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Abstract. Key Transparency (KT) systems allow end-to-end encrypted ser-
vice providers (messaging, calls, etc.) to maintain an auditable directory
of their users’ public keys, producing proofs that all participants have a
consistent view of those keys, and allowing each user to check updates to
their own keys. KT has lately received a lot of attention, in particular its
privacy preserving variants, which also ensure that users and auditors do
not learn anything beyond what is necessary to use the service and keep
the service provider accountable.

Abstractly, the problem of building such systems reduces to construct-
ing so-called append-only Zero-Knowledge Sets (aZKS). Unfortunately,
existing aZKS (and KT) solutions do not allow to adequately restore the
privacy guarantees after a server compromise, a form of Post-Compromise
Security (PCS), while maintaining the auditability properties. In this work
we address this concern through the formalization of an extension of aZKS
called Rotatable ZKS (RZKS). In addition to providing PCS, our notion of
RZKS has several other attractive features, such as a stronger (extractable)
soundness notion, and the ability for a communication party with out-of-
date data to efficiently “catch up” to the current epoch while ensuring that
the server did not erase any of the past data.

Of independent interest, we also introduce a new primitive called a Ro-
tatable Verifiable Random Function (VRF), and show how to build RZKS in a
modular fashion from a rotatable VRF, ordered accumulator, and append-
only vector commitment schemes.

Keywords: Key Transparency, Zero-Knowledge Sets, Verifiable Random
Functions, Post-Compromise Security.

1 Introduction

End-to-end encrypted communication systems (E2EE), including encrypted
chat services (such as WhatsApp [45], Signal [38], Keybase [21], iMessage [2])
and encrypted calls (Zoom [6], Webex [44], Teams [32]), are becoming increas-
ingly common in today’s world. E2EE systems require each user to publish a
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public key, and use the corresponding secret key along with their communi-
cation partners’ public keys to compute a shared secret which can be used to
secure the communication. To enable this, service providers (such as Apple,
Zoom, Meta, Microsoft, etc.) need to maintain a directory that maps each user
to their public keys, a Public Key Infrastructure (PKI) analogous to the one in
place to secure the web. The end-to-end guarantees depend on the authenticity
of these public keys, as otherwise a malicious service provider (or one who is
hacked or compelled to act maliciously) can replace an honest user’s identity
public key with another public key whose secret key is known to the provider,
and thus implement a meddler-in-the-middle (MitM) attack without the com-
municating users ever noticing.

KEY TRANSPARENCY. To mitigate this issue, many E2EE communication sys-
tems provide users with “security codes”, i.e. digests of the communication
partners’ identity public keys rendered as lists of digits or words, or QR codes.
To detect potential meddler-in-the-middle attacks, the communicating users are
expected to manually check these codes, either by reading them aloud (in calls),
scanning them with their phone apps, or otherwise sharing them out-of-band.
It is well understood that this has severe usability challenges [3, 18, 19, 43]. Key
Transparency (KT)4 systems augment these checks with a fully automated solu-
tion that improves both usability and security.

KT systems enable service providers to maintain an auditable directory
that maps each user’s identifier (such as a username, phone number or email
address) to their identity public keys (analogously to how Certificate Trans-
parency [26] allows to monitor PKI certificates). Providers compute and adver-
tise a short (signed) “commitment” com to the whole directory, and update it
(creating a new epoch) whenever users join the directory or update their keys.
When users query a particular label label (a key in the map, such as a user-
name), they get the corresponding value val (i.e. public key) and a proof π that
this (label, val) pair is consistent with com.5 Clients are then encouraged to pe-
riodically monitor the directory to make sure their own identifier maps to the
correct keys, thus detecting any attempt to MitM their communications.

Assuming cryptographic soundness of such proofs, to ensure that all clients
receive the same answer when they query for the same label, it is enough to
ensure they all have the same commitment com. To achieve this, KT relies on
clients gossiping the commitment [29], or on public and untamperable ledgers
such as blockchains [22]. While the implementation of such gossiping schemes is
not part of the design (and definition) of KT, and they have seen little practical
deployment6 [14, 28], improvements in this respect seem feasible, and even the

4 KT is known under various names in the literature, such as auditable registries, verifiable
key directories, auditable directories etc. For the purpose of this manuscript, we will stick
to using KT.

5 Additionally, if no (label, val) pair exists for a given label, the proof π becomes an
absence proof for this label.

6 While Keybase posts its KT digests to a blockchain, official Keybase clients do not
check them.
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potential for users to independently check might deter the server from misbe-
having.

AUDITING. Although the basic functionality already goes a long way towards
holding the server accountable for providing incorrect keys to users, clients
would incur a high burden if they had to check the server’s consistency at
every epoch, especially clients whose keys do not change often as the direc-
tory evolves. To mitigate that, most KT systems provide additional auditing
functionality, where more resourceful parties (called auditors) can continuously
check that certain properties of the directory are maintained across updates
(such as the fact that old keys are never erased, and newer ones are simply ap-
pended). Technically, when updating the old commitment com to directory D
with a newer commitment com’ to D′, the server can issue a certain proof πS
asserting that D ⊆ D′ (and, ideally, revealing nothing more beyond |D′ \ D|).
While any user can be an auditor, in practice it is envisioned that relatively few
external auditors would continuously monitor the server in this way, and most
clients would rely on that assurance. This also justifies relatively large update
proofs (with size proportional to |D′ \D|). Such KT systems are called auditable.
In addition to keeping the server honest, auditable KTs might ease the need of
clients to check their keys at every epoch, if trusted auditors exist. For example,
if a client checked earlier that their keys were correct w.r.t. some (audited) old
value com’, and later got the current value of com from a trusted auditor, they
can be sure their keys are still correct w.r.t. com, thus eliminating the need to
ask the server to prove this fact again.

To the best of our knowledge, Keybase [25] is the first deployment of an
auditable public key directory; they published the first KT digest on April
2014 [24]. Keybase was created as a more user-friendly and secure replace-
ment for PGP, so their KT favors full transparency and auditability over pri-
vacy guarantees. For example, Keybase publicly advertises [23] how many de-
vices each user has the Keybase client app installed on, and how often their
keys change (i.e., the app is reinstalled). While this is an acceptable tradeoff
for many, this privacy leakage can also be a concern, as surfaced in [27], which
studied the privacy concerns of using Keybase for US journalists and lawyers.
There could be other important business reasons for requiring privacy as well.
A business might not want to use a KT system if doing so means revealing to
the world how much churn the company has. If the KT system is used to au-
thenticate group membership as well, revealing which groups a user is part of
could leak the organizational structure of the business and facilitate social en-
gineering attacks. In fact, Google and Zoom advocate for adding privacy to KT
systems [6,17]. In addition to being privacy-conscious (which is a good practice
anyway), these industry leaders are also concerned about current and future
laws and regulations, such as GDPR. Indeed, once a major system is in play, it
is extremely hard to change it when a new privacy law/regulation comes into
effect. For example, creating a publicly visible and immutable trail of a user’s
encryption key changes in a Key Transparency directory would likely cause a
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GDPR violation. Similarly, if a user asks the provider to delete their account
and all traces, doing so would be very hard without privacy built-in.

PRIVACY-PRESERVING KT. Motivated by these and other considerations, new
KT schemes were developed with privacy. Broadly speaking, privacy can be di-
vided in two categories: content-privacy and metadata-privacy. Content-privacy
hides public keys and usernames from unauthorized parties (e.g., auditors and
other users who wouldn’t otherwise be able to query for those usernames). KT
systems supporting content privacy include [20, 28, 40–42]. Metadata-privacy
also hides information such as when each user first registered in the KT, when
and how often their keys change, correlations between multiple updates, etc.
on top of content-privacy. We denote metadata-hiding KT schemes as privacy-
preserving KT (ppKT) [7,17,29]. In ppKT, both external auditors and users should
learn as little as possible beyond the data they are actively querying. For exam-
ple, KT commitments and proofs for a certain user identifier should not reveal
information about other users’ keys and how often they are changing. Similarly,
auditors should enforce that no data is ever deleted from the directory, while
learning as little as the total number of keys being updated.

Unlike KT systems without any privacy, in which the key directory data
structure can be built entirely on symmetric key primitives like Merkle
Trees [10], practical KT systems (with either content-privacy or metadata-
privacy) achieve privacy through asymmetric primitives such as Verifiable
Random Functions (VRFs) [31].7 Ignoring some important details, given a
(label, val) pair, the server holding the VRF’s secret key will use a pseudoran-
dom label y = VRF(label) in place of the original label. Then: (a) pseudoran-
domness of y ensures that no information about the original label is leaked; (b)
verifiability of y ensures that it can be convincingly opened to the original label;
and (c) uniqueness of y = VRF(label) ensures that each label can be used only
once.8

KEY ROTATION AND POST COMPROMISE SECURITY. With the growing pop-
ularity and user-base of E2EE communication systems, ppKT is very close to
real-world, large-scale deployments [6,13,17]. However, as with any real world
system, a ppKT system will likely get compromised at some point, so there
should be a robust plan to recover from such a compromise, should it happen.
One subtle observation in this regard is that current ppKT systems all require
the server to maintain a secret key sk (e.g., the secret key to the VRF, as ex-
plained above), in addition to simply storing the users’ data. Thus, recover-
ing from such compromise necessitates updating the secret/public keys of the
server, which is called key rotation. In addition, even if no evidence of actual
compromise is ever found, periodically rotating secret keys is considered an in-
dustry best practice and sometimes mandated by regulations [35,36]. For ppKT,

7 Informally, a VRF [31] is similar to a standard pseudorandom function (PRF), except
the secret key owner is also committed to the entire function in advance, and can
selectively open some of its outputs in a verifiable manner.

8 Property (c) is why VRF is needed, and regular commitments to label do not work.
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rotating the key would ideally ensure that compromise of the server would only
violate the privacy of past records (which is unavoidable, as the server stores
this data anyway), but not of future records.9 In other words, the primary goal
of key rotation is to achieve what is known as post compromise security (PCS):
the privacy of ppKT systems should be seamlessly restored in case of (possibly
silent) key compromise. This is the main question we address in this work:

How easy is it to add PCS to a ppKT, while maintaining high efficiency?

A NAIVE SOLUTION. To see why this question is non-trivial, let us look at a
naive attempt to add key rotation to any existing ppKT, such as SEEMless [7].
The first idea is to simply pick a fresh key pair (skt, pkt) for a ppKT with every
rotation number t, and basically view the final databaseD as a disjoint union of
t smaller databases D1, . . . , Dt, where Di corresponds to the key pair (ski, pki).
On the surface, this seems to maintain the efficiency of the base ppKT, since
the server can figure out which “mini-database” Di contains a given record
(id, pkid) and provide a proof only for this value of i. Unfortunately, this does
not work, as the server also needs to provide (i− 1) absence proofs that id does
not belong to any of the previous databasesD1, . . . , Di−1. Otherwise, the server
could insert (id, pkid) in database i, (id, pk′id) in database i′, and provide differ-
ent clients with different answers to the same query, even if a good base ppKT
is used. And in the case of id not belonging to the entire database D, the server
must provide t such absence proofs. Given that clients might need to lookup
many identifiers at once and that providers will have to handle a large vol-
ume of queries simultaneously, this multiplicative slowdown is unacceptable
for practical use.

