isogenies. Even though quantum-
resistant public-key encryption from lattices seems to offer the favorable trade-off
over codes and isogenies in terms of speed, ciphertext expansion, and security,
building an efficient (even passively secure) NIKE from codes or lattices remains
an unsolved research problem.
Isogeny-based Cryptography. A promising alternative approach to post-
quantum security is based on isogenies. An isogeny is a non-constant homomor-
phism between elliptic curves. In an algebraic context, isogenies can be used to
build a commutative group action that behaves similarly to exponentiation in
finite fields. This was first observed by Couveignes [14] and independently by
Rostovtsev and Stolbunov [34]. The first practical instantiation was obtained by
Castryck et al. [12] which in contrast to previous work uses the group action on
the set of supersingular elliptic curves. Throughout this paper, we will use the ab-
stract framework of cryptographic group actions introduced by Alamati et al. [2]
to model isogeny-based constructions. (See Section 2.3 for formal definitions.)
At a syntactical level, cryptographic group actions allow for a simple Group Ac-
tion Diffie-Hellman (GA-DH) key exchange and Group Action ElGamal (GA-EG)
public-key encryption scheme. With this abstraction in mind, the famous Com-
mutative Supersingular Isogeny Diffie-Hellman (CSIDH) key exchange protocol
of [12] can be seen as a specific instantiation of GA-DH.

For cryptographic group actions, the analog of the traditional Computa-
tional Diffie-Hellman assumption (over prime-order groups) is the Group Action
Computational Diffie-Hellman assumption (GA-CDH) [14,34,12,2], see also Def-
inition 5. GA-CDH is sufficient to prove passive security of “hashed versions” of
GA-DH and GA-EG in the random oracle model. In analogy to the prime-order
group setting, for active security one requires a “strong” type of Computational
Diffie-Hellman assumption [1]. Providing the adversary additional access to a
Group Action Decisional Diffie-Hellman oracle GA-DDH(·, ·), i.e. an oracle which
tells us whether a pair of elements forms a Diffie-Hellman tuple, defines theGroup
Action Strong Computational Diffie-Hellman assumption (GA-StCDH). The pre-
fix strong refers to the fact that the first input to this oracle is fixed (as opposed
to the stronger and non-falsifiable gap assumptions). This assumption is well-
known in the standard prime-order group setting and has already been used in
proving active security of several protocols [28,15,38] in the group action setting
as well.1

1 We stress that GA-StCDH over standard cryptographic group actions is well defined
(and falsifiable), even though it is an interactive assumption. Furthermore, for some
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Quantum Random Oracle Model. The random-oracle model (ROM) [7] is
commonly used in modern cryptography to argue practical security of crypto-
graphic schemes. Adversaries with access to quantum computers will be able to
implement the hash function on those, and therefore can evaluate the hash func-
tion on arbitrary quantum superpositions. To account for this gain in capabilities,
the quantum(-accessible) random-oracle model (QROM) has been introduced [9].
The QROM has become the accepted model for proving post-quantum security
and it is generally believed that proofs in the classical ROM are not sufficient
to claim post-quantum security.

Actively secure KEMs and NIKE Protocols. In this work we are inter-
ested in constructing actively (i.e. IND-CCA) secure KEMs and actively secure
NIKE protocols over cryptographic group actions.

Let us first look at the simpler case of KEMs. Generally speaking, we know
of two natural approaches to build efficient IND-CCA secure KEMs. The first
approach is generic and applies the Fujisaki-Okamoto (FO) transform [22,24] to
an IND-CPA secure PKE scheme (such as GA-EG) to obtain an IND-CCA secure
KEM, with provable security in the QROM. The second, non-generic approach
is to adapt the well-known (prime-order group) Hashed ElGamal encryption
framework of [1] to group actions by ”hashing the raw KEM key” to obtain the
Group Action Hashed ElGamal KEM (GA-HEG). Indeed, [38] proved the security
of GA-HEG (called CSIDH-ECIES in [38]) under the GA-StCDH assumption in
the ROM.2 GA-HEG was implicitly and explicitly used in [28,15,38] and its active
(IND-CCA) security in the QROM was left as an open problem in [38].3

For building an actively secure NIKE, one cannot apply the FO transfor-
mation and hence has to resort to adapting the (prime-order group) Hashed
Diffie-Hellman NIKE [21] to obtain the Group Action Hashed Diffie-Hellman
NIKE protocol (GA-HDH). To the best of our knowledge, the active security of
the GA-HDH NIKE has not been formally analyzed yet, not even in the ROM.
This is in particular unsatisfactory since GA-HDH has already been considered
to be used in practical protocols such as Post-Quantum WireGuard [26] and
OPTLS [35].

In conclusion, while the IND-CCA security of GA-HEG in the ROM is known
to be implied by the GA-StCDH assumption, it remains an open problem to
prove its IND-CCA security in the QROM (under any assumption). Similarly,

groups actions (i.e., ones implied by cryptographic pairings over prime-order groups)
the Decisional Diffie-Hellman oracle is publicly computable and hence GA-StCDH
becomes non-interactive.

2 The QROM proof of a variant called CSIDH-PSEC in [38] is severely flawed (see the
full version [18] for details).

3 There also exist IND-CCA secure PKE schemes constructed directly from CSIDH,
using additional structure of the elliptic curves. [31] proposed the SimS scheme which
is an extension of SiGamal [20] and relies on a non-standard knowledge-of-exponent
assumption to achieve IND-CCA security in the standard model. These protocols
and assumptions cannot be modeled in the abstract group action framework.
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studying the active security of the GA-HDH NIKE in the QROM also remains
an open problem.

1.1 Our Contributions

In this paper we study the active security of the Group Action Hashed Diffie-
Hellman NIKE GA-HDH and the Group Action Hashed ElGamal KEM GA-HEG
in the QROM, and derive variants thereof with improved security guarantees.
We now discuss our results in detail. For an overview of our results obtained for
KEMs we refer to Figure 1.
GA-HEG KEM and GA-HDH NIKE. It is easy to see that in the (non-quantum)
ROM the active security of GA-HEG is implied by the GA-StCDH assumption.
The first main contribution of this paper is to notice that in the QROM one
requires a considerably stronger assumptions to prove security of GA-HEG. To
this end we define the following two stronger variants of GA-StCDH which differ
only in the access to the decision oracle (for implications see Figure 1):
– Partial Quantum access Strong Diffie-Hellman (GA-PQ-StCDH): the first in-

put to the GA-DDH(·, ·) oracle is classical and the second is in quantum
superposition.

– Full Quantum access Strong Diffie-Hellman (GA-FQ-StCDH): both inputs to
the GA-DDH(·, ·) oracle are in quantum superposition.

Similar to the QROM, the answer of a quantum superposition query to the two
quantum-accessible GA-DDH oracles is also in quantum superposition.

Our first main theorem states that under the GA-FQ-StCDH assumption
(full quantum access to the DDH oracle), GA-HEG is IND-CCA secure in the
QROM. Furthermore, IND-CCA security in the QROM of GA-HEG implies the
GA-PQ-StCDH assumption (partial quantum access to the DDH oracle), hence
GA-PQ-StCDH is necessary for GA-HEG’s IND-CCA security. The situation for
the GA-HDH NIKE is similar, with the difference that “double base” strong
assumptions (called GA-DPQ-StCDH and GA-DFQ-StCDH) are required.

This leaves us in the alarming situation that active security of GA-HEG and
GA-HDH inherently require a group action CDH assumption with quantum ac-
cess to the DDH oracle. Due to the quantum access, the latter assumptions
cannot be considered as standard assumptions and require further cryptanalysis
before we can recommend using GA-HEG KEM and GA-HDH NIKE in practice.

We will now propose two modifications to get security without quantum access
to the decision oracles. The first and more efficient modification is using “key
confirmation” and only works for KEMs. The second and less efficient modi-
fication relies on the “twinning technique” and can be applied to NIKEs and
KEMs.
GA-HEG-KC KEM: Key Confirmation. Our first method is to update GA-HEG
the KEM with a key confirmation hash, i.e., every ciphertext additionally con-
tains a hash of the “raw KEM key”. This only increases the ciphertext size by
one hash, but allows for a different IND-CCA proof technique in the QROM. To
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GA-CDH
no access to GA-DDH

GA-StCDH
access to GA-DDH(·, ·)

GA-PQ-StCDH
access to GA-DDH(·, |·〉)

GA-FQ-StCDH
access to GA-DDH(|·〉 , |·〉)

GA-HEG (Figure 3)
Hashed ElGamal

GA-HEG-KC (Figure 10)
Hashed ElGamal with
Key Confirmation

GA-Twin-HEGm (Figure 12)
Twin Hashed ElGamal

Theorem 3

Remark 2

Theorem 4

Theorem 6

Theorem 1

Fig. 1. Overview of our assumptions and results for different variants of hashed El-
Gamal. The assumptions (elements with rounded corners) are given in Definitions 5
and 6. Solid arrows without indication of a theorem correspond to trivial implications.
For the assumptions the only difference is a more limited access to the decision ora-
cle GA-DDH, where |·〉 denotes quantum access. The dashed arrow holds for quantum
security, where the adversary is allowed to issue decapsulation queries in superposition.

be more precise, in the classical ROM, one can use the additional hash to extract
the secret information from a ciphertext. In the QROM, this is more involved,
but we can use the extractable oracle simulator from [17] to use similar tech-
niques and give a security proof only relying on the more standard GA-StCDH
assumption. Specifically, we rely on the fact that decapsulation queries are clas-
sical, which allows us to partially measure the simulated random oracle and
extract its queries without noticeably disturbing its quantum state.

