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Abstract. CCA-like game-based security definitions capture confiden-
tiality by asking an adversary to distinguish between honestly computed
encryptions of chosen plaintexts. In the context of voting systems, such
guarantees have been shown to be sufficient to prove ballot privacy
(Asiacrypt’12). In this paper, we observe that they fall short when one
seeks to obtain receipt-freeness, that is, when corrupted voters who submit
chosen ciphertexts encrypting their vote must be prevented from proving
how they voted to a third party.
Since no known encryption security notion can lead to a receipt-free
ballot submission process, we address this challenge by proposing a novel
publicly verifiable encryption primitive coined Traceable Receipt-free
Encryption (TREnc) and a new notion of traceable CCA security filling
the definitional gap underlined above.
We propose two TREnc instances, one generic achieving stronger guarantees
for the purpose of relating it to existing building blocks, and a dedicated
one based on SXDH. Both support the encryption of group elements
in the standard model, while previously proposed encryption schemes
aiming at offering receipt-freeness only support a polynomial-size message
space, or security in the generic group model.
Eventually, we demonstrate how a TREnc can be used to build receipt-free
protocols, by following a standard blueprint.
Keywords. New primitive, public-key encryption, receipt-freeness.

1 Introduction

A protocol offers receipt-freeness when players are unable to demonstrate to a
third party which input they provided during a protocol execution. The need for
receipt-freeness is most acute in order to prevent vote selling in the context of
elections [7], which is our motivating application.

Receipt-free voting. In voting protocols, the random coins used by the voters
can often be used as a receipt. For instance, in the famous protocol by Cramer
et al. [20], of which a variant is used by the IACR in its own elections, a voter
encrypts his vote with the election public key, and the resulting ciphertext is
posted on a public bulletin board in order to support the verifiability of the
election. If the voter decides to reveal to a third party the randomness used in
the encryption process, that party can re-encrypt the claimed vote intent with
the randomness provided by the voter and verify that the resulting ciphertext
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appears on the bulletin board: the randomness used for encryption is, in effect, a
receipt for the vote.

Since the seminal work of Benaloh [7], numerous protocols explored mechanisms
that would guarantee that the random coins used by a voter are insufficient to
explain his ballot as it is posted on the bulletin board for the needs of verification.
In a first line of works [7,38,25], every possible voting choice is encrypted, the
resulting ciphertexts are rerandomized and shuffled by the election authorities
and made available to the voter. Furthermore, the permutations applied during
the shuffle are also transmitted to the voter using secure channels. The voter then
picks the ciphertext encoding his choice, and submits it for display on the bulletin
board. Such a protocol guarantees that the voter ignores the randomness used to
encrypt his ballot, and the protocol is designed in such a way that the voter is
unable to prove which permutation he received, typically using designated-verifier
zero-knowledge proofs. Such protocols are however quite demanding in terms of
resources, as they require to encrypt a number of ciphertext proportional to the
number of voting options, and a communication bandwidth to the voters that is
proportional to the number of authorities. The more recent protocol of Kiayias
et al. [28] faces similar challenges in terms of complexity, and also only considers
a weaker form of receipt-freeness that focuses on voters preparing their ballot
honestly.

More recently, Blazy et al. [10] proposed a simpler voting flow supporting
receipt-freeness based on signatures on randomizable ciphertexts (SRC): the voters
encrypt their vote and sign the resulting ciphertext, which is then transmitted to
a re-encryption authority that re-randomizes the ciphertext, adapts the signature
accordingly and posts the result on the bulletin board. The voter remains able
to verify that a vote with a valid signature is posted on the board on his
behalf, but is unable to explain the vote content thanks to the re-randomization
step. Furthermore the SRC guarantees that the content of the encrypted ballot
cannot be modified during the re-encryption process. This approach was further
refined by Chaidos et al. [15], who also propose a simple game-based definition
of receipt-freeness, which we adopt here, and more efficient SRCs keep being
proposed [15,5].

This approach makes the ballot submission process asymptotically optimal
for the voter, in the sense of Cramer et al. [20]: the protocol complexity for the
voter becomes logarithmic in the number of voting options and independent of
the number of election authorities, contrary to a dependency that is at least
linear in both these factors when the approaches of [7,38,25,28] are used.

