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Abstract. Incompressibility is one of the most fundamental security
goals in white-box cryptography. Given recent advances in the design of
efficient and incompressible block ciphers such as SPACE, SPNbox and
WhiteBlock, we demonstrate the feasibility of reducing incompressible
AEAD modes to incompressible block ciphers. We first observe that sev-
eral existing AEAD modes of operation, including CCM, GCM(-SIV),
and OCB, would be all insecure against white-box adversaries even when
used with an incompressble block cipher. This motivates us to revisit and
formalize incompressibility-based security definitions for AEAD schemes
and for block ciphers, so that we become able to design modes and reduce
their security to that of the underlying ciphers. Our new security notion
for AEAD, which we name whPRI, is an extension of the pseudo-random
injection security in the black-box setting. Similar security notions are
also defined for other cryptosystems such as privacy-only encryption
schemes. We emphasize that whPRI ensures quite strong authenticity
against white-box adversaries: existential unforgeability beyond leakage.
This contrasts sharply with previous notions which have ensured either
no authenticity or only universal unforgeability. For the underlying ci-
phers we introduce a new notion of whPRP, which extends that of PRP
in the black-box setting. Interestingly, our incompressibility reductions
follow from a variant of public indifferentiability. In particular, we show
that a practical whPRI-secure AEAD mode can be built from a whPRP-
secure block cipher: We present a SIV-like composition of the sponge
construction (utilizing a block cipher as its underlying primitive) with
the counter mode and prove that such a construction is (in the variant
sense) public indifferentiable from a random injection. To instantiate
such an AEAD scheme, we propose a 256-bit variant of SPACE, based
on our conjecture that SPACE should be a whPRP-secure cipher.

Keywords: symmetric-key cryptography · white-box cryptography · in-
compressibility · mode of operation · public indifferentiability
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1 Introduction

White-box cryptography, which has been introduced by Chow et al. for AES [25]
and DES [26], is a technique to protect data in the presence of adversaries who
have access to implementations of cryptographic algorithms. For two decades
since Chow et al. published the seminal papers, target systems of white-box
cryptography have spread out from digital rights management (DRM) to mobile
payment and banking services [2, 41]. Today white-box cryptography is applied
to a wide range of cryptographic algorithms [29], and in this paper we focus on
symmetric-key encryption schemes.

Secure white-box implementations must resist key extraction and “code lift-
ing” [29]. While the goal of key extraction is to retrieve a secret key from a
white-box implementation, code lifting tries to isolate and copy (a part of) the
functionality of the cryptographic algorithm. Security against code lifting is in
general stronger than security against key extraction, as key extraction implies
code lifting of the full functionality. Preventing code lifting is indispensable to
realize secure white-box implementations because arbitrary message can be en-
crypted or decrypted once the program is copied.

Delerablée et al. [29] have introduced the notion of incompressibility to for-
malize resistance to code lifting. Roughly, a white-box program of an encryption
scheme is incompressible if it is infeasible to compress the encryption program
while keeping its functionality. Delerablée et al. have shown that incompress-
ibility is achievable by an RSA-group-based construction. Follow-up work by
Fouque et al. [35] has introduced variants of incompressibility regarding privacy
(IND-COM) or limited authenticity of universal unforgeability (ENC-COM).
They have presented randomized schemes ensuring each of the security notions
but not both at the same time.5 The more recent work by Bock et al. [18] has
shown that an incompressible randomized encryption scheme can be built from
one-way permutations. Closely related to incompressibility is the work by Bellare
et al. on big-key symmetric encryption [9]6, which was later improved by Bellare
and Dai [8]. They have provided efficient randomized encryption schemes with
a high level of privacy (LIND) and without authenticity, in the setting where
information of the key is partially leaked, by making the key big, say, 1GB.

While there exist other white-box security notions, we focus on incompress-
ibility because it is achievable by relatively efficient schemes and without rely-
ing on special hardware. True that trusted execution environments are in com-
mon use today, but demands for software-only solutions are still high in various
scenarios—e.g., cloud servers providing digital rights management based services,
mobile phones running cloud-based payment services with host card emulations,
and memory-leakage resilient software—as listed by Bogdanov et al. [22].

It should be noted that some pieces of previous work [21, 9, 35, 22] (and we
also do) assume that a black-box adversary resides outside the target program

5 A scheme in Section 2 of the paper [35] achieves authenticity but not privacy in the
white-box setting, because its tag-generation part does not depend on keys.

6 This work focuses on bounded retrieval model rather than white-box cryptography,
but as Fouque et al. point out, its security notion almost matches IND-COM.
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and tries to attack in the conventional sense. More precisely, the white-box ad-
versary, which here we call a lifter, tries to isolate and copy the functionality
of the encryption program. Then, the black-box adversary tries to break pri-
vacy and/or authenticity with the aid of leakage generated by the lifter. Here,
the amount of leakage is properly restricted in agreement with the bounded
retrieval model [27, 24] of leakage-resilient cryptography.

There is another line of research: Designing incompressible block ciphers.
Bogdanov and Isobe [21] have introduced the concept of SPACE-hard white-box
block ciphers and presented a concrete construction SPACE based on a dedicated
design rather than on an obfuscated implementation of an existing cipher (such
a direction of adopting dedicated designs for block ciphers was initiated with
ASASA [14]). The notion of SPACE hardness is a variant of incompressibility and
provides immunity against code lifting. Similar notions include weak white-box
security [14] and ENC-TCOM [35]. Bogdanov and Isobe have shown that SPACE
achieves SPACE hardness, assuming AES is secure. SPACE is reasonably efficient,
running faster than a hundred cycles per byte on modern PCs. A number of
follow-up SPACE-hard white-box block ciphers have been proposed, including
SPNbox [22] and WhiteBlock [35].

Now our motivation behind this work becomes evident: There is a large gap
between the two lines of research. Specifically, we would like to address the
following issues:

1. There exist no modes of operation that turn incompressible block ciphers
into incompressible authenticated encryption (AE) schemes. As described
in Section 3 (and in the full version of this paper [40]), existing modes
such as GCM [51], GCM-SIV [36], CCM [61], and OCB [46] would not yield
incompressible AE even if combined with an incompressible block cipher.
The state-of-the-art incompressible block ciphers mentioned above, though
secure and reasonably efficient, are not utilized.

2. As mentioned above, there exist no AE schemes that simultaneously ensure
both privacy and authenticity against white-box adversaries, unless one relies
on special hardware. Moreover, the only type of authenticity that has been
achieved in the context of incompressibility is universal unforgeability, which
is much weaker than what has been done in the conventional setting. Similar
discussions are provided in the previous work by Bock et al. [19] where the
authors point out that “the definition of incompressibility does not capture
any further security such as confidentiality and authenticity”.

3. The lack of secure AE modes or schemes indicates the need for further in-
vestigation into the incompressibility notion. Specifically, we would like to
come up with a usable definition of incompressible block ciphers as well as a
new notion of incompressibility that captures more perfectly the privacy and
authenticity requirements on AE schemes. Having done that, we should be
able to design a mode that enjoys both privacy and authenticity in a strong
sense, by relying on the underlying incompressible cipher.
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1.1 Our Contributions

We introduce new incompressibility-based white-box security notions for AEAD
schemes and BCs which we name whPRI and whPRP, respectively. Intuitively,
with the two notions we attempt to define the best possible security such that
any λ-bit leakage from a lifter (e.g., malware) does not allow adversaries to
break privacy and/or authenticity, or equivalently indistinguishability, except
for λ-bit ciphertexts. In particular, the notions demand authenticity in quite a
strong sense: existential unforgeability beyond leakage. Our definition, we be-
lieve, should be the first one to formalize this notion concretely. Obviously, this
is a much stronger requirement than universal unforgeability. We remark that
whPRI and whPRP are extensions of pseudo-random injections (PRI) [58] and
pseudo-random permutations (PRP) in the black-box setting, respectively: they
exactly match in the extreme case of λ = 0. The security games for our new def-
initions involve both of black-box adversaries and lifters. These games become
inherently multi-stage.

We properly bound the computational resource tlif of a lifter and the leakage
size λ. Especially, no security is guaranteed after either tlif or λ reaches a certain
threshold, e.g., tlif = 250 or λ = 220. We expect that an attack (malware activ-
ity) should be detectable, before the threshold is reached, by some means, e.g.,
monitoring active processes and/or outgoing packets. We conjecture that SPACE
should satisfy whPRP-security under some reasonable parameter settings.

For completeness we study theoretical possibilities of security reductions of
various symmetric-key schemes; we introduce similar notions for keyed functions
and conventional (privacy-only) encryption schemes. Our notion for keyed func-
tions, which we call whPRF, is an extension of the standard pseudo-random
function (PRF). For conventional encryption schemes, we define two security

notions which we name whIND$-CPA and whS̃PRP. The former is an extension
of IND$-CPA security (for random-IV schemes) in the black-box setting. The
latter is obtained as a special case of whPRI where ciphertext lengths are always

equal to message lengths. Thus, whS̃PRP is an extension of the tweakable strong

PRP (S̃PRP) security for tweakable enciphering schemes [38] in the black-box
setting. We observe that meaningful counterparts of MAC security and nonce-
based security notions seem unachievable in our context. Table 1 gives compar-
isons between various security notions for (authenticated) encryption schemes.

We prove that a reduction between the new security notions is possible if the
construction in hand satisfies a variant of public indifferentiability [32, 63], which
we name weak public indifferentiability. Then we demonstrate that all the new
notions can be reduced to whPRP, by presenting corresponding constructions
that are weak public indifferentiable.