Unfortunately, it is not possible to use key confirmation in a NIKE setting.

GA-Twin-HEGm KEM and GA-Twin-HDHm NIKE: Twinning. We show how
to use the twinning technique [11] in the context of group actions to build an ac-
tively secure KEM and NIKE from the standard GA-CDH assumption (no DDH
oracle access) in the QROM. Since group actions only have limited structure
compared to prime-order groups, it seems unavoidable to pursue a bit-wise ap-
proach for the twinning technique. Our main leverage is a trapdoor test which
allows us to check if several adversarial inputs form a Diffie-Hellman tuple with
the challenge elements. The failure probability of this trapdoor test can be re-
duced to the generic quantum search problem, for which the quantum hardness
is optimally bounded by the Grover algorithm. Although this approach does
not achieve practical efficiency, it is interesting from a theoretical viewpoint. We
specify the twinning parameter m for 128-bit security to instantiate the twinned
versions of our GA-Twin-HEGm KEM and GA-Twin-HDHm NIKE. At this point
we want to highlight that our GA-Twin-HDHm protocol is the only known NIKE
with active security from a standard assumption (without quantum accessible
DDH oracles).

Efficiency Comparison. In Table 1 in Section 6, we give an overview of the
schemes analyzed in this work and compare them to the FO variant GA-EG-FO
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of Group Action ElGamal. The KEM variants GA-HEG and GA-Twin-HEGm
share the same minimal ciphertext size but we cannot recommend using them
since GA-HEG’s security inherently relies on the GA-FQ-StCDH assumption (with
quantum accessible DDH oracle) and GA-Twin-HEGm is computationally very
expensive. In comparison, the KEM variants GA-HEG-KC and GA-EG-FO only
add one additional hash to the ciphertext but offer security from standard as-
sumptions. Here GA-HEG-KC is preferable since decapsulation is about twice as
efficient as in GA-EG-FO (due to FO’s re-encryption).

As for the more important case of NIKEs, one either has to use the effi-
cient GA-HDH variant with security under the GA-DFQ-StCDH assumption (with
quantum accessible DDH oracles) or use the inefficient GA-Twin-HDHm NIKE.
We leave it as an important open problem to construct a practically efficient
actively secure NIKE under a standard hardness assumption.
QROM Proof Details. One of the standard tools to prove security in the
QROM is the O2H [37] lemma, which unfortunately leads to quite loose bounds.
Recently, there has been a lot of progress in developing new variants which
give tighter bounds, such as the measure-rewind-measure O2H (MRM-O2H) [30]
lemma. While these variants give usually tighter bounds, they can often only be
applied in more limited scenarios due to additional constraints. In our work
we show how to apply MRM to GA-HEG and GA-Twin-HEGm to obtain tighter
bounds than the by applying the original O2H lemma. For proving GA-HEG-KC
we need to extract the preimages of the key-confirmation hash. We use the
extractable random-oracle simulator of [17], which allows use to to prove it from
the GA-StCDH assumption.

For GA-Twin-HEGm and GA-Twin-HDHm, the main tool to remove the need
for the GA-StCDH is the trapdoor test. While it is easy to show its indistinguisha-
bility for regular groups in the standard model, it is unclear whether or not a
quantum adversary has a significant advantage against the trapdoor test com-
pared to a classical adversary. We solve the second problem by showing that the
indistinguishability of the trapdoor test can be (tightly) reduced to the Generic
Distinguishing Problem (GDP). This allows us to use well-known results on the
hardness of quantum search to bound the advantage of such adversaries and
apply the trapdoor test as a substitute for the decision oracle of the GA-StCDH
assumption.

1.2 Further Applications

We believe our QROM analysis carries over to the following primitives and con-
structions.
Authenticated Key Exchange. Kawashima et al. as well as de Kock et al.
[28,15] translated the Diffie-Hellman based AKE protocol of [13] to the CSIDH
setting and proved security in the ROM assuming the GA-StCDH assumption.
However, both works left it as an open question to prove security in the QROM.
Our analysis demonstrates that this proof will only work assuming (at least par-
tial) quantum access to the decision oracle. In this case, our proof techniques
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carry over directly. Alternatively, we can also extend the AKE protocol by an
additional round to include key confirmation. Using the same technique as in our
result on hashed ElGamal with key confirmation will allow to prove security of
this extended AKE protocol in the QROM based on the GA-StCDH assumption
without quantum access to the decision oracle. However, the additional ben-
efit here is that key confirmation enables explicit authentication, whereas the
protocol without key confirmation only achieves implicit authentication.
Signcryption and Authenticated KEMs. The DH-AKEM which was an-
alyzed in the context of the HPKE standard [3] can easily be translated to the
group action setting. The scheme is syntactically a signcryption KEM and will be
combined with a symmetric encryption scheme. This construction, also named
the authenticated mode of HPKE, was proposed to be used in the Message Layer
Security (MLS) secure group messaging protocol [6] and the Encrypted Server
Name Indication (ESNI) extension for TLS 1.3 [32]. So far, a post-quantum se-
cure instantiation was not proposed, but our results show how to prove security
of a group action based construction in the QROM under GA-FQ-StCDH (full
quantum access to the decision oracle). Alternatively, we can also extend the
scheme by key confirmation and prove security under GA-StCDH.
Post-Quantum Secure TLS. Currently, there is a great effort in replacing the
Diffie-Hellman based approach in the TLS handshake by a post-quantum secure
alternative. In order to avoid signature schemes which are rather inefficient, a
generic KEM-based approach was considered to allow for an easy instantiation
[35], however at the cost of efficiency since it requires an additional round. Instead
of signatures, it is also possible to use a NIKE directly, as considered for the case
of long-term Diffie-Hellman keys in the OPTLS protocol by Krawczyk and Wee
in [29] and in a subsequent IETF draft [33]. In this case, a security analysis of
the group-action NIKE in the QROM is crucial and our work provides the first
results in this direction, namely that a security proof for group action OPTLS
will need to rely at least on the GA-PQ-StCDH assumption (partial quantum
access to the decision oracles) and is implied by the GA-FQ-StCDH assumption
(full quantum access).
More Applications. In the group setting, Hashed ElGamal can be used to
build multi-recipient multi-message PKE (mmPKE) by using the same random-
ness for multiple messages. This reduces sender bandwidth and computation sub-
stantially and can be used in Continuous Group Key Agreement (CGKA), which
underlies modern and scalable Secure Group Messaging (SGM) such as MLS [6]
to significantly improve performance [4]. Since GA-HEG has an identical struc-
ture, reusing randomness can yield a similar construction with post-quantum
security. This is a first step towards efficient, post-quantum secure SGM.

2 Preliminaries

For integers m,n where m < n, [m,n] denotes the set {m,m + 1, ...,n}. For
m = 1, we simply write [n]. By log(x) we denote the logarithm over the reals
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Game IND-CCA(A)
00 (pk, sk)← Gen
01 b $← {0, 1}
02 (ct∗,K0)← Encaps(pk)
03 K1

$← K
04 b′ ← ADecaps(pk, ct∗,Kb)
05 return Jb = b′K

Oracle Decaps(ct)
06 if ct = ct∗
07 return ⊥
08 return Dec(sk, ct)

Fig. 2. The IND-CCA game for a key encapsulation mechanism KEM.

with base 2. For a (finite) set S , s $← S denotes that s is sampled uniformly
and independently at random from S . y ← A(x1, x2, ...) denotes that on input
x1, x2, ... the probabilistic algorithm A returns y. AO denotes that algorithm A
has access to oracle O. An adversary is a probabilistic algorithm. We will use
code-based games, where Pr[G ⇒ 1] denotes the probability that the final output
of game G is 1. The notation JBK, where B is a boolean statement, refers to a bit
that is 1 if the statement is true and 0 otherwise. For all algorithms and oracles,
we implicitly require that they check whether (adversarial) inputs are from the
expected input space. If this is not the case, the algorithm (oracle) will simply
return a failure symbol ⊥.

2.1 Key Encapsulation Mechanisms

Syntax. Let PK, SK, C, K be sets. A key encapsulation mechanism KEM =
(Gen,Encaps,Decaps) consists of the following three algorithms
– Gen: The key generation algorithm outputs a public key pk ∈ PK and a

secret key sk ∈ SK.
– Encaps(pk): On input a public key pk, the encapsulation algorithm returns

a ciphertext ct ∈ C and a key K ∈ K, where ct is an encapsulation of K .
– Decaps(sk, ct): On input a secret key sk and a ciphertext ct, the decapsulation

algorithm returns a key K ∈ K or a special failure symbol ⊥.
We require perfect correctness, i.e. for all (pk, sk)← Gen, (ct,K )← Encaps(pk),
we have Decaps(sk, ct) = K .

