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Abstract. The security of code-based cryptography relies primarily on
the hardness of generic decoding with linear codes. The best generic
decoding algorithms are all improvements of an old algorithm due to
Prange: they are known under the name of information set decoders
(ISD). A while ago, a generic decoding algorithm which does not belong
to this family was proposed: statistical decoding. It is a randomized al-
gorithm that requires the computation of a large set of parity-checks of
moderate weight, and uses some kind of majority voting on these equa-
tions to recover the error. This algorithm was long forgotten because
even the best variants of it performed poorly when compared to the sim-
plest ISD algorithm. We revisit this old algorithm by using parity-check
equations in a more general way. Here the parity-checks are used to get
LPN samples with a secret which is part of the error and the LPN noise is
related to the weight of the parity-checks we produce. The corresponding
LPN problem is then solved by standard Fourier techniques. By properly
choosing the method of producing these low weight equations and the
size of the LPN problem, we are able to outperform in this way signifi-
cantly information set decoders at code rates smaller than 0.3. It gives for
the first time after 60 years, a better decoding algorithm for a significant
range which does not belong to the ISD family.

1 Introduction

1.1 The Decoding Problem and Code-based Cryptography

Code-based cryptography relies crucially on the hardness of decoding generic
linear codes which can be expressed as follows in the binary case

Problem 1.1 (decoding a linear code). Let C be a binary linear code over
F2 of dimension k and length n, i.e. a subspace of Fn

2 of dimension k. We are
given y ∈ Fn

2 , an integer t and want to find a codeword c ∈ C and an error
vector e ∈ Fn

2 of Hamming weight |e| = t for which y = c+ e.

This terminology stems from information theory, y is a noisy version of a
codeword c: y = c + e where e is a vector of weight t and we want to recover
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the original codeword c. It can also be viewed as solving an underdetermined
linear system with a weight constraint. Indeed, we can associate to a subspace
C of dimension k of Fn

2 a binary (n−k)×n matrix H (also called a parity-check
matrix of the code) whose kernel defines C, namely C = {x ∈ Fn

2 : Hx⊺ = 0}.
The decoding problem is equivalent to find an e of Hamming weight t such that
He⊺ = s⊺ where s is the syndrome of y with respect to H, i.e. s⊺ = Hy⊺. This
can be verified by observing that if there exists c ∈ C and e such that y = c+e
then Hy⊺ = H(c+ e)⊺ = Hc⊺ +He⊺ = He⊺.

The decoding problem has been studied for a long time and despite many
efforts on this issue [24, 26, 12, 2, 14, 4, 19, 3, 20] the best algorithms [3, 20, 5, 6]
are exponential in the number of errors that have to be corrected: correcting t
errors in a binary linear code of length n with the aforementioned algorithms has
a cost of 2αn(1+o(1)) where α = α(R, τ) is a constant depending of the code rate

R
△
= k

n , the error rate τ
△
= t

n and the algorithm which is used. All the efforts that
have been spent on this problem have only managed to decrease slightly this
exponent α. Let us emphasize that this exponent is the key for estimating the
security level of any code-based cryptosystem. We expect that this problem is the

hardest at the Gilbert-Varshamov relative distance τ = δGV where δGV
△
=h−1(1−

R), with h being the binary entropy function h(x)
△
=−x log2 x−(1−x) log2(1−x)

and h−1(x) its inverse ranging over [0, 1
2 ]. This corresponds in the case of random

linear codes to the largest relative weight below which there is typically just one
solution of the decoding problem assuming that there is one. Above this bound,
the number of solutions becomes exponential (at least as long as τ < 1−δGV) and
this helps to devise more efficient decoders. Furthermore, all the aforementioned
algorithms become polynomial in the regime 1−R

2 ≤ τ ≤ 1+R
2 (see an illustration

of this behavior in Figure 1.1).
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Figure 1.1. Complexity exponent α of the Prange ISD algorithm [24] as a function of

the error ratio τ
△
= t

n
at rate R = 1

2
. The peak corresponds to the normalized Gilbert-

Varshamov distance δGV = h−1(1−R).
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There are code-based cryptographic primitives whose security relies precisely
on the difficulty of decoding at the Gilbert-Varshamov relative distance (some-
thing which is also called full distance decoding [20, 5, 6]), for instance the Stern
code-based identification schemes or associated signatures schemes [27, 16, 1, 13].
In the light of the upcoming NIST second call for new quantum resistant sig-
nature algorithms, it is even more important to have a stable and precise as-
sessment of what we may expect about the complexity of solving this problem.
For much smaller distances, say sub-linear, which is relevant for cryptosystems
like [22, 21], the situation seems much more stable/well understood, since the
complexity exponent of all the above-mentioned algorithms is the same in this
regime [7].

1.2 ISD Algorithms and Beyond: Statistical Decoding

All the aforementioned algorithms can be viewed as a refinement of the orig-
inal Prange algorithm [24] and are actually all referred to as Information Set
Decoding (ISD) algorithms. Basically, they all use a common principle, namely
making the bet that in a certain set of about k positions (the “information set”)
there are only very few errors and using this bet to speed-up decoding. The
parameters of virtually all code-based cryptographic algorithms (for the Ham-
ming metric) have been chosen according to the running time of this family of
algorithms. Apart from these algorithms, there is one algorithm which is worth
mentioning, namely statistical decoding. It was first proposed by Al Jabri in [17]
and improved a little bit by Overbeck in [23]. Later on, [15] proposed an iterative
version of this algorithm.

It is essentially a two-stage algorithm, the first step consisting in computing
an exponentially large number of parity-check equations of the smallest possible
weight w, and then from these parity-check equations the error is recovered by
some kind of majority voting based on these equations. This majority voting
is based on the following principle, take a parity-check equation h for the code
C we want to decode, i.e. a binary vector h = (hi)1≤i≤n such that ⟨h, c⟩ = 0
for every c in C. Assume that the i-th bit of the parity-check is 1, then since
⟨h,y⟩ = ⟨h, e⟩ = ei+

∑
j ̸=i hjej , the i-th bit ei of the error e we want to recover

satisfies

ei +
∑
j ̸=i

hjej = ⟨h,y⟩ . (1.1)

The sum
∑

j ̸=i hjej is biased, say it is equal to 1 with probability 1−ε
2 with a bias

ε which is (essentially) a decreasing function of the weight w of the parity-check
h. This allows to recover ei with about Θ

(
1/ε2

)
parity-checks. However the bias

is exponentially small in the minimum weight of h and e and the complexity of
such an algorithm is exponential in the codelength. An asymptotic analysis of
this algorithm was performed in [9] and it turns out that even if we had a way to
obtain freely the parity-check equations we need, this kind of algorithm could not
even outperform the simplest ISD algorithm: the Prange algorithm. This is done
in [9] by showing that there is no loss in generality if we just care about getting
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the best exponent to restrict ourselves to a single parity-check weight w (see
Section 5 in [9]) and then analyse the complexity of such a putative algorithm
for a single weight by using the knowledge of the typical number of parity-check
equations of a given weight in a random linear code. The complexity exponent
we get is a lower bound on the complexity of statistical decoding. We call such
a putative statistical decoding algorithm, genie-aided statistical decoding: we are
assisted by a genie which gives for free all the parity-check equations we require
(but of course we can only get as much parity-check equations of some weight
w as there exists in the code we want to decode). The analysis of the exponent
we obtain with such genie-aided statistical decoding is given in [9, §7] and shows
that it is outperformed very significantly by the Prange algorithm (see [9, §7.2]).

1.3 Contributions

In this work, we modify statistical decoding so that each parity-check yields now
an LPN sample which is a noisy linear combination involving part of the error
vector. This improves significantly statistical decoding, since the new decoding
algorithm outperforms significantly all ISD’s for code rates smaller than 0.3. It
gives for the first time after 60 years, a better decoding algorithm that does
not belong to the ISD family, and this for a very significant range of rates. The
only other example where ISD algorithms have been beaten was in 1986, when
Dumer introduced his collision technique. This improved the Prange decoder
only for rates in the interval [0.98, 1] and interestingly enough it gave birth to all
the modern improvements of ISD algorithms starting from Stern’s algorithm [26].

A New Approach : Using Parity-Checks to Reduce Decoding to LPN.
Our approach for solving the decoding problem reduces it to the so-called Learn-
ing Parity with Noise Problem (LPN).

Problem 1.2 (LPN). Let Os,τ (·) be an oracle parametrized by s ∈ Fs
2 and

τ ∈ [0, 1] such that on a call it outputs (a, ⟨s,a⟩+ e) where a ∈ Fs
2 is uniformly

distributed and e is distributed according to a Bernoulli of parameter τ . We have
access to Os,τ (·) and want to find s.

(1.1) can be interpreted as an LPN sample with an s of size 1, namely ei.
However, if instead of splitting the support of the parity-check with one bit on
one side and the other ones on the other side, but choose say s positions on the
first part (say the s first ones) and n− s on the other, we can write

⟨h,y⟩ =
s∑

i=1

hiei︸ ︷︷ ︸
linear comb.

+
∑
j>s

hjej︸ ︷︷ ︸
LPN noise

.