Receipt-free ballot submission. These works, by offering a simple ballot submission
process in one pass, raise the natural question of identifying a public key
encryption primitive that would support a receipt-free ballot submission process.
Such a primitive would support a modular analysis of voting protocols that would
be built around it, including various tallying approaches (based on mix-nets and
homomorphic tallying for instance), and approaches to individual verifiability
(based on the so-called Benaloh challenge [6] or on code voting for example [17]).
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This question has been answered in the context of private (rather than receipt-
free) ballot submission: it is well-known that a CCA-secure encryption scheme
can be used to obtain a private ballot submission, a requirement that can be
relaxed to NM-CPA security when the tally takes place in a single decryption
round [22,41,9].

These works highlight the importance of some form of non-malleability in a
submission process. From a practical point of view, non-malleability is needed
in order to be able to detect (and prevent) non-independent ballot submissions
(e.g., ballot copies) that would violate the privacy of the vote. From a technical
point of view, security proofs require the availability of a decryption oracle used
to extract the votes submitted by the adversary.

CCA security is however problematic in the context of receipt-free ballot
submission, since we need to be able to re-randomize encrypted votes, so that
the voter cannot explain the vote content anymore. The exploration of CCA-like
security notions that would support some form of controlled malleability has
been a fertile research area, which resulted in the definition of the notions of
replayable-CCA (RCCA) security[14], homomorphic-CCA (HCCA) security [36],
and controlled-malleable CCA (CM-CCA) security [16] for instance. As far as we
know, all these works rely on the same CCA blueprint, in which an adversary
submits one or more messages to a challenger, who answers either with an
honest encryption of the messages or with something else, and the adversary
must decide what he received with the help of a decryption oracle that accepts
to decrypt any ciphertext that is not “recognizably” related to the challenge
ciphertexts. The same holds in any other encryption primitives with CCA-like
security with enhanced decryption capabilities. While they give more flexible ways
to decrypt ciphertexts (based on identities, attributes and so on [39,26,37,11]),
the challenge ciphertext is computed when the adversary sends a chosen message.
Eventually, and following an observation which dates back at least to [25], deniable
encryption [12] also only focusses on honestly computed ciphertexts that can
then be explained for any other plaintexts.

This blueprint is however inadequate when turning to encryption schemes
that would support the design of protocols that support receipt-freeness: in such
a setting, we need to consider an adversary who sends to the challenger chosen
ciphertexts, that may not be computed as a random encryption of a plaintext
vote: they could have been maliciously computed.

Our contributions

1) TCCA security. In this work, we investigate for the first time the implication
of defining the notion of traceable CCA security (TCCA), a CCA-like security
notion in which adversarially-chosen ciphertexts are submitted in the challenge
phase. The challenge ciphertext is produced by randomizing one ciphertext or
another, and we recognize derivatives of the challenge ciphertext thanks to a
non-malleable public trace which is present in any ciphertext. To avoid trivial
attacks, both ciphertexts given in the challenge phase must trace to each other,
i.e., they must have the same trace.
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This makes it possible for voters to submit a ciphertext of their choice, which
will then be re-randomized by an authority, and can still be tracked by the voters
using the trace.

For honestly produced ciphertexts, our security notion also implies traditional
confidentiality properties, so that ballot privacy remains guaranteed should
the re-randomizing authority be corrupted. So, non-malleability really serves
two purposes here: (1) it guarantees that the re-randomizing authority cannot
produce a ciphertext that would be related to an honestly produced one and
have a different trace (which would violate ballot privacy), and (2) it guarantees
that the re-randomizing authority cannot produce a ciphertext that would have
the same trace as a given one but would decrypt to a different plaintext.

2) TREnc. We introduce Traceable Receipt-free Encryption (TREnc) as a new
primitive with the following features:

– Traceability. Honestly generated ciphertexts are traceable in the sense that it
is infeasible to modify the encrypted message;

– Randomizability. Valid ciphertexts are fully re-randomizable, up to the trace;

– TCCA security. Given a pair of ciphertexts that trace to each other, it is
unfeasible to guess which one is randomized, even with access to a decryption
oracle which decrypts any ciphertexts that do not trace to the challenge
ciphertext, except before the challenge phase.

We also provide:

1. A generic TREnc that can be instantiated from existing building blocks that
offer security in the standard model, and whose CRS is public-coin;

2. A pairing-based TREnc under the SXDH assumption in the standard model,
where the public key only contains 13 first-source group elements and 6
second-source group elements, and the ciphertext contains 13 first-source
group elements and 5 second-source group elements.