Finally, as an example of practical AEAD modes of block ciphers, we show
that a composition of the sponge construction [12] and the counter mode (CTR)
via SIV [58] is whPRI-secure if the underlying block cipehr EK is whPRP-secure.
Here, the underlying primitive EK is used both by the sponge and by the CTR.
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Table 1: Comparison of incompressibility or related notions for symmetric-key
(authenticated) encryption schemes. We assume that AEADs always take a
nonce (or IV) as a part of input. Especially, a nonce is included into inputs
of deterministic AEADs.
Security notion Target scheme Leakage Adversarial goal

(λ, δ)-incompressibility [29, 18]

deterministic or
randomized encryption
(RSA group or OWP-
based schemes [29, 18])

whole implementation
δ-functionality

with code size < λ

(Privacy) (Authenticity)

LIND [9]
randomized encryption via function

distinguishing —
(Big-Key Encryption [9, 8]) with output size = ℓ

IND-COM [35] randomized AE (WhiteKey [35]) via function distinguishing —
ENC-COM [35] randomized AE (WhiteKey+RO) with entropy left ⩾ µ — universal forgery

whPRI [Section 4.3]
deterministic AE via lifter (malware)

distinguishing
existential forgery

(SIV+CTR (Section 7)) with output size ⩽ λ beyond leakage

whIND$-CPA [Section 5.3]
randomized encryption via lifter (malware)

distinguishing —
(CTR (Section 6.3)) with output size ⩽ λ

whS̃PRP [Section 5.3]
tweakable enciphering scheme via lifter (malware)

distinguishing —
(6-round Feistel (Section 6.3)) with output size ⩽ λ

Roughly speaking, if EK is secure up to λ-bit leakage, the resulting AEAD is
secure as long as the amount of processed data is≪ 2n/4 and leakage is less than
λ. To instantiate EK , we propose to use a 256-bit-block variant of SPACE which
we name SPACE256. We conjecture that SPACE256 is secure up to 220 bits of
leakage. The resulting AEAD scheme is implemented on an Intel platform for
experiments, and we confirm that the performance is practical. The size of the
program is in an order of KB or MB, which is reasonably small for mobile
applications. Unlike previous schemes achieving incompressibility, our scheme
does not need random nonces. This is an advantage in the white-box setting
because random number generators may be compromised by adversaries.

Note that our notions do not supersede previous ones but rather coexist with
other white-box security approaches such as binding [20, 19]. Which security
approaches, definitions or solutions one should choose changes depending on
use cases and what one wants to achieve. Specifically, when trusted hardware
is available or when lifters have much more limited access to programs, other
security notions would be more suitable.

1.2 Related Work

Other Security Notions in White-Box Cryptography. The initial goal
set by Chow et al. was to protect software implementations of existing block
ciphers from key extraction when an attacker is given an unlimited access to
a white-box implementation. Many pieces of previous work have proposed such
implementations, but none of them remains unbroken [13, 47, 53, 62]. Some of
the state-of-the-art work focus on limited white-box adversaries such as DCA
and a certain class of algebraic attacks [23, 5, 16, 17].
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Several solutions outside incompressibility have been suggested to mitigate
code lifting. Chow et al. suggested external encoding [25], which yields a white-
box implementation of E′

K = G ◦EK ◦F−1 for some functions F and G instead
of EK . The problem is that even an ordinary user needs a separate implemen-
tation of G−1 or F to compute EK . Thus, white-box adversaries would also be
able to peel off the external encoding, unless the encoding is stored in trusted
hardware. Delerablée et al. suggested one-wayness [29], which formalizes the no-
tion that one is unable to perform decryption even if an encryption program is
given. They also suggested traceability [29], which allows a program distributor
to trace malicious users who leak their encryption programs. Both are inter-
esting, but they do not encompass resistance to copying encryption programs.
Other works have discussed the possibility of binding [20, 19, 1], where the execu-
tion of encryption is bound by trusted hardware or applications. Unfortunately,
cryptographically secure binding requires, together with secure hardware, primi-
tives such as indistinguishability obfuscation (iO) or LWE, which are richer than
usual symmetric-key primitives.

Symmetrically and Asymmetrically Hard Cryptography. Biryukov and
Perrin [15] introduced the HSp mode (and its instantiation WHALE), which can
be used to build an incompressible VIL/VOL hash function from a usual sponge
hash (like SHA-3) and an FIL/FOL incompressible function. The mode is proven
to achieve a universal-unforgeability-like security notion on incompressibility.
Their result seems close to ours (in Section 6.3) that the sponge construction be-
comes a VIL/VOL whPRF if the underlying primitive is a whPRP (or FIL/FOL
whPRF). Still, there are two differences between theirs and ours. First, they
proved only universal-unforgeability-like security while we proved existential-
unforgeability-like security (i.e., whPRF-security). Second, their proof is in the
random oracle model while ours is in the standard model in that the existence
of a whPRP (or a FIL/FOL whPRF) is a falsifiable assumption.

Leakage Resilient Cryptography. An important area related to white-box
cryptography is leakage resilient cryptography, which aims to achieve provable
security against side-channel attacks. Security models in leakage resilient cryp-
tography are roughly classified into two types7, depending on whether (1) an
adversary is allowed to obtain arbitrary leakage from the secret key as long as
the leakage length is bounded by a certain parameter, or (2) some form of secu-
rity is assumed on memory or storage, and/or leakage is obtained only when some
computation (e.g., encryption) is performed through a special class of functions
such as the Hamming weight of internal states with some noise.

Models of the First Type. A typical model of the first type closely related to
our results is the Bounded Retrieval Model (BRM) [27, 33], where large (e.g.,
1GB) keys are used to prevent key exfiltration. The BRM and related notions

7 This classification is based on (still not completely the same as) the one in [43, 44].
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have been studied in a long line of research [27, 33, 24, 4, 3, 9, 8]. Among others,
Bellare et al. [9] showed practical symmetric-key encryption schemes achieving
confidentiality in the BRM, which was later improved by Bellare and Dai [8].

As pointed out by Fouque et al [35], the goals of Bellare et al. [8] and incom-
pressibility are quite close. Still, each of the BRM and incompressibility has its
own advantages. An advantage of the BRM is that, for well designed schemes
such as the one by Bellare et al. [8], bounding the running time of a lifter (mal-
ware) is not mandatory (it is mandatory for incompressible ciphers because the
secret key sizes are very small). Meanwhile, no previous works on symmetric
encryption scheme in the BRM achieve both confidentiality and authenticity
simultaneously8, while we prove that SIV+CTR achieves whPRI.

Models of the Second Type. Major models of the second type include the “only
computation leaks information” (OCL) model [52] and wire-probing leakage [42].
In models of the second type, lots of previous works have shown various leak-
age resilient schemes including AEADs [52, 34, 55, 48, 59, 11, 30, 7, 28, 31, 10, 37,
45]. Especially, Krämer and Struck [45] showed that the security of a leakage-
resilient AEAD can be reduced to the security of leakage-resilient PRFs in the
“only comoputation leaks information” model [52]. However, these results are
incomparable to ours because they essentially assume that attackers do not have
a direct full access to memory or storage that stores the secret key.

A clear advantage of the second type is that the size of implementations can
be small, compared to incompressibility and the first type. When we can assume
that adversaries do not have a full direct access to memory or storage (e.g.,
leakage can be obtained only by measuring power consumption of a circuit),
models of the second type will be more suitable than incompressibility and the
first type. When we cannot, incompressibility or the first type will be suitable.

1.3 Paper Organization

Section 2 introduces basic notations and definitions, and review basics on (pub-
lic) indifferentiability. Section 3 shows an observation that GCM is unlikely to
achieve incompressibility. In Section 4, we introduce whPRI, a new security
notions for AEADs. New security notions for other schemes are introduced in
Section 5. Section 6 introduces weak public indifferentiability and shows that
weak public indifferentiability implies white-box security reductions. The sec-
tion also demonstrates that our new notions on various schemes can be reduced
to whPRP, by showing (weak) public indifferentiable constructions. In Section 7
we show that a practical whPRI-secure AEAD mode of whPRP can be realized
as a composition by SIV of the sponge construction and the counter mode.

8 A scheme by Bellare et al. [9] also achieves authenticity, but only in the absence of
leakage (See also Table 1).
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2 Preliminaries

Throughout the paper, len(M) denotes the bit length for a bit string M . Given a

positive integer m < len(X), we write (A,B)
m, ∗←−−− X to mean assignment of bit

strings, the leftmost m bits of X to A and the remaining bits to B. The variable
A or B may be omitted with the symbol “ · ” in which case the corresponding
bits are not assigned to any variable. When we write like (X1, X2, . . . , Xℓ)

n←− X
we mean partitioning X into n-bit blocks and assigning them to X1, X2, . . . , Xℓ

where ℓ =
⌈
len(X)/n

⌉
and the last Xℓ is possibly fractional, i.e., len(Xℓ) < n.

The symbol ∥ stands for concatenation of bit strings and the symbol ⊕ exclu-
sive OR of two bit stings of the same length. By block length of M we denote
⌈len(M)/n⌉ when the parameter n is clear from the context. For an invertible
function F by F± we denote the oracles of F and F−1. We denote the empty bit
string by ε and define {0, 1}0 := {ε}. {0, 1}∗ denotes the set of all bit strings of
arbitrary length. For positive integers x and n, by x mod n we denote the min-
imum positive integer i such that i ≡ x mod n. We say an m-input function f :
(Z≥0)

×m → R≥0 is non-decreasing if f(x1, . . . , xi + z, . . . , xm) ≥ f(x1, . . . , xm)
holds for arbitrary 1 ≤ i ≤ m, (x1, . . . , xm) ∈ (Z≥0)

×m, and z ∈ Z≥0.

Definition 1 (Variable-key and fixed-key random injection). Let τ ≥ 0
be an integer and Injτ (K×N×A×M,C) denote the set of functions F : K×N×
A×M→ C such that FK,N,A := F (K,N,A, ·) is an injection for each (K,N,A)
and len(F (K,N,A,M)) = len(M)+ τ . A variable-key random injection F is an
injection chosen uniformly at random from Injτ (K×N×A×M,C). The inverse
F−1 : K×N×A×C→M∪{⊥} is defined so that F−1(K,N,A, F (N,A,M)) =
M for each (K,N,A,M) and F−1(K,N,A,C) = ⊥ for all C ̸∈ FK,N,A(M). If
K is a set that contains exactly a single element, we say F is a fixed-key random
injection and omit to write K and K.

Syntax of Symmetric-Key Cryptosystems and Basic Constructions.

Keyed Functions. A keyed function is a function f : {0, 1}κ ×X → Y. Here, κ
is a positive integer and {0, 1}κ is called the key space. We write fK(M) and
f(K,M) interchangeably.

Block Ciphers. A block cipher is a keyed function E : {0, 1}κ×{0, 1}n → {0, 1}n
such that E(K, ·) is a permutation for each K. The inverse function (EK)−1 is
denoted by DK , and we write DK(C) and D(K,C) interchangeably. E and D
are called the encryption and decryption functions.