We may interpret such a scalar product as an LPN sample where the secret is
(e1, · · · , es); i.e. we have a noisy information on a linear combination

∑s
i=1 hiei

on the s first bits of the error where the noise is given by the term
∑

j>s hjej
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and the information is of the form
∑s

i=1 hiei +noise = ⟨h,y⟩. Again the second

linear combination is biased, say P
(∑

j>s hjej = 1
)

= 1−ε
2 and information

theoretic arguments show that again Θ
(
1/ε2

)
samples are enough to determine

(e1, · · · , es). It seemed that we gained nothing here since we still need as many
samples as before and it seems that now recovering (e1, · · · , es) is much more
complicated than performing majority voting.

However with this new approach, we just need parity-check equations of low
weight on n− s positions (those that determine the LPN noise) whereas in sta-
tistical decoding algorithm we have to compute parity-check equations of low
weight on n − 1 positions. This brings us to the main advantage of our new
method: the parity-checks we produce have much lower weight on those n − s
positions than those we produce for statistical decoding. This implies that the
bias ε in the LPN noise is much bigger with the new method and the number
N = Θ

(
1/ε2

)
of parity-check equations much lower. Secondly, by using the fast

Fourier transform, we can recover (e1, · · · , es) in time O(s2s). Therefore, as long
as the number of parity-checks we need is of order Ω (2s), there is no exponen-
tial extra cost of having to recover (e1, · · · , es). This new approach will be called
from now on Reduction to LPN decoding (RLPN).

Subset Sum Techniques and Bet on the Error Distribution. As just
outlined, our RLPN decoder needs an exponential number N = Θ

(
1/ε2

)
of

parity-checks of small weight on n− s positions. This can be achieved efficiently
by using collision/subset techniques used in the inner loop of ISD’s. Recall that
all ISD’s proceed in two steps, (i) first they pick an augmented information set
and (ii) then have an inner loop computing low weight codewords of some sort.
Step (ii) uses advanced techniques to solve subset-sum problems like birthday
paradox [10, 12], Wagner algorithm [28] or representations techniques [19, 3].
All these techniques can also be used in a natural way in our RLPN decoder to
compute the low weight parity-checks we need.

Furthermore, another idea of ISD’s can be used in our RLPN decoder. All
ISD’s are making, in a fundamental way, a bet on the error weight distribution
in several zones related to the information set picked up in (i). There are two
zones: the potentially augmented information set and the rest of the positions.
ISD algorithms assume that the (augmented) information set contains only very
few errors. A similar bet can be made in our case. We have two different zones:
on one hand the s positions determining s error bits and on the other n− s bits
which determine the LPN noise. It is clearly favorable to have an error ratio
which is smaller on the second part. The probability that this unlikely event
happens is largely outweighed by the gain in the bias of the LPN noise.

Our Results. Using all the aforementioned ingredients results in dramatically
improving statistical decoding (see Figure 1.2), especially in the low rate regime
(R ≤ 1

2 ) where ISD algorithms are known to perform slightly worse than in the

high rate regime (R > 1
2 ). Indeed, the complexity exponent α(R)

△
=α(R, δGV(R))
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of ISD’s for full decoding (a.k.a. the GV bound decoding) which could be ex-
pected to be symmetric in R is actually bigger in the low rate regime than in the
high rate regime: α(R) > α(1 − R) for 0 < R < 1

2 . This results in an exponent
curve which is slightly tilted towards the left, the maximum exponent being al-
ways obtained for R < 1

2 . Even worse, the behavior for very small rates (i.e.
R→ 0+) is fundamentally different in the very high rate regime (R→ 1−). The
complexity curve behaves like α(R) ≈ R in the first case and like α(R) ≈ 1−R

2 in
the second (at least for all later improvements of the Prange decoder incorporat-
ing collision techniques). This behavior at 0 for full distance decoding has never
been changed by any decoder. It should be noted that α(R) = R(1+o(1)) around
0 means that the complexity behaves like 2α(R)n = 2R(1+o(1))n = 2k(1+o(1)), so
in essence ISD’s are not performing really better than trivial enumeration on
all codewords. This fundamental barrier is still unbroken by our RLPN decoder,
but it turns out that α(R) approaches R much more slowly with RLPN. For in-
stance, for R = 0.02 we have α(R) ≈ R

2 . This behavior in the very low regime is
instrumental for the improvement we obtain on ISD’s. In essence, this improve-
ment is due in this regime to the conjunction of RLPN decoding with a collision
search of low weight parity-checks. This method can be viewed as the dual (i.e.
operating on the dual code) of the collision search performed in advanced ISD’s
which are successful for lowering the complexity exponent down to α(R) ≈ 1−R

2
in the high rate regime. In some sense, the RLPN strategy allows us to dualize
advanced ISD techniques for working in the low rate regime.

All in all, using [3] (one of the most advanced ISD techniques) to compute
low weight codewords of some shape we are able to outperform significantly even
the latest improvements of ISD algorithms for code rates R smaller than 0.3 as
shown in Figure 1.2. This is a breakthrough in this area, given the dominant role
that ISD algorithms have played during all those years for assessing the complex-
ity of decoding a linear code. Note however that the correctness of this algorithm
relies on the LPN error model (Assumption 3.7) for which some recent exper-
iments have found out not to be completely accurate (see https://github.com/
tillich/RLPNdecoding/tree/master/verification_heuristic/histogram).
However, experimental results seem to indicate that this LPN modeling can be
replaced by the weaker Conjecture 3.11 which is compatible with the experiments
we have made and for which there is a clear path to demonstrate its validity (see
Subsection 3.4).

Proving the Standard Assumption of Statistical Decoding. In analyzing
the new decoding algorithm, we also put statistical decoding on a much more
rigorous foundation. We show that the basic condition that has to be met for
both statistical decoding and RLPN decoding, namely that the number N of
parity-check equations that are available is at least of order Ω

(
1/ε2

)
in the case

of statistical decoding and Ω
(
s/ε2

)
in the case of RLPN decoding where ε is

the bias of the LPN noise, is also essentially the condition which ensures that
the bias is well approximated by the standard assumption made for statistical
decoding which assumes that

bias (⟨eN,hN⟩) ≈ bias (⟨eN,h′
N⟩) , (1.2)
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Figure 1.2. Complexity exponent for full distance decoding of genie-aided statistical
decoding [9, §7] (recall that this is a lower bound on the complexity exponent of statisti-
cal decoding), the basic Prange ISD algorithm [24], the best state-of-the-art algorithm
of [6] (with a correction in the exponent, see the full version of this paper [8, Ap. B])
and our RLPN decoder as a function of R.

where bias(X) is defined for a binary random variable as bias(X)
△
=P(X = 0)−

P(X = 1), N is a subset of n − s positions (those which are involved in the
LPN noise), h is chosen uniformly at random among the parity-checks of weight
w on N of the code C we decode whereas h′ is chosen uniformly at random
among the words of weight w on N. We will namely prove that as soon as the

parameters are chosen such that N = ω
(
1/ bias (⟨eN,h′

N⟩)2
)
, we have that for

all but a proportion o(1) of codes C (as proved in Proposition 3.1 in Subsection
3.1): bias (⟨eN,hN⟩) = (1 + o(1)) bias (⟨eN,h′

N⟩) .

2 Notation and Coding Theory Background

Vectors and matrices. Vectors and matrices are respectively denoted in bold let-
ters and bold capital letters such as a and A. The entry at index i of the vector
x is denoted by xi. The canonical scalar product

∑n
i=1 xiyi between two vectors

x and y of Fn
2 is denoted by ⟨x,y⟩. Let I be a list of indexes. We denote by xI

the vector (xi)i∈I. In the same way, we denote by AI the sub-matrix made of
the columns of A which are indexed by I. The concatenation of two vectors x
and y is denoted by x||y. The Hamming weight of a vector x ∈ Fn

2 is defined

as the number of its non-zero coordinates, namely |x|△=# {i ∈ J1, nK : xi ̸= 0}
where #A stands for the cardinality of a finite set A and Ja, bK stands for the
set of the integers between a and b.

Probabilistic notation. For a finite set S, we write X
$← S when X is an element

ofS drawn uniformly at random in it. For a Bernoulli random variableX, denote
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by bias(X) the quantity bias(X)
△
=P(X = 0)−P(X = 1). For a Bernoulli random

variable X of parameter p = 1−ε
2 , i.e. P(X = 1) = 1−ε

2 , we have bias(X) = ε.

Soft-O notation. For real valued functions defined over R or N we define o(), O(),

Ω (), Θ (), in the usual way and also use the less common notation Õ() and Ω̃ (),

where f = Õ(g) means that f(x) = O
(
g(x) logk g(x)

)
and f = Ω̃ (g) means that

f(x) = Ω
(
g(x) logk g(x)

)
for some k. We will use this for functions which have

an exponential behavior, say g(x) = eαx, in which case f(x) = Õ(g(x)) means
that f(x) = O(P (x)g(x)) where P is a polynomial in x. We also use f = ω(g)

when f dominates g asymptotically; that is when lim
x→∞

|f(x)|
g(x) =∞.