Definition 1 (Security against Chosen Ciphertext Attacks (IND-CCA)).
Consider the IND-CCA security game in Figure 2. For a key encapsulation
mechanism KEM we define the advantage of A winning the game as

AdvIND-CCA
KEM (A) := |Pr[IND-CCA(A)⇒ 1]− 1/2| .

2.2 Non-Interactive Key Exchange

We recall syntax and the CKS security model of a Non-Interactive Key Exchange
(NIKE) scheme, as defined in [11,21].
Syntax. A non-interactive key exchange scheme NIKE consists of three algo-
rithms NIKE.Setup, NIKE.Gen and NIKE.SharedKey together with an identity
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space ID and a shared key space SHK, where identities in the scheme are only
used to track which public key is associated to which user.
– NIKE.Setup: The setup algorithm outputs a set of public parameters pp.
– NIKE.Gen(pp, ID): On input pp and ID ∈ ID, the key generation algorithm

outputs a public key pk and a secret key sk.
– NIKE.SharedKey(ID1, pk1, ID2, sk2): On input ID1 ∈ ID together with a pub-

lic key pk1 and ID2 ∈ ID together with a secret key sk2, the shared key
algorithm outputs a shared key K . In case ID1 = ID2, the algorithm outputs
a failure symbol ⊥.

Correctness. We require that for any pair of identities ID1, ID2 ∈ ID and any
corresponding key pairs (pk1, sk1) and (pk2, sk2), it holds that

NIKE.SharedKey(ID1, pk1, ID2, sk2) = NIKE.SharedKey(ID2, pk2, ID1, sk1) .

CKS Security Model. The security of a NIKE protocol is modeled as a game
between a challenger and an adversary A. First, the challenger runs NIKE.Setup
to generate the public parameter pp which it outputs to A. The challenger also
draws a random bit b and gives A access to the following oracles.
– RegisterHonest: A supplies an identity ID ∈ ID and the challenger runs

NIKE.Gen(pp, ID) to generate a key pair (pk, sk). It records (honest, ID, pk, sk)
and returns the public key pk to A.

– RegisterCorrupt: A supplies an identity ID ∈ ID and a public key pk
and the challenger records (corrupt, ID, pk,⊥). If A issues a query with the
same ID again later, only the most recent entry is kept. Note here that we
do not require that A knows the corresponding secret key.

– CorruptReveal: A supplies two identities ID1 and ID2 with the restriction
that one identity was registered as honest and the other one as corrupt,
otherwise the oracle returns ⊥. The challenger looks in its record to fetch
the secret key of the honest party and the public key of the corrupted party. If
ID1 was honest, it computes and returns NIKE.SharedKey(ID2, pk2, ID1, sk1)
and otherwise NIKE.SharedKey(ID1, pk1, ID2, sk2).

– Test: A supplies two identities ID1 and ID2 with the restriction that both
were registered as honest and ID1 6= ID2, otherwise the oracle returns ⊥.
The challenger fetches the public key of ID1 and the secret key of ID2 from
its records and computes K0 = NIKE.SharedKey(ID1, pk1, ID2, sk2). It also
chooses a random key K1

$← SHK and records it for later. It outputs Kb,
depending on the bit b chosen at the beginning. If b = 1 and A queries the
same identities again, in either order, the recorded key is output again.

The oracles can be queried adaptively and an arbitrary number of times. We
require that no identity that was registered as corrupt can be later registered as
honest, and vice versa. Finally, the adversary outputs a bit b′.

Definition 2 (Security of NIKE). Consider the CKS security game as de-
scribed above. Then the advantage of adversary A against a non-interactive key
exchange scheme NIKE is defined as

AdvCKS
NIKE(A) := |Pr[b = b′]− 1/2| .
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2.3 (Restricted) Effective Group Actions

We recall the definition of (restricted) effective group actions from [2], which
provides an abstract framework to build cryptographic primitives relying on
isogeny-based assumptions such as CSIDH.

Definition 3 (Group Action). Let (G, ·) be a group with identity element
e ∈ G, and X a set. A map

? : G × X → X

is a group action if it satisfies the following properties:
1. Identity: e ?x = x for all x ∈ X .
2. Compatibility: (g · h) ? x = g ? (h ? x) for all g, h ∈ G and x ∈ X .

Remark 1. Throughout this paper, we only consider group actions, where G is
commutative. Moreover we assume that the group action is regular. This means
that for any x, y ∈ X there exists precisely one g ∈ G satisfying y = g ? x.

Definition 4 (Effective Group Action). Let (G,X , ?) be a group action
satisfying the following properties:
1. G is finite and there exist efficient (PPT) algorithms for membership testing,

equality testing, (random) sampling, group operation and inversion.
2. The set X is finite and there exist efficient algorithms for membership testing

and to compute a unique representation.
3. There exists a distinguished element x̃ ∈ X with known representation.
4. There exists an efficient algorithm to evaluate the group action, i.e. to com-

pute g ? x given g and x.
Then we call x̃ ∈ X the origin and (G,X , ?, x̃) an effective group action (EGA).

In practice, the requirements from the definition of EGA are often to strong.
Therefore we will consider the weaker notion of restricted effective group actions
which is defined in the full version [18].
Alamati et al. [2] introduced the definition of a weak unpredictable group action.
We will use a different notation for that property which is syntactically closer
to the prime-order group setting. Note that both definitions are equivalent. In
particular, we will use the following assumption.

Definition 5 (Group Action Computational Diffie-Hellman Problem).
On input (g ? x̃, h ? x̃), the group action computational Diffie-Hellman prob-
lem (GA-CDH) requires to compute the set element gh ? x̃ . To an effective group
action EGA, we associate the advantage function of an adversary A as

AdvGA-CDH
EGA (A) := Pr[A(g ? x̃, h ? x̃)⇒ gh ? x̃] ,

where g, h $← G.

The most promising post-quantum secure instantiation of REGAs is provided by
CSIDH. We recall its properties in the full version [18].
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2.4 QROM Preliminaries

We use different well-known results from post-quantum cryptography. Specifi-
cally, our proofs use the oneway-to-hiding [37] (O2H) lemma from [5] and its
measure-rewind-measure (MRM) variant from [30] as well as the online ex-
tractable quantum random oracle framework from [17]. We recall the MRM O2H
lemma below. Further definitions as well as some basic techniques such as ran-
dom oracle simulation can be found in the full version [18].

Lemma 1 (Measure-Rewind-Measure O2H. Lemma 3.3 in [30]). Let
G,H : X → Y be random functions, z be a random value, and S ⊆ X be a
random set such that G(x) = H(x) for every x 6∈ S. The tuple (G,H,S, z) may
have arbitrary joint distribution. Furthermore, let AO be a unitary/reversible
quantum oracle algorithm which queries oracle O with query depth d. Then we
can construct an algorithm ExtG,H(z) such that the running time of Ext is about
at most three times the one of AO and∣∣∣∣Pr

H,z
[AH(z)⇒ 1]− Pr

G,z
[AG(z)⇒ 1]

∣∣∣∣ ≤ 4d Pr
G,H,S,z

[S ∩ T 6= ∅ : T ← ExtG,H(z)] .

Some of our proofs rely on the hardness of the Generic Distinguishing Problem
(GDP), a decisional variant of the Generic Search Problem (GSP) [39,27,25].
Intuitively, an adversary gets oracle access to a function from some domainD into
{0, 1}, which is either the all-zero function or a function where the probability
that any given point maps to 1 is small (i.e. bounded by some λ ∈ (0, 1)), and
has to decide which is the case. While the complexity of this problem is clear in
the classical case, it is somewhat more difficult in the quantum case. We recall
and adapt the well-known bounds to the GDP problem in this section.

Lemma 2 (Generic Distinguishing Problem, decision version of Lemma
2 in [5], Lemma 2.9 from [25]). Let F : X → {0, 1} be a random function
drawn from a distribution such that Pr[F(x) = 1] ≤ λ for all x and K : X → {0}
be the zero-function. Let A be a q-query algorithm with query depth d with
quantum-access to its oracle. Then

AdvGDP
F,q,d(A) :=

∣∣∣Pr[GDPAF,0 ⇒ 1]− Pr[GDPAF,1 ⇒ 1]
∣∣∣ ≤ 4

√
(d + 1)qλ , (1)

where GDPAF,0 := AK() and GDPAF,1 := AF(). Moreover, if the outputs of F are
independent we have

AdvGDP
F,q,d(A) ≤ 8(q + 1)2λ . (2)

We prove eq. (1) in the full version [18]. The bound in eq. (2) is a reformulation
from Lemma 2.9 from [25].

3 Necessary Assumptions for Group Action KEM and
NIKE in the QROM

In this section we will first recall the two schemes we are looking at: Group
Action Hashed ElGamal and the Group Action Hashed Diffie-Hellman NIKE
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Gen
00 sk := g $← G
01 pk := g ? x̃
02 return (pk, sk)

Encaps(pk)
03 r $← G
04 ct := r ? x̃
05 K := H(ct, r ? pk)
06 return (ct,K)

Decaps(sk, ct)
07 z := sk ? ct
08 K := H(ct, z)
09 return K

Fig. 3. Key encapsulation mechanism GA-HEG for an effective group action EGA =
(G,X , ?, x̃), where H : X × X → {0, 1}κ is a hash function.

scheme. We denote the schemes by GA-HEG and GA-HDH, respectively.