A better approach — and indeed the approach we take in this work — is to
transfer the entire database D when switching from skt−1 to skt, thereby ini-
tializing Dt = Dt−1, and then growing Dt when new data items are appended.
This ensures that the efficiency of key lookup, the most frequent and important
operation in ppKT, is indeed inherited from the base ppKT to which we are
adding PCS, because it is always done w.r.t. the latest public key pkt. Of course,
now the server also needs to prove that it honestly initializedDt = Dt−1, so that
the users or auditors performing this (potentially expensive, but rare) check are
convinced that no data was added, removed, or modified. Moreover, this check
should be done in a privacy-preserving way, so that auditors learn as little as
possible about the database D = Dt−1 = Dt at this moment, beyond the fact
that it was correctly “copied” during key rotation.

Unfortunately, none of the existing ppKT systems appear friendly to such
(key) rotation proofs, while generic zero-knowledge proofs would be prohibitively
inefficient given large database sizes in typical ppKT systems. As our main

9 The effect of compromise on authenticity/auditability is rather minimal anyway, as
the key used to sign the commitments would typically be authenticated using the web
PKI, and thus can be revoked upon compromise using existing techniques. Moreover,
learning the secret server state doesn’t help break the binding of the commitment to
the entire set of current records in the directory.



6 B. Chen et al.

technical contribution, we overcome this difficulty by designing a specialized,
but still highly efficient, ppKT system which supports efficient key rotation,
and hence provides PCS against (possibly silent) server compromises.

1.1 Our Contributions

Before our concrete solution, we list our contributions from the modeling and
definitions perspective.

MODELING AND DEFINITIONS. First, much like earlier works on ppKT [7, 17,
29] we abstract the primitive that we need. Our primitive, which we term Rotat-
able Zero Knowledge Set (RZKS), is a natural extension of the so-called append-
only zero-knowledge set (aZKS) from [7].

At a high level, aZKS is a primitive where a prover can incrementally com-
mit to a dictionary D, and later prove (in zero-knowledge) a statement of the
form that a certain (label, val) pair belongs to the dictionary, or that a certain
label does not belong to the dictionary (for any val). Moreover, there is at most
one val for any label, and this val cannot be modified once it is assigned. To
model the incremental nature of aZKS, the prover can also prove the “append-
only” property to the auditors, such that two commitments com and com′ cor-
respond to two dictionaries D and D′, where D is a subset of D′, in almost10

zero-knowledge.
Our RZKS notion extends aZKS in several ways. First, and most importantly

from the perspective of PCS, we allow a new algorithm for key rotation. Syntax-
wise, it is the same as the append algorithm of aZKS: given a (possibly empty)
set S of fresh {(label, val)}-pairs to be appended to the current database, we up-
date the commitment com to D to a new commitment com′ to D′ = D ∪ S, and
output a proof πR that this operation was done “consistently”. However, unlike
the regular append operation given by proof πS , the proof size and time for the
rotation operation is allowed to be proportional to the entire database D′, as
opposed to the number of appended elements |S|. What we gain though is the
PCS property: unlike with the regular append, compromising the server’s state
(including D) before the rotation does not help the attacker learn any new in-
formation about newly appended elements S, or any elements appended in the
future (including those by the standard append operation). (As a bonus, it also
wipes out the minimal leakage of regular append mentioned in Footnote 10.)

Second, and of independent interest, we extend the aZKS functionality to
support what we call extension proofs. Such proofs allow a party to verify that
a given newer commitment comt′ commits to a given older commitment comt

(and, therefore, also implies that both comt′ and comt commit to the same se-
quence com1, com2, . . . , comt−1), for any t′ > t (as opposed to the append-only
proofs in aZKS only supporting t′ = t + 1). Here, t and t′ are the total number

10 According to a well-defined leakage profile. For [7], the only such leakage reveals if a
label known to be missing in D is later inserted in D′, which seems acceptable for the
main application to KT.



RZKS: PCS in Auditable Dictionaries 7

of appends and rotations that were performed to produce the dictionary cor-
responding to each commitment. These extension proofs are extremely efficient
(only logarithmic in the number of epochs t′), as they can be instantiated using
Merkle Tree append-only proofs [7, 41].

Note that, by themselves, extension proofs do not prove that the database
has evolved consistently (for example, it is possible that Dt 6⊆ Dt′ ). However,
auditors still check that each successive epoch correctly performs append or
rotation operations. As a result, extension proofs allow users to confirm that
the commitments they receive are authentic and represent a consistently evolv-
ing database by occasionally verifying commitments with a trusted auditor,
instead of verifying every commitment they receive, which would be a fre-
quent and expensive operation. Concretely, suppose a user receives a series of
commitments comt1 , . . . , comtn from the server, possibly over a long period of
time, along with extension proofs from each comti to the next comti+1

(which
the user verifies). Then, by verifying just comtn with an auditor, blockchain,
or other gossiping mechanism, the user can guarantee the consistency of ev-
ery previous comti they received with those other sources’ views. Furthermore,
if the user trusts that the source they are verifying against has also verified
that the database evolved consistently at each epoch, they can infer that each
Dti ⊆ Dti+1

. This also allows auditors and other clients to only gossip about
the latest commitment com′ and forget any previous commitments. If an older
commitment comold is ever needed, the server can always provide comold and
the extension proof from comold to com′.

Third, each query also explicitly indicates the epoch at which the queried
pair was added to the RZKS directory, which can be verified without any in-
crease in the proof size (obtaining this information in an aZKS would require
multiple proofs). We believe that this information can be helpful in practical
applications, as older records/keys are often considered more trustworthy than
newer ones (the owner has had more time to react to a compromise), and quickly
comparing the age of two records can be helpful for more complex applications
of RZKS beyond standard KT11. Moreover, while previous ppKT do not allow
to determine this efficiently, they do not hide this information either.

Finally, our notion of RZKS strengthens the soundness definition of aZKS
presented in [7]. Namely, the latter mandates that an adversary cannot produce
valid proofs of conflicting statements (for example, proving that the same key
maps to different values, possibly in different epochs). Instead, we notice that
the soundness of the SEEMless construction of [7] is proven in the Random Or-
acle model anyway, where we can achieve much stronger forms of soundness.
Indeed, our RZKS notion demands a very strong form of extractability-based
soundness. Roughly, we require the existence of an extractor, which, given any
malicious commitment com produced by the attacker (and its random oracle

11 For example, Keybase uses its KT dictionary to also store other statements signed by a
user’s device, such as when a user wants to add another user to a group: knowing that
the statement was signed before the key that signed it is revoked/rotated is important
for the security of the system.
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queries), can extract the entire database D for which the attacker can later pro-
duce verifying membership proofs. We believe this stronger property makes it
easier to reason about the security of applications of RZKS.

RZKS CONSTRUCTION. Finally, we show how to build an efficient RZKS sys-
tem. Our starting point is the aZKS construction from SEEMless [7]. SEEMless
uses — in a black-box way — a verifiable random function (VRF) [31] and crypto-
graphic hash function to build their aZKS, and recommends the specific DDH-
based VRF from the upcoming VRF standard [16].

Recall, a VRF allows the secret key owner (e.g., server) to compactly commit
to an entire random-looking function f , but in a way that allows them to con-
vincingly open individual function outputs f(x), without compromising the
randomness of yet unopened outputs f(x′) for x′ 6= x. In the aZKS construc-
tion of [7], when appending a (x = label, v = val) pair to D, the server uses
the VRF output f(x) to decide where to put a commitment to v in some Merkle
Tree T that it builds. If this place is occupied, the server knows that D already
contains some v′ associated with label x, and can reject the request. Otherwise,
it inserts some commitment to v into the Merkle Tree T , and uses the new root
of T as the modified commitment value com′ to D′ = D ∪ {(x, v)}. Intuitively,
the use of VRF ensures privacy, as it hides information about the labels that
would otherwise be leaked by Merkle proofs of “neighboring” labels. On the
other hand, VRF uniqueness and verifiability properties ensure that the server
cannot cheat.

One can now consider how to extend the scheme above to support key rota-
tion, provided that the underlying VRF can support what we call VRF rotation
proofs. Intuitively, a RZKS rotation proof will switch the VRF key from f1 to f2,
rebuild the Merkle Tree T1 into T2 using the same commitments to each of the
values, and openly reveal the one-to-one correspondence between leaves of T1
and T2 associated with all keys x present in the original database D before the
rotation. However, recall that the value x itself should be hidden from auditors
verifying consistency of key rotation, which leads to the following problem we
solve in this work. We need to design a VRF with a fast zero-knowledge proof
showing that two VRF outputs y1 and y2 under two independent keys f1 and
f2 correspond to the same secret input x: y1 = f1(x) and y2 = f2(x). We call this
novel type of VRFs rotatable. We discuss them next, and defer the rest of the de-
tails of our final RZKS construction to Section 5.2, simply highlighting here its
modularity: it is built from any rotatable VRF, commitments and other generic
building blocks instantiable from Merkle Trees.12

ROTATABLE VRFS. Unfortunately, supporting an efficient ZK proof mentioned
above is not sufficient for the type of rotatable VRFs we need for RZKS. To
achieve PCS for RZKS, our VRF also needs to satisfy a novel type of “non-
committing property”: upon compromise, the attacker learns of a compact se-
cret key sk for the VRF, which suddenly explains a lot of VRF outputs {y} that

12 Namely, so called ordered accumulators, and append-only vector commitment
schemes. See Section 5.1.
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the attacker saw prior to the corruption (but did not know the corresponding
inputs {x}). More concretely, we use a simulation-based rotatable VRF defini-
tion, extending the earlier “simulatable VRF” notion of [9] to handle rotations.
Under this notion, the simulator must in particular “win” in the following game
(which is the most challenging part of our definition explaining the heart of the
problem). The simulator must commit to a VRF public key pk, get a bunch of
random strings {y} as various VRF outputs of unknown inputs {x}, answer ran-
dom oracle queries from the attacker, then learn the hidden set {x}, and finally
produce a secret key sk that correctly explains that f(x) = y for all matching
(x, y) pairs of the corresponding sets {x} and {y}.