Coding theory. A binary linear code C of length n and dimension k is a subspace
of the vector space Fn

2 of dimension k. We say that it has parameters [n, k] or

that it is an [n, k]-code. Its rate R is defined as R
△
= k

n . A generator matrix G
for C is a full rank k × n matrix over F2 such that C =

{
uG : u ∈ Fk

2

}
. In

other words, the rows of G form a basis of C. A parity-check matrix H for C
is a full-rank (n− k)× n matrix over F2 such that C = {c ∈ Fn

2 : Hc⊺ = 0} . In
other words, C is the null space of H. The code whose generator matrix is the
parity-check matrix of C is called the dual code of C. It might be seen as the
subspace of parity-checks of C and is defined equivalently as

Definition 2.1 (dual code). The dual code C⊥ of an [n, k]-code C is an

[n, n− k]-code which is defined by C⊥ △
= {h ∈ Fn

2 : ∀c ∈ C, ⟨c,h⟩ = 0} .

It will also be very convenient to consider the operation of puncturing a code,
i.e. keeping only a subset of entries in a codeword.

Definition 2.2 (punctured code). For a code C and a subset I of code
positions, we denote by CI the punctured code obtained from C by keeping only
the positions in I, i.e. CI = {cI : c ∈ C}.

We will also use several times that random binary linear codes can be decoded
successfully, with a probability of error going to 0, as the codelength goes to
infinity as long as the code rate is below the capacity, and this of any binary
input symmetric channel whose definition is

Definition 2.3 (binary input memoryless symmetric channel). A binary
input memoryless symmetric channel (BIMS) with output a finite alphabet Y,
is an error model on {0, 1}∗ assuming that when a bit b ∈ {0, 1} is sent, it gets
mapped to y ∈ Y with probability denoted by p(y|b) (these are the transition
probabilities of the channel). Being symmetric means that there is an involution
f such that p(y|0) = p(f(y)|1). Being memoryless means that the outputs of the
channel are independent conditioned on the inputs: when b1 · · · bn ∈ {0, 1}n is
sent, the probability that the output is y1 · · · yn is given by p(y1|b1) · · · p(yn|bn).
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We use here this rather general formulation to analyze what is going on when
we have several different LPN samples corresponding to the same parity-check
h. The error model that we have in this case will be more complicated than the
standard binary symmetric channel (see Definition 2.6 below). The capacity of
such a channel is given by

Definition 2.4 (capacity of a BIMS channel). The capacity4 C of a BIMS
channel with transition probabilities (p(y|b)) y∈Y

b∈{0,1}
is given by

C
△
=
∑
y∈Y

∑
b∈{0,1}

p(y|b)
2

log2
p(y|b)

1
2p(y|0) + 1

2p(y|1)
.

LPN samples correspond to the binary symmetric channel (BSC) given by

Definition 2.5 (binary symmetric channel). BSC(p) is a BIMS channel
with output alphabet Y = {0, 1} and transition probabilities p(0|0) = p(1|1) =
1− p, p(1|0) = p(0|1) = p, where p is the crossover probability of the channel.

In other words, this means that a bit b is transformed into its opposite 1− b
with probability p when sent through the channel. It is readily verified that

Definition 2.6 (binary symmetric channel). The capacity C of BSC(p) is
given by C = 1− h(p).

We will also talk about maximum likelihood decoding a code (under the
assumption that the input codeword is chosen uniformly at random) for a given
channel, meaning the following

Definition 2.7 (maximum likelihood decoding). Maximum likelihood de-
coding of a binary code C ⊂ {0, 1}n over a BIMS channel with transitions prob-
abilities (p(y|b)) y∈Y

b∈{0,1}
corresponds, given a received word y ∈Yn, to output the

(or one of them if there are several equally likely candidates) codeword x which

maximizes p(y|x). Here p(y|x)△
= p(yi|xi) · · · p(yn|xn) denotes the probability of

receiving y given that x was sent.

In a sense, this is the best possible decoding algorithm for a given channel
model. There is a variation of Shannon’s theorem (see for instance [25, Th. 4.68
p. 203]) which says that a family of random binary linear codes (Cn)n attain
the capacity of a BIMS channel.

Theorem 2.8. Consider a BIMS channel of capacity C. Let δ > 0 and consider
a family of random binary linear codes Cn of length n and rate smaller than
(1−δ)C obtained by choosing their generator matrix uniformly at random. Then
under maximum likelihood decoding, the probability of error after decoding goes
to 0 as n tends to infinity.

4 The formula given here is strictly speaking the symmetric capacity of a channel, but
these two notions coincide in the case of a BIMS channel.
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3 Reduction to LPN and the Associated Algorithm

The purpose of this section is (i) to explain in detail the reduction to LPN, (ii) to
give a high level description of the algorithm which does not specify the method
for finding the dual codewords we need, and then (iii) to give its complexity. We
assume from now on that we are given y which is equal to a sum of a codeword
c of the code C we want to decode plus an error vector e of Hamming weight t:

y = c+ e, c ∈ C, |e| = t.

We will start this section by explaining how we reduce decoding to an LPN
problem and also show how the LPN noise can be estimated accurately.

3.1 Reduction to LPN

Recall that in RLPN decoding we first randomly select a subset P of s positions

P ⊆ J1, nK such that #P = s

where s is a parameter that will be chosen later. P corresponds to the entries
of e we aim to recover and is the secret in the LPN problem. We denote by

N
△
=J1, nK \P the complementary set, with a choice of the letter N standing

for “noise” for reasons that will be clear soon. Given h ∈ C⊥, we compute,

⟨y,h⟩ = ⟨e,h⟩ =
∑
j∈P

hjej +
∑
j∈N

hjej = ⟨eP,hP⟩+ ⟨eN,hN⟩

It gives access to the following LPN sample:

(a, ⟨s,a⟩+ e) where s
△
= eP, a

△
=hP and e

△
=⟨eN,hN⟩.

Here e follows a Bernoulli distribution that is a function of n, s and u (resp. w)
the weight of e (resp. h) restricted to N, namely

u
△
= |eN| and w

△
= |hN| .

The probability that e is equal to 1 is estimated through the following proposition
which gives for the first time a rigorous statement for the standard assumption
(1.2) made for statistical decoding.

Proposition 3.1. Assume that the code C is chosen by picking for it an (n −
k) × n binary parity-check matrix uniformly at random. Let N be a fixed set
of n − s positions in J1, nK and e be some error of weight u on N. Choose h
uniformly at random among the parity-checks of C of weight w on N and h′

uniformly at random among the words of weight w on N. Let δ
△
=bias (⟨e,h′⟩).

If the parameters k, s, u, w are chosen as functions on n so that for n going to
infinity, the expected number N of parity-checks of C of weight w on N satisfies
N = ω

(
1/δ2

)
then for all but a proportion o(1) of codes we have

bias (⟨eN,hN⟩) = (1 + o(1))δ.
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Proof. Let us define for b ∈ {0, 1}:

Eb
△
=#{h ∈ C⊥ : |hN| = w, ⟨eN,hN⟩ = b} (3.1)

E′
b
△
=#{h′ ∈ Fn

2 : |h′
N| = w, ⟨eN,h′

N⟩ = b} (3.2)

By using [2, Lemma 1.1 p.10]5, we obtain

E(Eb) =
E′

b

2k
and Var (Eb) ≤

E′
b

2k
.

By using now the Bienaymé-Tchebychev inequality, we obtain for any function
f mapping the positive integers to positive real numbers:

PC

(
|Eb − E(Eb)| ≥

√
f(n)E(Eb)

)
≤ 1

f(n)
. (3.3)

Since bias (⟨eN,hN⟩) = E0−E1

E0+E1
we have with probability greater than 1− 2

f(n)

µ0 − µ1 −
√

2f(n)
√
µ0 + µ1

µ0 + µ1 +
√
2f(n)

√
µ0 + µ1

≤ bias (⟨eN,hN⟩) ≤
µ0 − µ1 +

√
2f(n)

√
µ0 + µ1

µ0 + µ1 −
√
2f(n)

√
µ0 + µ1

(3.4)

where µi
△
=E(Ei) and where we used that for all positive x and y,

√
x +
√
y ≤√

2(x+ y). We let f(n) = δ
√
N/2. Since N = µ0 + µ1 this implies f(n) =

δ
√
µ0 + µ1/2. By the assumptions made in the proposition, note that f(n) tends

to infinity as n tends to infinity. We notice that√
2f(n)

√
µ0 + µ1 = δ1/2(µ0 + µ1)

3/4 = o (δ(µ0 + µ1)) (3.5)

because

δ1/2(µ0 + µ1)
3/4

δ(µ0 + µ1)
=

1√
δ
√
µ0 + µ1

=
1√
2f(n)

→ 0 as n→∞.

Equation (3.4) can now be rewritten as

µ0 − µ1 − o (δ(µ0 + µ1))

µ0 + µ1 + o (δ(µ0 + µ1))
≤ bias (⟨eN,hN⟩) ≤

µ0 − µ1 + o (δ(µ0 + µ1))

µ0 + µ1 − o (δ(µ0 + µ1))
(3.6)

Now, on the other hand

δ = bias (⟨eN,h′
N⟩) =

E′
0 − E′

1

E′
0 + E′

1

=

E′
0

2k
− E′

1

2k

E′
0

2k
+

E′
1

2k

=
µ0 − µ1

µ0 + µ1
(by (3.1)).