AEADs. An AEAD scheme is a tuple Π = (E ,D). The first element of Π is
an encryption function E : K × N × A ×M → C. Here, K is the key space
from which the secret key is chosen uniformly at random. The set N = {0, 1}ν
is a nonce space with the nonce length ν being a non-negative integer. The
sets A,M,C correspond to the spaces of associated data, plaintext and ci-
phertext, respectively, where M = C = {0, 1}∗. We write interchangeably
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Algorithm 1: CTR(K, IV,M)

1: (M1,M2, . . . ,Mℓ)
n←−M

2: for i = 1 to ℓ do

3: y ← fK(IV + i− 1),

4:
(
y′, ·

) len(Mi), ∗←−−−−−− y,

5: Ci ←Mi ⊕ y′

6: return C1 ∥ C2 ∥ · · · ∥ Cℓ

Algorithm 2: EK1,K2
(N,A,M)

1: IV ← fK1(N,A,M)

2: C ′ ← E ′K2
(IV,M)

3: return C ← IV ∥ C ′

Algorithm 3: DK1,K2
(N,A,C)

1: (IV , C ′)
τ, ∗←−− C

2: M ← DK2
(IV, C ′)

3: T ← fK1
(N,A,M)

4: if IV = T then

5: return M

6: else

7: return ⊥

E(K,N,A,M) = EK(N,A,M) = EK,N,A(M). For each (K,N,A) ∈ K×N×A
we demand that len

(
EK,N,A(M)

)
= len(M) + τ should hold for all M ∈ M,

where τ a fixed non-negative integer. The second element of Π is a decryption
function D : K×N×A×C→M∪{⊥}. Here, the symbol ⊥ signifies rejection.
We write interchangeably D(K,N,A,M) = DK(N,A,M) = DK,N,A(M). For
each (K,N,A,M) we demand that DK,N,A(EK,N,A(M)) = M should hold.

Conventional Encryption Schemes. The syntax for a conventional (privacy-only)
encryption scheme is essentially the same as that of AEAD except that it does
not take any associated data, i.e., A = {ε}, and τ = 0. In addition, nonce N and
nonce space N are renamed as IV and IV. We assume IV is chosen uniformly at
random for every encryption query or arbitrarily chosen by adversary depending
on security notions we focus on.

Counter Mode. Counter mode (CTR) is the construction to convert a keyed
function into a conventional encryption scheme. Let f : {0, 1}κ × {0, 1}m →
{0, 1}n be a keyed function. The encryption function of CTR based on f , which
we denote by CTR(K, IV,M), is computed as in Algorithm 1. The key, IV, and
message spaces are {0, 1}κ, {0, 1}m, and {0, 1}∗, respectively. The decryption
function is identical to the encryption function.

SIV. SIV is the construction introduced by Rogaway and Shrimpton to realize
a deterministic AEAD [58]. Let N and A be arbitrarily chosen space of nonces
and associated data. (We assume N = {0, 1}ν for some ν ∈ Z>0 and A = {0, 1}∗
unless otherwise noted.) Let f : {0, 1}κ1×(N×A×{0, 1}∗)→ {0, 1}τ be a keyed
function and Π ′ = (E ′,D′) be a conventional encryption scheme with the key
space {0, 1}κ2 , IV space {0, 1}τ , and message space {0, 1}∗. The SIV construction
based on f and Π is an AEAD with key space {0, 1}κ1 × {0, 1}κ2 , nonce space
N, associated data space A, and message space {0, 1}∗. The encryption function
E and decryption function D are defined as in Algorithm 2 and Algorithm 3,
respectively. We call an output of f a tag and f a tag-generation part.

Programs and White-Box Compilers. We follow the abstraction and nota-
tion used by Delerablée et al. [29] for dealing with programs and compilers. A
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program implements an algorithm, specific to some explicit language and execu-
tion model. A program can be read, copied and modified at will. A program can
be viewed as a bit string, and its binary code can be executed locally. A program
is inherently stateless. A program may, via APIs including system calls, make
use of external resources such as random coins and additional functionalities. A
white-box compiler CE of a block cipher E is an algorithm that takes K ∈ {0, 1}κ
as an input and outputs a program that implements EK . We use the notation
JEkK to denote a white-box implementation of EK in a context where explicitly
indicating the compiler is unnecessary. Moreover, we call JEKK white-box block
cipher simply. A white-box compiler may be probabilistic, outputting different
programs for the same key9. White-box compilers of other cryptosystems are
defined in the same way.

Indifferentiability. Let TP be an algorithm (a cryptographic scheme, e.g., a
VIL hash function) making queries to P, where P is an ideally random primitive
(e.g., a FIL random oracle). In addition, let R be an ideally random scheme
corresponding to TP with the same input-output interface (e.g., a VIL random
oracle). Then, the indifferentiability advantage of A against (TP,R) with respect

to a simulator S is defined as AdvindiffT,R,S(A) := Pr
[
1← ATP,P

]
−Pr

[
1← AR,SR

]
.

Informally, we say TP is indifferentiable from R if there is an efficient simulator
S such that the above advantage becomes negligibly small for any efficient A.
We call TP (resp., R) a construction oracle and P a primitive oracle. We call
queries to TP or R (resp., P or SR) construction queries (resp., primitive queries).

The most important feature of indifferentiability is the general “composition
theorem” [50, 56]: Suppose the following (1)-(3) hold: (1) A scheme (or protocol)
ΠR depending on the ideal object R is proven secure. (2) TP is indifferentiable
from R. (3) The security of Π is defined by single-stage games. Then the com-

position theorem guarantees that ΣTP

is secure [50]. Note that not only (1) and
(2) but also (3) is crucial; the composition theorem does not necessarily hold for
schemes of which security is defined by multi-stage games [56]. We do not get
into further details because it is not directly related to our results.

Indifferentiability of Sponge. Let r, c > 0 and f : {0, 1}r+c → {0, 1}r+c be
a function. Let pad : {0, 1}∗ → ({0, 1}r)+ be an injective padding function
such that the last (r-bit) block of pad(X) is not 0r for every X.10 The sponge
construction Spongef maps bit strings of arbitrary length to bit strings of any
requested length as in Algorithm 4 (i.e., Spongef can be regarded as a function
from {0, 1}∗×N to {0, 1}∞). The parameters r and c are called rate and capacity.

9 In practice, many white-box implementations of AES are the output of the proba-
bilistic compiler. On the other hand, the dedicated white-box block cipher such as
SPACE uses the deterministic compiler in general.

10 In what follows, we assume the padding function pads “1” and the minimum number
of zeroes so that the total length of the padded string becomes multiple of r, i.e.,
pad(X) := X||1||0len(X) mod r−1.
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Algorithm 4: Spongef (X) with requested output length m

1: (X1, . . . , Xℓ)
r←− pad(X), s← 0r+c, y ← ε

2: for i = 0 to ℓ− 1 do

3: s← f(s⊕ (Xi+1||0c))
4: for i = ℓ to ℓ+ ⌈mr ⌉ − 1 do

5: y ← y||(the upper r bits of s), s← f(s)

6: return y

Bertoni et al. [12] proved that the sponge construction is indifferentiable from
a VIL/VOL random oracle RO : {0, 1}∗ → {0, 1}∞ if f is an ideally random
function. More precisely, they showed the following theorem11.

Theorem 1 (Theorem 1 of [12]). Let ϵ(q) := 1 −
∏q

i=1

(
1− 1

2c

)
. There ex-

ists a simulator S making queries of total length at most ⌈ r+c
r ⌉q

2 such that

Advindiff
Sponge,RO,S(A) ≤ ϵ(q) holds for any adversary A that calls f at most q(< 2c)

times in the real world, either directly or indirectly through Spongef .

Indifferentiable AEAD Schemes. Barbosa and Farshim studied indifferentiable
AEAD schemes [6], where the ideal oracle is a variable-key random injection F
and its inverse F−1 (see Definition 1)12. Note that a variable random injection
takes not only nonce, associated data, and message (or ciphertext) but also a
key as an input. They especially showed that indifferentiable AEADs cannot be
achieved by some generic compositions such as SIV, and that indifferentiable con-
structions can be built by Encode-then-Encipher (EtE) or 3-round Feistel-based
scheme. In particular, by using the sponge construction for round functions of the
Feistel-based scheme, an indifferentiable AEAD can be built from a FIL/FOL
random function. See the full version of this paper [40] for details.

Public Indifferentiability. Again, let TP be a construction calling an ideal
primitive P, and R be an ideal object of which interface is compatible with TP.
Public indifferentiability [32, 63] is defined in the same way as the original indif-
ferentiability, except that a simulator S is allowed to observe all the queries by

11 The theorem roughly says Spongef is secure up to 2c/2 queries because ϵ(q) ≈ 1 −
e
− q(q+1)

2c+1 < q(q+1)

2c+1 holds for q ≪ 2c. The original theorem in [12] did not mention the
exact number of queries by S but we can deduce it is at most ⌈ r+c

r
⌉q by checking

the details of the proof.
12 The parameter τ (the length of ciphertext-stretch) is also considered as an input to

AEADs and random injections in [6], but this paper considers the special case where
is τ fixed to a constant.
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adversaries to R and the responses. (Public-indifferentiability is actually a spe-
cial case of indifferentiability rather than a variant. However, we regard it as a
variant for readability.) More precisely, in the ideal world, there is an additional
oracle-query interface to reveal the list of all the queries made so far to R and the
responses, and an access to this interface is given to S (but not to A). We call this
interface the revealing interface, and denote by Rev[R]. This models the condition
that every input to R (and the output) is visible to all the parties involved in a se-
curity game, and the general “composition theorem” on public-indifferentiability
holds only for schemes of which security games satisfy such a condition. The
restriction that the “composition theorem” does not necessarily hold for multi-
stage games also applies to public-indifferentiability, but the theorem holds for
single-stage games as long as this condition holds. The public indifferentiability

advantage is defined as Advpub-indiffT,R,S (A) := Pr
[
1← ATP,P

]
−Pr

[
1← AR,SR,Rev[R]

]
.

Informally, we say TP is public indifferentiable from R if there exists an efficient
simulator S such that the above advantage becomes negligibly small for any effi-
cient A. The Merkle-Damg̊ard construction is proven public indifferentiable [32].

Remark 1. While it is straightforward to show the composition of two indiffer-
entiable constructions becomes again indifferentiable13, its seems quite hard (or
even impossible) to prove that the composition of two public indifferentiabile
constructions becomes again public indifferentiable. (See Section 6.1 for details).

3 Code Lifting on GCM

This section briefly explains that GCM [51] is unlikely to achieve incompress-
ibility in the presence of a lifter given an unlimited access to an implementation,
even when used with an incompressible block cipher. Recall that GCM is an
AEAD mode of 128-bit block cipher composed of CTR and a universal hash
function called GHASH (see Fig. 4 of the full version [40] for details). As an
input, the encryption function of GCM takes a tuple of a nonce N , associated
data A, and a message M . Given an input (N,A,M), CTR first encrypts M
into a ciphertext C ′ with an IV derived from N . Then, a tag value T is com-
puted as T := GHASHEK(0128)(A,C ′)⊕EK(N ||1). The output of the encryption
function is T ||C ′. GCM is proven secure in the nonce-respecting scenario where
each nonce is never repeated for encryption queries14. When a nonce is repeated,
GCM is broken even in the black-box setting.