This problem seems to relate to the area of non-committing encryption
(NCE) [5, 34], where one compact secret is supposed to open many previ-
ously committed ciphertexts in a certain way. As with non-committing en-
cryption [34], building standard model “non-committing” VRF is impossible,
as one short secret key sk cannot “explain away” arbitrarily many random
looking outputs y. On the other hand, given that several NCE schemes exist
in the random oracle model (e.g., [4]), one might hope that the same simple
ideas13 will work in our VRF setting as well. Unfortunately, this does not ap-
pear to be the case, due to the inherently algebraic structure of VRF proofs.
To understand this inherent tension, let us consider the concrete efficient VRF
(from the VRF standard [16]) recommended by the authors of SEEMless. In
this VRF, the secret key sk for the VRF is a random exponent α, the public key
pk = gα (for public generator g), and the VRF value y = f(x) = F ′(F (pk, x)α),
where F is a random oracle and F ′ is an “extractor” meant to map a random
group element to a random bit-string. (The proof π that y = f(x) is the value
z = F (pk, x)α and the standard Fiat-Shamir variant of the Σ-protocol for the
DDH tuple (g, pk, F (pk, x), z) [12].)

When rotating the key pair (α, gα) to a fresh key pair (β, gβ), first we need to
ensure that there exists an efficient ZK proof showing that two random values y
and y′ satisfy the relation y = F ′(F (gα, x)α) and y′ = F ′(F (gβ , x)β). As the first
obstacle, this seems hard due the outside extractor F ′. Fortunately, this prob-
lem is trivially solved by getting rid of the “outer extractor” F ′, and thinking of
the VRF as outputting a group element (rather than bit-string) y = F (pk, x)α.
Indeed, the standard VRF proof in [16] shows that the above VRF is already
secure. The next problem comes from the fact that the old VRF f and the new
VRF f ′ have different public keys gα and gβ hashed inside the “inner random
oracle” F . Once again, it turns out that the VRF proof just needs some domain
separation, and goes through if we redefine the output y = F (salt, x)α, where
salt is some unpredictable value which does not need to change with any rota-
tion.14

13 Namely, to a posteriori program random oracle in a manner depending on the strings
y, on appropriate inputs involving the secret key sk.

14 For simplicity of exposition, we omit salt from our description, but recommend that
each application uses a fresh salt.
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This already gives us the ability to construct (at least “syntactically”) the re-
quired ZK proof of rotation when moving from sk = α to sk′ = β. Indeed, for
any unknown x, if y = F (x)α and y′ = F (x)β , the server can simply prove that
the tuple (gα, gβ , y, y′) is a proper DDH tuple (using witness w = β/α).15 As
we said, though, we also need to provide the PCS property mentioned above.
And this appears hopeless at first glance. Indeed, the public key pk = gα com-
mits to α information-theoretically. Moreover, when programming the random
oracle query F (x), the simulator does not know yet which random output y
corresponds to x. Hence, the simulator has no chance to correctly program
F (x) = y1/α. For regular (“non-rotatable”) VRFs, we would try to fake the Fiat-
Shamir proofs for correctness. In fact, this would extend to rotatable VRFs with-
out the PCS property (i.e., without corruptions of α); but, of course, this is not
very interesting from the application perspective. In the case of corruptions,
however, the simulator is committed to the secret key α, and will be caught
cheating with certainty.

OUR SOLUTION: GGM ANALYSIS. Interestingly, the difficulty of completing
the simulation-based PCS proof for our tweaked construction y = F (x)α does
not seem to translate to an explicit attack on the resulting rotatable VRF. Rather,
we cannot build a sufficiently adaptive simulator to prevent the type of attack
in the previous paragraph. So we ask the question if the construction might be
actually be secure, despite the natural proof breaking down. Somewhat surpris-
ingly, we give supporting evidence that this is the indeed the case, by providing
such a security analysis in the generic group model (GGM) of Shoup [37].16

Recall that in Shoup’s GGM, all group elements have random bit-string rep-
resentations, and the group operation ? also has a random multiplication ta-
ble ?(a, b) (subject to associativity of multiplication). As such, most security
assumptions in standard groups (e.g., DDH) will hold in the GGM uncondi-
tionally. But now the simulator can commit to the public key pk = gα without
committing to α information-theoretically. Intuitively, since the attacker does not
know value α before the compromise, and has a bounded number of multiplica-
tion queries to explore, the simulator can simply choose a random value of α as
the secret key, and will have enough freedom to “mess” with the multiplication
table ?(a, b) to simultaneously satisfy many equations of the form yi = F (xi)

α

(as well as pk = gα). However, the formal proof of this statement is rather sub-
tle, and forms one of the main technical novelties of this work. For example, the
group laws mandate certain relationships that the attacker can always satisfy,
so the simulator has to be extremely careful not to “overplay its hand” and pro-
gram the multiplication table too aggressively. We present the full simulation
proof in Section 4.4, and hope that our GGM proof technique will find applica-
tions for analyzing other “non-committing” algebraic primitives.

15 Our final ZK proof will aggregate many such individual input rotation proofs into
one compact proof.

16 We stress that we only use GGM for the ZK property of our construction. Our stronger
extractability-based soundness is still proven in the random oracle model, and does
not require the GGM.
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INTERPRETATION OF OUR RESULT. On a philosophical point, we suggest that
the value of our GGM security proof should be understood in light of the
fact that ROM-based proofs seem to be inherently stuck, at least for the nat-
ural rotatable VRF that we consider. Aside from the obvious consideration that
we focused on finding a practical solution to a natural problem for which we
could not find an explicit attack, we note that the requirements in our defini-
tion of rotatable VRFs are quite strong. Basically, the simulator has to answer
all ideal queries without knowing any of the input/output behavior of the VRF,
and then must produce a single secret key consistent with not only these ideal
queries, but also all fake proofs (including rotation). From this perspective, we
feel that it is quite surprising that we managed to overcome these difficulties at
all, even relying on the GGM. The GGM proof can also be considered a sanity
check that our scheme is likely to be secure under weaker models/assumptions,
provided one correspondingly weakens our extremely demanding simulation
security definition.

More generally, while the ROM model is obviously preferred to the GGM,
practitioners do not mind relying on the GGM, provided it solves an interest-
ing problem. Indeed, we can point to several examples of interesting primitives
where standard analyses appear to be stuck, and the GGM provided mean-
ingful answers to these questions. Most notably, Signal leverages in produc-
tion a protocol which can only be proven secure in the GGM model to achieve
group privacy [11, 39]. Other important examples include optimal structure-
preserving signature schemes [1] and state-restoration soundness analysis of
Bulletproofs [15].

2 Notation and Preliminaries

We use square brackets [a1, a2, . . . , an] to denote ordered lists of objects, and
curly brackets {a, b, c, . . . } for sets. We represent maps D = {(a, b), (c, d), . . . }
as sets of label-value pairs. IfD is a set of pairs, we denote withD(·) = {a, c, . . . }
the set of the first components of each pair (the domain of the corresponding
map), and withD(·) = {b, d, . . . } the set of the second components (the range of
the map). When clear from context, we slightly abuse notation and write a ∈ D
(instead of a ∈ D(·)) if there is a pair (a, ·) in the set, and (when unique) we
denote the corresponding value with D[a]. Similarly, we use C[i] to denote the
i-th element of list C (1-indexed), and last(C) to denote its last element.

We denote with λ the security parameter. Given two security games I and
R, each parameterized by an algorithmA (the adversary), we define the advan-
tage of A in distinguishing the two experiments as

∣∣Pr[IA = 1]− Pr[RA = 1]
∣∣.

In each figure defining a security experiment, we denote with AO...(a1, . . . , an)
an execution of algorithm A on input a1, . . . , an with access to all the oracles
defined in that figure.

We use the following conventions to describe algorithms. When a hash func-
tion takes more than one input (or a pair), we assume that there is a well defined
way to serialize and deserialize such a tuple into a bitstring. Given a boolean
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b, we use ensure b as shorthand for “if not b, return 0”. We use “parse a as
(a1, . . . , an)” to denote that an algorithm tries to unpack a tuple of objects, and if
the tuple does not have the appropriate length the algorithm returns a dummy
output/error. In a security game, we use “assert b” to denote that if b is false,
the experiment is immediately terminated with a special return value⊥; during
an oracle call, we use “require b” to indicate that if b is false the oracle call by
the adversary is interrupted without output, and any effects on the state of this
call are reverted.

In the full version of the paper, we recall the Diffie-Hellman assumption,
and briefly discuss the Random Oracle Model and Generic Group Model as-
sumptions that our work depends on.

3 Rotatable Zero Knowledge Set

In this section, we formally define Rotatable Zero Knowledge Sets (RZKS). The
primitive Zero-Knowledge Set was introduced in [8,30] and extended to append-
only ZKS (aZKS) in [7]. We extend the notion of aZKS from SEEMless to add
new properties as well as strengthen the soundness guarantees in our new
primitive: RZKS.

Definition 1 A Rotatable Zero Knowledge Set (RZKS) consists of a tuple of al-
gorithmsZ = (Z.GenPP,Z.Init,Z.Update,Z.PCSUpdate,Z.VerifyUpd,Z.Query,
Z.Verify, Z.ProveExt, Z.VerExt) defined as follows:

. pp ← Z.GenPP(1λ): This algorithm takes the security parameter and pro-
duces public parameter pp for the scheme. All other algorithms take these
pp as input implicitly, even when not explicitly specified.

. (com, st) ← Z.Init(pp): This algorithm takes as input the public parameters,
and produces a commitment com to an empty datastore D0 = {} and an ini-
tial server/prover state st. A datastore D will be a collection of (labeli, vali, t)
tuples, where t is an integer indicating that the tuple has been added to the
datastore as part of the t-th Update or PCSUpdate operation (we call this an
epoch). Labels will be unique across the datastore (it can be thought of as a
map). Each server state st will contain a datastore and a digest, which we
will refer to as D(st) and com(st). Similarly, each commitment will include
the epoch t(com) of the datastore to which it is referring. (Alternatively,
these can be thought of as deterministic functions which are part of the
scheme.)

. (com′, st′, πS)← Z.Update(pp, st, S), (com′, st′, πS)← Z.PCSUpdate(pp, st, S):
Both algorithms take in the public parameters, the current state of the prover
st, and a list S = {(label1, val1), (label2, val2), . . . , (labeln, valn)} of new (la-
bel, value) pairs to insert (the labels must be unique and not already part
of D(st)). The algorithm outputs an updated commitment to the datastore,
an updated internal state st′, and a proof πS that the update has been done
correctly. Intuitively, com′ is a commitment to the updated datastore D(st′)
at epoch t(st′) = t(st)+ 1, which extends D(st) by also mapping each labeli
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in S to the pair (vali, t(st
′)). As we will see, Update and PCSUpdate have

different tradeoffs between their efficiency and the privacy guarantees they
offer.

. 0/1 ← Z.VerifyUpd(pp, comt−1, comt, πS): This deterministic algorithm takes
in two commitments to the datastore output at successive invocations of
Update, and verifies the above proof.

. (π, val, t) ← Z.Query(pp, st, u, label): This algorithm takes as input a state st,
an epoch u ≤ t(st), and a label. If a tuple (label, val, t) ∈ D(st) and t ≤ u,
it returns val, t and a proof π. Else, it returns val = ⊥, t = ⊥ and a non-
membership proof π. In both cases, proofs are meant to be verified against
the commitment comu output during the u-th update.