From this it follows that we can rewrite (3.6) as

δ

1 + o(δ)
− o(δ) ≤ bias (⟨eN,hN⟩) ≤

δ

1− o(δ)
+ o(δ) (3.7)

from which it follows immediately that bias (⟨eN,hN⟩) = δ(1 + o(1)).
5 Note that there is an additional condition “Suppose Lq−r grows exponentially in n”
in the statement of this lemma, but it is readily seen that this condition is neither
necessary nor used in the proof.
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Remark 3.2. Note that the condition N = Ω
(
1/δ2

)
, respectively N = Ω

(
s/δ2

)
is the condition we need in order that statistical decoding, respectively RLPN
decoding succeed. This means that if we just have slightly more equations than
the ratio 1

δ2 , then the standard assumption (1.2) made for statistical decoding
holds. The point of this assumption is that it allows easily to estimate the bias
as the following lemma shows.

Lemma 3.3. Under the same assumptions made in Proposition 3.1, we have
that for all but a proportion o(1) of codes,

bias(⟨eN,hN⟩) = δ(1 + o(1)) with δ
△
=

Kn−s
w (u)(
n−s
w

)
where u

△
= |eN| and Kn

w stands for the Krawtchouk polynomial of order n and
degree w ∈ J0, nK which is defined as:

Kn
w(X)

△
=

w∑
j=0

(−1)j
(
X

j

)(
n−X

w − j

)
.

Proof. By using Proposition 3.1 (and the same notation as the one used there)
we have that for all but a proportion o(1) of codes bias (⟨eN,hN⟩) = (1 +
o(1)) bias

(
⟨eN,h′

N⟩
)
. Now by definition of u, we have

bias (⟨eN,h′
N⟩) =

1(
n−s
w

) ∑
j even

(
u

j

)(
n− s− u

w − j

)
− 1(

n−s
w

) ∑
j odd

(
u

j

)(
n− s− u

w − j

)

=
1(

n−s
w

) ∑
j

(−1)j
(
u

j

)(
n− s− u

w − j

)

=
Kn−s

w (u)(
n−s
w

) .

We will now repeatedly denote by bias of the LPN sample the quantity ε
appearing in the previous lemma and the estimated bias the quantity namely

Definition 3.4 (bias of the LPN samples). The bias ε of the LPN samples
is defined by

ε
△
=bias(⟨eN,hN⟩)

when eN has Hamming weight u and h is drawn uniformly at random among
the parity-check equations of weight w restricted on N. The estimated bias is
the quantity δ defined by

δ
△
=bias(⟨eN,h′

N⟩)
when eN has Hamming weight u and h′ is drawn uniformly at random among
the binary words of weight w restricted on N. This quantity is equal to

δ =
Kn−s

w (u)(
n−s
w

) .
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The point of introducing Krawtchouk polynomials is that we can bring in
asymptotic expansions of Krawtchouk polynomials. Most of the relevant prop-
erties we need about Krawtchouk polynomials are given in [18, §II.B]. They can
be summarized by

Proposition 3.5. 1. Value at 0. For all 0 ≤ w ≤ n, Kn
w(0) =

(
n
w

)
.

2. Reciprocity. For all 0 ≤ t, w ≤ n,
(
n
t

)
Kn

w(t) =
(
n
w

)
Kn

t (w).
3. Roots. The polynomials Kn

w have w distinct roots which lie in the interval

r
n/2−

√
w(n− w), n/2 +

√
w(n− w)

z
.

The distance between roots is at least 2 and at most o(n).

4. Magnitude outside the root region. We set τ
△
= t

n , ω
△
= w

n . We assume w ≤
n/2 and t ≤ n/2 −

√
w(n− w). Let z

△
= 1−2τ−

√
D

2(1−ω) where D
△
=(1− 2τ)

2 −
4ω(1− ω). We have

Kn
w(t) = 2n(τ log2(1−z)+(1−τ) log2(1+z)−ω log2 z+o(1)). (3.8)

5. Magnitude in the root region. Between any two consecutive roots of Kn
w,

where 1 ≤ w ≤ n
2 , there exists t such that:

Kn
w(t) = 2n(

1+h(ω)−h(τ)
2 +o(1)) where ω

△
=

w

n
and τ

△
=

t

n
. (3.9)

By using this proposition, we readily obtain

Proposition 3.6 (exponential behavior of δ2). Let τ and ω be two re-

als in the interval
[
0, 1

2

]
. Let ω⊥ △

= 1
2 −

√
ω(1− ω) and z

△
= 1−2τ−

√
D

2(1−ω) where

D
△
=(1− 2τ)

2 − 4ω(1 − ω). There exists a sequence of positive integers (tn)n∈N

and (wn)n∈N, such that tn
n →

n→∞
τ , wn

n →
n→∞

ω and
log2(K

n
wn

(tn)
2/( n

wn
)
2
)

n has a limit

which we denote δ̃(τ, ω) with

δ̃(τ, ω) =

{
2 (τ log2(1− z) + (1− τ) log2(1 + z)− ω log2 z − h(ω)) if τ ∈ [0, ω⊥]
1− h(τ)− h(ω) otherwise.

Proof. In the case τ ∈ [0, ω⊥] we just let tn = ⌈τn⌉, wn = ⌈ωn⌉ and use directly
the asymptotic expansion (3.8). In the case τ ∈

[
ω⊥, 1

2

]
we still define wn with

wn
△
=⌈ωn⌉ but define tn differently. For n large enough, we know from Proposition

3.5 that ⌈τn⌉ lies between two zeros of the Krawtchouk polynomial and that there

exists an integer tn in this interval such that
log2(K

n
wn

(tn))

n = 1+h(ω)−h(τn)
2 + o(1)

where τn = tn
n . Now since the size of this interval is an o(n) we necessarily have

τn = τ + o(1) and therefore
log2(K

n
wn

(tn))

n = 1+h(ω)−h(τ)
2 + o(1).

The point of this proposition is that the term 2 log2(K
n−s
w (u)/

(
n−s
w

)
) quan-

tifies the exponential behaviour of the square ε2 of the bias ε (see Lemma 3.3)
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and 1/ε2 is up to polynomial terms the number of parity-checks we need for
having enough information to solve the LPN problem as will be seen. This is
because the capacity of the BSC( 1−ε

2 ) is 1 − h
(
1−ε
2

)
= θ(ε2) and that solving

an LPN-problem with a secret of size s and N samples amounts to be able to
decode a random linear code of rate s

N over the BSC( 1−ε
2 ). It is therefore doable

as soon as the rate is below the capacity (see Theorem 2.8). The reason why the
Shannon capacity appears here is because of the following heuristic/assumption
we will make here:

Assumption 3.7 (LPN modelling). We will assume that the ⟨eN,hN⟩ are
i.i.d Bernoulli random variables of parameter 1−ε

2 .

Strictly speaking, the corresponding random variables are not independent.
However, note that similar heuristics are also used to analyze a related lattice
decoder making use of short dual lattice vectors (they are called dual attacks
in the literature). We will discuss this assumption in more depth in Subsec-
tion 3.4. Assumption 3.7 models the LPN noise as a binary symmetric channel
BSC( 1−ε

2 ) of crossover probability 1−ε
2 . A straightforward application of Theo-

rem 2.8 together with the fact that the capacity of a binary symmetric BSC( 1−ε
2 )

is 1− h
(
1−ε
2

)
= Ω(ε2) implies

Fact 3.8. With Assumption 3.7, the number N of LPN samples is such that
s/N = O(ε2) for a small enough constant in the O, performing maximum-
likelihood decoding of the corresponding [N, s] binary code recovers the secret
eP with probability 1− o(1).

Performing maximum likelihood decoding of the corresponding code can be
achieved by a fast Fourier transform on a relevant vector. Indeed, for a given

received word y and a set H̃ of N parity-checks so that their restriction to P

leads to a set H of N different vectors of Fs
2, we let for a ∈H, ã be the unique

parity-check in H̃ such that ãP = a and define fy,H as

fy,H : a ∈ Fs
2 7→

{
(−1)⟨y,ã⟩ if a ∈H

0 otherwise
(3.10)

We define the Fourier transform of such a function by f̂(x)
△
=
∑

u∈Fs
2
f(u)(−1)⟨x,u⟩.

The code D we want to decode (obtained via our LPN samples) is described as

D
△
={cx, x ∈ Fs

2} where cx
△
=(⟨x,a⟩)a∈H , (3.11)

and the word uy,H we want to decode is given by uy,H = (⟨y, ã⟩)a∈H . It is
readily seen that

f̂y,H(x) =
∑
a∈Fs

2

f(a)(−1)⟨x,a⟩ =
∑
a∈H

(−1)⟨x,a⟩+⟨y,ã⟩ = #H − 2|uy,H − cx|.