Group Action Hashed ElGamal. The scheme is given in Figure 3. Note that
this is the same scheme as the CSIDH-ECIES-KEM considered in [38]. The pub-
lic parameters consist of an effective group action EGA = (G,X , ?, x̃) and a hash
function H : X 2 → {0, 1}κ. Further we set PK = X , SK = G and K = {0, 1}κ.
The key generation algorithm samples a random group element g $← G as secret
key. In order to compute the public key, g is applied to the origin element x̃ using
the group action operation. The set element pk = g ? x̃ is the public key. The
encapsulation algorithm also first samples a random group element r $← G and
then calculates the ciphertext ct = r ? x̃. The key is derived by first computing
r ? pk (the shared DH value) and subsequently hashing r ? pk together with the
ciphertext ct. Decapsulation first recomputes the shared DH value g ? ct = r ?pk
and then applies the hash function H. Correctness of the scheme holds due to
the commutativity of the group action.

Group Action Hashed Diffie-Hellman. A schematic overview of the hashed
Diffie-Hellman NIKE scheme GA-HDH is given in Figure 4. As in the hashed
ElGamal scheme, the public parameters pp include the description of EGA to-
gether with a hash function H : {0, 1}∗ → {0, 1}κ such that PK = X , SK = G
and SHK = {0, 1}κ. We assume that ID = {0, 1}µ, which means that each
identity is represented by a bitstring of length µ and there is a natural ordering
< on the space of identities. On input an ID ∈ ID, the key generation algorithm
chooses a group element g $← G which will be the secret key skID. The public key
is computed as pkID = g ? x̃ ∈ X . The shared key of an identity ID1 with public
key pkID1 = x and an identity ID2 6= ID1 with secret key skID2 = g is defined as

K =
{

H(ID1, ID2, pkID1 , pkID2 , g ? x) if ID1 < ID2

H(ID2, ID1, pkID2 , pkID1 , g ? x) if ID2 < ID1
.

Correctness again holds because of the commutativity of the group action itself
and the ordering of IDs.

One of the goals of this work is to prove these schemes secure in the QROM (cf.
Section 4). However, as it turns out, we will need stronger assumptions for the
proofs than those defined in the literature. In the next section we introduce the
corresponding assumptions. Furthermore, we show that a (somewhat) stronger
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Alice A Bob B
skA = a $← G skB = b $← G
pkA = a ? x̃ pkB = b ? x̃
z := a ? pkB z := b ? pkA

K := H(A,B, pkA, pkB, z)

Fig. 4. Group Action Non-Interactive Key Exchange scheme GA-HDH for an effective
group action EGA = (G,X , ?, x̃), where H : {0, 1}∗ → {0, 1}κ is a hash function.

assumption is indeed necessary by showing that it is implied by the security of
the schemes themselves.

3.1 Computational Group Action Diffie-Hellman with Quantum
Oracle Access

Our new assumptions are all variants of the group action strong computational
Diffie-Hellman problem (GA-StCDH). The GA-StCDH assumption is basically
the translation of the strong CDH problem to group actions (cf. also [28,15]),
where the adversary is given access to a (fixed-base) decision oracle. What we
need for our proofs is actually quantum access to the decision oracle, which
is a considerably stronger assumption that was never considered before. For
the NIKE proofs, we will also need a double-sided oracle definition, where the
adversary gets access to two decision oracles, one for each of the challenge set
elements, and its quantum variants. All variants are captured by Definition 6.

Definition 6 (Variants of GA-StCDH). On input (g?x̃, h?x̃), the GA-XXX-StCDH
requires to compute the set element gh ? x̃ with access to a decision oracle which
is specified below. To an effective group action EGA and an adversary A, we
associate the advantage function

AdvGA-XXX-StCDH
EGA (A) := Pr[AO(g ? x̃, h ? x̃)⇒ gh ? x̃] ,

where g, h $← G and

O :=



GA-DDHg(·, ·) , XXX = {} (classical)
GA-DDHg(·, |·〉) , XXX = PQ (partially quantum)
GA-DDHg(|·〉 , |·〉) , XXX = FQ (fully quantum)
{GA-DDHg(·, ·),GA-DDHh(·, ·)} , XXX = D (double-sided classical)
{GA-DDHg(·, |·〉),GA-DDHh(·, |·〉)} , XXX = DPQ (double-sided partially quantum)
{GA-DDHg(|·〉 , |·〉),GA-DDHh(|·〉 , |·〉)} , XXX = DFQ (double-sided fully quantum)

On basis-state inputs (y, z), GA-DDHg returns 1 if g ? y = z and 0 otherwise.
GA-DDHh is defined equivalently. Note that superposition queries are implicitly
then defined by linearity (i.e., O(

∑
x αxx) =

∑
x αxO(x)). We emphasize that

the partially quantum variants of the oracle measure their corresponding first
input implicitly.
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3.2 Necessity of the GA-(D)PQ-StCDH Assumption

We now show that partial quantum access to the decision oracle is indeed a
necessary assumption to prove IND-CCA security of GA-HEG and CKS security
of GA-HDH. We do that by showing the opposite direction, namely that the as-
sumption is implied by the security of the corresponding scheme. This is captured
by the following two theorems.

Theorem 1. Let H : X × X → {0, 1}κ be a random oracle. For any quantum
adversary A against GA-PQ-StCDH making at most q queries to its decision
oracle, there exists a quantum adversary B against IND-CCA security of GA-HEG
making at most q decapsulation queries and q+1 quantum random oracle queries
with

AdvGA-PQ-StCDH
EGA (A) ≤ 2 · AdvIND-CCA

GA-HEG (B) + 8(q + 1)2 + 1
2κ ,

and the running time of B is about that of A.

Theorem 2. Let H : {0, 1}∗ → {0, 1}κ be a random oracle. For any quantum
adversary A against GA-DPQ-StCDH making at most q queries to its decision
oracles, there exists a quantum adversary B against the CKS security of GA-HDH
making 2 queries to the RegisterHonest oracle, at most q queries to the
RegisterCorrupt oracle and q + 1 quantum random oracle queries with

AdvGA-DPQ-StCDH
EGA (A) ≤ 2 · AdvCKS

GA-HDH(B) + 8(q + 1)2 + 1
2κ ,

and the running time of B is about that of A.

We will prove Theorem 1 below. The proof of Theorem 2 is very similar and we
refer to the full version [18] for more details.

Proof (of Theorem 1). The idea of the proof is to construct a reduction which
implements the decision oracle using the decapsulation oracle by testing whether
Decaps(x1) = H(x1, x2) on a decision oracle query O(x1, x2). Whenever O(x1, x2)
returns 1, so will Decaps(x1) = H(x1, x2), except when x1 is the challenge cipher-
text. Therefore, whenever x1 is the challenge ciphertext, the reduction is going
to do the same test, except that it first “shifts” x1 and x2 by some other group
element ĝ. After simulating all decision oracle queries, the reduction returns
whether the challenge KEM key K does not equal H(c∗, z) where z is the group
action CDH solution obtained by A. We now proceed with the formal proof.

Let A be a quantum adversary as described in Theorem 1. Consider the
sequence of games given in Figure 5.
Game G1. This is the GA-PQ-StCDH game, where O = GA-DDHg. By definition,

Pr[GA1 ⇒ 1] = AdvGA-PQ-StCDH
EGA (A) .

Game G2. In this game, instead of returning whether g ? x1 = x2, the decision
oracle returns whether (x1, g ? x1) = (x1, x2). In order to prepare for the next
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Games G1-G5

00 g $← G
01 h $← G
02 ĝ $← G \ {e} \\G3-G5

03 z ← AO(·,|·〉)(g ? x̃, h ? x̃)
04 return Jz = gh ? x̃K

Oracle O(x1, x2)
05 Let a := e \\G2-G5

06 if x1 = h ? x̃ : Let a := ĝ \\G3-G5

07 return JDecaps(g, a ? x1) = H(a ? x1, a ? x2)K \\G5

08 return JH(a ? x1, (a · g) ? x1) = H(a ? x1, a ? x2)K \\G4

09 return J(a ? x1, (a · g) ? x1) = (a ? x1, a ? x2)K \\G2-G3

10 return Jg ? x1 = x2K \\G1

Fig. 5. Games G1-G5 for the proof of Theorem 1.