Both approaches improve on the state of the art: the previous SRC-based
solutions either require costly bit-by-bit encryption [10,15], or only offer security
in the generic group model [5].

3) A TREnc based voting scheme. Eventually, we show how to turn a TREnc
into a simple voting scheme in a generic way, following the Enc2Vote blueprint
previously used to turn a CCA-secure encryption scheme into a private voting
scheme [9].

We demonstrate that the resulting voting scheme satisfies a notion of receipt-
freeness that is equivalent in spirit to the one of Chaidos et al. [15], but fixes a
small technical issue in that definition that makes their security game trivial to
win (making it impossible to build a protocol that is receipt-free according to
their definition).
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Other related works. We focus on offering receipt-freeness in the context of
voting, which is the context in which receipt-freeness was introduced [7], and
which remains the main application context in which receipt-freeness is desired.
Voting can however be seen as a special type of secure function evaluation
protocol, in which specific tallying functions are evaluated and, as such, the
notion of receipt-freeness, and the related notion of coercion-resistance have also
been defined in the general multi-party computation setting [13,35,40,4]. We keep
our focus on the voting context in order to clarify various design choices that
are most meaningful in the voting setting compared to the general MPC setting:
our primitive is targetted for a ballot submission process in which voters submit
their ballot in one pass and do not communicate with each other, contrary to
most MPC protocols, and we design mechanisms in which the ballot submission
process can be fast, even on devices with limited computational power, while the
verification of an election may require a longer period of time and use a dedicated
computing infrastructure. Despite our focus on voting, it may be the case that
TREnc mechanisms find applications in other contexts.

2 Traceable Receipt-Free Encryption

We propose a new public key encryption primitive and associated security notions
that would support the receipt-free submission of votes in a protocol. As a
first task, we identify the fundamental ingredients that are needed for our new
encryption primitive.
An encryption scheme. We expect voters to submit their vote in an encrypted
form, in order to guarantee the privacy of the votes.
Receipt-free encryption. Voters willing to sell their vote may choose to submit
an arbitrary encrypted vote, which may be in the range of honestly produced
ciphertexts but sampled according to a different distribution, or even just a
sequence of bits that would not be within the range of the encryption mechanism.
By deviating from the normal encryption process, the voter hopes to obtain a
receipt that could be used to demonstrate his vote intent to a third party.

If the encrypted vote that is tallied is produced by the voter only, then the
voter will always have a receipt: the random coins used to encrypt the ballot. In
order to avoid this, we rely on the existence of a semi-trusted authority: that
authority will be trusted to prevent a dishonest voter from obtaining a receipt
for his vote, but will not be trusted for the correctness of the election result, and
will not be trusted for the privacy of votes encrypted by honest voters.

Concretely, in order to achieve receipt-freeness, this semi-trusted authority
tests the validity of a voter submitted ciphertext (without the need of any secret
key) and re-randomizes every valid ciphertext before posting it on a public
bulletin board.
Traceable Receipt-Free Encryption. In order to make it possible for a voter to check
that his ballot has not been unduly modified by this semi-trusted re-randomizing
authority, it must be possible to extract a trace from any valid ciphertext. A
honest re-randomization process would keep the trace is unchanged, hence making
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ciphertexts traceable, while no corrupted authority should be able to modify a
ciphertext in such a way that it would decrypt to a different vote while keeping
the trace unchanged.

Furthermore, we need to make sure that this trace cannot serve as a receipt
for the vote. In order to make sure that it is the case, we split the encryption
process in two steps, that guarantee that any trace can be associated to any
possible vote intent. Concretely, an encryption starts with the generation of a
secret link key, which is then used, together with the encryption public key, to
encrypt any possible vote. This guarantees that, even if a voter leaks the link
key associated to his ballot as a receipt, the ballot could still encrypt any vote.1

2.1 Syntax

We now have the ingredients that we need to define a Traceable Receipt-Free
Encryption scheme, or TREnc.

Definition 1 (Traceable Receipt-Free Encryption). A Traceable
Receipt-Free Encryption scheme (TREnc) is a public key encryption scheme
(Gen,Enc,Dec) that is augmented with a 5-tuple of algorithms (LGen, LEnc,Trace,
Rand,Ver):

– LGen(pk; r): The link generation algorithm takes as input a public encryption
key pk in the range of Gen and randomness r, and outputs a link key lk.