An important feature of GCM is that the authenticity heavily relies on the
value EK(0128): Suppose we know EK(0128) in addition to the tag T and the ci-
phertext C ′ for an input (N,A,M). Then, for arbitrary Ã and M̃ with len(M̃) ≤
len(M), we can produce the tag T̃ and the ciphertext C̃ ′ corresponding to

13 If S (resp., S ′) is a simulator for a construction TP (resp., UQ) making the indiffer-

entiability advantage small (and if the interfaces are compatible), then S ′S makes

the advantage for TUQ

small.
14 Note that nonce reuse for decryption is allowed.
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(N, Ã, M̃) without knowing the secret key K as C̃ ′ = M̃⊕(the upper len(M̃) bits
of M ⊕C) and T̃ = GHASHEK(0128)(A,C ′)⊕T ⊕GHASHEK(0128)(Ã, C̃ ′) . This
means the universal forgery attack is possible and the authenticity of GCM is
completely broken once an adversary retrieves EK(0128).

In the black-box setting, the value EK(0128) is hidden from adversaries and
GCM achieves authenticity. However, in the white-box setting where a lifter has
an unlimited access to a white-box implementation of GCM, the lifter could copy
and leak the value EK(0128) to an attacker to break authenticity15. This attack
works even if the underlying block cipher EK is incompressible. Just copying a
single 128-bit string EK(0128) would not be difficult no matter how hard copying
the full functionality of EK is.

The above attack shows that GCM fails to inherit incompressibility from
EK : A relatively small amount of data EK(0128) leaks information on an expo-
nentially many input-output pairs of GCM. Similar attacks exist for other AE
modes such as CCM, GCM-SIV, and OCB. See the full version [40] for details.

4 New AEAD Security Notion

This section gives us a formal definition of incompressibility-based white-box
security of an AEAD implementation. Security notions for other cryptosystems
are given later based on the definition for AEADs.

The attack in the previous section (and the ones in the full version of the
paper [40]) shows that, with raw implementation of AEAD modes such as GCM,
a small amount of leakage from the underlying white-box cipher could lead to
giving the adversary a great deal of information concerning valid ciphertext
values of the overlying AEAD scheme. Clearly this is an undesirable situation.

Basically, we want that a small amount of leakage would only lead to a small
amount of valid ciphertext information, but there is a subtlety. A white-box at-
tacker, or lifter (e.g., malware) could locally encrypt a large number of messages
and then compute leakage of a small size from the obtained ciphertexts. As a
result, the leakage, as a function, may depend on a large number of ciphertext
values. Intuitively, we want that:

1. The leakage should not contain information yielding ciphertext values that
have not been computed by the lifter, so that the ciphertexts that the ad-
versary can compute from the leakage are limited to those that have been
already computed by the lifter, and

2. The number of ciphertexts that the adversary can compute from the leakage
should be small likewise the leakage size.

We establish a security notion that formalizes these requirements.

15 The value EK(0128) could be protected from some white-box attacks with software
or hardware countermeasures. Still, the effectiveness of such countermeasures would
be limited, given that existing white-box implementations of AES ensure security
only when adversaries have limited access to implemented algorithms. In addition,
our aim is to achieve white-box security without assuming trusted hardware.
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4.1 White-Box AEAD Attack Model

This section shows our attack model on white-box AEADs. We discuss on the
security after the code lifting because no security can be guaranteed before and
during the code lifting.

First, we provide an intuitive observation on what kind of attackers we have
to take into account. Assume a white-box AEAD scheme is running on a target
device, e.g., a remote server or a smartphone. Real-world attackers will behave
as follows: First, an attacker performs advance preparation on the target scheme,
making black-box queries to the encryption and decryption functions if possible.
Then the attacker creates a lifter, e.g., a malware or an analysis tool, and give
the lifter access to the white-box implementation by any means16. After analyz-
ing the implementation, the lifter leaks some information on the scheme to the
attacker. Finally, the attacker tries to break the privacy or authenticity of the
scheme by using the leakage.

Based on the above observation, we reach the following attack model. For-
mally, let Π = (E ,D) be an AEAD and CΠ its compiler. A white-box adversary
A = (Acreate,Adist) is a pair of oracle-aided, probabilistic random-access ma-
chines (RAMs.) The adversary A attacks CΠ , running in two stages, as follows:

Initialization. A key K is chosen uniformly at random. Then using this key
we put P ← CΠ(K).

1st stage: creating a lifter. The first-stage is run by the sub-adversaryAcreate

which has only black-box access to P, making queries to oracles EK and DK .
The goal of Acreate is to output a deterministic RAM L which we call a lifter.

Lifter execution. Once created, the lifter L gets full access to the AEAD pro-
gram P. The lifter L tries to extract some useful information out of the
implementation P, for example key material or compressed codes, and sends
leakage data L to the adversary. The size of L is restricted to λ bits, which
are properly smaller than the description of P.

2nd stage: distinguishing. Upon receiving leakage L from the lifter, the second-
stage sub-adversary Adist resumes querying to Ek and Dk, and finally outputs
a bit string.

We could consider various sorts of adversarial goals, such as key recovery,
plaintext recovery and ciphertext forgery. Of these, we choose the distinguishing
attack, extending the “gold-standard” IND-CCA in the black-box setting: We
assume Adist finally outputs a bit b. The final goal of the adversary A is to
distinguish between the real world (b = 1) and the ideal world (b = 0), i.e.,
whether the oracles EK and DK and the leakage have been real, or they have
been some random and simulated ones.

Of course, white-box implementation is not present in the black-box security
definitions, so we shall define how the leakage is computed in the ideal world.

16 For instance, if the target device is a remote server, the lifter would be a malware
that sneaks into the server. If the device is a smartphone, the lifter would be an
analysis tool and the attacker may take the advantage of a slight opportunity to
analyze the smartphone while the owner does not pay attention to it.
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Consequently, we shall later introduce a simulator that imitates the behavior of
the lifter L.

Even if it is impossible to prevent lifters from getting access to the white-
box implementation, we expect it is still possible to notice an attack is being
mounted when non-negligible amount of data is sent to a strange and suspicious
direction, by monitoring outgoing packets. Hence we define security notions when
the leakage size λ is limited, e.g., up to 220 bits. No security is guaranteed after
λ reaches the limitation. In addition, basically we assume the running time of
the lifter tlif is much smaller than that of the adversary t (e.g., tlif = 250 while
t = 2112) and the intrusion of the lifter can be detected after tlif time has passed.

We do not formalize the attack model in such a way L communicates with
A since L can do everything A can do, and thus communications do not help
much to break the scheme.

4.2 Ideal Oracles and Simulators

It remains to describe the ideal world in order to give a formal definition of
white-box AEAD security.

When black-box security of nonce-based AEAD is studied, typically the ideal
encryption (resp., decryption) oracle is set to be the one that always returns
a random ciphertext (resp., the reject symbol). The adversary is prohibited to
forward outputs from the encryption oracle to the decryption oracle to exclude
trivial attacks.

On the other hand, in our white-box setting we cannot set the ideal oracles
like above because the adversary can distinguish the ideal decryption oracle from
the real one if the lifter leaks a valid ciphertext C and the adversary queries C
to the decryption oracle.

Thus we set a fixed-key random injection F and its inverse F−1 as the ideal
oracles (see Definition 1), following previous works on pseudorandom injection
(PRI) security of AEADs [58, 39]. In particular, our security notion will com-
pletely match the black-box PRI security when λ = 0.

Note that the black-box PRI security matches the misuse-resistant AE (MRAE)
security [58, 39] if the tag length τ is sufficiently long: Roughly speaking, the dif-
ference between the PRI advantage and the MRAE advantage of an AEAD
scheme is upper-bounded by O(q2/2τ ), where q is the number of black-box or-
acle queries [39, Thorem 1]. Thus our white-box security notion will require a
secure scheme to be at least MRAE-secure in the black-box model.

Simulators. Now what remains of the real world is the program P and the lifter
L. P does not exist in the ideal world and it is non-trivial how we should define
the behavior of L. To remedy this, we introduce a simulator that imitates the
behavior of L.

Recall our intuition on the property that a secure white-box scheme must
meet: Any leakage on a secure scheme does not contain information enabling an
adversary to compute ciphertext values that have not been computed by a lifter.
In other words, information that a lifter L can send to an adversary Adist (with
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reasonable computational resources) is only those computable or simulatable
from some input-output pairs of EK and DK .

We model this situation by existence of a simulator S working as follows.
Given the description of a lifter L17 and oracle access to F and F−1 in the ideal
world, S produces a bit string Lideal which is, to Adist, indistinguishable from
leakage Lreal by L in the real world.

Since F is an ideally random object, S in the ideal world cannot leak more
than λ bits of information on F± via λ-bit leakage Lideal. Hence, intuitively, if
Adist cannot Lreal and Lideal, then L in the real world cannot leak more than λ
bits of information on EK and DK via λ-bit leakage Lreal.

More specifically, a simulator S is an oracle-aided RAM. We give S the ability
to do its job as follows:

1. We give S as its input the lifter L just as it is. Then S can perform static and
dynamic analyses on L. The code of L can be read, dissected and studied,
so that S can determine the functionality of L.

2. Needless to say, we let S have oracle access to F±1.
3. We give S sufficient computational power and do not explicitly bound its

running time. We only demand that the algorithm S be a finite sequence
of well-defined instructions and operations. By doing so, we believe that
our security notion should become achievable by a sound portion of AEAD
programs while dismissing the rest.

In addition, we assume that S can observe all the queries to F± by Acreate

and the responses. The reasons that we assume this is as follows. First, if we
define a security notion for conventional encryption schemes similarly without
this assumption, then a conventional encryption scheme (random-IV CTR) which
intuitively seems white-box-secure is deemed insecure (see the full version of this
paper [40] for details). However, if the assumption is included in the definition,
random-IV CTR can be proven secure (Section 6.3). Thus it seems reasonable to
include the assumption into the definition for conventional encryption schemes.
Second, We would like to make security definitions for various cryptosystems
consistent as much as possible. Thus we include this assumption not only for
conventional encryption schemes but also for AEADs.

4.3 Formal Security Notion: whPRI

Now we are ready to define new security notion of AEAD programs. We call our
notion white-box pseudo-random injection security (whPRI).