Distinguisher DF

00 g $← G
01 h $← G
02 ĝ $← G \ {e}
03 z ← AO(·,|·〉)(g ? x̃, h ? x̃)
04 return Jz = gh ? x̃K

Oracle O(x1, x2)
05 if g ? x1 = x2 return 1
06 if x1 = h ? x̃
07 return F(ĝ ? x1, ĝ ? x2)
08 else
09 return F(x1, x2)

Fig. 6. Distinguisher D for the Generic Distinguishing Problem to bound G4-G5.

game hop, we additionally introduce a new variable a which denotes a group
element. In G2, a is always the neutral element e of G, thus applying a on any
set element does not have any effect. Since we always have x1 = x1, the check in
line 09 is the same as in line 10. Hence we have Pr[GA1 ⇒ 1] = Pr[GA2 ⇒ 1].
Game G3. In this game we sample a group element ĝ $← G \ {e} uniformly at
random in line 02. For all queries (x1, x2) to O, where x1 = h ? x̃, we now set
a to ĝ. In this case, this will change the boolean test in line 09. However, since
the group action operation is a bijection, this change is only conceptual. The
reason for doing this, is that in the final reduction we are going to set h ? x̃ to be
the challenge ciphertext c∗ which we cannot query to the decapsulation oracle.
Shifting by ĝ in the case that x1 = h ? x̃ will allow us to still simulate O. We get
Pr[GA2 ⇒ 1] = Pr[GA3 ⇒ 1].
Game G4. In this game we perform the boolean test by first hashing both
sides using a random oracle. In particular, we check if H(a ? x1, (a ? g) ? x1) =
H(a ?x1, a ?x2) in line 08. This introduces false positives into the decision oracle,
when for any x̂1 ∈ X we have that H(x̂1, g ? x̂1) has preimages of the form (x̂1, x̂2)
with x̂2 6= g ? x̂1. We can bound this change by reducing to the GDP problem,
which we do in Figure 6. In particular, for every (x̂1, x̂2) we have F(x̂1, x̂2) returns
1 with probability λ := 1/2κ, which is the probability to find a second preimage
for H(x̂1, g ? x̂1). If F is the zero function, the distinguisher D simulates G3
and otherwise it simulates G4. Thus by eq. (2) of Lemma 2 where we have set
λ := 1/2κ we have∣∣Pr[GA3 ⇒ 1]− Pr[GA4 ⇒ 1]

∣∣
=
∣∣∣Pr[GDPDF,0 ⇒ 1]− Pr[GDPDF,1 ⇒ 1]

∣∣∣ ≤ 8(q + 1)2/2κ .

Game G5. In this game we change the boolean test again and check whether
Decaps(g, a ?x1) = H(a ?x1, a ?x2) in line 07. By definition of decapsulation, this
change is again only conceptual. We have Pr[GA4 ⇒ 1] = Pr[GA5 ⇒ 1].
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Adversary BDecaps,H(pk, c∗,K)
00 ĝ $← G \ {e}
01 z ← AO(·,|·〉)(pk, c∗)
02 return JK 6= H(c∗, z)K

Oracle O(x1, x2)
03 if x1 = c∗
04 return JDecaps(ĝ ?x1) = H(ĝ ?x1, ĝ ?x2)K
05 return JDecaps(x1) = H(x1, x2)K

Fig. 7. Adversary B against IND-CCA security for bounding G6.

It remains to bound G5. We claim

Pr[GA5 ⇒ 1] ≤ 2 · AdvIND-CCA
GA-HEG (B) + 1/2κ . (3)

The adversary B in Figure 7 simulates G5 as follows: it runs A on its own inputs
(pk, c∗), thus defining g ? x̃ := pk and h ? x̃ := c∗. Note that it can simulate oracle
O as in G5 using its own Decaps oracle and random oracle H provided by the
IND-CCA challenger. If A queries O on the challenge ciphertext c∗, we make
use of the additional element ĝ, thus B never queries Decaps on the challenge
ciphertext. Finally A outputs z. If H(c∗, z) = K∗, where K∗ is the challenge
key B received at the beginning, it returns 0 (real), otherwise it returns b′ := 1
(random). Clearly, if A computes z as gh ? x̃, B always wins the IND-CCA game
when it is in the real world. In the random world, it will win only with probability
1−1/2κ since the challenge key might be the same as the real key with probability
1/2κ. When z is not the correct solution and K is the real key, then B will only
win if the output of H still coincides with K , i.e. with probability 1/2κ. However,
if K is a random key, B will win again with probability 1− 1/2κ. Collecting the
conditional probabilities yields the bound claimed in eq. (3).

It remains to analyze the running time of B and its additional oracle calls.
B runs A once and for every query to O, B makes one call to the decapsulation
oracle and random oracle. After running A it makes one additional call to the
random oracle, which yields the claimed number of additional oracle calls, which
concludes our proof. ut

Remark 2. Quantum-secure signatures and public-key encryption schemes have
been studied in [10], where the adversary gets quantum access to the signing
and decryption oracle, respectively. One can show that the Quantum IND-CCA
(IND-qCCA) security of GA-HEG is equivalent to the GA-FQ-StCDH assumption,
that is the assumption is necessary and sufficient. The proof that IND-qCCA
implies the GA-FQ-StCDH assumption is the same as the proof of Theorem 1.
Therefore, observe that since the first input of the decision oracle is not mea-
sured, the reduction needs a quantum-accessible decapsulation oracle, which is
provided by the IND-qCCA game. The sufficiency follows by observing that the re-
duction in the proof of Theorem 3 can actually simulate quantum decapsulation
queries. We leave it as an open problem whether the GA-PQ-StCDH assumption
is sufficient for IND-CCA security GA-HEG.
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4 Security of Group Action Hashed ElGamal and NIKE

We now prove security of the two schemes in the quantum random oracle model.
In particular, we prove IND-CCA security of GA-HEG under the GA-FQ-StCDH
assumption and CKS security of GA-HDH under the GA-DFQ-StCDH assump-
tion, i.e., with full quantum access to the decision oracle.

Due to our results in Section 3.2, we cannot hope to prove security of the
(un-modified) schemes based on assumptions without quantum access. However,
adding key confirmation to GA-HEG allows us to do so. We elaborate in more
detail in Section 4.2. Unfortunately, key confirmation cannot be applied in the
context of non-interactive schemes such as GA-HDH.

4.1 Security of GA-HEG

The following theorem states security of GA-HEG based on the GA-FQ-StCDH
assumption. For the proof we will use the MRM O2H lemma (Lemma 1).

Remark 3. Alternatively, we could use the O2H variant of [8] (also for proving
GA-Twin-HEGm) by using its extractor in the proof, yielding a bound of

√
Adv.

Since both versions are applicable, one can essentially choose between a quadratic
loss independent of the adversary’s query depth or a linear loss in the query
depth. To keep proofs and theorems simple, we only prove the bound using
MRM.

Theorem 3. For any quantum adversary A against IND-CCA security of GA-HEG
that issues at most q queries to the quantum-accessible random oracle H of query
depth d with query parallelism p := q/d, there exists an adversary B against
GA-FQ-StCDH such that

AdvIND-CCA
GA-HEG (A) ≤ 4dAdvGA-FQ-StCDH

EGA (B) ,

and the running time of B is about three times that of A plus at most O(q + p)
queries to the decision oracle and the time to simulate up to O(max{qD, q})
random oracle queries, where qD is the number of decapsulation queries.

Proof. Let A be a quantum adversary as described in Theorem 3. Consider the
games given in Figure 8. We proceed by analyzing the different games.
Game G1. This is the IND-CCA game where we unfolded the definition of
GA-HEG. By definition,∣∣Pr[GA1 ⇒ 1]− 1/2

∣∣ = AdvIND-CCA
GA-HEG (A) .

Game G2. Here we introduce the following conceptual change: the random oracle
H is simulated using two internal random oracles H1 and H2, where the first one
is used on valid DH tuples, and the second on invalid ones. For this change to
be meaningful (i.e., simulatable) later on, we need a quantum-accessible decision
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Games G1-G5

00 sk := g $← G
01 pk := x := g ? x̃
02 b $← {0, 1}
03 r $← G
04 c∗ := r ? x̃
05 K0 := H(c∗, r ? pk)
06 H[(c∗, r ? pk)] $← {0, 1}κ \\G5

07 K1
$← {0, 1}κ

08 b′ ← AH,Dec(pk, c∗,Kb)
09 return Jb = b′K

Oracle Decaps(sk, c)
10 if c = c∗ return ⊥
11 return H1(c) \\G4-G5

12 return H(c, sk ? c)

Oracle H(x1, x2) \\G2-G5

13 if (x1, x2) = (x1, g ? x1)
14 return H1(x1) \\G3-G5

15 return H1(x1, x2)
16 return H2(x1, x2)

Fig. 8. Games G1-G5 for the proof of Theorem 3, where H1 and H2 are internal random
oracles.

oracle, which is provided by the GA-FQ-StCDH assumption. Clearly, the change
is only conceptual and we have Pr[GA1 ⇒ 1] = Pr[GA2 ⇒ 1].
Game G3. Next, we drop the input x2 in the case where the random oracle
H1 is used, that is we return H1(x1) instead of H1(x1, x2). Since relative to pk
and x1 there exists a unique x2 s.t. (x1, x2) = (x1, g ? x1), due to the regularity
property of EGA, this change is again only conceptual and we have Pr[GA2 ⇒
1] = Pr[GA3 ⇒ 1].
Game G4. In this game we remove the usage of the secret key in the random
oracle calls of the decapsulation oracle by returning H1(c) instead of H(c, g ? c).
Note that the secret key is only used to check for the DDH condition, which can
be simulated with access to GA-DDHg(|·〉 , |·〉). Due to the previous conceptual
change H1(c) = H(c, g ? c) holds by definition and therefore this change is again
only conceptual, thus Pr[GA3 ⇒ 1] = Pr[GA4 ⇒ 1].
Game G5. In this game we reprogram the random oracle on the challenge input
(c∗, r ? pk), after querying H(c∗, r ? pk) in line 06. Now K0 is identicially dis-
tributed as K1, therefore the key is now independent of the challenge bit b and
we have Pr[GA5 ⇒ 1] = 1/2. Due to Lemma 1 (MRM-O2H) we have∣∣Pr[GA4 ⇒ 1]− Pr[GA5 ⇒ 1]

∣∣ ≤ 4d Pr[GExt
6 ⇒ 1] ,

where GExt
6 is like GA4 , except that instead of running A, it runs the extraction

algorithm ExtDecaps,H,H′
from the MRM-O2H lemma to obtain a set T and the

winning condition is changed to JS ∩ T 6= ∅K, where S := {(c∗, r ? pk)} and H′
is the reprogrammed random oracle.