. 1/0 ← Z.Verify(pp, com, label, val, t, π): This deterministic algorithm takes a
(label, val, t) tuple, and verifies the proof π with respect to the commitment
com. If val = ⊥ and t = ⊥, this is considered a proof that label is not part of
the data structure at epoch t(com).

. πE ← Z.ProveExt(pp, st, t0, t1): This algorithm takes the state of the prover
and two epochs t0, t1, and returns a proof πE that the datastore after the
t1-th update is an extension of the datastore after the t0-th update. Proofs
are meant to be verified against the commitments comt0 and comt1 output
by Update during the t0-th and t1-th update.

. 1/0← Z.VerExt(pp, comt0 , comt1 , πE): This deterministic algorithm takes two
datastore commitments and a proof (generated by ProveExt) and verifies it.

We require a RZKS to satisfy the following security properties:

Completeness We will say that an RZKS satisfies completeness if for all PPT ad-
versaries A, the probability that the game described in Figure 1 outputs 0 is
negligible in λ.

Intuitively, all updates and queries should behave as expected by their de-
scriptions in the definition. Furthermore, all proofs produced by various up-
dating or querying algorithms should verify when properly queried to the cor-
responding verification algorithms. More formally, an adversary only breaks
completeness if it is able to construct a sequence of queries such that one of
the assertions in Figure 1 fails. For example, the assertion D(st′) = D(st) ∪
{(labeli, vali, t+1)}i∈[j] in Update(S) will only fail if the elements added in S are
not correctly added to the state of the datastore. Similarly, in Query(label, u) we
assert that P.Verify(comu, label, val

′, t′, π) succeeds, where (val′, t′, π) are those
produced by the corresponding call to P.Query.

Soundness We will say that an RZKS satisfies soundness if there exists an ex-
tractor Extract such that for all PPT adversaries A, the advantage of A in dis-
tinguishing the two experiments described in Figure 2 is negligible in λ. Note
that all the algorithms executed in the experiment get implicit access to the Ideal
oracle, as they might need to make, e.g., random oracle calls.

The extractor Extract is required to provide various functionalities based on
its first input:
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P-Completeness(A):

pp′ ← P.GenPP(1λ)

(com′, st′)← P.Init(pp′)

assert com(st′) = com′ and t(com′) = 0 and D(st′) = {}
com0 ← com′, st← st′, t← 0, pp← pp′

AO...(pp, com0)

return 1

Oracles Update(S) and PCSUpdate(S):

parse S as (label1, val1), . . . , (labelj , valj)
require label1, . . . , labelj are distinct and do not already appear in D(st)

(com′, st′, π)← P.Update(st, S) // resp. P.PCSUpdate(st, S)
assert com(st′) = com′, t(com′) = t+ 1 and D(st′) = D(st)∪ {(labeli, vali, t+ 1)}i∈[j]
assert y ← P.VerifyUpd(comt, com

′, π); y = 1

comt+1 ← com′, st← st′, t← t+ 1

Oracle Query(label, u):

require 0 ≤ u ≤ t
(π, val′, t′)← P.Query(st, u, label)

If label ∈ D(st), (valD, uD)← D(st)[label] and uD ≤ u:
assert (val′, t′) = (valD, uD)

Else
assert (val′, t′) = (⊥,⊥)

assert y ← P.Verify(comu, label, val
′, t′, π); y = 1

Oracle ProveExt(t0, t1): // RZKS only

require 0 ≤ t0 ≤ t1 ≤ t
πE ← P.ProveExt(st, t0, t1)

assert y ← P.VerExt(comt0 , comt1 , πE); y = 1

Oracle ProveAll(t′): // OA only

π ← P.ProveAll(st, t′)

assert y ← P.VerAll(comt′ ,D(st)≤t′ , π); y = 1

Fig. 1: Completeness for RZKS and OA (an Ordered Accumulator, defined in Section 5.1)
primitives (denoted with P). Some of the oracles are only applicable to one primitive. In
this experiment, the adversary can read all the game’s state and the oracle’s intermediate
variables, such as comi∀i, st, y. The experiment returns 1 unless one of the assertions
is triggered. These checks enforce that the data structure is updated consistently, that
the outputs of query reflect the state of the data structure, and that honestly generated
proofs pass verification as intended.

– pp′, st← Extract(Init): Samples public parameters indistinguishable from
honestly generated public parameters such that extraction will be possible.
Also generates an initial state.

– Dcom ← Extract(Extr, st, com): Takes in the internal state and a commit-
ment to the datastore. Outputs the set of (label, val, i) committed to.

– Ccom ← Extract(ExtrC, st, com): Takes in the internal state and a commit-
ment to the datastore. Outputs the set of previous commitments, indexed
by epoch.
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– out, st ← Extract(Ideal, st, in): Simulates the behavior of some ideal func-
tionality (for example a random oracle or generic group). Takes in any input
and produces an output indistinguishable from the output the ideal func-
tionality would have on that input.

One small subtlety of the definition here is that we do not allow the extractor
to update its state outside of Ideal calls. The only advantage that the extractor
gets over an honest party is its control over the ideal functionality. This allows
for easier composition, since a larger primitive utilizing RZKS will not need to
simulate extractor state.

An adversary breaks soundness if it either distinguishes answers to Ideal
queries in the real game from those produced by the extractor, or if it causes
some assertion to be false in the ideal game. Each assertion in the ideal game
captures some way in which the extractor could be caught in an inconsistent
state. For example, let us consider the assertion D[com][label] = (val∗, i∗) in
CheckVerD. This will be false if the adversary can provide a proof that (label, val∗,
i∗) is in the datastore with digest com, but the extractor expects this datastore
to either not contain label or to contain (label, val, i) for some different (val, i).

Our soundness definition strengthens the traditional one by providing ex-
tractability. aZKS soundness already guarantees that a (malicious) prover is un-
able to produce two verifying proofs for two different values for the same label
with respect to an aZKS commitment it has already produced. However, that
definition does not guarantee that the malicious prover knew the entire collec-
tion of (label, value) pairs at the time it produced the commitment. Extractabil-
ity requires that by mandating that the entire datastore can be extracted from
the commitment, except with negligible probability.

We also explicitly guarantee consistency among the RZKS commitments
produced over epochs. Informally, consistency guarantees that each commit-
ment to an epoch also binds the server to all previous commitments (i.e. these
can be extracted from the former). In particular, when the client swaps a com-
mitment coma with a more recent one comb by verifying an extension proof,
and then checks with an auditor that comb is legitimate, the client can be sure
that any auditor who checked all consecutive audit proofs up to comb must also
have checked the same coma for epoch a. This is modeled in the security game
by the assertions in the ExtractC, CheckVerUpdC, and CheckVerExt oracles.

Zero Knowledge We will say that an RZKS is zero knowledge for leakage func-
tion L = (LUpdate, LPCSUpdate, LQuery, LProveExt, LLeakState) if there exists a simula-
tor S such that every PPT malicious client algorithmA has negligible advantage
in distinguishing the two experiments of Figure 3.

The stateful simulator S is required to provide various functionalities:

– com′, pp′ ← S(Init): Samples public parameters and an initial commit-
ment indistinguishable from honest public parameters such that it will be
possible to simulate proofs.
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P-Sound-IDEAL(A):

pp′, st← Extract(Init)

D← {}, C ← [ ], pp← pp′

b← AIdeal(·),...(pp)
return b

Oracle ExtractD(com):

Dcom ← Extract(Extr, st, com)

If com ∈ D assert D[com] = Dcom

D[com]← Dcom

assert ∀ (label, val, i) ∈ D[com] : 0 < i ≤ t(com)

Oracle ExtractC(com): // RZKS only

Ccom ← Extract(ExtrC, st, com)

If com ∈ C assert C[com] = Ccom

C[com]← Ccom

assert |C[com]| = t(com) and
last(C[com]) = com

Oracle CheckVerD(com, label, val∗, i∗, π):

require P.Verify(pp, com, label, val∗, i∗, π) = 1

and com ∈ D

If val∗ = ⊥ or i∗ = ⊥:
assert label 6∈ D[com] ∧ val∗ = i∗ = ⊥

Else assert D[com][label] = (val∗, i∗)

Oracle CheckVerUpdD(coma, comb, π):

require P.VerifyUpd(pp, coma, comb, π) = 1 and
coma, comb ∈ D

assert D[coma] ⊆ D[comb], and
t(comb) = t(coma) + 1, and
∀(label, val, t) ∈ D[comb] \ D[coma] :

t = t(comb), and
(t(coma) 6= 0 or D[coma] = {})

Oracle CheckVerUpdC(coma, comb, π):// RZKS only

require P.VerifyUpd(pp, coma, comb, π) = 1 and
coma, comb ∈ C

assert t(comb) = t(coma) + 1, and
∀ j ≤ t(coma) : C[coma][j] = C[comb][j]

Oracle CheckVerExt(coma, comb, π): // RZKS only

require P.VerExt(pp, coma, comb, π) = 1 and
coma, comb ∈ C

assert ∀ j ≤ t(coma) : C[coma][j] = C[comb][j]

Oracle CheckVerAll(com, S, π): // OA only

require P.VerAll(pp, com, S, π) = 1 and com ∈ D

assert D[com] = S

Oracle Ideal(in):

out, st← Extract(Ideal, st, in)

return out

Fig. 2: Soundness for RZKS and OA (both denoted by P). In the ideal world, the map D
stores, for each commitment com, the datastore that the Extract algorithm output for that
commitment. In addition the map C stores, for each commitment, the (ordered) list of
commitments to previous epochs. When the adversary provides proofs, we require that
the proofs are consistent with such data structures. In the real world (not pictured), the
public parameters are generated as pp ← P.GenPP(1λ), and all the oracles do nothing
and return no output, except for the Ideal oracle, which implements the ideal objects
(such as random oracles) that we abstract to prove security of the primitives (and that
are controlled by the extractor in the ideal world). In both cases, P’s algorithms implicitly
get access to the Ideal oracle as needed.

– (com′, π) ← S((PCS)Update, l): Takes in some leakage l about an Update
(or, analogously, PCSUpdate) query on input S, i.e. in the experiment l ←
LUpdate(S) (or l ← LPCSUpdate(S)). Outputs a commitment com′ indistin-
guishable from a commitment to the previous datastore with the elements
of S appended. Furthermore simulates a proof π that the update was done
correctly.

– (π, val′, t′)← S(Query, l): Takes in leakage l← LQuery(u, label) about the en-
try indexed by (u, label) in the datastore. Outputs val′, t′ which would have
been returned by an honest query. Also simulates a proof π that D[label] =
(val′, t′), or an absence proof if label 6∈ D.
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– π ← S(ProveExt, l): Takes in partial information l ← LProveExt(t0, t1) from
a ProveExt query the between epochs t0 and t1. Outputs an extension proof
that the commitment provided at epoch t1 binds to the one at epoch t0.