We consider a white-box adversary A = (Acreate,Adist) running in two dif-

ferent experiments called games. The real white-box PRI game ( PRI -real) is
an experiment in the real world as described in Sect. 4.1. We assume that the
white-box program P contains an implementation of not only encryption but

also decryption. The ideal white-box PRI game ( PRI -ideal) is an experiment

17 Note that a lifter is also made by a first-stage adversary Acreate in the ideal world,
but the black-box oracles given to Acreate are (F, F−1) instead of (EK ,DK).
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Experiment 5: ExpPRI -real
Π,CΠ ,A

1: K
$←− K, P ←− CΠ(K)

2: (L, S)← Acreate
EK ,DK ()

3: L← L(P)
4: β ← Adist

EK ,DK (S,L)
5: return β

Experiment 6: ExpPRI -ideal
S,A

1: F
$←− Injτ (N×A×M,C)

2: (L, S)← Acreate
F,F−1

()

3: L← SF,F−1

(L, Listcreate)
4: β ← Adist

F,F−1

(S,L)
5: return β

Fig. 1: Experiments for whPRI. In the ideal experiment, Listcreate denotes the
list of queries by Acreate to F± and the responses.

in the ideal world, where the oracles and the lifter are replaced with a random
injection and a simulator, respectively. These two games are formally defined
in Exp. 5 and Exp. 6.

Now, given an AEAD scheme Π and its compiler CΠ , let us define the wh-
PRI advantage of a white-box adversary A = (Acreate,Adist) with respect to a

simulator S asAdvwhPRI
Π,CΠ ,S(A) := Pr

[
Exp

PRI -real

Π,CΠ ,A = 1

]
−Pr

[
Exp

PRI -ideal

S,A = 1

]
.

Definition 2 (whPRI). The pair of an AEAD scheme Π and a compiler CΠ
is (λ, t, q, σ, tlif , qsim, σsim, ϵ)-whPRI-secure white-box AEAD if the following con-
dition is satisfied: Let A be an arbitrary adversary running in time t and making
queries at most q times. The lengths of the queries are at most σ in total18. In
addition, A creates a lifter that runs in time tlif and outputs at most λ-bit leak-
age. For arbitrary such A, there exists a simulator S that makes at most qsim
queries of which lengths are at most σsim in total, and satisfies an inequality
AdvwhPRI

Π,CΠ ,S(A) < ϵ.

Informally, suppose the following claim holds: For any “efficient” A, there exists
a simulator S that makes a “reasonable amount of” queries and making the
whPRI-advantage small19. Then we say that Π is whPRI-secure.

The attacks on GCM, GCM-SIV, CCM, OCB in Section 3 (or in the full
version of this paper [40]) show that, for each of those schemes, there exists a
lifter L that leaks the information on exponentially many number of input-output
pairs by only a small amount of leakage. In the ideal world, the information of

18 The unit of length can be set arbitrarily (e.g., bit or block) depending on the context.
19 We set quantifiers as ∀A∃S rather than ∃S∀A so that the possibility of existence of

primitives will increase, and the order of the quantifiers seems to have little impact
on whether a practical scheme is judged secure or not. Indeed, our proofs in later
sections, in addition to the discussions about the attacks on GCM, GCM-SIV, CCM,
OCB mentioned below, work regardless of the order of the quantifiers.
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Experiment 7: Exp
PRP -real

E,CE ,A

1: K
$←− {0, 1}κ, P ← CE(K)

2: (L, S)← Acreate
EK ()

3: L← L(P)
4: β ← Adist

EK (S,L)
5: return β

Experiment 8: Exp
PRP -ideal

S,A

1: P
$←− Perm(n)

2: (L, S)← Acreate
P ()

3: L← SP,P−1

(L, Listcreate)
4: β ← Adist

P (S,L)
5: return β

Fig. 2: Experiments for whPRP. Listcreate in Experiment 2 denotes the list of
queries to P by Acreate and the responses.

input-output pairs of the black-box oracle F± that a simulator can output by a λ-
bit leakage is at most λ-bit. Hence no simulator will be able to mimic the behavior
of such L. Therefore those modes are unlikely to achieve whPRI-security.

5 New White-Box Security Notions for Other Schemes

This section introduces white-box security notions for block ciphers, keyed func-
tions, and conventional encryption schemes.

5.1 whPRP: Secure White-Box Block Ciphers

We call the new security notion for white-box block ciphers white-box pseudo-
random permutation security (whPRP). The definition of whPRP is similar to
that of whPRI; the oracles EK and DK are now just EK , and its counterpart in
the ideal game is a random permutation P ∈ Perm(n), where Perm(n) denotes
the set of permutations on {0, 1}n.

We again consider a white-box adversary A = (Acreate,Adist) running in

two games: the real white-box PRP game ( PRP -real) which is formally de-

fined in Exp. 7 and the ideal white-box PRP game ( PRP -ideal) in Exp. 8. We
assume that the white-box program given to a lifter contains an implementa-
tion of not only encryption but also decryption. Then, given a block cipher E
and its compiler CE , let us define the whPRP advantage of a white-box adver-
sary A = (Acreate,Adist) with respect to a simulator S as AdvwhPRP

E,CE ,S(A) :=

Pr

[
Exp

PRP -real

E,CE ,A = 1

]
− Pr

[
Exp

PRP -ideal

S,A = 1

]
.

Definition 3 (whPRP). The pair of a block cipher E and a compiler CE is a
(λ, t, q, tlif , qsim, ϵ)-secure whPRP if the following condition is satisfied: Let A be
an arbitrary adversary running in time t and making at most q queries. A makes
a lifter that runs in time tlif and outputs at most λ-bit leakage. For arbitrary such
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A, there exists a simulator S that runs in time tsim, makes at most qsim queries,
and satisfies an inequality AdvwhPRP

E,CE ,S(A) < ϵ.

Informally, suppose the following claim holds: For any “efficient” A, there exists
a simulator S that makes a “reasonable amount of” queries and making the
whPRP-advantage small. Then we say that Π is whPRP-secure.

The definition of whPRP is a strengthening of the conventional black-box PRP,
as the latter corresponds to the case λ = 0. It should be noted that we allow the
simulator S to make queries to P−1.

We can also consider the strong PRP version, whSPRP, where A is given
oracle access to not only EK but also E−1

K . It is strictly stronger than whPRP.
As a candidate of whPRP, we conjecture20 that SPACE-na (na ∈ {8, 16, 24, 32})

is a (λ, t, q, tlif , qsim, ϵ)-secure whPRP with t ≈ 2κ, q ≈ 2n, λ ≈ (n− na) · 2na−2,
and ϵ≪ 1, as long as tlif ≪ qsim(< 2n). Here, n and κ denote the block and key
length, which are 128. See the full version [40] for more details.

5.2 whPRF: Secure White-Box Keyed Functions

We call the new security notion for white-box keyed functions white-box pseudo-
random function security (whPRF )21, which is defined in the same way as wh-
PRP except that the black-box oracle given to the adversary is a random function
RF instead of a random permutation P , and that simulators have access to RF
instead of P and P−1. Real and ideal experiments in addition to a distinguishing
advantage are defined in the same way as those for whPRP.

5.3 White-Box Security of Conventional Encryption Schemes

We define two security notions on conventional IV-based encryption schemes,

which we name tweakable strong PRP security (whS̃PRP) and white-box IND$-
CPA security (whIND$-CPA).

whS̃PRP. The most natural way to obtain a definition of conventional IV-based
encryption schemes is to consider the special case of whPRI where A = {ε} and
τ = 0. This is an extension of (VIL) tweakable strong PRP (S̃PRP) security for

enciphering schemes in the black-box setting [38], and thus we call it whS̃PRP.

20 Note that it is unrealistic to “prove” whPRP-security of SPACE-256-16 in the same
sense as proving PRP security of AES is unrealistic. Generally, the only realistic way
to be confident with security of a block cipher is to see whether it withstands various
attempts of cryptanalysis by experts. Recently, the security of some space-hard block
ciphers was reviewed against a similar adversary to whPRP in [60].

21 We define a white-box version of PRF security but does not for MAC security such
as existential unforgeability. This is because a lifter can leak a valid message-tag
pair that has not been queried to oracles before, and thus it seems hard to achieve a
sound white-box version of existential unforgeability. It might be possible to define
a white-box version of weaker notions such as universal unforgeability, but such
notions are out of the scope of this paper. Studying weaker notions is a future work.
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whIND$-CPA. Though whS̃PRP is naturally derived from whPRI, many pop-

ular conventional encryption schemes such as CTR and CBC are not S̃PRP-
secure even in the black-box setting. Thus we seek for another definition extend-
ing ones that CTR and CBC meet in the black-box setting. Since CTR and CBC
cannot achieve indistinguishability against CCAs, we focus on security against
CPAs.

In the black-box setting, we have three scenarios depending on how IVs for
encryption queries are chosen.

1. Arbitrary IV (or, nonce-misuse) scenario: IVs are chosen by adversaries com-
pletely arbitrarily.

2. Nonce IV (or, nonce-respecting) scenario: IVs are chosen by adversaries ar-
bitrarily, but repeated uses are prohibited (i.e., once an IV value is used for
a query, it is never be used again).

3. Random IV scenario: An IV is chosen uniformly at random for every encryp-
tion query.

CTR and CBC cannot achieve indistinguishability in the first scenario. The
second scenario is popular in the black-box setting but not suitable in our context
since a lifter may leak information on a valid message-ciphertext pair w.r.t. an
unused nonce. Thus we focus on the random IV scenario.

We follow [54] for the black-box security notion against CPAs for conven-
tional random-IV encryption scheme. The notion is defined by real and ideal
experiments. In the real experiment, an adversary has an access to a modified
version of the encryption oracle EK , which we denote by EK,rnd. For each encryp-
tion query, EK,rnd chooses IV uniformly at random, and returns (IV, EK(IV )).
In the ideal experiment, EK,rnd is replaced with an oracle $(·) that just returns a
random IV and a random ciphertext of the same length as the message. A scheme
is defined to be secure if an adversary with a reasonable amount of computa-
tional resources cannot distinguish the two experiments. We call this black-box
security notion IND$-CPA22.

Our new notion whIND$-CPA is defined by extending IND$-CPA in the same
way as whPRI is defined extending PRI security. In the real world, the black-box
oracle given to A is EK,rnd only. In the ideal world, the oracle $(·) is given to both
of A and S. A complete description of the real and ideal experiments can be
found in the full version of this paper [40]. The advantage AdvwhIND$−CPA

Π,CΠ ,S (A)
is defined as before. We assume that the white-box program given to a lifter
contains an implementation of not only encryption but also decryption.