– LEnc(pk, lk,m; r): The linked encryption algorithm takes as input a pair
of public/link keys (pk, lk), a message m and randomness r and outputs a
ciphertext.

– Trace(pk, c) : The tracing algorithm takes as input a public key pk, a ciphertext
c and outputs a trace t. We call t the trace of c.

– Rand(pk, c; r): The randomization algorithm takes as input a public key pk, a
ciphertext c and randomness r and outputs another ciphertext.

– Ver(pk, c): The verification algorithm takes as input a public key pk, a
ciphertext c and outputs 1 if the ciphertext is valid, 0 otherwise.

In many cases, we will omit the randomness r from our notations. It is then
assumed that it is selected uniformly at random.

We require several correctness properties from the additional algorithms of a
TREnc. The first requires that encrypting a message m by picking a link key lk
using LGen and computing LEnc(pk, lk,m) produces a ciphertext that is identically
distributed to a fresh encryption of m using Enc. The second requires that the

1 Of course, this also means that, if a corrupted re-randomizing authority obtains a
voter’s secret link key (e.g., by corrupting the voter’s voting client), then it might be
able to produce a ciphertext that encrypts a different vote intent but would still trace
to the original voter trace. Just as other attacks related to corrupted voting clients,
such attacks can be prevented by traditional continuous ballot testing procedures [6],
in which a voter would have the option to ask an authority to spoil a ballot posted
on the bulletin board, which would then be verifiability decrypted for verification,
and later replaced by a fresh new ballot produced by the voter, using a fresh link key.
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Trace of a ciphertext does not depend on the message that is encrypted. The
third requires that randomizing a ciphertext does not change the corresponding
plaintext neither the corresponding trace. The last requires that every honestly
computed ciphertext passes the verification algorithm.

Definition 2 (TREnc correctness). We require that a TREnc scheme satisfies
the following correctness requirements.

Encryption compatibility For every pk in the range of Gen and message m,
the distributions of Enc(pk,m) and LEnc(pk, LGen(pk),m) are identical.

Link traceability For every pk in the range of Gen, every lk in the range
of LGen(pk), the encryptions of every pair of messages (m0,m1) trace to
the same trace, that is, it always holds that Trace(pk, LEnc(pk, lk,m0)) =
Trace(pk, LEnc(pk, lk,m1)).

Publicly Traceable Randomization For every pk in the range of Gen, every
message m and every c in the range of Enc(pk,m), we have that Dec(sk, c) =
Dec(sk,Rand(pk, c)) and Trace(pk, c) = Trace(pk,Rand(pk, c)).

Honest verifiability For every pk in the range of Gen and every messages m,
it holds that Ver(pk,Enc(pk,m)) = 1

2.2 Security definitions

Verifiability We require several security properties from a TREnc. Our first
property is fairly standard: a TREnc is verifiable if the Ver algorithm guarantees
that a ciphertext is within the range of Enc. In other words, the ciphertext can
be explained by some message m, some link key lk, and some coins, even if they
are not easily computable.

Definition 3 (Verifiability). A TREnc is verifiable if for every PPT adversary,
the following probability is negligible in λ:

Pr[Ver(pk, c) = 1 and c 6∈ Enc(pk, ·)|(pk, sk)← Gen(1λ); c← A(pk, sk)].

TCCA security. We now turn to our central security definition, security against
traceable chosen ciphertexts attacks, or TCCA security, which differs from all
existing CCA-like notions by letting the adversary submit pairs of ciphertexts
instead of pairs of messages, reflecting that we need security in front of adversarially
chosen ciphertexts. In the TCCA security game (Fig. 1), the adversary receives
the public key and has access to a decryption oracle, as usual. It then submits
a pair of ciphertexts that must be valid and have identical traces. One of the
ciphertexts is randomized and returned to the adversary, who must decide which
one it is. After receiving this challenge ciphertext, the adversary can still query
the decryption oracle, but only on ciphertexts that have a trace different of his
challenge ciphertext. So, the challenger must faithfully decrypt pre-challenge
ciphertexts that have the same trace as the challenge ciphertext. Looking ahead,
this decryption capability offers an easy but necessary means allowing simulating
the result of an election when proving receipt-freeness.
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TCCA security guarantees that, if a voter submits a ciphertext that is
randomized before it is posted on a public bulletin board, then the resulting
ciphertext becomes indistinguishable from any other ciphertext that would have
the same trace, and we know from the link traceability that the encryption of
any vote could have that trace. This essentially guarantees the absence of a vote
receipt.