We bound the right-hand probability by the adversary B given in Figure 9,
which runs the extraction algorithm simulating Decaps and H as in G4 and H′
(the reprogrammed H) as in G5. Observe that B can simulate quantum decap-
sulation queries, since it has quantum access to H1, which is why we can apply
the MRM-O2H lemma. Since B wins if S ∩ T 6= ∅, we have

Pr[GExt
6 ⇒ 1] ≤ AdvGA-FQ-StCDH

EGA (B) .

Combining all inequalities yields the claimed bound. We conclude our proof by
analyzing the running time of B. B runs the extraction algorithm Ext, whose
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Adversary B|O〉(g ? x̃, h ? x̃)
00 pk := g ? x̃, c∗ := h ? x̃
01 K0,K1

$← {0, 1}κ, b $← {0, 1}
02 T ← ExtH,H′,Dec(pk, c∗,Kb)
03 for (a, z) ∈ T \\ |T | = p
04 if a = h ? x̃ ∧O(a, z) = 1
05 return z \\= gh ? x̃
06 return ⊥

Oracle Decaps(sk, c)
07 if c = c∗ return ⊥
08 return H1(c)

Oracle H/H′(x1, x2)
09 if O(x1, x2) = 1
10 if x1 = c∗ return K0 \\H only
11 return H1(x1)
12 return H2(x1, x2)

Fig. 9. Adversary B for the game-hop G4-G5 for the proof of Theorem 3. H1 and H2
are internal random oracles. The oracle O is the GA-DDHg oracle.

Gen
00 sk := g $← G
01 pk := x := g ? x̃
02 return (pk, sk)

Encaps(pk)
03 r $← G
04 c := r ? x̃
05 d := G(c, r ? pk)
06 K := H(c, r ? pk)
07 return (ct := (c, d),K)

Decaps(sk, ct)
08 z := sk ? c
09 if G(c, z) 6= d
10 return ⊥
11 K := H(c, z)
12 return K

Fig. 10. Key encapsulation mechanism GA-HEG-KC for an effective group action
EGA = (G,X , ?, x̃), where G : X × X → {0, 1}n and H : X × X → {0, 1}κ are hash
functions.

running time is at most three times that of A. For every run of A, it has to
simulate at most max{qD, q} calls to H1 and q calls to H2 (through H, H′),
where it calls O on every query. Then, after obtaining T , it makes at most p
queries to O, thus q + p total queries to O. Multiplying the parts of simulating
A by 3, adding up and applying O notation yields the claimed running time and
additional oracle calls, which concludes our proof. ut

4.2 Security of GA-HEG via Key Confirmation

We recall the Hashed ElGamal scheme with key confirmation in Figure 10. We
denote this scheme by GA-HEG-KC. Compared to the original scheme in Figure 3,
we now have a second hash function G : X×X → {0, 1}n which is used to compute
an additional ciphertext element d. The input to this hash function is the same
as for the final key. The decapsulation algorithm now first checks if d is valid by
recomputing it. If this check passes, the actual key is computed and returned,
otherwise the algorithm outputs a failure symbol ⊥.

Theorem 4 establishes security of GA-HEG-KC based on the GA-StCDH as-
sumption, that is without quantum access to the decision oracle. One reason for
the looser bound is that the classical decision oracle does not enable us to apply
the more recent O2H lemmata. The other is that we have to first apply O2H,
before applying the extractable RO simulator.

Theorem 4. Let G : X × X → {0, 1}n be a random oracle. For any quantum
adversary A against IND-CCA security of GA-HEG-KC that issues at most d
parallel queries each of size p (in total q := dp queries) to the quantum-accessible
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random oracles H and G and qD decapsulation queries, there exists an adversary
B against the GA-StCDH such that

AdvIND-CCA
GA-HEG-KC(A) ≤ 2d

√
AdvGA-StCDH

EGA (B) + 8(q + 1)2

2n +

√
32qD(qD + q)√

2n

+
√

4qD

2n +
√

40e2(q + 2qD + 2)3

2n ,

and the running time of B is about that of A plus the running time for using
extractable random-oracle simulator for qD extraction queries and q hash queries,
which is about O(q ·qD+q2) and simulating H for q queries, additionally B makes
at most qD + p queries to its decision oracle.

Note that n depends on the desired security level. Due to the fourth root term,
n needs to be around four times the security parameter in bits. We discuss this
in more detail in Section 6. We will now sketch the proof of Theorem 4. The full
proof can be found in the full version [18].

Proof (Sketch). After some simple changes we first reprogram the random or-
acle H and G on the challenge inputs using O2H. Then the main idea of the
proof is to simulate the random oracle G using the extractable random-oracle
simulator. The reduction can then simulate decapsulation queries by extract-
ing the inputs from the key-confirmation hash and verify the validity using the
decision oracle GA-DDH(g ? x̃, ·, ·). Note that since the decapsulation oracle is
classical, the extracted values are also classical and we only need classical access
to GA-DDH(g ? x̃, ·, ·). Once we can simulate decapsulation without the secret
key using the classical decision oracle, we can reduce the game to the GA-StCDH
problem. ut

4.3 Security of GA-HDH

The following theorem establishes security of GA-HDH based on the GA-DFQ-StCDH
assumption. As opposed to the proof of GA-HEG, we have to use the semi-classical
variant of the O2H lemma which yields a worse bound. We explain the reason
in the full version [18].

Theorem 5. For any quantum adversary A against the CKS security of GA-HDH
that issues at most d parallel queries, each of size p, to the quantum-accessible
random oracle H, there exists an adversary B against GA-DFQ-StCDH such that

AdvCKS
GA-HDH(A) ≤

√
8(d + 1)AdvGA-DFQ-StCDH

EGA (B) ,

and the running time of B is about three times that of A plus O(q + p) queries
to the decision oracle and the running time for simulating O(max{d ·p, qR, qT})
queries to the random oracle and O(qO) rerandomizations on the set elements,
where qO, qR and qT are the number of register-honest, reveal and test queries.
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We will only sketch the proof here. The full proof can be found in the full version
[18].

Proof (Sketch). As in the proof of Theorem 3, our goal is to use a variant of the
O2H lemma in order to randomize all challenge keys and bound the advantage
of the O2H extractor using the GA-DFQ-StCDH assumption. However, instead of
just a decapsulation oracle, we have to simulate theCorruptReveal oracle and
theTest oracle. Although the adversary is allowed to choose identities for honest
keys, we can compute all honest keys before the adversary can make any queries,
so we can vary the behavior of the random oracle when it interacts with honest
or corrupted keys. Note that this technique is not generally possible as the key
generation could depend on the provided ID in other schemes. This allows to only
hash (ID1, ID1, pk1, pk2) without the shared DH value between pk1 and pk2, when
at least one key is honest. Additionally, we can use a different internal random
oracle, when both keys are honest. In the final reduction on GA-DFQ-StCDH, we
embed the challenge set elements into the public keys using rerandomization. For
each public key, we randomly choose which challenge element we use such that
the adversary will issue a test query at least for one pair of identities containing
both challenge elements. We can check whether quantum random oracle queries
contain valid DH tuples using quantum access to the decision oracles. Then
we can use the O2H lemma in its semi-classical variant and bound the success
probability of its extractor with the GA-DFQ-StCDH assumption. ut

5 Twinning for Group Actions

In this section, we adapt the twinning technique from [11] to the group actions
setting. Due to the limited structure that group actions offer, we need a novel
approach to develop and analyze the underlying trapdoor test. The trapdoor test
will allow us to effectively simulate a decision oracle, apart from a small error
probability. In contrast to the original twinning approach, the analysis of the
error term is more involved and depends on an additional parameter m, which
affects the “twinning factor”. To illustrate this in an example: whereas in the
traditional prime-order group setting, twinning doubles the size of public keys,
the group action twinning technique will result in a public key of length m.

Using this technique we get two new schemes GA-Twin-HEGm and GA-Twin-HDHm,
the twinned versions of GA-HEG and GA-HDH, which will be presented and an-
alyzed in Sections 5.2 and 5.3. It allows us to remove the strong variants of
GA-CDH including quantum access to decision oracles in the security proofs.
Consequently we obtain a proof based on the standard GA-CDH assumption,
albeit in exchange for larger keys and overall increased computation cost. Nev-
ertheless, using our new twinning technique is thus far the only known method
that allows for a security proof of a NIKE scheme from standard assumptions in
the QROM. In Section 6 we discuss different parameter choices for m.
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5.1 A Trapdoor Test

In order to replace the GA-(FQ-)StCDH assumption, an algorithm must be able
to simulate the decision oracle GA-DDHg without knowing g explicitly. The fol-
lowing trapdoor test will be our basic tool to achieve this task.