In other words, finding the closest codeword to uy,H is nothing but finding the

x which maximizes f̂y,H(x). This is achieved in time O(s2s) by performing a
fast Fourier transform. Notice that an exhaustive search would cost O

(
22s
)
.
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3.2 Sketch of the whole algorithm

Algorithm 3.1. RLPN decoder

Input: y, t, C an [n, k]-code
Output: e such that |e| = t and y − e ∈ C.

function RLPNdecode(y, C, t)
s, u← Optim(t, k, n)

▷ s and u in order to minimize the complexity of the following procedure.
for i from 1 to Niter do ▷ Niter is a certain function of n, s, t and u.

P
$← {I ⊆ J1, nK : #I = s}

N ← J1, nK \P
H ← Create(N,w,P)

f̂y,H ←FFT(fy,H)

x0 ← argmax f̂y,H

if f̂y,H(x0) ≥ δN
2

then ▷ δ
△
=Kn−s

w (u)/
(
n−s
w

)
.

return e such that eP = x0 and eN = RLPNdecode(yN,CN, t− |x0|))
end if

end for
end function

Besides, the fast Fourier transform solving the LPN problem, Algorithm 3.1
uses two other ingredients:

– A routine Create(N,w,P) creating a set H of N parity-check equations

h such that |hN| = w where N
△
=J1, nK \P. We will not specify how this

function is realized here: this is done in the following sections. This procedure
together with an FFT for decoding the code associated to the parity-check
equations in H (see Equation (3.11)) form the inner loop of our algorithm.

– An outer loop making a certain number Niter of calls to the inner procedure,
checking each time a new set P of s positions with the hope of finding an N

containing an unusually low number u of errors in it. The point is that with
a right u, the number of times we will have to check a new P is outweighed
by the decrease in N because the bias δ is much higher for such a u.

3.3 Analysis of the RLPN decoder

We need to show now that our RLPN decoder returns what we expect. It is what
the following proposition shows (a proof can be found in the full paper [8]).

Proposition 3.9 (acceptation criteria). Under Assumption 3.7, by choosing

Niter = ω
(

1
Psucc

)
(where Psucc is the probability over the choice of N that there

are exactly u errors in N), s = ω(1) and N = ω
(

n
δ2

)
, we have with probability

1− o(1) that at least one iteration is such that eP meets the acceptation criteria
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f̂y,H(eP) ≥ δN
2 . Moreover, the probability that there exists x ̸= eP which meets

this acceptation criteria is o(1).

The space and time complexity of this method are given by

Proposition 3.10. Assume that Create(N ,w,P) produces N parity-check equa-
tions in space Seq and time Teq. The probability Psucc (over the choice of N)

that there are exactly u errors in N is given by Psucc =
( s
t−u)(

n−s
u )

(nt)
. The space

complexity S and the time complexity T of the RLPN-decoder are given by

Space: S = O(Seq + 2s) , Time: T = Õ

(
Teq + 2s

Psucc

)
.

The parameters s, u and w have to meet the following constraints

N ≤ 2s (3.12)

N ≤
(
n−s
w

)
2k−s

. (3.13)

Under Assumption 3.7 the algorithm outputs the correct eP with probability 1−
o(1) if in addition we choose N and Niter such that

N = ω

n

( (
n−s
w

)
Kn−s

w (u)

)2
 (3.14)

Niter = ω

(
1

Psucc

)
. (3.15)

Proof. All the points are straightforward here, with the exception of the con-
straints. The first constraint is that the number of parity-checks should not be
bigger than the total number of different LPN samples we can possibly produce.
The second one is that the number of parity-checks needed is smaller than the
number of available parity-checks. The conditions ensuring the correctness of the
algorithm follow immediately from Proposition 3.9.

3.4 On the validity of Assumption 3.7

The proof of the correctness of the algorithm relies on the validity of the LPN
modelling (Assumption 3.7). We have programmed this algorithm and have ver-
ified that for several parameters it gives the correct answer. The corresponding
experiments with the programs that have been used for running them can be
found on https://github.com/tillich/RLPNdecoding. However, we have also
found out (see https://github.com/tillich/RLPNdecoding/tree/master/

verification_heuristic/histogram) that the second largest Fourier coeffi-
cient (the one which corresponds to the second nearest codeword, besides eP)
does not behave in the same way in the LPN model as in practice with the noise
given by the ⟨hN, eN⟩’s. This can be traced back to the fact that ⟨hN, eN⟩ and
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h′
N, eN

〉
are positively correlated when hN and h′

N are close to each other
in Hamming distance. Actually these correlations have an effect on the tails
of the largest Fourier coefficients as demonstrated in Figure 3.1 which display
longer tails corresponding to the largest Fourier coefficients in the case of a noise
produced by ⟨hN, eN⟩’s (called parity-checks in the figure) instead of Fourier co-
efficients produced by decoding a code with a BSC( 1−ε

2 ) noise (called BSC in
the figure). This phenomenon vanishes when k gets larger as can be verified in
Figure 3.1 or on https://github.com/tillich/RLPNdecoding/tree/master/

verification_heuristic/histogram. From our experiments (see more details
on https://github.com/tillich/RLPNdecoding) this phenomenon is not se-
vere enough to prevent Algorithm 3.1 from working but needs some adjustments
about how larger N has to be in terms of 1

δ2 . This experimental evidence leads
us to conjecture

Conjecture 3.11. Algorithm 3.1 is successful if we replace in Proposition 3.10

the condition N = ω

(
n

(
(n−s

w )
Kn−s

w (u)

)2
)

by the slightly stronger condition N =

ω

(
nα

(
(n−s

w )
Kn−s

w (u)

)2
)

for a certain α ≥ 1.

If this conjecture is true, then obviously the asymptotic exponent of the
complexity is unchanged if we replace Assumption 3.7 by Conjecture 3.11. A
semi-heuristic way to verify this conjecture could be to proceed as follows

1. Let W be the weight of the vector
(〈

h̃N, eN

〉)
h∈H̃

. Compute Var (W ) and

prove that Var (W ) is of order O
(
nβN

)
where β is some constant.

2. Use this computation to bound heuristically the tails of the Fourier coeffi-
cients and use this computation of Var (W ) to give an estimation for the
second largest Fourier coefficient when decoding the [N, s]-code which agrees
with the experimental evidence.

3. Use this to prove that the second largest Fourier coefficient is typically far
away enough from the first one to prove the validity of Conjecture 3.11.

4 Collision techniques for finding low weight parity-checks

4.1 Using the [10] method

A way for creating parity-checks with a low weight on N is simply to use subset-
sum/collision techniques [10, 26, 11]. We start here with the simplest method
for performing such a task pioneered by Dumer in [10]. Consider a parity-check
matrix H for the code C we want to decode and keep only the columns belonging
to N to obtain an (n−k)× (n− s) matrix HN. The row-space of HN generates
the restrictions hN to N of the parity-checks h of C. This row-space is nothing
but the dual code C⊥ punctured in P, i.e. we keep only the positions in N.
With our notation, this is C⊥

N and is an [n− s, n−k]-code. Therefore if we want



18 K. Carrier, T. Debris-Alazard, C. Meyer-Hilfiger, J-P. Tillich

2000 3000 4000 5000 6000
0

100

200

300

400

500

Walsh transform of a word at distance GV: F(GV ) : 3266.0

Number Walsh coe±cient greater than F(GV )+F(≤)
2

: 2 (Parity Checks) ; 1 (BSC)

Parity Checks

BSC

2000 3000 4000 5000 6000
0

100

200

300

400

500

600

Walsh transform of a word at distance GV: F(GV ) : 3259.0

Number Walsh coe±cient greater than F(GV )+F(≤)
2

: 1 (Parity Checks) ; 1 (BSC)

2000 3000 4000 5000 6000
0

100

200

300

400

500

600

Walsh transform of a word at distance GV: F(GV ) : 3262.0

Number Walsh coe±cient greater than F(GV )+F(≤)
2

: 1 (Parity Checks) ; 1 (BSC)

2000 3000 4000 5000 6000
0

100

200

300

400

500

600

Walsh transform of a word at distance GV: F(GV ) : 3255.0

Number Walsh coe±cient greater than F(GV )+F(≤)
2

: 1 (Parity Checks) ; 1 (BSC)

w = 6, s = 19 k = 26, n = 94, |eP | = 6, |eN | = 10, 1°≤
2

= 0, 436318, Tail distribution 0.6 § F(GV )

2000 3000 4000 5000 6000
0

100

200

300

400

500

600

Walsh transform of a word at distance GV: F(GV ) : 3260.0

Number Walsh coe±cient greater than F(GV )+F(≤)
2

: 1 (Parity Checks) ; 1 (BSC)

Parity Checks

BSC

2000 3000 4000 5000 6000
0

100

200

300

400

500

600

Walsh transform of a word at distance GV: F(GV ) : 3263.0

Number Walsh coe±cient greater than F(GV )+F(≤)
2

: 1 (Parity Checks) ; 1 (BSC)

2000 3000 4000 5000 6000
0

100

200

300

400

500

600

Walsh transform of a word at distance GV: F(GV ) : 3262.0

Number Walsh coe±cient greater than F(GV )+F(≤)
2

: 1 (Parity Checks) ; 1 (BSC)