Definition 4 (TCCA). A TREnc is TCCA secure if for every PPT adversary
A = (A1,A2) the experiment Exptcca

A (λ) defined in Figure 1 (left) returns 1 with
a probability negligibly close in λ to 1

2 .

ExptccaA (λ)

(pk, sk)←$ Gen(1λ)

(c0, c1, st)←$ADec(·)
1 (pk)

b←$ {0, 1}
if Trace(pk, c0) 6= Trace(pk, c1) or

Ver(pk, c0) = 0 or Ver(pk, c1) = 0 then return b

c
? ←$ Rand(pk, cb)

b
′ ←$AODec?(·)

2 (c
?
, st)

return b
′
= b

ExptraceA (λ)

(pk, sk)←$ Gen(1λ)

(m, st)←$A1(pk, sk)

c←$ Enc(pk,m)

c
? ←$A2(c, st)

if Trace(pk, c) = Trace(pk, c?) and

Ver(pk, c?) = 1 and Dec(sk, c?) 6= m

then return 1

else return 0

Fig. 1. TCCA and trace experiments. In the TCCA experiment, A2 has access to
a decryption oracle ODec?(·) which, on input c, returns Dec(c) if Trace(pk, c) 6=
Trace(pk, c?) and test otherwise.

It is naturally possible to write a multi-challenge version of the Exptcca
A (λ)

experiment, which we call q-TCCA, in which the adversary can submit q pairs
of ciphertexts. This leads to an equivalent definition, as demonstrated in the full
version [21]. We also stress that in the challenge query the adversary may know
the random coins underlying c0 and c1 and may have drawn them from a specific
secret distribution. The randomization leading to the challenge ciphertext c?

should thus erase any subliminal information binding c? to the message in cb.
This definition introduces some technical difficulty when it comes to proving
the TCCA security as it becomes harder to program the public key to ease the
transition toward a game where we are able to inject an independent message in
the plaintext in an undetectable way. Indeed, we have no clue at the setup time
about the distribution of (c0, c1) and their common trace while the emulation of
Rand(pk, cb) must preserve it without even knowing the underlying link keys.

TCCA security is reminiscent of the notion of publicly detectable replayable-
CCA (pd-RCCA) security proposed by Canetti et al. [14]. The pd-RCCA security
game is essentially the same as the CCA game, except for two main differences: a
publicly computable equivalence relation is defined on ciphertexts and, after the
challenge ciphertext has been received, the challenger will refuse to decrypt any
ciphertext that is equivalent to this challenge ciphertext. Furthermore, ciphertexts
that are in the same equivalence class must decrypt to the same message (for
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completeness, the full definition is available in the full version [21]). The pd-RCCA
security game looks appealing in the context of voting, because it captures this
idea of having the possibility to re-randomize ciphertexts while also keeping
a trace that could be detected through the equivalence relation. And, indeed,
RCCA-secure encryption has been used in previous proposals of receipt-free
voting schemes [15].

There are three central differences, though, which motivate the introduction
of the TCCA security game.

– The challenge ciphertexts of the pd-RCCA security game are always honestly
computed and, as such, pd-RCCA security does not offer any guarantee in
the face of maliciously produced ciphertexts, as it would be the case when a
voter tries to obtain a receipt for his vote.

– Contrary to pd-RCCA security, it can be observed that TCCA security says
nothing about the hiding property of the Enc algorithm, since the adversary
must distinguish based on outputs of Rand. An extreme case could define
Enc as the identity function, Trace as mapping to a single constant trace,
and Rand actually performing the encryption work, and this could still offer
a TCCA secure scheme. The confidentiality requirements on Enc will be
handled through the traceability and strong randomization properties below.

– There is no requirement for TCCA security that trace equivalent ciphertexts
decrypt to the same message: a single link key can be used to encrypt any
message, and all the resulting ciphertexts would have the same trace (by
the link traceability correctness property). We recall that this non-binding
feature is essential for receipt-free voting.

As such, TCCA security is not comparable to pd-RCCA security. It is shown
in the full version of the paper [21] that, under (different) additional conditions,
implications can be proven in both directions for a natural variant of pd-RCCA
security adapted to TREnc schemes.