Lemma 3 (Trapdoor Test). Let EGA = (G,X , ?, x̃), `,m ∈ N such that 1 <
` < m/2. Suppose x0, x1, ..., x`−1, s`, ..., sm, h`, ..., hm are mutually independent
random variables, where x0, x1, ..., x`−1 take values in X , and for all i ∈ [`,m] si
are uniformly distributed over [0, ` − 1] with the additional condition that each
value in [0, `−1] is taken at least once. Further, for all i ∈ [`,m] hi are uniformly
distributed over G. Define random variables x`, ..., xm, where xi = hi ? xsi for
i ∈ [`,m]. Further, let gi ∈ G such that xi = gi ? x̃ for every i ∈ [m]. In addition,
suppose that z̄0, z̄1, ..., z̄m are random variables taking values in X .

We define

F0(z̄0, . . . , z̄m) :=
{

1 if z̄i = hi ? z̄si ∀i ∈ [`,m]
0 else

(4)

and

F1(z̄0, . . . , z̄m) :=
{

1 if z̄i = gi ? z̄0 ∀i ∈ [m]
0 else

(5)

and the advantage of an adversary A in distinguishing F0 from F1 with oracle
access to one of the two functions and making at most q queries of depth d as

AdvTDT
EGA,q,d,`,m(A) :=

∣∣Pr[AF0 ⇒ 1]− Pr[AF1 ⇒ 1]
∣∣

We call eq. (4) the Trapdoor Test. The following properties hold:
1. x`, ..., xm are uniformly distributed over X ;
2. xi and xj are independent for all i ∈ [0, `− 1], j ∈ [`,m];
3. if F1(z) = 1, then also F0(z) = 1 for any input vector ~z;
4. for any classical (quantum) adversary A with oracle access to Fb for b ∈
{0, 1}, the probability that A outputs 1 after at most q queries to Fb with
query depth d is upper-bounded by the advantage of a classical (quantum)
adversary B against the GDP problem for a function T : Y → {0, 1} with
Pr[T (x) = 1: x $← Y] ≤ 1

|Y| and |Y| = `!`m−2`+1 (see Remark 4). Specifi-
cally,

AdvTDT
EGA,q,d,`,m(A) ≤ AdvGDP

T,q,d(B) ≤


2q
|Y| (classical)

4
√

(d+1)q
|Y| (quantum) .

Proof. Properties 1. to 3. hold by inspection. For property 4., we build an ad-
versary B on the GDP problem from a successful distinguisher A of the trapdoor
test. The proofs are identical for the classical and quantum case as the oracles
that B has to implement can all be defined as classical functions which make
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Adversary BT

00 x0 := x̃
01 for i ∈ [m]
02 hi

$← G
03 xi := hi ? x̃
04 b ← AF(x0, . . . , xm)
05 return b

Oracle F(z̄0, . . . , z̄m)
06 if z̄i = hi ? z̄0 for i ∈ [m]
07 return 1
08 t := Convert(z̄0, . . . , z̄m)
09 return T(t)

Function Convert(z0, . . . , zm)
10 for i ∈ [`,m]
11 for j ∈ [0, `− 1]
12 if zi = (hi · hj) ? z0
13 si := j
14 return map(s`, . . . , sm)

Fig. 11. Adversary B|T〉 against the GDP problem for the function T . The function
“map” is the selected bijection from the set of possible si into Y.

classical queries to other oracles, so by making all oracles quantum, the proof
does not change.

First note that if A only queries tuples z0, . . . , zm to its function Fb for which
xi , z0, zi form a DH tuple, then both oracles always behave identically, so we
assume that it will not make such queries. Since the si take all values in [0, `−1],
for non-DH queries, the oracles differ only if A guesses all si used to generate
the xi correctly. In that case it could choose the first ` elements at random and
set the last m−`+1 elements to gi ?xsi , where the gi are the discrete logarithms
of the i-th randomly chosen element. If the si do not cover all values in [0, `−1],
this argument does not hold (see Remark 5).

We will construct an adversary B on the GDP problem for a function T ,
which will simulate the function F1 if T is the all-zero function and F0, i.e. the
trapdoor test, if not. Specifically, let T : Y → {0, 1} such that there is a bijective
mapping from Y into the set of all possible combinations of si .

We describe B in Figure 11. First, B sets x0 to the origin element x̃ and
chooses m random elements x1, . . . xm and runs A on them as input. When A
makes a query to F , B first checks if A provided a valid DH tuple and if so,
returns 1. Otherwise, it computes which si were (implicitly) chosen to generate
the query and maps them to the unique element they correspond to in Y. Then
it queries this element to its own function T and returns the result.

If T is the all-zero function, then F only returns 1 if the first check succeeds,
i.e., F is equal to F1 from eq. (5). Otherwise, there is exactly one entry in T
for which it returns 1. Therefore, by returning the result of the query to T ,
B implicitly chooses its si as the ones corresponding to said entry in T and
therefore simulates F0 from eq. (4). So by outputting the same result as A, B
wins if and only if A wins and the claim follows. The quantum bound then
follows directly from Lemma 2. ut

Remark 4 (Sampling si). Let `,m ∈ N as in Lemma 3 and k = m−`+1. Define

Y∗ = {(s`, . . . , sm) ∈ [0, `− 1]k | ∀i ∈ [0, `− 1] ∃j : sj = i}.

In principal this is the set of possible values for the (s`, . . . , sm) from the lemma.
The cardinality of Y∗ may be described by the Stirling partition number multi-
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Gen
00 sk := (h1, ..., hm) $← Gm

01 pk := (y1, ..., ym) := (h1? x̃, ...hm ? x̃)
02 return (pk, sk)

Encaps(pk)
03 r $← G
04 ct := r ? x̃
05 K := H(ct, r ? y1, ..., r ? ym)
06 return (ct,K)

Decaps(sk, ct)
07 K := H(ct, h1?ct, ..., hm ?ct)
08 return K

Fig. 12. Twin Hashed ElGamal KEM GA-Twin-HEGm with twinning parameter m.
H : Xm+1 → {0, 1}κ is a hash function.

plied by `!, more precisely

|Y∗| = `! ·
{
k
`

}
=

d∑
i=0

(−1)i
(
`

i

)
(`− i)k .

One possibility to sample randomly from the entire set Y∗ is rejection sampling
from [0, `−1]k . Since this is not very practical, we suggest the following sampling
method which samples from the strictly smaller subset Y of size `!`k−`.

In order to ensure that the si take each value in [0, ` − 1], we first sample
exactly these ` elements and then sample the remaining k−` elements uniformly
at random from [0, `− 1].

Remark 5 (Necessity of the condition on si). The assumption that each value
in [0, `−1] is taken at least once by the si is a necessary assumption. Otherwise,
an adversary can simply guess a value α ∈ [0, ` − 1] that is not taken by the
si and subsequently choose z̄α randomly while computing all other z̄i honestly.
This would lead to

1 = F0(z̄0, ..., z̄α, ..., z̄m) 6= F1(z̄0, ..., z̄α, ..., z̄m) = 0

because z̄α is never used on the right side of z̄i = hi ? z̄si during the trapdoor
test in (4). Therefore, the adversary is able to distinguish both functions without
guessing all si which prevents the aforementioned reduction.

In order to use the trapdoor test in security proofs, we need to choose m and
` such that the advantage defined above becomes a small statistical factor. In
Section 6, we compute these values for a security level of 128 bits.

5.2 Twin Hashed ElGamal

Applying the twinning technique to Hashed ElGamal yields the Twin Hashed
ElGamal encryption scheme GA-Twin-HEGm for an integer m ∈ N, which is
formally described in Figure 12. While twinning significantly increases the public
key size and computation for both encapsulation and decapsulation, it allows us
to prove its IND-CCA security without the use of strong variants of the GA-CDH
problem. Furthermore, the ciphertext still consists of only one element.

Theorem 6. Let `,m ∈ N such that 1 < ` < m/2. For any quantum adversary
A against IND-CCA security of GA-Twin-HEGm that issues at most q queries
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to the quantum-accessible random oracle H with query depth d, there exists a
quantum adversary B against GA-CDH such that

AdvIND-CCA
GA-Twin-HEGm

(A) ≤ 4dAdvGA-CDH
EGA (B) + 4

√
(d + 1)q
`!`m−2`+1 ,

and the running time of B is about three times that of A plus the time to simulate
O(max{q, qD}) queries to H, where qD is the number of decapsulation queries.

We will only sketch the proof here and refer to the full version [18] for the full
proof. In fact, it is similar to the one of Theorem 3, only that we use the trapdoor
test whenever the other proof uses the decision oracle.