– st← S(Leak, l): Takes in partial information l← LLeakState() about the data-
store and outputs a simulated state consistent with the information given.

– out ← S(Ideal, in): Simulates the behavior of some ideal functionality.
Takes in any input and produces an output indistinguishable from the out-
put the ideal functionality would have on that input.

Note that the particular leakage given will be construction specific, but
should be designed to be as minimal as possible. Our choice of leakage will
be described in detail in section 5.3. In the experiment, the only information
the simulator has access to is the output of the leakage function, as well as the
queries made to the Ideal oracle. The simulator’s ability to control the ideal or-
acle is crucial for security proofs to go through.

Informally, zero knowledge here means that the proofs generated by any se-
quence of honest calls to RZKS algorithms can be simulated given access to min-
imal information about the queries made. The adversary breaks zero knowl-
edge if it is able to generate a sequence of queries such that it can distinguish
the output of the simulator from honestly generated outputs and proofs. For
example, if the simulator is unable to simulate query proofs, then an adversary
could succeed by calling the Update({label, val}) oracle for some (label, val), then
the (π, val, 1) ← Query(label, 1) oracle, and running RZKS.Verify on π. Since the
simulator can’t simulate query proofs, π generated in the ideal world will not
verify and so will be distinguished from π generated in the real world.

Post-compromise security is modelled by allowing for LeakState calls, which
reveal the state in its entirety. When the adversary queries this oracle, the simu-
lator is required to output a state that appears consistent with whatever proofs
it has revealed before. Healing from compromise is modelled by having a ded-
icated leakage function for PCSUpdate (different from Update). Note that since
all the leakage functions share state, calling LeakState or PCSUpdate might af-
fect the leakage of other future queries.

3.1 Application to Key Transparency

Recall that in an aZKS, the value associated with each label cannot be updated:
the prover can only add new (label, value) pairs to the directory. In SEEM-
less [7], the server uses aZKS to commit to its public key directory by setting
the label to (userID || version number) and value to the public key of the user
corresponding to that ID. Every update to the underlying public key direc-
tory becomes a new label addition to the aZKS. The server collects a batch of
these additions and periodically updates the directory, creating a new epoch
and publishing a new aZKS commitment. Clients must hold on to all previous
commitments until they have double-checked them with the auditors (to en-
sure that the server is not violating the append-only property and that every
client is seeing the same commitments). If clients want to retain the ability to
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RZKS-ZK-REAL(A):

pp′ ← Z.GenPP(1λ)
(com′, pp′, st′)← Z.Init(pp′)
st← st′, t← 0, pp← pp′

b← AUpdate(·),...(com′, pp)

return b

Update(S): // analogous for PCSUpdate

parse S as (label1, val1), . . . , (labelj , valj)
require label1, . . . , labelj are distinct and do not
already appear in D(st)

(com′, st′, π)← Z.Update(st, S)
st← st′, t← t+ 1

return (com′, π)

Query(label, u):

require 0 ≤ u ≤ t
(π, val′, t′)← Z.Query(pp, st, u, label)

return (π, val′, t′)

ProveExt(t0, t1):

require 0 ≤ t0 ≤ t1 ≤ t
π ← Z.ProveExt(pp, st, t0, t1)
return π

LeakState():

return st

Ideal(in):

return Ideal(in)

RZKS-ZK-IDEAL(A):

com′, pp′ ← S(Init)
t← 0

b← AUpdate(·),...(com′, pp′)

return b

Update(S): // analogous for PCSUpdate

parse S as (label1, val1), . . . , (labelj , valj)
require label1, . . . , labelj are distinct and do not
already appear in any of the S1, . . . , St
(com′, π)← S(Update, LUpdate(S))

t← t+ 1, St ← S

return (com′, π)

Query(label, u):

require 0 ≤ u ≤ t
(π, val′, t′)← S(Query, LQuery(u, label))

return (π, val′, t′)

ProveExt(t0, t1):

require 0 ≤ t0 ≤ t1 ≤ t
π ← S(ProveExt, LProveExt(t0, t1))

return π

LeakState():

return S(Leak, LLeakState())

Ideal(in):

return S(Ideal, in)

Fig. 3: Zero Knowledge (with leakage) security experiments for RZKS. S is a state-
ful algorithm (whose state we omit to simplify the notation). The leakage functions
LUpdate, LQuery, . . . also share state among each other.

hold the server accountable even if auditors are temporarily offline, or if they
wish to do the audit themselves in the future, they need to hold on to all the
commitments indefinitely, which is inefficient. To solve this problem, SEEMless
suggests building a hashchain over all the aZKS commitments, so that the client
only needs to remember the tail. This is an improvement, but to skip between
two distant commitments, the client has to download all the epochs in between;
moreover, the security guarantees deriving from this are not formalized. In con-
trast, we propose a more efficient solution and formalize its security: we add the
ProveExt and VerExt algorithms, which allow the server to directly prove that
any given datastore commitment stems from another.

Thus, our advantage over SEEMless lies both in the fact that we give the
ability to heal from server state compromise and that we allow the client to
only keep the very latest commitment, and to efficiently update to the next one
without losing the ability to hold the server accountable later.
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4 Rotatable Verifiable Random Functions

In this section, we introduce the notion of a Rotatable Verifiable Random Func-
tion, a key component of our RZKS construction. Verifiable Random Functions
(VRFs), introduced in [33], are the asymmetric analogues of Pseudorandom
Functions: the secret key is necessary to compute the (random-looking) func-
tion on any input, as well as a proof that the computation was performed cor-
rectly, which can be checked against the corresponding public key. We extend
VRFs by adding “rotation” algorithms, which generate a new VRF key pair
alongside zero-knowledge proofs that outputs of the new and old VRF on the
same (hidden) input are associated. In addition, our rotatable VRFs also satisfy
stricter soundness properties.

Definition 2 A Rotatable Verifiable Random Function is a tuple of algorithms
VRF = (GenPP, KeyGen, Query, Verify, Rotate, VerRotate) defined as follows:

. pp ← VRF.GenPP(1λ): This algorithm takes the security parameter and pro-
duces public parameter pp for the scheme. All other algorithms take these
pp as input, even when not explicitly specified.

. (sk, pk)← VRF.KeyGen(pp): The key generation algorithm takes in the global
pp and outputs the public key pk and secret key sk.

. (y, π)← VRF.Query(pp, sk, x): The query algorithm takes in pp, the secret key
sk and input x, and outputs the evaluation y of the VRF defined by sk on
input x, as well as a proof π. We denote with VRF.Eval(sk, x) the first output
y of the Query algorithm (i.e. Eval does not return a proof).

. 1/0← VRF.Verify(pp, pk, x, y, π): This deterministic function verifies the proof
π that y is the output of the VRF defined by pk on input x.

. sk′, pk′, π ← VRF.Rotate(pp, sk,X): Given a secret key17 and a list of in-
puts X , this algorithm outputs an updated secret key, an updated public
key, and a proof π that the set of VRF output pairs P = {(VRF.Eval(sk, x),
VRF.Eval(sk′, x))}x∈X satisfies the relationship that each pair corresponds
to the same input x (without leaking information about X beyond its size).

. 0/1← VRF.VerRotate(pp, pk, pk′, P, π): Given two public keys pk, pk′ and list
of P pairs (y, y′), this deterministic algorithm checks the proof π that each
pair consists of the output of the VRFs identified by pk, pk′ on the same
input x.

For correctness, we require that for all λ, n ∈ N, all sets of inputsX1, . . . , Xn,
and all inputs x:

Pr[pp←VRF.GenPP(1λ); sk0, pk0 ← VRF.KeyGen(pp);

ski, pki, πi ← VRF.Rotate(ski−1, Xi) for i = 1, . . . , n;

y, π ← VRF.Query(skn, x) : VRF.Verify(pkn, x, y, π) = 1] = 1.

17 Given that the old key sk and new key are independent from one another, we could
have equivalently defined Rotate as taking any two secret keys as input.
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Moreover, for all λ, n > 0 and all sets of inputs X1, . . . , Xn:

Pr[pp← VRF.GenPP(1λ); sk0, pk0 ← VRF.KeyGen(pp);

ski, pki, πi ← VRF.Rotate(ski−1, Xi) for i = 1, . . . , n : VRF.VerRotate(pkn,

{(VRF.Eval(skn−1, x),VRF.Eval(skn, x))}x∈Xn , πn) = 1] = 1.

4.1 Rotatable VRF Security

Informally, VRFs satisfy two properties. Uniqueness mandates that for any pub-
lic key and input x, there is only one y which can be proven to be output by
the function on input x. Pseudorandomness guarantees that, for an honestly gen-
erated key pair sk, pk and given oracle access to the query oracle on arbitrary
inputs, it is hard to distinguish the output of the function on any other (not yet
queried) input from a uniformly random value.

We augment the uniqueness and pseudorandomness requirements into
soundness and zero-knowledge respectively.

Soundness (strengthened uniqueness) We will say that a VRF satisfies soundness
if there exists an Extractor such that for all PPT adversariesA, the advantage of
A in distinguishing the experiments of Figure 4 is negligible.

The extractor Extract is required to provide three functionalities based on its
first input:

– pp, st ← Extract(Init): Samples public parameters indistinguishable from
honestly generated public parameters such that extraction will be possible.
Also generates an initial state.

– x ← Extract(Extr, st, pk, y): Takes in an adversarially chosen public key
pk and output y of the function. Outputs the only input x for which the
adversary can produce an accepting proof.

– out, st ← Extract(Ideal, st, in): Simulates the behavior of some ideal func-
tionality (for example a random oracle or generic group). Takes in any input
and produces an output indistinguishable from the output the ideal func-
tionality would have on that input.

As with RZKS, we do not allow the extractor to update its state outside
Ideal calls.

In the ideal experiment, the table T keeps track of the outputs of the extrac-
tor. An assertion is triggered (and the adversary can trivially win) if the extrac-
tor gives different answers to the same query over time, if the same answer is
returned for multiple inputs under the same public key, or if the adversary pro-
duces an accepting proof for an input different than what the extractor had pre-
dicted (these requirements together capture uniqueness). Moreover, the game
also enforces that proofs of rotation are consistent with the extractor’s output
and the equality condition is respected. In the real experiment, assertions are
never triggered, so indistinguishability ensures that public parameters, as well
as the answers to ideal queries, give the adversary the same view.
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Zero Knowledge (strengthened pseudorandomness) We will say that a VRF satisfies
zero-knowledge if there exists a simulator such that for all PPT adversaries A,
the advantage of A in distinguishing the experiments of Figure 5 is negligible.

The stateful simulator S is required to provide various functionalities:

– pp, pk0 ← S(Init): Samples public parameters and an initial public key
such that it will be possible to simulate proofs.

– y ← S(Corrupted-Eval, i, x): Takes in a corrupted generation i and in-
put x, and outputs the evaluation of the VRF on i and x. If this is called,
the adversary has already obtained the corresponding secret key for gener-
ation i, so the simulator is forced to output a value consistent with what the
adversary could compute itself.