6 Weak Public Indifferentiability and White-Box Security
Reductions

This section first introduces a weaker version of public indifferentiability which
we name weak public indifferentiability. Second, we show that weak public indif-

22 This name is from [57], though it is defined for nonce-based scheme rather than
random-IV schemes.



A Modular Approach to the Incompressibility of Block-Cipher-Based AEADs 21

ferentiability implies reductions between our white-box security notions intro-
duced in Sections 4 and 5. Third, we provide feasibility results that our white-box
security notions on various schemes can be reduced to whPRP, by showing weak
public indifferentiable constructions.

6.1 Weak Public Indifferentiability and Compositions

An important point to be aware of about public indifferentiability is that it seems
quite hard to prove a composition of two arbitrary public indifferentiable scheme
become again public indifferentiable. This is because the general “composition
theorem” is not applicable to show public indifferentiability of composite schemes
due to the following reason. Suppose a scheme UQ (Q is an ideally random prim-
itive) is public indifferentiable from a random object P (e.g., a random oracle).
Then, what the general ”composition theorem” for public indifferentiability says
is that we can safely replace P in a protocol or construction with UQ if the secu-
rity of the protocol/construction is defined by single-stage games satisfying the
following condition: Queries to P by any party involved in the security games
can be made public without affecting the security. (We denote this condition by
(C).) Now, assume that there is another scheme TP that is public indifferentiable
from a random object R. If (C) were satisfied by the security games of TP (i.e.,
by the security games of public indifferentiability), public indifferentiability of

UQ and the ”composition theorem” would imply public indifferentiability of TUQ

.
However, (C) is not satisfied because queries by a simulator must not be visible
to an adversary in the ideal game. Thus the general ”composition theorem” is

not applicable to prove public indifferentiability of TUQ

. (See also Remark 2.)

However, infeasibility of compositions is inconvenient because security proofs
cannot be provided in a modular way. To remedy this, we introduce a weaker
variant which we name weak public indifferentiability. Let TP be a construc-
tion querying to an ideally random primitive P, and let R be a random ob-
ject of which input-output interfaces are compatible with TP. Now, let Rev′[R]
be a variant of the revealing interface Rev[R] that returns the list of all the
queries made so far by A, but not by S, together with the responses23. We
define weak public indifferentiability in the same way as public indifferentiabil-
ity is defined except that the revealing interface is Rev′[R] instead of Rev[R].

Weak public indifferentiability advantage is defined as Advweak-pub-indiff
T,R,S (A) :=

Pr
[
1← ATP,P

]
− Pr

[
1← AR,SR,Rev′[R]

]
.

23 Note that lists returned by Rev′[R] contain more useful information for S than lists
returned by Rev[R]. This is because (1) S can record what it has queried to R so far
by itself, and (2) Sometimes S cannot tell which queries recorded in a list by Rev[R]
have been queried by A: If a value x had been queried to R for the first time by S
but not A, there is no means for S to know whether A queried x to R afterwards.
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A public indifferentiable scheme is weak public indifferentiable24. This is
because a simulator S for public indifferentiability can be converted into a one
for weak public indifferentiability just by recording queries that S makes to R.

On Compositions of Two Weak Public Indifferentiable Schemes. Here
we explain that a composition of two weak public indifferentiable schemes be-
come weak public indifferentiable if a few additional conditions are satisfied. To
explain this, we formally define random-IV schemes. Note that we say a con-
struction TP is deterministic if, for an arbitrary inputX, the output value TP(X)
is unchanged during each game.

Definition 4. A construction TP is a random-IV scheme if it is a public-coin
protocol. Namely, there exists a deterministic construction T̃P and a set IV such
that, on arbitrary input X, TP runs as follows: (1) Take a value IV from IV
uniformly at random. (2) Return (IV, T̃P(IV,X)).

The following lemma shows the composition of two weak public indifferentiable
schemes is again weak public indifferentiable if a few additional conditions are
satisfied. Here we provide only an informal version due to page limitation. See
the full version of this paper [40] for a formal version and a proof.

Lemma 1 (Composition of weak public indifferentiable schemes, infor-
mal). Suppose the following (1)-(3) hold: (1) TP is a deterministic or random-IV
scheme calling an ideally random primitive P and is weak public indifferentiable
from R, (2) UQ is another deterministic construction calling an ideally random
primitive Q and is weak public indifferentiable from P, and (3) P and Q are

deterministic. Then TUQ

is also weak public indifferentiable from R, regarding Q
as the primitive oracle.

All compositions of (weak public) indifferentiable schemes appearing in this pa-
per satisfy (1)-(3).

Intuition of the Proof. Here we explain a sketch of the proof when all the func-
tions and constructions are deterministic. Suppose the ideal game for TU is being
executed with an adversary A.

Let ST (resp., SU) be a “good” simulator for T (resp., U) making the indiffer-
entiability advantage small. Then, a “good” simulator STU for TU is defined as
follows, by using ST and SU as subroutines: When a value x is queried to STU , it
first runs SU on the input x as a subroutine. Intuitively, STU tries to convince the

subroutine SU that “now SU is run as a part of ATP,SP,Rev′[P]
U ”. When SU returns

an output, STU returns it to A as its own output. To achieve this, STU simulates

the oracles P and Rev′[P] for SU. P is simulated just by running SR,Rev
′[R]

T . (Note

24 It seems hard to prove weak public indifferentiability implies public indifferentiabil-
ity, but currently we are not aware of any separation example that is weak public
indifferentiable but not public indifferentiable.
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that STU is given oracle access to R and Rev′[R].) The non-trivial part is how to
simulate the oracle Rev′[P].

What the subroutine SU is expecting to receive when it makes a query to
the revealing interface is a list storing queries (and the responses) to P that are

made so far by A through T (but not by SU) while running ATP,SP,Rev′[P]
U . Hence,

when the subroutine SU makes a query to the revealing interface, STU simulates
the oracle Rev′[P] as follows. First, STU queries to Rev′[R] to get the list ListA[R]
of queries made so far to R by A (but not by STU). Then STU computes the

function TSR,Rev′[R]
T on the input X for each entry (X,Y ) in ListA[R], recording

all the queries by T to SR,Rev
′[R]

T into a list Listprim, together with the responses.
Finally, STU returns Listprim to SU as a response. The simulation works well
because STU can tell which value has been queried to R so far by A (but not by
STU). See the full version of this paper [40] for further details.

Remark 2. The above idea does not work for (original) public indifferentiability.
Here we explain which part fails for public indifferentiability. The non-trivial
part of the proof is again how to simulate Rev[P] for SU. The issue in simulating
Rev[P] is also again how to determine the values queried to P through T by A
but not by SU. Now, the procedure ”First, STU queries to Rev′[R] to get...” does
not work for public indifferentiability due to the property (2) in Footnote 23.

6.2 Weak Public Indifferentiability Implies White-Box Reduction

Let (π, Cπ) be a white-box symmetric-key scheme that are either of a keyed
function, block cipher, AEAD, or a conventional IV-based encryption scheme.
In addition, let (Σπ, CΣπ ) be another white-box symmetric-key scheme built on
(π, Cπ). We assume Σ calls π in a black-box manner not only at a level of syntax
but also at a level of implementation, i.e., the following conditions are satisfied.

1. The implementation of π (denoted by JπK) is included into the implemen-
tation of Σπ (denoted by JΣπK). In particular, JπK and an implementation
of an oracle-aided algorithm Σ (which is independent from π) is explicitly
separated in JΣπK.

2. The implementation of Σ calls JπK in a black-box manner.

Our goal is to reduce the security of (Σπ, CΣπ ) to the security of (π, Cπ). By sec-
const (resp., sec-prim) we denote the security notion corresponding to (Σπ, CΣπ )

(resp., (π, Cπ)), which is whPRI, whPRP, whPRF, whS̃PRP, or whIND$-CPA25.
By abuse of notations, we use the same symbols Σπ and π to denote the

corresponding keyed black-box oracles given to (Acreate,Adist) in the white-box
security definitions. We assume Σπ is a deterministic or random-IV scheme: If

25 We assume the interfaces of π that Σ accesses to are only those given to A as black-
box oracles in the security games of sec-prim. For instance, if π is a block cipher
EK and sec-prim is whPRP, we assume that Σ calls only EK and does not call E−1

K

(though simulators in the ideal game of whPRP access to both of P and P−1).
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it is a random-IV scheme, there exists a scheme Σ̃π and a set IV such that Σπ

runs as follows on arbitrary input X: (1) IV is chosen uniformly at random from
IV. (2) Return (IV, Σ̃π(IV,X)).

Let R and P denote the ideal oracles given to a simulator in the ideal games of
the security definition of (Σπ, CΣπ ) and (π, Cπ), respectively. Suppose there exist
non-decreasing functions qΣ(·, ·) and σΣ(·, ·) satisfying the following property: If
Σπ is evaluated on q inputs of which lengths 26 are σ in total during a game, Σ
makes at most qΣ(q, σ) queries to π and the lengths of the queries are at most
σΣ(q, σ) in total. In addition, assume we have the following three algorithms.

1. An adversary A = (Acreate,Adist) against (Σ
π, CΣπ ). The running time is at

most tA. The number of black-box oracle queries by A is at most qA and the
lengths of queries are at most σA in total. A creates a lifter running in time
tlif and outputs at most λ-bit leakage.

2. A simulator Sprim for (π, Cπ) on sec-prim. Sprim makes at most qSprim queries
to the ideal oracle P. The lengths of queries are at most σSprim in total.

3. A simulator Sindiff for weak public indifferentiability of ΣP from R27. There
exist non-decreasing functions qSindiff

(·, ·, ·, ·) and σSindiff
(·, ·, ·, ·) satisfying

the following properties: If an adversary makes at most qc (resp., qp) con-
struction (resp., primitive) queries of which lengths are at most σc (resp.,
σp) in total in the ideal game of weak public indifferentiability, Sindiff makes
at most qSindiff

(qc, σc, qp, σp) queries to the ideal oracle R. The lengths of the
queries are σSindiff

(qc, σc, qp, σp) in total.