Proof (Sketch). Let A be a quantum adversary in the IND-CCA game. Our goal
is to construct an adversary B against GA-CDH. The main question is how B
simulates decapsulation queries. Therefore, let H1 and H2 be internal random
oracles, the first is used for valid DH tuples and the second for invalid ones. Since
for every ciphertext element x1 there exists a unique vector of m set elements s.t.
these form a DH tuple with the public key set elements, the output of H1 only
depends on x1. We can check if a query consists of valid DH tuples using the
trapdoor test. After this change, B can simulate decapsulation queries by just
returning H1(x1). Next, we can apply the MRM-O2H lemma to reprogram H on
the challenge ciphertext c∗ and the corresponding DH tuples (sk[i]?c∗)i∈[m]. For
this the adversary B needs to be able to simulate H and H′ (the reprogrammed
H), which it can do using the trapdoor test. Note that since we applied the
variant which considers parallel random oracle queries, the measured inputs are
a set of size p. Due to the trapdoor test B can find the correct solution. In the
final game, since the key K∗ is now independent of the bit b, the adversary wins
the game with probability 1/2 and the claimed bound follows. ut

5.3 Twin NIKE

We construct a NIKE scheme GA-Twin-HDHm from an effective group action
EGA = (G,X , ?, x̃), which defines the public parameters pp together with an
integer m ∈ N and a hash function H : {0, 1}∗ → {0, 1}κ, thus defining SHK =
{0, 1}κ. As in Section 3, we assume that the identities can be represented by
bitstrings of fixed length µ. On input an ID, the key generation algorithm chooses
m group elements (g1, ..., gm) $← Gm which form the secret key skID. The public
key is computed as pkID = (g1 ? x̃, ..., gm ? x̃) ∈ Xm. The shared key of an
identity ID1 with public key pkID1 = (x1, ..., xm) and an identity ID2 with secret
key skID2 = (g1, ..., gm) is defined as

K =
{

H(ID1, ID2, pkID1 , pkID2 , g1 ? x1, ..., g1 ? xm, ..., gm ? x1, ..., gm ? xm) if ID1 < ID2

H(ID2, ID1, pkID2 , pkID1 , g1 ? x1, ..., gm ? x1, ..., g1 ? xm, ..., gm ? xm) if ID2 < ID1

See Figure 13 for a schematic overview of our construction.
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Again, twinning significantly increases the public key size and computation of
GA-Twin-HDHm compared to GA-HDH, but allows us to use the same techniques
as in Theorem 6 to prove security without relying on strong assumptions. This
is formalized in Theorem 7.

Alice A Bob B
skA = (a1, ..., am) $← Gm skB = (b1, ..., bm) $← Gm

pkA = (xA
1 , ..., xA

m) = (a1 ? x̃, ..., am ? x̃) pkB = (xB
1 , ..., xB

m) = (b1 ? x̃, ..., bm ? x̃)

for i ∈ [m], j ∈ [m] for i ∈ [m], j ∈ [m]
zi,j := ai ? xB

j zi,j := bj ? xA
i

K := H(A,B, pkA, pkB, z1,1, ..., z1,m , ..., zm,1, ..., zm,m)

Fig. 13. Our NIKE Protocol GA-Twin-HDHm .

Theorem 7. Let `,m ∈ N such that 1 < ` < m/2. For any quantum adversary
A against the CKS security of GA-Twin-HDHm that issues at most q queries to
the quantum-accessible random oracle H of query depth d, there exists a quantum
adversary B against GA-CDH such that

AdvCKS
GA-Twin-HDHm

(A) ≤
√

8dAdvGA-CDH
EGA (B) + 4

√
(d + 1)q
`!`m−2`+1 ,

and the running time of B is about three times that of A plus the time needed
to simulate O(max{q, qR, qT}) queries to the random oracle, to perform O(qO)
rerandomizations on set elements and to run the trapdoor test O(q) times, where
qO, qR and qT are the number of register-honest, reveal and test queries.

The proof is similar to the proof of Theorem 5 with the main difference that
we use the trapdoor test whenever the other proof used the decision oracles. We
defer the complete proof to the full version [18].

Proof (Sketch). As in the KEM proof, our goal is to use a variant of the O2H
lemma in order to randomize all challenge keys and bound the advantage of the
O2H extractor using the GA-CDH assumption. However, instead of just a decap-
sulation oracle, we have to simulate the CorruptReveal and Test oracles.
Although the adversary is allowed to choose identities for honest keys, we can
compute the public keys before it makes any queries, so we can vary the behav-
ior of the random oracle when it interacts with honest or corrupted keys. Note
that this technique is not generally possible as the key generation could depend
on the provided ID in other schemes. This allows us to make similar conceptual
changes as in the KEM proof, where we only hash (ID1, ID1, pk1, pk2) without
the zi,j , when at least one key is honest. Additionally, we can use a different
internal random oracle, when both keys are honest. By using the trapdoor test,
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Scheme |pk| |ct| Gen Encaps Decaps Assumption Bound

GA-HEG (Fig. 3) |X | |X | 1 2 1 GA-FQ-StCDH d Adv

GA-HEG-KC (Fig. 10) |X | |X |+ 4λ 1 2 1 GA-StCDH d
√

Adv

GA-Twin-HEGm (Fig. 12) m · |X | |X | m m + 1 m GA-CDH d Adv

GA-EG-FO [12,17] |X | |X |+ 2λ 1 2 2 GA-CDH q
√

Adv

GA-EG-FO [12,30] |X | |X |+ 3λ 1 2 2 GA-DDH d2Adv

GA-HDH (Fig. 4) |X | - 1 1 (SharedKey) GA-DFQ-StCDH
√
d Adv

GA-Twin-HDHm (Fig. 13) m - m m2 (SharedKey) GA-CDH
√
d Adv

Table 1. Overview of our different protocols and comparison to FO variants. By |X | we
denote the length of a set element in bits. The columns “Gen”, “Encaps” and “Decaps”
state the number of group action evaluations that are needed in order to perform the
corresponding algorithm. For NIKE schemes this refers to the SharedKey algorithm.
Bounds are stated without statistical terms and q, d denote the number of random
oracle queries and the query-depth. The security parameter is denoted by λ. For λ = 128
bit security, we need m = 85. For FO-EG we assume the implicit rejection variants.

we can remove the need for the secret keys completely. Finally, we can use the
O2H lemma in its semi-classical variant and bound the success probability of its
extractor with the GA-CDH assumption. ut

6 Parameter Choices and Comparison

In order to compare the different schemes we need to elaborate on the param-
eter n, which is the bit length of the output of hash function G in the hashed
ElGamal scheme with key confirmation, and the twinning parameter m. Both
depend on the desired security level which is usually stated in bits. Taking the
corresponding terms in the bounds of Theorems 4 and 6 into account, we deter-
mine the success ratio of an adversary A. The success ratio of A is computed as
its advantage εA divided by its running time tA [23]. For λ-bit security, we then
require εA/tA ≤ 2−λ.

Key Confirmation. The output of the hash function G determines the length
of the second ciphertext element. In order to determine the length, we analyze
the statistical terms in Theorem 4. Note the one with the fourth root is the
most dominating one. Thus, for λ-bit security, we need to set n ≈ 4λ, where we
assume qD ≤ q / tA and ignore additive constants.

Twinning. The efficiency of the Twin ElGamal encryption scheme GA-Twin-HEGm
and the Twin NIKE scheme GA-Twin-HDHm depends on the twinning param-
eter m which directly translates to the length of the public key. The security
level is determined by the value of `!`m−2`+1, where ` ∈ [1,m/2] may be chosen
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arbitrarily. Note that ` only appears in the proofs of Theorem 6 and Theorem 7,
hence it has no direct effect on the corresponding protocols.

Again, we only analyze the statistical term in the bound. For λ-bit security,
we need

4
tA
·
√

(d + 1)q
`!`m−2`+1 ≤ 2−λ.

Similar as before, we may assume that d ≤ q / tA, hence for an optimal success
ratio an adversary would choose d = q. This means that we need to choose m
large enough so that `!`m−2`+1 ≥ 22λ+4 for some ` ∈ [1,m/2]. As an example,
for λ = 128, optimality is achieved by m = 85 (with ` = 17).

Instantiation of the Group Action. Every set element x ∈ X is represented
by a bitstring. In CSIDH the length of this bitstring is log(p), where the size of
X is in O(√p). Choosing the correct parameter size for CSIDH is an actively
discussed topic in the community. Castryck et al. [12] propose a 1792-bit prime
p to achieve λ = 128 bit quantum security.

Comparison. Table 1 provides an overview of the schemes analyzed in this pa-
per and a comparison to the ElGamal KEMs that can be obtained by the FO
transform. The base scheme is the most efficient one, with one ciphertext element
and two group action evaluations for Encaps. It also achieves the best QROM
bound without any square root terms, but it relies on the strongest non-standard
assumption. Hashed ElGamal with key confirmation has a slightly larger cipher-
text and comes with a worse bound, however, it relies only on the GA-StCDH
assumption. Since twinning cannot be done efficiently in the group action setting,
the twinned version of hashed ElGamal is the least efficient in terms of public
key size and group action computation. Nevertheless, the ciphertext still consists
of only one set element and we get security based on the standard GA-CDH as-
sumption. At this point we want to stress again that this seems the only way to
construct an actively-secure NIKE based on a standard assumption. Otherwise,
one has to rely on the assumption with a quantum-accessible decision oracle.
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