2000 3000 4000 5000 6000
0

100

200

300

400

500

600

Walsh transform of a word at distance GV: F(GV ) : 3261.0

Number Walsh coe±cient greater than F(GV )+F(≤)
2

: 1 (Parity Checks) ; 1 (BSC)

w = 6, s = 19 k = 40, n = 387, |eP | = 6, |eN | = 53, 1°≤
2

= 0, 437490, Tail distribution 0.6 § F(GV )

Figure 3.1. Tails of the largest Fourier coefficients when decoding the [N, s]-code ei-
ther with the noise produced by the ⟨hN, eN⟩’s or by the ideal LPN noise model (the
BSC( 1−ε

2
) noise model). Both figures correspond to parity-checks hN of weight 6 and to

s = 19. However they differ in the value for k. k equals 26 in the first figure and displays
rather heavy tails for the largest Fourier coefficients corresponding to the parity-checks
hN whereas k = 40 corresponds to rather similar tails in both cases. This is a gen-
eral trend that can be verified on https://github.com/tillich/RLPNdecoding/tree/

master/verification_heuristic/histogram, when k gets larger, the heavy tail phe-
nomenon vanishes.

to find parity-checks h of C such that |hN| = w, this amounts to find codewords
of C⊥

N of weight w. For this, we compute a parity-check matrix H′ of C⊥
N i.e. a

(k − s)× (n− s) matrix such that C⊥
N = {c ∈ Fn−s

2 : H′c⊺ = 0}. We split such
a matrix in two parts randomly chosen and of the same size H′ =

(
H1 H2

)
.

We obtain an algorithm of time and space complexity, T and S respectively,

producing N codewords of weight w, with N =
(

n−s
2
w
2
)
2

2k−s (1 + o(1)) and S =

T = O
((n−s

2
w
2

)
+N

)
. The algorithm for producing such codewords is to set up

two lists,

L1
△
=
{
(H1h

⊺
1 ,h1) : |h1| =

w

2

}
and L2

△
=
{
(H2h

⊺
2 ,h2) : |h2| =

w

2

}
and looking for collisions H1h

⊺
1 = H2h

⊺
2 in the lists. It yields vectors h′ = h1||h2

of weight w which are in C⊥
N since H′h′⊺ = H1h

⊺
1 +H2h

⊺
2 = 0. These vectors in

Fn−s
2 can be completed to give vectors h ∈ Fn

2 such that hN = h′. The number

of collisions is expected to be of order
(n−s

2
w
2

)2
/2k−s since 2−(k−s) is the collision

probability of two vectors in Fk−s
2 . The algorithm for performing this task is

given by Algorithm 4.1.
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Algorithm 4.1. Creating low weight parity-checks by collisions

Input C, w, P
Output a list of parity-check equations h of C such that |hN| = w where

N
△
=J1, nK \P.

function Create(C,w, P)
H← Parity-check-matrix(C⊥,P)

▷ returns a parity-check matrix for C⊥ with an identity corresponding to

the positions inP: H =

(
I P
0 H′

)
where we assume that the first block corresponds

to the positions of P.

L1 ← {(H1h
⊺
1,h1) : |h1| = w/2,h1 ∈ F

n−s
2

2 }
L2 ← {(H2h

⊺
2,h2) : |h2| = w/2,h2 ∈ F

n−s
2

2 }
▷ We assume H′ =

(
H1 H2

)
, with H1 and H2 of the same size.

L ← {h1||h2 ∈L1 ×L2 : H1h
⊺
1 = H2h

⊺
2}

return {h′P⊺||h′ : h′ ∈L}
▷ It is straightforward to check that h′P⊺||h′ belongs to C⊥.

end function

We have represented in Figure 4.1 the form of the parity-checks output by
this method, together with the bet we make on the error.

h

s (n− s)/2

w/2

(n− s)/2

w/2

e t− u u

Figure 4.1. The form of the parity-checks produced by this method, vs. the bet made
on the error. The hatched rectangle of size s for h indicates that the weight is arbitrary
on this part.

The amortized cost for producing a parity-check equation of weight w is

O(1) as long as N ≥ Ω
((n−s

2
w
2

))
. It is insightful to consider the smallest value

of w for which
(n−s

2
w
2

)
≤
(n−s

2
w
2

)2
/2k−s. This is roughly speaking the smallest

value (up to negligible terms) of w for which the amortized cost for producing
parity-check equations of weight w is O(1) per equation. In such a case, we

roughly have N ≈
(n−s

2
w
2

)
≈

(
n−s
2
w
2
)
2

2k−s ≈ 2k−s. In other words with this choice we

have Teq = O
(
2k−s

)
. Let us choose now u as the “typical error weight” when

restricted to N, namely u ≈ tn−s
n and s such that the decoding complexity of
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the [N, s]-code is also of order the codelength, i.e. N = Θ̃ (2s). This would imply
2s ≈ 2k−s, which means that we are going to choose s = k

2 . By using Proposition
3.10, all these choices would yield a time complexity TDumer86 for decoding C

which would be of order
TDumer86 = Õ

(
2k/2

)
, (4.1)

if the constraint N = Ω̃

((
(n−s

w )
Kn−s

w (u)

)2
)

for successful decoding the [N, s]-code is

met. This amounts to 2Rn/2 = Ω̃

((
(n(1−R/2)

w )
K

n(1−R/2)
w (t(1−R/2))

)2
)
, where R is the code

rate, i.e. R = k
n . By using Proposition 3.1, we can give an asymptotic formula

for this constraint. It translates into R/2 ≥ 2(1−R/2) δ̃ (τ, ω/(1−R/2)) , where

δ̃ is the function defined in Proposition 3.6. Amazingly enough this constraint is
met up to very small values of R, it is only below R ≈ 0.02 that this condition
is not met anymore. This innocent looking remark has actually very concrete
consequences. This means that above the range R ⪆ 0.02 the asymptotic com-

plexity exponent, i.e. αDumer86
△
= lim supn log2 TDumer86/n where TDumer86 is the

time complexity, satisfies

αDumer86 ≤
R

2
. (4.2)

This is very surprising, since in the vicinity of R ≈ 0 the asymptotic time com-
plexity of all known decoding methods approach quickly R. In other words, in
this regime, the complexity is of order T ≈ 2Rn = 2k for full distance (a.k.a.
GV) decoding, meaning that they are not better than exhaustive search. Unfor-
tunately this is also the case for our method. It can namely be proved that even
by optimizing on the value of s, w and u we can not do better than this with our
method, since αDumer86(R) ∼ R as R approaches 0. However, as can be guessed
from the fact that αDumer86 ≤ R

2 for R ⪆ 0.02, the behaviour of the complexity
is much better for our RLPN decoder. This can be verified in Figure 4.2.

It is worthwhile to recall that ISD algorithms in the regime of the rate close
to 1 precisely use this collision method to find low weight codewords in order
to reduce significantly the complexity of decoding. In a sense, we have a dual
version of the birthday/collision decoder of [10] with reduced complexity for
rates close to 0.

4.2 Improving [10] by puncturing as in [11]

There is a simple way of improving the generation of dual codewords of low
weight on N. It consists in partitioning N in two sets N1 and N2 with N2 being
a subset of positions of size just a little bit above n−k (which is the dimension of
the dual code C⊥), say n−k+ℓ and then to use the collision method to get dual
codewords of weight w2 on N2. The same method is used in the improvement
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Figure 4.2. The complexity of the RLPN-decoder for very small rates vs. the simplest
information set decoder, namely the ISD Prange decoder [24]. For small R, there is no
much difference between the ISD Prange decoder and much more evolved decoders like
[3, 20, 5, 6]. The RLPN-decoder with the very simple [10] technique performs much
better for small rates than ISD decoders. It is only outperformed by the Prange decoder
for rates above 0.25 approximately.

[11] of the simple collision decoder [10] or in a slightly less efficient way in [26].
It just consists in finding codewords in C⊥ which have weight w1 on N1 and w2

on N2 instead of simply weight w on N. We have represented in Figure 4.3 the
form of the parity-checks we produce with this method. Note that the weight w1

is expected to be half the size k − ℓ− s of N1.

h

s k − ℓ− s

(k − ℓ− s)/2

(n− k + ℓ)/2

w2/2

(n− k + ℓ)/2

w2/2

N1 N2

e t− u u1 u2

Figure 4.3. The form of the parity-checks produced by this method, vs. the bet made
on the error. The hatched rectangle of size s for h indicates that the weight is arbitrary
on this part.

To understand the bias we get in this case, the proof of Proposition 3.1 can be
readily adapted to yield

Proposition 4.1. Assume that the code C is chosen by picking for it an (n −
k)× n binary parity-check matrix uniformly at random. Let N be a fixed set of
n−s positions in J1, nK which is partitioned in two sets N1 and N2 and e be some
error of weight ui on Ni for i ∈ {1, 2}. For i ∈ {1, 2}, choose h uniformly at
random among the parity-checks of C of weight wi on the Ni’s and h′ uniformly
at random among the words of weight wi on the Ni’s. For i ∈ {1, 2}, let

δi
△
=bias

(〈
eNi

,h′
Ni

〉)
and δ

△
= δ1δ2
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If the parameters k, s, ui, wi are chosen as functions on n so that for n going
to infinity, the expected number N of parity-checks of C of respective weight wi

on Ni for i ∈ {1, 2}, satisfies N = ω
(
1/δ2

)
then for all but a proportion o(1) of

codes we have
bias (⟨eN,hN⟩) = (1 + o(1))δ.