Traceability and Strong Randomization. While TCCA security relates to a model
in which the voting client may be corrupted but the re-randomization server is
honest, we now focus on two central properties that are important when the
voting client is honest and the re-randomization server might be corrupted.

The traceability property guarantees to the sender of a honestly encrypted
message that no efficient adversary would be able to produce another ciphertext
that traces to the same trace and would decrypt to a different message, even if
the adversary knows the secret decryption key. So, even if a TREnc offers some
form of ciphertext malleability, its traceability implies the non-malleability of the
plaintexts. This is an important feature for the verifiability of a voting system: as
long as the link key used to encrypt a vote remains secret, and the voter submits
a single ciphertext encrypted with that link key, the voter is guaranteed that any
ciphertext that would trace to his original ciphertext encrypts his original vote.
(But, of course, using the link key, it remains possible to produce ciphertexts
with the same trace that would decrypt to any vote.)
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Definition 5 (Traceability). A TREnc is traceable if for every PPT adversary
A = (A1,A2), the experiment Exptrace

A (λ) defined in Figure 1 (right) returns 1
with a probability negligible in λ.

The second property, strong randomization, requires that the output of the
Rand algorithm applied to any valid ciphertext is distributed just as a random
encryption of the same message with the same link key.

Definition 6 (Strong Randomization). A TREnc is strongly randomizable
if for every c ∈ LEnc(pk, lk,m) with pk in the range of Gen and lk in the range
of LGen(pk), the following computational indistinguishability relation holds:

Rand(pk, c) ≈c LEnc(pk, lk,m)

Requiring strong randomization together with TCCA security guarantees
that Enc actually hides messages. CPA security comes easily: when the CPA
adversary sends (m0,m1) to the TCCA adversary, the TCCA adversary can
encrypt the 2 messages using a single random link key and send them to the
TCCA challenger, which will return a randomization of one of them. Strong
randomization guarantees that this is distributed exactly like an encryption of
one of the two messages, and we can send the result to the CPA adversary, who
will then offer the answer expected for the TCCA game. We show a stronger
implication to RCCA security in the full version of the paper [21].

3 Towards a generic TREnc

We are now interested in exploring how a TREnc could be designed from existing
tools. The core TREnc security feature comes from the TCCA security game,
in which the adversary submits a pair of ciphertexts with identical traces and
receives a re-randomization of one of them. If we want relate this game to a more
standard RCCA-style security definition in which the adversary submits a pair
of plaintext and receives an encryption of one of them, we need to be able to
translate a re-randomization query on two ciphertexts into an encryption query
on the two corresponding plaintexts. But there is an additional constraint that
needs to be satisfied: the ciphertext resulting from the encryption query needs
to have the same trace as the original ciphertexts. In other words, we need to
be able to decrypt the challenge ciphertexts from the TCCA game, but also to
extract the link key that they contain. We capture this last idea in an augmented
version of a TREnc, which we call extractable TREnc.

3.1 Extractable TREncs

Essentially, an extractable TREnc makes it possible to produce encryption keys
together with a trapdoor using a TrapGen algorithm. Using that trapdoor, it
becomes possible to extract, from any ciphertext, a link key that makes it possible
to produce new ciphertexts with the same trace as the original one. This in turn
implies the possibility to break the traceability of the scheme.
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Definition 7 (Extractable TREnc). An extractable TREnc is a TREnc with
two additional algorithms TrapGen and LExtr:

– TrapGen(1λ): The trapdoor generation algorithm takes as input the security
parameter and outputs a tuple of public/secret/trapdoor keys (pk, sk, tk). We
require the distribution of the (pk, sk) pairs produced by TrapGen(1λ) to be
identical to the one of the outputs of Gen(1λ).

– LExtr(tk, c): The link extraction algorithm takes as input the trapdoor key
and a ciphertext and returns a link key lk such that, if c is in the range of
Enc(pk, ·) with pk in the range of Gen, then c is in the range of LEnc(pk, lk, ·).

It is fairly natural to require that ciphertexts can only be consistent with one
single link key, hence guaranteeing a unique link key extraction.