Theorem 2. Let A, Sprim, and Sindiff be as above. Then there exists an adver-
sary A′ = (A′

create,A′
dist) against (π, Cπ), a simulator Sconst for (Σπ, CΣπ ), and

an algorithm A′′ against weak public indifferentiability of Σ such that

Advsec-const
Σπ,CΣπ ,Sconst

(A) = Advsec-prim
π,Cπ,Sprim

(A′) +Advweak-pub-indiff
Σ,R,Sindiff

(A′′) (1)

holds. Here, we can construct Sconst, A′, and A′′ so that (a) A′ does not de-
pend on Sprim and Sindiff , (b) Sconst does not depend on A, (c) A′′ does not
depend on Sindiff , and the following conditions hold: (1) Sconst makes at most
qSindiff

(qA, σA, q
′
Σ+qSprim

, σ′
Σ+σSprim

) queries to R. The lengths of the queries are
at most σSindiff

(qA, σA, q
′
Σ + qSprim , σ

′
Σ +σSprim) in total. Here, q′Σ := qΣ(qA, σA)

and σ′
Σ := qΣ(qA, σA) (2) A′ runs in time O(tA + σ′

Σ) and makes at most q′Σ
queries to a black-box oracle. The lengths of the queries are at most σ′

Σ in total.
A′ creates a lifter L′ that runs in time O(tlif) and outputs at most λ-bit leakage.
(3) A′′ makes at most qA construction queries of which lengths are at most σA
in total, and makes at most q′Σ + qSprim primitive queries of which lengths are at
most σ′

Σ + σSprim in total.
26 The unit of length can be set arbitrarily (e.g., bit or block) depending on the context.
27 Since P is the oracle given to a simulator while π is the black-box oracle given to

an adversary in the security games of sec-prim, Σ may access to only a part of the
interfaces of P: If sec-prim is whPRP and π = EK , P is the pair (P, P−1) (here, P
is a random permutation) but Σ accesses only to P (and not to P−1) because the
black-box oracle interface given to an adversary A in the definition of whPRP is
only EK (and E−1

K is not given to A).
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Interpretation of Theorem 2. The above theorem indeed shows that (Σπ, CΣπ )
is a secure white-box scheme w.r.t. sec-const if the underlying scheme (π, Cπ) is
secure w.r.t. sec-prim and ΣP is weak public indifferentiable from R: Let A be
an adversary attacking (Σπ, CΣπ ). Then, we can construct an adversary A′ to
attack (π, Cπ) as in Theorem 2. If (π, Cπ) is secure (w.r.t. sec-prim), then there

is a simulator Sprim for (π, Cπ) that makes Advsec-prim
π,Cπ,Sprim

(A′) small. In addition,

if ΣP is weak public indifferentiable from R, then there exists a simulator Sindiff
making Advweak-pub-indiff

Σ,Sindiff
(A′′) small, where A′′ is the adversary built from A

and Sprim as in the theorem. Again, Theorem 2 assures that we can construct
Sconst from Sprim and Sindiff such that Advsec-const

Σπ,CΣπ ,Sconst
(A) satisfies Eq. (1).

If all the parameters appearing in Theorem 2 are not so large, the advantage
Advsec-const

Σπ,CΣπ ,Sconst
(A) is sufficiently small.

Intuition of the Proof. Here we provide a rough sketch on why Σπ becomes
secure if π is secure and ΣP satisfies the original indifferentiability. Let Sindiff be
a simulator making the indifferentiability advantage of ΣP small. We consider
the following three games.

1. [The real world (for Σπ on sec-const).] The adversary A = (Acreate,Adist)
is given a black-box oracle access to Σπ. A lifter L is given a white-box
implementation of Σπ.

2. [Intermediate world.] The black-box oracle of π and the lifter L in the real
world are replaced with a random permutation P and a simulator Sprim (for
π on sec-prim), respectively. The adversary A = (Acreate,Adist) and §prim are
given oracle access to ΣP and P, respectively. Especially, this game executes

three algorithms AΣP

create, SPprim, and AΣP

dist.

3. [The ideal world] The black-box oracle given to A = (Acreate,Adist) is R.
In addition, the simulator (for Σπ on sec-const) is defined to be SSindiff

prim .

SSindiff

prim is also given an oracle access to R. Especially, this game executes

three algorithms AR
create, S

SR
indiff

prim , and AR
dist.

If π is secure, then we can replace π (in Σπ) and a lifter in the real world with P
and a simulator Sprim, respectively, with a small security loss. That is, the differ-
ence between the first and the second worlds is small. Next, regarding the tuple
(Acreate,Sprim,Adist) as a single algorithm, we can regard the intermediate world
as a game where a single-stage adversary (Acreate,Sprim,Adist) runs relative to
the oracles (ΣP,P). Moreover, we can also regard the ideal wold as a game where
the single algorithm (Acreate,Sprim,Adist) runs relative to the oracles (R,SRindiff).
Especially, the difference between the intermediate and ideal worlds matches the
indifferentiability advantage of the single algorithm (Acreate,Sprim,Adist) against
TP and R with respect to Sindiff28. Since ΣP is indifferentiable from R by Sindiff ,
the difference between the intermediate world and the ideal world is also small.

28 This is the reason that we can utilize the indifferentiability of ΣP from R to show
the security of Σπ although the security games of Σπ are not single-stage games.
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In fact there are some subtleties on how to simulate list of queries passed
to Sprim. Moreover, when we consider weak public indifferentiability instead of
original indifferentiability, we also have to consider how to simulate the revealing
interface Rev′[R]. See the full version of this paper [40] for details.

6.3 Feasibility Results

This section shows feasibility results that various white-box security notions can
be reduced to that of block ciphers (whPRP) and FIL/FOL keyed functions
(whPRF) like in the black-box setting. We only prove (weak) public indiffer-
entiability of the constructions because Theorem 2 shows white-box security
reductions follow from (weak) public indifferentiability.

whPRP-whPRF Switch. Let P be an n-bit random permutation. Then, re-
garding (P, P−1) as a primitive oracle, P is public indifferentiable from a random
function RF : {0, 1}n → {0, 1}n. (In the real world, the construction oracle is P
and the primitive oracle is (P, P−1).) Specifically, the proposition below holds.

Proposition 1. There is a simulator S making at most qp queries to RF sat-

isfying Advpub-indiff
P,RF,S (A) ≤ (qc+qp)

2

2n for any adversary A making at most qc and
qp queries to the construction and primitive oracles, respectively.

The proof is quite straightforward. See the full version of this paper [40] for
a complete proof. Together with Theorem 2, this proposition implies that a
whPRP-secure BC is a whPRF-secure keyed function.

Reduction from whPRP to whPRF. The 6-round Feistel construction is
public indifferentiable from a random invertible permutation when round func-
tions are random functions [49]. Thus we can build a whPRP-secure BC from a
whPRF-secure keyed function.

Reduction from VIL/VOL-whPRF to FIL/FOL-whPRF. The indiffer-
entiability result of the sponge construction (Theorem 1) implies that we can
build VIL/VOL-whPRF from FIL/FOL-whPRF. We can also build VIL/FOL-
whPRF from FIL/FOL-whPRF by the Merkle-Damg̊ard construction since it is
public indifferentiable [32].

Reduction from whPRI to FIL/FOL-whPRF. By the result of Barbosa
and Farshim [6], an indifferentiable AEAD can be constructed from a FIL/FOL
random function by a scheme based on (unbalanced) 3-round Feistel that uses
the sponge construction as round functions. (See Theorem 5 of the full version
of this paper [40] and the explanation below for more details.) Thus we can
build a whPRI-secure AEAD from a whPRF-secure FIL/FOL keyed function.
In Section 7 we show a more practical construction.
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Reduction from whS̃PRP to whPRF. A weak public indifferentiable VIL
tweakable ideally random permutation can be built from a FIL/FOL random
function f , by a (balanced) 6-round Feistel construction of which round functions
are the sponge construction using f as an underlying primitive. See the full
version of this paper [40] for more details.

Reduction from whIND$-CPA to whPRF. Let us modify the encryption
oracle of CTR in such a way that (1) a uniformly random IV is chosen for each
encryption query (rather than IV is chosen by adversary) and IV is returned
together with the ciphertext, and (2) the underlying keyed function of CTR is
replaced with a random function ρ. We denote the resulting encryption oracle
by Eρrnd. Then E

ρ
rnd is public indifferentiable from $(·) that appears in the ideal

experiment of whIND$-CPA. More precisely, the following proposition holds.

Proposition 2. There exists a simulator S making at most qc queries to the
$(·), where the lengths of queries are at most σ blocks in total, that satisfies

Advpub-indiff
Ernd,$(·),S(A) ≤

σ2

2m +
σ(σ+qp)

2m for any adversary A making at most qc queries

to the construction oracle of which lengths are at most σ blocks in total and qp
queries to the primitive oracle.

Intuition of the Proof. For simplicity, we assume len(M) is always a multiple of
n and denote the i-th block of M by Mi, i.e., M = M1|| · · · ||Mlen(M)/n. Roughly
speaking, the simulator S runs as follows: Let List[$(·)] be the list storing queries
made so far to $(·) and the responses. When a fresh value x is queried to the
interface corresponding to ρ, the simulator first queries to the revealing interface
to get List[$(·)]. If there exists (M, (IV, C)) ∈ List[$(·)] such that x = IV + i− 1
for 1 ≤ i ≤ len(M)/n, the adversary may be trying to compute the i-th block of
C itself. Thus the simulator sets the value ρ(x) as ρ(x) := Mi ⊕ Ci so that the
adversary cannot notice that ρ is simulated. If such (M, (IV, C)) does not exist
in List[$(·)], the value ρ(x) is just randomly sampled.

The simulator may not be able to sample the value ρ(x) in compatible with
C and fail if the following (a) or (b) happen: (a) when a message M is queried to
$(·) and IV is randomly chosen, IV +i = IV ′+j holds for some (M ′, (IV ′, C ′)) ∈
List[$′(·)], where 0 ≤ i < len(M)/n and 0 ≤ j < len(M ′)/n. (b) when a message
M is queried to $(·) and IV is randomly chosen, the value IV + i (0 ≤ i <
len(M)/n) collides with a value x on which the output value of ρ is already

defined. The events (a) and (b) correspond to the terms σ2

2m and
σ(σ+qp)

2m in
the security bound, respectively. If both of (a) and (b) do not happen in the
ideal world, then outputs of ρ are appropriately simulated in compatible with
ciphertexts, and thus an adversary cannot distinguish the ideal world from the
real world. See the full version of this paper [40] for a complete proof.

On Reduction of Pairs and Generic Compositions We also observe feasi-
bility of reductions of pairs (i.e., providing proof in a modular way), and infea-
sibility of generic compositions for AEADs. See the full version [40] for details.
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7 A Search for a Practical whPRI-Secure AEAD Mode

This section shows a practical AEAD mode to convert whPRP into whPRI.
Section 7.1 shows that SIV with CTR is public indifferentiable from a fixed-key
random injection when the tag-generation (or, MAC) part is a single VIL/FOL
random function f and the underlying keyed function of CTR is a FIL/FOL
random function ρ. Then, in Section 7.2, we replace ρ and f with keyed functions
built from a single whPRP, and observe that the resulting scheme is a whPRI-
secure AEAD.