With the collision method we use, the parity-checks we produce have actually
a slightly more specific form, since N2 is partitioned in two sets of (almost)
the same size on which h has weight w2/2. It is not difficult to turn such a
generation of parity-checks at the cost of a polynomial overhead into a generation
of uniformly distributed parity-checks of weight w2 on N2. We leave out the
details for doing this here. Under such an assumption, we have

Lemma 4.2. With the same assumptions as in Proposition 4.1,

Ph(⟨eN,hN = 1⟩) = 1− ε

2
where ε = δ1δ2(1− o(1))

δ1
△
=

Kk−ℓ−s
w1

(u1)

(k−ℓ−s
w1

)
, δ2

△
=

Kn−k+ℓ
w2

(u2)

(n−k+ℓ
w2

)
, u1

△
= |eN1

|, u2
△
= |eN2

|, w1
△
= |hN1

| and w2
△
= |hN2

|.

Proof. This is an application of the previous proposition and Lemma 3.3.

All these considerations lead to a slight variation of the RLPN decoder given
in Algorithm 3.1. Let us make now a bet on the weight ui of the error restricted
to Ni for i ∈ {1, 2} and use Dumer’s [11] collision low-weight codeword generator
to produce N parity-checks h such that |hNi

| = wi for i ∈ {1, 2}. We call the
associated function Create(N ,w1,w2, P).

Proposition 4.3. If Assumption 3.7 holds and assuming that Create(N ,w1,w2,
P) produces N parity-check equations in space Seq and time Teq that are of
weight wi on Ni for i ∈ {1, 2}. The probability Psucc (over the choice of N1 and
N2) that there are exactly u1 errors in N1 and u2 errors in N2 is given by

Psucc =

(
s

t−u1−u2

)(
k−ℓ−s

u1

)(
n−k+ℓ

u2

)(
n
t

) .

The space complexity SDumer89 and time complexity TDumer89 of the RLPN-
decoder are given by

Space: SDumer89 = O(Seq + 2s) , Time: TDumer89 = Õ

(
Teq + 2s

Psucc

)
.

under the constraint on the parameters s, ℓ, u1, u2, w1 and w2 given by

N ≤ 2s (4.3)

N ≤
(
k−ℓ−s

w1

)(
n−k+ℓ

w2

)
2k−s

(4.4)

N = ω

( (
k−ℓ−s

w1

)(
n−k+ℓ

w2

)
Kk−ℓ−s

w1 (u1)K
k−ℓ−s
w2 (u2)

)2
 . (4.5)
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We have found out that choosing w1 carefully is unnecessary and simply
setting it to it its expected value is sufficient, i.e. w1 = k−ℓ−s

2 . Again, the same
discussion as in the previous section applies and if Conjecture 3.11 applies then
the asymptotic form of the complexity is the same as if we use Proposition 4.3
and we get the following asymptotic form

Proposition 4.4. If Conjecture 3.11 holds, the asymptotic complexity exponent
of the RLPN decoder based on Dumer’s collision low weight dual codeword gen-
erator is given by

αDumer89(R)
△
= min

(σ,ν1,ν2,λ,ω1,ω2)∈R
β(R, σ, ν1, ν2, λ, ω1, ω2) (4.6)

β
△
=max (σ, ν′) + π,

ν′
△
=max

(
(1−R+λ)

2 h
(

ω2

1−R+λ

)
, ν
)
, ν

△
=(1−R+ λ)h

(
ω2

1−R+λ

)
− λ,

π
△
=1−R− σh

(
τ−ν1−ν2

σ

)
− (R− λ− σ)h

(
ν1

R−λ−σ

)
− (1−R+ λ)h

(
ν2

1−R+λ

)
,

τ
△
= δGV(R) = h−1(1−R)

and the constraint region R is defined by the subregion of non-negative tuples
(σ, ν1, ν2, λ, ω1, ω2) such that ω1 = R−λ−σ

2 and

σ ≤ R− λ, ν1 ≤ R− λ− σ, ν2 ≤ 1−R+ λ, τ − σ ≤ ν1 + ν2 ≤ τ, ν ≤ σ,

ν = −(R− λ− σ)δ̃
(

ν1

R−λ−σ ,
ω1

R−λ−σ

)
− (1−R+ λ)δ̃

(
ν2

1−R+λ ,
ω2

1−R+λ

)
where δ̃ is the function defined in Proposition 3.6.

5 Using advanced collision techniques

ISD techniques have evolved [26, 11, 4, 19, 3] by first introducing [26] collision
techniques whose purpose is to produce for codes of rate close to 1, all codewords
of some small weight, and later on by substantially improving them by using on
top of that for instance representation techniques [19]. These algorithms come
very handy in our case for devising the function Create(N,w,P) that we need.
In the previous section, we have explored what could be achieved by the very
first techniques of this type taken from [10, 11]. We are going to explain now
what can be gained by using [19, 3]. It is convenient here to formalize the basic
step used in the previous section which can be explained by the function of
Algorithm 5.1. It creates codewords of weight w in a code of parity-check matrix
H as sums x1 + x2 of two lists L1 and L2 with a complexity which is of the

form O
(
max

(
#L1,#L2,

#L1·#L2

2ℓ

))
if the Hx⊺

i ’s are distributed uniformly at

random and independently (we will make this assumption from now on). It is
clear that [10] and [11] is more or less a direct application of this method. [19]
and [3] use several layers of this function. [19] starts by partitioning the set of
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Algorithm 5.1. Merging two lists for producing low weight codewords

Input: L1 ⊆ Fn
2 , L2 ⊆ Fn

2 , w ∈ J1, nK, H ∈ Fℓ×n
2

Output: a list L = {x = x1 + x2 : xi ∈ Li, i ∈ {1, 2}, |x| = w, Hx⊺ = 0} of
elements of the form x1 + x2 with xi belonging to Li of weight w belonging to the
code of parity-check matrix H

function Merge(L1,L2, w,H)
L ← ∅
for all x1 ∈L1 do

Store x1 in a hashtable T at address Hx⊺
1

end for
for all x2 ∈L2 do

if ∃x1 in T at address Hx⊺
2 and |x1 + x2| = w then

Put x1 + x2 in L

end if
end for
return L

end function

positions of the vectors of Fn
2 which are considered in two setsI1 andI2 of about

the same size. Then it starts with two lists L0
1 and L0

2 of all elements of weight
p0 and support I1 and I2 respectively. It merges them in a list L1 of elements
of weight p1 in the kernel of a parity-check matrix H1. Since the elements of
L0

1 and L0
2 have disjoint supports by construction, we necessarily have that

p1 = 2p0. List L
1 is then merged with itself to yield elements which are in the

kernel of another matrix H2 (see Figure 5.1). Since these are sums of elements
of L1 they are also in the kernel of H1, so that the elements of the final list are

of weight p2 and belong to the code of parity-check H =

(
H1

H2

)
. The size of H1

is chosen such that an element x of weight p2 and H1x
⊺ = 0 is typically the sum

of only two elements of L1 (this is the point of the representation technique).
[3] is similar to [19] with one layer which is added. In this case, we create at the
end a list of elements of weight p3 which are in the code of parity-check matrix

H
△
=

H1

H2

H3

 . (5.1)

The sizes of H1 in the [19] case, and of H1 and H2 in [3] are chosen to ensure
unicity of the representation of an element of a list as the sum of two elements
of the lists used for the merge (this is the representation technique).

We use these two techniques as we used the [10] technique inside the [11]
technique, namely to generate codewords of C⊥ (i.e. Hx⊺ = 0 for H given by
(5.1)) which are of weight p3 on a set of indices of size n−k+ ℓ (see Figure 5.2).
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[19]

I1 I2

p0
p1,H1 p2,H2

[3]

I1 I2

p0
p1,H1

L1

p2,H2

L2

p3,H3

L3

Figure 5.1. This figure represents the successive lists obtained in [19] and [3]. The
support of the elements of the list are represented in pink. Arrows point from the lists
which are merged to the result of the merge and if two arrows depart from a list and
arrive at another list, this means that the departure list is merged with itself. The
weights of the elements are indicated for each level and the matrix Hi used for the
merge is also given at the level of the result of the merge.

h

s k − ℓ− s

(k − ℓ− s)/2

n− k + ℓ

p3

e t− u u1 u2

Figure 5.2. The form of the parity-checks produced by this method [3], vs. the bet
made on the error. The hatched rectangle of size s for h indicates that the weight is
arbitrary on this part.