– π ← S(Explain, i, label, y): Takes in a generation, input, and output. Out-
puts a simulated proof that the output of the oracle Eval(i, x) = y.

– pkicur , πR ← S(Rotate, P ): Takes in a set P of pairs (y, y′). Samples a new
public key pkicur and outputs a simulated proof that for each (y, y′) ∈ P
there exists an x such that Eval(icur−1, x) = y and Eval(icur, x) = y′.

– skicrpt+1, . . . , skicur ← S(Corrupt, D): Takes in all queries made to Eval. Out-
puts a collection of secret keys consistent with output of all oracle queries
made so far.

– out ← S(Ideal, in): Simulates the behavior of some ideal functionality.
Takes in any input and produces an output indistinguishable from the out-
put the ideal functionality would have on that input.

We combine pseudorandomness with a zero knowledge requirement by re-
quiring that in each generation a simulator can sample public parameters such
that it can simulate proofs that the VRF is consistent with a new truly random
function. Furthermore, the simulator must be able to simulate rotation proofs
that the outputs of two random functions stem from the same input. We model
post compromise security by requiring that the simulator also be able to sample
secret keys consistent with all previous queries. Since it is impossible to sample
a secret key consistent with all future queries for a truly random function, after
corruption we give the simulator the ability to control the function associated
with that epoch. Note that the major difficulty in demonstrating zero knowl-
edge is that the simulator must simulate queries to the ideal oracle without
knowing what inputs are asked of the truly random function.

We remark that our definition of zero knowledge is heavily inspired by the
notion of a simulatable VRF, introduced in [9]. Simulatable VRFs require that
there exists a simulator that can sample simulated public parameters such that
for any public key pk, input x in the domain, and y in the range of the VRF, it
is possible to simulate a proof π that y is the output of the function on input
x (i.e. Verify(pp, pk, x, y, π) = 1). The simulated parameters, outputs and proofs
should be indistinguishable from honestly generated ones. Our definition of
zero knowledge extends this notion by accounting for rotation proofs and cor-
ruptions. Our soundness notion is also stronger as we require extractability.
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VRF-Sound-IDEAL(A):

T ← [ ]; pp, st← Extract(Init)

b← AO...(pp)
return b

Oracle Extract(pk, y):

x← Extract(Extr, st, pk, y)

If (pk, y) ∈ T assert T [pk, y] = x

assert x = ⊥ ∨ ∀y′ 6= y : T [pk, y′] 6= x

T [pk, y]← x

Oracle CheckExtraction(pk, y, x, π):

require VRF.Verify(pk, x, y, π) = 1 ∧ (pk, y) ∈ T
assert T [pk, y] = x

Oracle CheckVerRotate(pk1, pk2, P, π):

require VRF.VerRotate(pk1, pk2, P, π) = 1 ∧
∀(u1, u2) ∈ P : (pk1, u1) ∈ T ∧ (pk2, u2) ∈ T

assert ∀(u1, u2) ∈ P : T [pk1, u1] = T [pk2, u2]

Oracle Ideal(in):

out, st← Extract(Ideal, st, in)

return out

Fig. 4: Soundness for VRF. In the real world (not pictured), the public parameters are
generated as pp ← VRF.GenPP(1λ), and the oracles do not do anything, except for the
Ideal one which implements the necessary ideal objects according to their specification.

4.2 Rotatable VRF Construction

Our rotatable Verifiable Random Function VRF = (GenPP, KeyGen, Query, Verify,
Rotate, VerRotate) is instantiated in figure 6. In summary, let G be a group of
(exponential) prime order p with generator g, and let F (x) be a hash func-
tion that maps arbitrary-length bitstrings onto G. Then for a given input x,
secret key sk ∈ Z∗p, and public key pk = gsk, the VRF output is y = F (x)sk.
To prove this, Query simply produces a Fiat-Shamir zero-knowledge proof that
(g, F (x), pk = gsk, y = F (x)sk) is a DDH tuple.

Given secret key sk = α0 · · · · · αi and public key gα0·····αi , Rotate sam-
ples αi+1 from Z∗p. It then sets sk′ = α0 · · · · · αi+1 and stores pk′ = pkαi+1 =

gα0·····αi+1 = gsk
′
. Then, it outputs a “batch” Fiat-Shamir zero-knowledge proof

that (pk, y, pk′, y′) is a DDH tuple, where y and y′ are random linear combina-
tions of VRF.Eval(sk, x) and VRF.Eval(sk′, x) for x ∈ X , respectively. In figure
6, the coefficients for the random linear combination are derived as au.

4.3 Rotatable VRF Soundness Proof

Soundness of extraction stems directly from soundness of the underlying Fiat-
Shamir proof that (g, F (x), pk = gsk, y = F (x)sk) is a DDH tuple. To show
soundness of rotation, again we use the fact that the underlying Fiat-Shamir
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VRF-ZK-REAL(A):

pp← VRF.GenPP(1λ)

sk0, pk0 ← VRF.KeyGen(pp)

icur ← 0, icrpt ← −1
b← AO...(pp, pk0)
return b

Oracle Eval(i, x):

require 0 ≤ i ≤ icur
y ← VRF.Eval(ski, x)

return y

Oracle Prove(i, x):

require 0 ≤ i ≤ icur
y, π ← VRF.Query(ski, x)

return y, π

Oracle Rotate(X):

skicur+1, pkicur+1, πR ← VRF.Rotate(skicur , X)

icur ← icur + 1

return pkicur , πR

Oracle Corrupt():

return skicrpt+1, . . . , skicur
icrpt ← icur

Oracle Ideal(in):

return Ideal(in)

VRF-ZK-IDEAL(A):

pp, pk0 ← S(Init)
icur ← 0, icrpt ← −1, D = {0 : {}}
b← AO...(pp, pk0)
return b

Oracle Eval(i, x):

require 0 ≤ i ≤ icur
If i ≤ icrpt:

return S(Corrupted-Eval, i, x)
If x 6∈ D[i]:

y
$← Y ;D[i][x]← y

returnD[i][x]

Oracle Prove(i, x):

require 0 ≤ i ≤ icur
π ← S(Explain, i, x, Eval(i, x))
return Eval(i, x), π

Oracle Rotate(X):

icur ← icur + 1

P ← {(Eval(icur − 1, x), Eval(icur, x)) | x ∈ X}
pkicur , πR ← S(Rotate, P )

return pkicur , πR

Oracle Corrupt():

skicrpt+1, . . . , skicur ← S(Corrupt, D)

return skicrpt+1, . . . , skicur
icrpt ← icur

Oracle Ideal(in):

return S(Ideal, in)

Fig. 5: Zero Knowledge experiments for the Rotatable VRF.

proof that (pk, y, pk′, y′) is a DDH tuple is sound. The only subtlety is to show
that batching the rotation proofs in the manner we do works. That is, we need
to show that if (y, y′) are a random linear combination of {(VRF.Eval(sk, x),
VRF.Eval(sk′, x))}x∈X , then if y′ = yα, with all but negligible probability we
also have VRF.Eval(sk′, x) = VRF.Eval(sk, x)α for all x ∈ X .

Taking the contrapositive, we just need to show that if there is any (y0, y
′
0) in

{(VRF.Eval(sk, x),VRF.Eval(sk′, x))}x∈X such that y′0 6= yα0 , then the probabil-
ity that a random linear combination (y, y′) satisfies y′ = yα must be negligible.
Note that if there exists a pair (y1, y′1) in {(VRF.Eval(sk, x),VRF.Eval(sk′, x))}x∈X
such that (y0, y′0) and (y1, y

′
1) are linearly independent as elements ofG×G, then

(y, y′) will be uniformly random and so will satisfy y′ = yα with only negligi-
ble probability. But if there is no such pair, then (y, y′) = (yc0, y

′c
0 ) for some c, so

y′ = yα with probability 1. A detailed formal proof of the following theorem is
deferred to the full version of this paper.
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. pp← VRF.GenPP(1λ):
– p← prime exponential in λ
– G← group of order p
– g ← generator ofG
– Sample hash function F : {0, 1}∗ → G

– Sample hash function F ′ : {0, 1}∗ → Zp
– return pp← (p,G, g, F, F ′)

. (sk, pk)← VRF.KeyGen(pp):
– parse pp as (p,G, g, F, F ′)

– α0
$← Z∗p

– sk ← α0

– pk ← gα0

– return (sk, pk)

. (y, π)← VRF.Query(pp, sk, x):
– parse pp as (p,G, g, F, F ′)
– y ← F (x)sk

– r
$← Zp

– c← F ′(g, F (x), gsk, F (x)sk, gr, F (x)r)

– z ← r − c · sk
– π ← (gr, F (x)r, z)

– return (y, π)

. 1/0← VRF.Verify(pp, pk, x, y, π):
– parse pp as (p,G, g, F, F ′)
– ensure pk 6= g0

– parse π as (h1, h2, z)

– c← F ′(g, F (x), pk, y, h1, h2)

– ensure h1 = gz · pkc

– ensure h2 = F (x)z · yc

– return 1

. sk′, pk′, π ← VRF.Rotate(pp, sk,X):
– parse pp as (p,G, g, F, F ′)

– α
$← Z∗p

– sk′ ← sk · α
– pk′ ← gsk

′

– P ← {(VRF.Eval(sk, x),
VRF.Eval(sk′, x))}x∈X

– For each (u, u′) ∈ P :
• au ← F ′(u, u′, pk, pk′, P )

– y ←
∏

(u,u′)∈P u
au

– y′ ←
∏

(u,u′)∈P (u′)au

– r
$← Zp

– c← F ′(pk, y, pk′, y′, pkr, yr)

– z ← r − cα
– π ← (pkr, yr, z)

– return (sk′, pk′, π)

. 0/1← VRF.VerRotate(pp, pk, pk′, P, π):
– parse pp as (p,G, g, F, F ′)
– ensure pk, pk′ 6= g0

– For each (u, u′) ∈ P :
• au ← F ′(u, u′, pk, pk′, P )

– y ←
∏

(u,u′)∈P u
au

– y′ ←
∏

(u,u′)∈P (u′)au

– parse π as (h1, h2, z)

– c← F ′(pk, y, pk′, y′, h1, h2)

– ensure h1 = pkz · (pk′)c

– ensure h2 = yz · (y′)c

– return 1

Fig. 6: Our Rotatable VRF construction.

Theorem 1 If F and F ′ are modeled as random oracles, and if the DDH assumption
holds, then there exists a simulator Extract such that for any efficient adversary A,

|Pr[VRF-Sound-REAL(A)→ 1]− Pr[VRF-Sound-IDEAL(A)→ 1]| ≤ negl(λ).