Definition 8 (Unique Extraction). An extractable TREnc has unique extraction
if, for every (pk, sk, tk) in the range of TrapGen and lk in the range of LGen(pk),
we have that:

– LExtr(c, tk) = lk whenever c ∈ LEnc(pk, lk, ·);
– LExtr(c0, tk) = LExtr(c1, tk) whenever we have Trace(pk, c0) = Trace(pk, c1)

and c0, c1 ∈ Enc(pk, ·).

3.2 A TREnc flavored variant of pd-RCCA security

Based on an extractable TREnc, we now propose an RCCA-like security definition,
pd?-RCCA-security, which shares much of the spirit of the pd-RCCA notion
of Canetti et al. [14], but is rather tailored as a useful intermediary notion for
achieving TCCA security: we will show that any pd?-RCCA-secure extractable
TREnc is also TCCA secure. Eventually, we will show how to achieve pd?-RCCA-
security from existing tools.

Definition 9 (pd?-RCCA). An extractable TREnc is pd?-RCCA-secure if for

any PPT adversary A = (A1,A2), the experiment Exppd?-rcca
A (λ) in Figure 2

returns 1 with a probability negligibly close on λ to 1
2 .

Exppd
?-rcca

A (λ)

(pk, sk, tk)←$ TrapGen(1λ)

(m0,m1, lk, st)←$ADec(sk,·),LExtr(tk,·)
1 (pk)

b←$ {0, 1}
if lk = ⊥ then c

? ←$ Enc(pk,mb)

else c
? ←$ LEnc(pk, lk,mb)

b
′ ←$AODec?(sk,·),LExtr(tk,·)

2 (c
?
, st)

return b = b
′

Fig. 2. pd?-RCCA experiment. Here, ODec?(sk, c) is a decryption oracle that returns
test if Trace(pk, c) = Trace(pk, c?) and Dec(sk, c) otherwise.
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Just as in the pd-RCCA security definition, our adversary receives a public key,
then can make decryption queries, make a challenge query on a pair of plaintexts,
receive an encryption c? of one of them, and then make more decryption queries,
provided that they are not about ciphertexts that are equivalent to c?. Here the
notion of equivalent ciphertext is defined by ciphertexts with identical traces,
which does not imply that they decrypt to the same plaintext, contrary to the
compatibility requirement of pd-RCCA security. The extra features of pd?-RCCA
security, which come naturally in the context of an extractable TREnc, are that:

– On top of having access to a decryption oracle, the adversary has access to a
LExtr oracle giving him the ability to extract the link key from any ciphertext.

– During his challenge query, the adversary can provide a link key on top of
its two plaintexts: the challenge ciphertext will then be computed using that
link key.

As announced, a pd?-RCCA-secure and strongly randomizable extractable
TREnc is also TCCA-secure.

Theorem 1. If a TREnc scheme T is extractable, strongly randomizable, and
pd?-RCCA-secure, then it is TCCA secure. More precisely, if the advantages
of any PPT adversary at strong randomization and pd?-RCCA experiment are
respectively bounded by εSR and ε, then for any PPT adversary A, we have
Pr[Exptcca

A,T (λ) = 1] ≤ 1
2 + εSR + ε.

Proof. (See the full version for details.) The decryption queries from the TCCA
adversary are forwarded to the pd?-RCCA challenger. When the TCCA adversary
makes his challenge query on (c0, c1), the reduction obtains the corresponding
link key and plaintexts by querying the pd?-RCCA challenger, and sends them
as pd?-RCCA challenge. The resulting ciphertext is correctly distributed thanks
to strong randomizability, and has the correct trace thanks to the extractability.
The winning probability of the TCCA adversary is then negligibly close to the
winning probability of the resulting pd?-RCCA adversary. ut

3.3 Building a pd?-RCCA-secure extractable TREnc

We are now ready to build a TREnc. As a first natural building block, we
use a signature on randomizable ciphertexts (SRC), as introduced by Blazy et
al. [10]. In an SRC, any signed ciphertext can be publicly re-randomized, and the
signature can be publicly adapted so that it remains valid for the new ciphertext.

We can easily obtain the structure of a TREnc from an SRC by defining the
LGen function as setting lk as a fresh signing key for the SRC, and the LEnc
function as encrypting the plaintext using a randomizable encryption scheme,
then signing that ciphertext using lk. The trace of a ciphertext would then be
the signature verification key.