If we let ℓ1 be the number of rows of H1, ℓ2 be the number of rows of the

matrix of H′
2
△
=

(
H1

H2

)
, then the fact that the elements of L2 should have a

unique representation in terms of a sum of a pair of elements of L1 respectively
and that they are all elements x of weight p1 and p2 respectively which satisfy
H′

2x
⊺ = 0 and Hx⊺ = 0 respectively, imposes conditions (5.2) which follow. The

Si represent the space complexity of the successive lists (i.e. L0, L1, L2 and
L3) used in the [3] algorithm, whereas the Ti’s denote the complexity of each
merge and Teq is the final complexity.

2ℓ1 =

(
p2
p2/2

)(
n− k + ℓ− p2

p1 − p2/2

)
, 2ℓ2 =

(
p3

p3/2

)(
n− k + ℓ− p3

p2 − p3/2

)
(5.2)

S0 =

(n−k+ℓ
2
p1

2

)
, S1 =

(
n−k+ℓ

p1

)
2ℓ1

, S2 =

(
n−k+ℓ

p2

)
2ℓ2

, S3 =

(
n−k+ℓ

p3

)
2ℓ

(5.3)

T0 = S0, T1 = S0+
S2
0

2ℓ1
, T2 = S1+

S2
1

2ℓ2−ℓ1
, T3 = S2+

S2
2

2ℓ−ℓ2
, Teq =

∑
i

Ti (5.4)
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There is a similar proposition as Proposition 4.4 which gives the asymp-
totic complexity of the RLPN decoder used in conjunction with the [19] or [3]
techniques for producing low weight codewords. For [19] it is given by

Proposition 5.1. If conjecture 3.11 applies, the asymptotic complexity expo-
nent of the RLPN decoder based on [19] is given by

αMMT(R)
△
= min

(σ,ν1,ν2,λ,λ1,ω1,ω2,π1)∈R
β(R, σ, ν1, ν2, λ, λ1, ω1, ω2, π1) (5.5)

β
△
=max(σ, ν′) + π, ν′

△
=max(γ1, γ2), ν

△
=(1−R+ λ)h

(
ω2

1−R+λ

)
− λ

γ1
△
=max

(
1−R+λ

2 h
(

π1

1−R+λ

)
, (1−R+ λ)h

(
π1

1−R+λ

)
− λ1

)
,

γ2
△
=2(1−R+ λ)h

(
π1

1−R+λ

)
− λ1 − λ,

ρ
△
=1−R− σh

(
τ−ν1−ν2

σ

)
− (R− λ− σ)h

(
ν1

R−λ−σ

)
− (1−R+ λ)h

(
ν2

1−R+λ

)
,

τ
△
= δGV(R) = h−1(1−R)

and the constraint region R is defined by the subregion of non-negative tuples
(σ, ν1, ν2, λ, λ1, π, ω1, ω2) such that

σ ≤ R− λ, λ1 ≤ λ, π1 ≤ ω2, ν1 ≤ R− λ− σ, ν2 ≤ 1−R+ λ, ν ≤ σ,

τ − σ ≤ ν1 + ν2 ≤ τ, ω1 = R−λ−σ
2 , ω2 < 1−R+ λ,

ω2

2 < π1 < 1−R+ λ, λ1 = ω2 + (1−R+ λ− ω2)h
(

π1−ω2/2
1−R+λ−ω2

)
,

ν = −(R− λ− σ)δ̃
(

ν1

R−λ−σ ,
ω1

R−λ−σ

)
− (1−R+ λ)δ̃

(
ν2

1−R+λ ,
ω2

1−R+λ

)
where δ̃ is the function defined in Proposition 3.6.

A proposition for the asymptotic behavior of RLPN decoding used together
with [3] can be found in the full version of the paper [8, Ap. A]. We have used
them for producing the complexity curves given in Figure 6.1 which display the
various complexities of the RLPN decoders we have presented. Even if there
is a tiny improvement by using [3] instead of [19] the two curves are nearly
indistinguishable. A perspective of improvement of our algorithm could be to
produce the parity-check equations by using more recent ISD techniques than [3],
in particular [20, 5] or [6] which all use nearest-neighbor search. Our preliminary
results using in particular [20] do not provide significant improvement, we have
only been able to achieve a very slightly better complexity for rates close to 0.2.

6 A Lower bound on the complexity of RLPN decoders

As pointed out all along the paper, RLPN decoding needs a large number N of
parity-check equations to work but of some shape as indicated below
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h

s n− s

w

where the hatched area indicates that the weight is arbitrary on this part while h
restricted on the other positions needs to have Hamming weight w. The number
N of such parity-checks has to verify (see Proposition 3.10)

N = ω

n

( (
n−s
w

)
Kn−s

w (u)

)2
 (6.1)

in order to be able to solve the underlying LPN problem. It can be verified
that the smaller w is (the bigger is the bias ε), the smaller is N and the more
efficient is our algorithm. Obviously if w is too small, there are not enough such
parity-checks. It can be verified that the expected number of parity-checks of
the aforementioned shape is given by 2s

(
n−s
w

)
/2k in a random code (which is our

assumption). Therefore we need

N = O

(
2s
(
n−s
w

)
2k

)
. (6.2)

Given this picture it is readily seen that the complexity of RLPN decoding
is always lower-bounded by N (which is at least the cost to produce N parity-
checks) but we can be more accurate on the lower-bound over the complexity.
Recall that we first need to solve an underlying LPN problem and that we make
a bet on the number of errors u in N. Therefore, assuming that we can compute
a parity-check of the aforementioned shape in time O(1), the complexity of this
genie-aided RLPN decoding is given by

Õ

(
1

Psucc
max (2s, N)

)
(6.3)

where Psucc is given in Proposition 3.10. Our only constraints are given by (6.1)
and (6.2). By optimizing (6.3) over s, u and w, we can give a lower-bound on the
complexity of RLPN decoding. However notice that our lower-bound applies to a
partition of parity-checks in two parts (s and n−s). We do not consider here finer
partitions. This method for lower bounding the complexity of RLPN decoding
is very similar to the technique used in [9, §7] to lower bound the complexity
of statistical decoding. All in all, we give in Figure 6.1 this lower-bound of the
complexity. The optimal parameters computed for each RLPN algorithms can be
found on https://github.com/tillich/RLPNdecoding. As we see our RLPN
decoders meet this lower-bound for small rates and we can hope to outperform
significantly ISD’s for code rates smaller than ≈ 0.45.

7 Concluding remarks

Since Prange’s seminal work [24] in 1962, ISD algorithms have played a predom-
inant role for assessing the complexity of code-based cryptographic primitives.



28 K. Carrier, T. Debris-Alazard, C. Meyer-Hilfiger, J-P. Tillich

0.2 0.4 0.6 0.8 1.0
R

0.02

0.04

0.06

0.08

0.10

0.12

log2(Complexity)
n Prange

corrected Both-May algorithm
section 4.2: RLPN with Dumer89
section 5: RLPN with BJMM
section 6: RLPN lower bound

Figure 6.1. Complexity exponents of our different RLPN decoders, ISD’s and the
genie-aided RLPN algorithm when splitting parity-checks in two parts.

In the fixed rate regime, they have been beaten only once in [10] with the help of
collision techniques, and this only for a tiny code rate range (R ∈ (0.98, 1)) and
for a short period of time [26, 11] until these collision techniques were merged
with the collision techniques to yield modern ISD’s. Surprisingly enough, these
improved ISD have resulted in decoding complexity curves tilting more and more
to the left (i.e. with a maximum which is attained more and more below 1

2 ) in-
stead of being symmetric around 1

2 as it could have been expected. It is precisely
for rates below 1

2 that RLPN decoding is able to outperform the best ISD’s. This
seems to point to the fact that it is precisely for this regime of parameters that
we should aim for improving them. Interestingly enough, even if there is some
room of improvement for RLPN decoding by using better strategies for produc-
ing the needed low weight parity-checks, there is a ceiling that this technique
can not break (at least if we just split the parity-checks in two parts) and which
is extremely close at rate R = 0.45 to the best ISD algorithm [6]. The RLPN
decoding algorithm presented here has not succeeded in changing the landscape
for very tiny code rates (R going to 0), since the complexity exponent of RLPN
decoding approaches the one of exhaustive search on codewords, but the speed
at which this complexity approaches exhaustive search is much smaller than for
ISD’s in the full decoding regime (i.e. at the GV distance). The success of RLPN
decoding for R < 0.3 could be traced back precisely to this behaviour close to
0. An interesting venue for research could be to try to explore if there are other
decoding strategies that would be candidate for beating exhaustive search in the
tiny code rate regime.

Note however that like dual attacks in lattice based cryptography, the success
of this algorithm relies on assumptions of the noise model we get from the low
weight parity-check equations we produce (which is similar to the vectors in the
dual lattice of small norm we use for dual attacks). The strict LPN model for
this noise (Assumption 3.7) has been found out not to be completely accurate
for the large Fourier coefficients obtained during decoding the [N, s]-code with
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Fourier techniques (see Subsection 3.4). However, a weaker conjecture, namely
Conjecture 3.11, is enough for guaranteeing the success of this decoding method
and is compatible with the experiments we have made. There is a rather clear
path for verifying at least semi-heuristically this conjecture and this will be the
object of further studies about this algorithm.
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