4.4 Rotatable VRF Zero Knowledge Proof

Since our construction generates zero-knowledge proofs in Prove and Rotate,
one would hope that simulating these proofs would be enough to prove zero-
knowledge of the construction. In fact, if there were no Corrupt oracle, then
simply programming the random oracle F ′ would be enough to simulate these
proofs and achieve zero-knowledge. However, once an adversary has called
Corrupt and obtained some secret key ski, it can then easily distinguish previ-
ously outputted Eval(i, x) from the true VRF output F (x)ski by simply calculat-
ing F (x)ski itself and comparing the two.

This intuition extends to arbitrary simulation strategies. Consider for exam-
ple an adversary who asks for F (x) and F (x′), y ← Eval(i, x), y′ ← Eval(i, x′) in
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this order, for two distinct x, x′ and some i. At the time of the F queries, the uni-
formly random outputs of the VRF have not yet been sampled, and so the simu-
lator’s output cannot depend on them. Once the adversary calls the Corrupt or-
acle, the simulator can produce a value for ski only if logF (x)(y) = logF (x′)(y

′),
which only happens with negligible probability. While this specific problem
could be solved by adding an additional hash at the end of the VRF computa-
tion, i.e. defining VRF.Eval(sk, x) = H(F (x)sk) as in [16] and treating H as a
programmable random oracle, similar issues arise when considering our effi-
cient rotation proofs, which would force the game to reveal preimages for the
hash before the corruption happens (and so before the simulator knows what
algebraic relations should exists between the outputs of F and the group ele-
ments revealed in rotation proofs).

To solve this problem, we need to treatG as a generic group. This allows the
simulator to hold off on sampling ski until Corrupt is called. Until this point, the
simulator will treat pki as an arbitrary group element, but it will keep track of
all algebraic relationships between unknown arbitrary group elements. Then,
when Corrupt is called, the simulator will have access to a list of all group ele-
ments h such that the adversary expects h = gf(ski) for some function f of ski.
At this point, the simulator will choose ski uniformly at random, and can pro-
gram the generic group such that gf(ski) = h for all such f . A detailed formal
proof of the following theorem is deferred to the full version of this paper.

Theorem 2 If the group G is modeled as a generic group, and F, F ′ are modeled as
random oracles, then there exists a simulator S such that for any efficient A,

|Pr[VRF-ZK-REAL(A)→ 1]− Pr[VRF-ZK-IDEAL(A)→ 1]| ≤ negl(λ).

5 RZKS-Construction

5.1 Relevant Primitives

In order to construct RZKS, we rely on a number of building blocks aside from
Rotatable VRFs. Security definitions and constructions are included in the full
version of the paper, but we include the syntax and a short description here for
ease of reference.

Simulatable Commitments. A commitment is a scheme which allows a prover
to publish a commitment to any given value such that the prover may later pub-
lish a proof that the commitment was indeed generated from the initial value.
Furthermore, the simulatability requirement states that the commitment reveals
no information about the committed value. A full definition and construction
is included in the full version of the paper.

Definition 3 (Simulatable Commitments) A Simulatable Commitment Scheme
C consists of 3 algorithms (C.Init,C.Commit,C.Verify) defined as follows:
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. pp ← C.GenPP(1λ): On input the security parameter, GenPP outputs public
parameters pp.

. com, aux ← C.Commit(pp,m): Using the global parameters pp, the (random-
ized) commit algorithm produces commitment com to message m, and de-
commitment information aux.

. 1/0← C.Verify(pp, com,m, aux): This deterministic algorithm checks whether
com is a valid commitment to message m, given the decommitment aux.

Ordered Accumulator (OA). An ordered accumulator is a scheme which al-
lows a prover to commit to a sequence of label/value pairs. Furthermore, an or-
dered accumulator allows the prover to verifiably append label/value pairs to a
previously committed sequence to generate a new commitment. The prover can
later provide proofs that a given label/value pair is in the committed sequence
or that a given label is not included in the committed sequence. A construc-
tion is given in the full version of the paper. Completeness and soundness are
defined analogously to RZKS in figures 1 and 2 respectively.

Definition 4 An Ordered Accumulator is a tuple of algorithms OA = (GenPP,
Init, Update, VerifyUpd, Query, Verify, ProveAll, VerAll) defined as follows:

. GenPP, Init, Update, VerifyUpd, Query, Verify are defined analogously to the
RZKS in Definition 1.

. π ← OA.ProveAll(pp, st, u): This algorithm outputs π which can be verified
against the commitment comu output by the u-th call to Update. It proves
the set of label value pairs included in the datastore up to epoch u.

. 1/0 ← OA.VerAll(pp, comu, P, π): This deterministic algorithm takes a digest
comu, a set P of (label, val, t) pairs, and a proof. It checks that P is the set of
all pairs that comu commits to.

Append-Only Vector Commitments (AVC). An append-only vector commit-
ment can be used to commit to a list of values, extend the list without recomput-
ing the commitment from scratch, prove what the value is at a specific position
in the list, and prove that two commitments have been obtained by extending
the same list.

We briefly discuss the syntax of this primitive here, and defer the security
definitions and construction to the full version of the paper.

Definition 5 An Append-only Vector Commitment is a tuple of algorithms
AVC = (GenPP, Init,Update,ProveExt,VerExt,Query,Verify) defined as follows:

. pp ← AVC.GenPP(1λ): This algorithm takes the security parameter and pro-
duces public parameter pp for the scheme. All other algorithms take these
pp as input, even when not explicitly specified.

. (com, st)← AVC.Init(pp): This algorithm produces an initial commitment com
to an empty list D0 = {}, and an initial server/prover state st. Each server
state st will contain a list and a digest, which we will refer to as D(st) and
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com(st). Similarly, each commitment will include an integer t(com) (also
called an epoch for consistency with other primitives) representing the size
of the list it commits to. (Alternatively, these can be thought of as determin-
istic functions which are part of the scheme.)

. (com′, st′, πS) ← AVC.Update(pp, st, val): This algorithm takes in the current
state of the prover st, and a value val. The algorithm outputs an updated
commitment to the datastore, an updated internal state st′, and proof π
(to be verified with VerExt) that the update has been done correctly. Intu-
itively, com′ is a commitment to the list D(st′) = D(st)||val of size t(com′) =
t(com(st)) + 1.

. π ← AVC.ProveExt(pp, st, t′, t): Given the prover’s state st and two integers,
the algorithm produces a proof that the list committed to by comt (output
at the t-th invocation of Update) extends the one committed to by comt′ .

. 0/1 ← AVC.VerExt(pp, com′, com, π): This deterministic algorithm takes in
two digests and proves that the list committed to by com extends the one
committed to by com′. The proofs can be produced by either Update or
ProveExt.

. (π, val)← AVC.Query(pp, st, u, t′): This algorithm takes as input a state st and
epochs u and t′ such that u ≤ t′ ≤ t(st). It returns val = D(st)[u] and a
membership proof π to be verified against the commitment comt′ output
by Update during the t′-th update.

. 0/1 ← AVC.Verify(pp, com, u, val, π): This deterministic algorithm checks the
proof π (produced by Query) that val is the is the u-th element of the list
committed by com.

5.2 RZKS Construction

We describe our RZKS construction in Figure 7. The RZKS commits to a set of
(label, val) pairs by storing in an ordered accumulator (tlbl, tval) pairs, where a
given tlbl is the VRF output18 for a given label, and a given tval is the commit-
ment to a given val. Elements are added to the OA in batches, where the i-th
update to the OA produces a digest at the i-th epoch. At each epoch, the OA
digest and VRF public key are stored in the corresponding index of the AVC.
The resulting AVC digest is returned as the RZKS digest.

Updating the RZKS produces an append-only proof, which contains the
append-only proofs for the underlying OA and AVC. To verify the presence of
a (label, val), inclusion/exclusion proofs include the VRF proof, commitment
opening, OA digest, a proof that the label/value pair is consistent with that di-
gest, and a proof that the digest is at the expected index of the vector that the
AVC digest commits to.

The AVC data structure allows the RZKS to support the ProveExt and VerExt
algorithms, in which the server proves that a recent RZKS digest commits to an

18 The Rotatable VRF presented in this work outputs group elements, while the ordered
accumulator takes as input bit-strings, so we implicitly assume that these group ele-
ments have a unique bit-string representation.
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older one that the verifier currently holds (therefore, the client can forget the
old digest without losing the ability to hold the server accountable later).

The RZKS construction is similar to the append-only ZKS described in SEEM-
less [7], but i) each leaf also contains the epoch number at which such leaf was
inserted, and ii) it uses a rotatable VRF instead of a standard one. To perform
a rotation, the prover rotates the VRF key and builds a brand new ordered ac-
cumulator using the same commitments as the old one, but uses the new VRF
outputs as labels. The audit proof for such a rotation involves the VRF rota-
tion proof for all the pre-existing labels, plus an append-only proof for any new
labels that were added.

Finally, we summarize the state that the RZKS maintains (note that some
values in the state are redundant for the sake of readability). It maintains D, a
map of all the (label, val) pairs in the RZKS, and epno, the latest epoch number.
It also contains stOA and stAVC, the underlying state of the OA and AVC, respec-
tively. It stores comepno, which is the latest value stored at the epno-th position
in the AVC (recall that it contains the latest OA digest and VRF public key). And,
the RZKS state stores KVRF, a map of the VRF keypair for each VRF keypair gen-
eration; G, a map of the corresponding VRF generation for each epoch number;
and g, the latest VRF keypair generation number.

5.3 RZKS Protocol Security

Theorem 3 The scheme described in Figure 7 satisfies completeness according to defi-
nition 1.

This is easy to see by inspection.

Theorem 4 Let OA be an Ordered Accumulator, C be a Commitment scheme, VRF be
a VRF, and AVC be an Append-only Vector Commitment, all satisfying their respective
definitions of soundness w.r.t. their own idealized objects. Then the RZKS construction
of Figure 7 satisfies soundness, w.r.t. the set of all such idealized objects.