7.1 Public Indifferentiability of SIV+CTR

Let CTRρ(IV,M) denote the encryption function of the counter mode with the
underlying keyed function being replaced with a random function ρ : {0, 1}τ →
{0, 1}n (τ ≤ n). In addition, let Π = (Ef,ρ,Df,ρ) be the SIV construction of
which keyed function for tag-generation is replaced with a random function
f : N ×A × {0, 1}∗ → {0, 1}τ and conventional encryption scheme is replaced
with CTRρ. Let enc : N×A×{0, 1}∗ → {0, 1}∗ be an arbitrary encoding function
that encodes each tuple (N,A,X) into a single bit string in a uniquely decod-
able manner. We let len(N,A,X) := len(enc(N,A,X)) and call ⌈len(X)/n⌉ the
block length of a bit string of X. The following theorem shows Π is public
indifferentiable from a random injection.

Theorem 3. Let F : N×A×{0, 1}∗ → {0, 1}∗ be a fixed-key random injection
with message space {0, 1}∗ and such that len(F (N,A,M)) = len(M) + τ . There
exists a simulator S for public indifferentiability of Π from F±, where a primitive
oracle is (f, ρ), such that the number of queries by S to the construction oracle
is at most qf and the block lengths of the queries are at most σf in total, and

Advpub-indiff
Π,F±,S (A) ≤ (σc + σf )

2

2τ
+

(σc + σf )(qρ + σc)

2τ
+

3qc
2τ

+
(qc + qf )

2

2τ
(2)

holds for any adversary A of which computational resources are as follows: To
the construction oracle, A makes at most qc queries of which block lengths are
at most σc in total. To the first primitive oracle (corresponding to f), A makes
at most qf queries of which block lengths are at most σf in total. To the second
primitive oracle (corresponding to ρ), A makes at most qρ queries. Here, we
assume (qc + qf ) ≤ 2τ−1.

Intuition of the Proof. For simplicity, we assume len(M) is always a multiple
of n. For each (N,A,M), we assume F (N,A,M) is divided as F (N,A,M) =
IV ||C1|| · · · ||Cℓ, where IV ∈ {0, 1}τ and C1, . . . , Cℓ ∈ {0, 1}n. The simulation of
ρ is almost the same as that for the proof of random-IV CTR (See the explanation
below Proposition 2. Here, $(·) in Proposition 2 is replaced with F .). Simulation
of f(N,A,M) is done just by querying (N,A,M) to F and return F0(N,A,M).
Intuitively, the simulation does not work well if the simulation of ρ fails (the
events (a) and (b) in the explanation below Proposition 2), or (c) an adversary
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computes Df,ρ(N,A,C) itself for a tuple (N,A,C) such that C has never been
returned from F , and Df,ρ(N,A,C) happens to be a value that is not ⊥. The
events (a) and (b) correspond to the terms

(σc+σf )
2

2τ and
(σc+σf )(qρ+σc)

2τ of Eq. (2),
respectively. Due to (c), an additional term qc

2τ is added. Moreover, we need

another term
(qc+qf )

2+2qc
2τ to deal with lazy sampling of a random injection. See

the full version of this paper [40] for a complete proof.

7.2 Instantiation with Block Ciphers

This section discusses how to combine the scheme in the previous subsection
with a whPRP-secure block cipher to build a whPRI-secure AEAD.

Assume τ < n and let P : {0, 1}n → {0, 1}n a random permutation. De-
fine P0 : {0, 1}n−1 → {0, 1}n−1 and P1 : {0, 1}τ → {0, 1}n by P0(x) :=
(The lower (n− 1) bits of P (0||x)) and P1(x) := P (1n−τ ||x). Set N = {0, 1}n/2.
Let enc be an encoding function such that enc(N,A,M) = N ||A||M ||len(M).
(We assume len(M) is represented as an n/4-bit string.) In addition, define
MACP (N,A,M) := SpongeP0(enc(N,A,M)). Replace f (tag generation func-
tion) and ρ (underlying function of CTR) of Π in Theorem 3 with MACP and
P1, and denote the resulting scheme by Π[P ].

Then, Π[P ] is weak public indifferentiable from a fixed-key random injection
F± when P± is regarded as a primitive oracle29. Furthermore, if we replace P
with a whPRP-secure block cipher EK , the resulting scheme Π[EK ] becomes a
whPRI-secure AEAD by Theorem 2. (Here, we assume Π[EK ] is implemented
in such a way that the implementation of the mode is explicitly separated from
the implementation of EK and the former calls the latter in a black-box manner,
so that Theorem 2 can be applied.) More precisely, the following corollary holds.
(See the full version [40] for more details on how to derive the corollary.)

Corollary 1. Let A be an adversary against (Π[EK ], CΠ[EK ]) on whPRI-security.
The running time of A is at most t. The number of queries by A to a black-box
oracle is at most q and the block lengths of the queries are at most σ in total. A
creates a lifter running in time tlif and outputs at most λ-bit leakage. In addition,
let Sprim be a simulator for (E, CE) on whPRP-security. Sprim makes at most
qsim queries to P±. Then there exists a simulator Sconst for (Π[EK ], CΠ[EK ])
on whPRI-security and an adversary A′ against (E, CE) on whPRP-security
such that AdvwhPRI

Π[EK ],CΠ[EK ],Sconst
(A) is upper bounded by AdvwhPRP

EK ,CEK
,Sprim

(A′)+

⌈n
r ⌉6(10⌈n

r ⌉σ+qsim)4

2τ +
⌈n

r ⌉4(10⌈n
r ⌉σ+qsim)3

2τ +
⌈n

r ⌉2(10⌈n
r ⌉σ+qsim)2

2τ +
⌈n

r ⌉2(9⌈n
r ⌉σ+2qsim)2

2n +
3qc
2τ + ϵ

(
2
⌈
n
r

⌉
(8

⌈
n
r

⌉
σ + qsim)

)
, where ϵ(j) = 1−Πj

i=1(1− 1
2c ). Sconst makes at

most
⌈
n
r

⌉
(9

⌈
n
r

⌉
σ+qsim) queries to F± and the lengths of the queries are at most

29 This is because (1) an invertible permutation is public indifferentiable from a ran-
dom function (Proposition 1), (2) the sponge construction is indifferentiable from
a random oracle (Theorem 1), (3) the scheme Π in Theorem 3 is public indiffer-
entiable from a fixed-key random injection, (4) composition of deterministic weak
public indifferentiable schemes are again weak public indifferentiable (Lemma 1, or
its formal version in the full version of this paper [40]).
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(
⌈
n
r

⌉3
(9

⌈
n
r

⌉
σ + qsim)

2) blocks in total. A′ runs in time O(t+ σ) and makes at

most (2σ +
⌈
n
r

⌉
q) black-box oracle queries. A′ outputs a lifter that runs in time

O(tlif) and outputs at most λ bits of leakage.

Interpretation of Corollary 1. Let us set τ = n − 1 and (r, c) = (n/2, n/2 − 1).
Then, Corollary 1 says that AdvwhPRI

Π[EK ],CΠ[EK ],Sconst
(A) becomes small as long as

AdvwhPRP
E,CE ,Sprim

(A) is small and qsim, q, σ ≪ 2n/4. This means the following: Let

λ and tlif be some reasonable parameters (≪ 2n/4) and assume the underlying
block cipher EK is a secure whPRP. More concretely, let A′ be an adversary
attacking EK with t ≪ 2κ and q ≪ 2n/4, and L be a lifter running in time
tlif(< 2n/4) that leaks at most λ-bit leakage. Suppose, for any such A′ and L,
there exists Sprim with making qsim(≪ 2n/4) queries such thatAdvwhPRP

E,CE ,Sprim
(A′)

is sufficiently small. ThenΠ[EK ] is whPRI-secure against an adversary A as long
as (1) the running time of A is ≪ 2κ, (2) the length of messages processed by
Π[EK ] is ≪ 2n/4 blocks in total while running A in the real world, and (3) the
running time and leakage of a lifter (output by A) are at most tlif and λ bits 30.

On Underlying Block Cipher. The above discussions show that Π[EK ] is
whPRI-secure if EK is whPRP-secure and the amount of data processed by
Π[EK ] is ≪ 2n/4. As a candidate of whPRP-secure BC, we conjecture that
SPACE is whPRP-secure for some parameter settings (see Section 5.1). However,
the block length of SPACE is basically n = 128 only, when 2n/4 = 232. In practical
use cases, the limitation of 232 is inconvenient and unsatisfactory.

Thus, we propose a 256-bit block variant of SPACE-16, which we name
SPACE256-16. Its details are provided in the full version of this paper [40],
where we discuss its security against various attacks following the convention of
block cipher designs. We conjecture31 that SPACE256-16 is a (λ, t, q, tlif , qsim, ϵ)-
secure whPRP with λ ≈ 220, t ≈ 2128, q ≈ 264, qsim ≈ 264, and ϵ≪ 1, as long as
tlif ≪ qsim. Assuming our conjecture is true, Π[EK ] with EK instantiated with
SPACE256-16 is secure until the amount of processed data is ≪ 264 (and the
amount of leakage is < 220).

To evaluate the performance, we implemented Π[EK ] using SPACE256-16 on
a single core in a laptop PC with Intel Core i7-1065G7, being Turbo Boost and
hyperthreading disabled. The implementation size is in the order of KB or MB.
As a result, the performance reaches about 530 CPB when a 1KB message is
processed. Considering the performance of raw SPACE-16 is 305.11 cpb [22], we
believe our mode of operation achieves relevant performance.

The limit of leakage for SPACE256-16 is not large. Still, in the same way
as (the original, 128-bit-block) SPACE-32 and SPACE-24 provide better security

30 Note that λ does not explicitly appear in the upper bound of
AdvwhPRI

Π[EK ],CΠ[EK ],Sconst
(A) in the corollary. This is because we (implicitly)

assume λ ≤ qsim and the effect of λ is absorbed into qsim in the security bound.
31 This conjecture is obtained by changing the settings of n and na in our conjecture

in Section 5.1 to n = 256 and na = 16. κ is still 128.
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than SPACE-16 does, a better limit could be achieved by 256-bit-block versions
of SPACE-32 or SPACE-24 (at the cost of performance). We introduced a 256-
bit-block version of SPACE-16 rather than SPACE-32 or SPACE-24 to balance se-
curity and performance. Improving the performance and the limit of the leakage
is an interesting future work. This could be achieved by improving SPACE-hard
block ciphers, modes of operations, or both.
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