Proof Sketch: To prove soundness, we define an RZKS extractor that trivially
combines those for the underlying building blocks. It extracts a dictionary from
an RZKS digest by feeding the output of each extractor as input to the next,
and answers Ideal oracle queries for a primitive’s ideal object by running the
appropriate extractor. Given this extractor, we make a hybrid argument: we
first need to add extra assertions to the ideal RZKS game enforcing that the in-
dividual components of an RZKS proof match the output of the corresponding
extractors (indistinguishability can be proven based on the soundness of those
primitives). This prevents an adversary from submitting proofs for the same
tuples that the combined extractor outputs, but that disagree with the internal
extractors. After that, we can start removing the individual extractors and hon-
estly implementing the corresponding ideal objects (relying a second time on
the same soundness properties of the underlying primitives) to get to the real
game. The full proof is in the full version of the paper.
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. pp← RZKS.GenPP(1λ):
– ppVRF ← VRF.GenPP(1λ)

– ppOA ← OA.GenPP(1λ)

– ppC ← C.GenPP(1λ)

– ppAVC ← AVC.GenPP(1λ)

– return pp← (ppVRF, ppOA, ppC, ppAVC)

. (com, st)← RZKS.Init(pp):
– parse pp as (ppVRF, ppOA, ppC, ppAVC)

– epno← 0, g← 0,KVRF ← {}, D← {},
stOA ← {},G← {}

– sk0, pk0 ← VRF.KeyGen(ppVRF);

KVRF[g]← (sk0, pk0),G[epno]← g

– (st′, com0
OA)← OA.Init(ppOA);

com0
INT ← (com0

OA, pk0); stOA[g]← st′

– (stAVC, _)← AVC.Init(ppAVC);
com1, stAVC, π

0 ← AVC.Update(stAVC, com
0
INT)

– st← (KVRF,D, com
1, epno, g,G, stOA, stAVC)

– return com1, st

. (com, st′, π)← RZKS.Update(st, Supdate):
(com, st′, π)← RZKS.PCSUpdate(st, Supdate):
// bullets with � only apply to PCSUpdate

– parse st as
(KVRF,D, com, epno, g,G, stOA, stAVC);
set epno← epno + 1

– parse Supdate as
(label1, val1), . . . , (labeln, valn)

– ensure label1, . . . , labeln are distinct and 6∈ D

� L← {label | (label, (. . . )) ∈ D}
� skg+1, pkg+1, πVRF ← VRF.Rotate(KVRF[g], L)

� KVRF[g + 1]← (skg+1, pkg+1)

� g← g + 1

� For g′ ∈ {g, g − 1}: {tlblg
′
j }j∈L ←

{VRF.Eval(KVRF[g
′].sk, j)}j∈L

� πg−1
OA ← OA.ProveAll(stOA[g − 1], epno− 1)

� st′, _← OA.Init(ppOA); For i ∈ [epno− 1] :

• SOA ← {(tlblgj , tvalj) | (j, (·, i, tvalj , ·)) ∈ D}
• st′, com′OA, _← OA.Update(st′, SOA)

� stOA[g]← st′, comepno−1
OA ← com′OA

� πg
OA ← OA.ProveAll(stOA[g], epno− 1)

– SOA ← {}; For each (labeli, vali) ∈ Supdate:
• tlbli ← VRF.Eval(KVRF[g].sk, labeli)

• tvali, auxi ← C.Commit(vali)

• SOA ← SOA ∪ {(tlbli, tvali)}
• D← D ∪ {(labeli, (val, epno, tvali, auxi))}

– stOA[g], com
epno
OA , πOA←OA.Update(stOA[g], SOA);

comepno
INT ← (comepno

OA ,KVRF[g].pk); G[epno] ← g;
π′ ← πOA

– com, stAVC, πAVC ← AVC.Update(stAVC, com
epno
INT )

– _, πepno
AVC ← AVC.Query(stAVC, t(com), t(com))

– comepno−1
INT , πepno−1

AVC ←
AVC.Query(stAVC, t(com)− 1, t(com)− 1)

� π′ ← (πOA, π
g−1
OA , πg

OA, πVRF, com
epno−1
OA ,

{(tlblg−1
j , tlblgj , tvalj , epnoj)}j∈L)

– π ← (π′, πAVC, com
epno
INT , com

epno−1
INT ,

πepno
AVC , π

epno−1
AVC )

– st← (KVRF,D, com, epno, g,G, stOA, stAVC)

– return (com, st, π)

. 0/1← RZKS.VerifyUpd(comt0 , comt1 , π):
– parse π as

(π′, πAVC, com
t1
INT, com

t0
INT, π

t1
AVC, π

t0
AVC)

– parse com
t0
INT as (comt0OA, pkt0 )

– parse com
t1
INT as (comt1OA, pkt1 )

– ensure OA.t(com
t0
OA) + 2 = AVC.t(comt0 ) +

1 = AVC.t(comt1 ) = OA.t(com
t1
OA) + 1

– ensure AVC.VerExt(comt0 , comt1 , πAVC) = 1

– For t ∈ {t0, t1}: ensure AVC.Verify(comt,

AVC.t(comt), comtINT, π
t
AVC) = 1

– If pkt0 = pkt1 :

• parse π′ as πOA; set com′OA ← com
t0
OA

Else:
• parse π′ as (πOA, π

g−1
OA , πg

OA, πVRF, com
′
OA,

{(tlblg−1
j , tlblgj , tvalj , epnoj)}j∈L)

• ensure VRF.VerRotate(pkt0 , pkt1 ,

{(tlblg−1
j , tlblgj)}j∈L, πVRF) = 1

• ensure OA.VerAll(com
t0
OA, {(tlbl

g−1
j , tvalj ,

epnoj)}j∈L, π
g−1
OA ) = 1

• ensure OA.VerAll(com′OA, {(tlbl
g
j , tvalj ,

epnoj)}j∈L, π
g
OA) = 1

– ensure

OA.VerifyUpd(com′OA, com
t1
OA, πOA) = 1

– return 1

. (π, val, t)← RZKS.Query(st, u, label):
– parse st as

(KVRF,D, com, epno, g,G, stOA, stAVC)

– ensure u ≤ epno

– (tlbl, πVRF)←
VRF.Query(KVRF[G[u]].sk, label)

– If label ∈ D and D[label].epnolabel ≤ u :

• (val, epnolabel, tval, aux)← D[label]

Else:
• (val, epnolabel, tval, aux)← (⊥,⊥,⊥,⊥)

– πOA, _← OA.Query(stOA[G[u]], u, tlbl)

– πAVC, comINT ← AVC.Query(stAVC, u, u)

– π ← (πAVC, πOA, πVRF, tlbl, tval, aux, comINT)

– return π, val, epnolabel

. 0/1← RZKS.Verify(com, label, val, t, π):
– parse π as

(πAVC, πOA, πVRF, tlbl, tval, aux, comINT)

– parse comINT as (comOA, pk)

– ensure VRF.Verify(pk, label, tlbl, πVRF) = 1

– ensure AVC.t(com) = OA.t(comOA) + 1

– If t = ⊥ ∨ val = ⊥ ∨ tval = ⊥
Then ensure val = tval = t = ⊥
Else ensure C.Verify(val, tval, aux) = 1

– ensure OA.Verify(comOA, tlbl, tval, t, πOA) = 1

– ensure AVC.Verify(com,AVC.t(com), comINT,

πAVC) = 1

– return 1

. (π, val, t)← RZKS.ProveExt(st, t0, t1):
– parse st as

(KVRF,D, com, epno, g,G, stOA, stAVC)

– return AVC.ProveExt(stAVC, t0, t1)

. 0/1← RZKS.VerExt(comt0 , comt1 , π):
– return AVC.VerExt(comt0 , comt1 , π)

Fig. 7: Our RZKS construction. We implicitly assume that the public parameters output
by GenPP are input to all other algorithms, parsed into their components and input to
the VRF, OA and C, AVC algorithms as appropriate (as shown in Init). Moreover, since
the OA commitment to the empty datastore ends up as the first element of the AVC, in
this construction we define RZKS.t(com) as AVC.t(com)− 1.
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Last, we prove that the RZKS construction satisfies zero-knowledge with leak-
age. The leakage function provides the simulator, for Update queries, with the
number of elements that are being added to the data structure, as well as the
labels (but not values) of any added pair that the adversary has queried since
the last PCSUpdate (and was given absence proofs for). PCSUpdate queries only
include the number of added pairs. When the adversary calls the Query oracle,
the simulator is given the queried label, as well as the epoch it was added at (if
the label is in the RZKS) and value (if it was added no later than the queried
epoch). On LeakState queries, the simulator is given the full contents of the data
structure, and subsequent Update queries until the next PCSUpdate also reveal
all the added labels (but not the values). Finally, ProveExt queries just reveal the
queried epochs. A formal definition follows:

Leakage L.

– The shared state consists of a set of labels X , a datastore D, a counter t for
the current epoch (initialized to 0), a counter g for the current generation
(i.e. the number of PCSUpdate operations performed, also starting at 0), a
map G that matches each epoch to the respective generation, and a boolean
leaked (initially false).

– LQuery(label, u): If ∃(label, val, t′) ∈ D such that t′ ≤ u, the function returns
(label, val, t′, u). If ∃(label, val, t′) ∈ D such that G[t′] = G[u], the function
returns (label,⊥, t′, u). Otherwise, it returns (label,⊥,⊥, u) and, if G[u] = g,
adds label to X .

– LUpdate(S): Parse S = {(labeli, vali)}. If S contains any duplicate label, or
any label which appears in D, this function returns ⊥. Else, it increments
t, sets G[t] ← g, and adds the pairs from S to the datastore D at epoch t.
If leaked, it returns the labels in S. Else, it returns |S| and the set of labels
from S which are also in X .

– LPCSUpdate(S): Parse S = {(labeli, vali)}. If S contains any duplicate label, or
any label which appears in D, this function returns ⊥. Else, it increments t,
adds the pairs from S to the datastore D at epoch t, and updates X ← {},
leaked← false, and g ← g + 1, G[t]← g. It returns |S|.

– LLeakState(S): Set leaked← true. return D.
– LProveExt(t0, t1): return (t0, t1).

Theorem 5 Let VRF be a rotatable VRF in some idealized model, C be a simulatable
commitments scheme in some idealized model, and AVC be any Append-only Vector
Commitment. Then, our Z construction satisfies zero-knowledge with leakage L as
above in the idealized models used by the underlying protocols.

Proof Sketch: The proof is structured as a hybrid argument. Starting from the
real game, one can first substitute Commitments and (Rotatable) VRF outputs
and proofs with random strings or those produced by the respective simula-
tors, and then notice that, at this point, the information provided by the leak-
age function L is sufficient to produce these simulated values without rely-
ing on the full input to the oracle calls. For example, when an Update oracle
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query happens (for a non compromised key), the simulator receives the num-
ber of pairs that the adversary wants to add to the RZKS, and can itself generate
enough random strings (to use as VRF outputs) and simulated commitments to
add to the OA, and then adds the new OA commitment to the AVC. Upon cor-
ruption or queries, the simulator learns the actual values corresponding to these
queries, and can simulate commitment openings and VRF proofs accordingly,
and provide honestly generated OA and AVC proofs. A full proof is deferred
to the full version of the paper.

5.4 Instantiation and Complexity

If we allow each building block to be instantiated as constructed in the full
version of the paper, we can define an instantiation for the entire scheme. We
then calculate the efficiency of each building block, which then gives us the
efficiency of the entire scheme.

We calculate an upper bound on the number of hash computations and
group exponentiations under the constructions of our building blocks and RZKS
as follows: we define n to be the size of the stored datastore, and s to be the size
of the update query (when relevant). Let ` be the number of bits needed to rep-
resent a group element. We assume without loss of generality that ` is also the
number of bits needed to represent a group exponent. Let `′ be the number of
bits to represent a label. Note that when some algorithm ignores the proof out-
put from another, we skip the proof calculation. The full list of complexities is
displayed in Figure 8.
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