This offers a promising skeleton, but it is not sufficient to obtain pd?-RCCA
security: as it is, the adversary could simply remove the signature from the
challenge ciphertext, sign that ciphertext with a fresh key in order to obtain a
different trace, and ask for the decryption of the result, which would be granted.
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A natural solution to this problem is to link the trace to the ciphertext using
tag-based encryption [29] mechanism. In a tag-based encryption scheme, the
encryption and decryption functions take an arbitrary tag as an extra input,
and the decryption of a ciphertext with an incorrect tag will fail. We rely on
the standard notion of weak-CCA security for tag based encryption [34], which
is the CCA security game excepted that the challenge ciphertext is produced
using an adversarially chosen tag, and that no decryption query can be made
using that tag (only) after the challenge phase. This security game nicely fits our
pd?-RCCA security game, in which the trace derived from the link key submitted
by the adversary can be used as a tag, and guarantees that no ciphertext can be
modified in such a way that it successfully decrypts with a tag that is different of
the original one. We note that we must be able to decrypt pre-challenge queries
that already contains the “challenge tag” of the adversary, which prevents us
from only relying on (weak) selective-tag security.

But we still need to be able to extract the link key from a tag-based ciphertext.
This can be done fairly easily, by augmenting our encryption process with the
requirement to encrypt the link key using a randomizable CPA-secure encryption
scheme, and to add a randomizable ZK proof that the encrypted link key is
indeed the one that is used as tag for the tag-based encryption. Extraction would
then simply proceed by decrypting that CPA ciphertext. (In particular, it does
not rely on any extraction property of the ZK proof system: we just need its
soundness.)

To summarize, we build an extractable TREnc from the following ingredients:

– A randomizable weakly CCA secure tag-based encryption scheme (TBGen,
TBEnc,TBDec).

– An SRC compatible with the tag-based encryption scheme, which includes a
signature scheme (SGen,Sign,SVer).

– A randomizable CPA secure public key encryption scheme (EGen,EEnc,EDec).
– A randomizable NIZK proof system (Prove,VerifyProof) that, on input (ctbe,
cextr) and associated public keys, demonstrates that cextr is an encryption
with EEnc of the signing key whose corresponding verification key has been
used as a tag in order to compute ctbe using TBEnc.

And the blueprint of our TREnc is as follows:

– TrapGen uses TBGen to produces a key pair (tpk, tsk), and EGen to produce
a key pair (eextr, dextr). It returns pk = (tpk, eextr), sk = tsk and tk = dextr.

– LGen sets lk as a signing key obtained from Sign. We assume that the
corresponding signature verification key vk can be derived from lk.

– LEnc encrypts the message m as follows:
• ctbe = TBEnc(tpk, lk,m);
• σ = Sign(lk, ctbe);
• cextr = EEnc(eextr, lk);
• π = Prove(ctbe, cextr; lk)

The ciphertext is made of these 4 elements, together with vk.
– Dec returns TBDec(tsk, vk, ctbe)
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– Trace returns vk.
– Rand re-randomizes ctbe, adapts σ accordingly, re-randomizes cextr, and re-

randomizes and adapts π.
– Ver accepts a TREnc ciphertext if the two ciphertexts that it contains are

valid, if the signature is valid, and if the ZK proof verifies.
– LExtr returns EDec(tsk, cextr).

A complete description of this generic TREnc, together with proofs of its
security, is available in the full version of the paper [21], where we rely on the
standard security notions of all the above ingredients. Exploring whether some of
these notions can be relaxed is an interesting scope for further research. Finally,
we mention that pairing-based realizations exist for all these ingredients and that
it would be appealing to understand how to construct a secure post-quantum
TREnc. The main obstacle we see relates to the controlled-malleability feature
of our new primitive (i.e., any ciphertext must support an unbounded number of
randomization) which makes it less straightforward to realize in general, and for
instance based on lattices.

Remark 1. This section showed that the notion of extractable TREnc offers a
convenient companion for a TREnc: it is possible to build an extractable TREnc
from relatively common, yet strong, building blocks, and the proof of TCCA
security of this TREnc comes relatively easily because we can design a pd-RCCA-
like security notion for extractable TREnc that implies our new TCCA security
notion. The resulting construction is however expected to be fairly expensive
since, in the standard model, all known instantiations of the building blocks
relies on a bit-by-bit decomposition of the message or the secret singing key
of which the ciphertext must contain a (malleable) ZK proof of. Nevertheless,
providing this extractability feature is an artifice for the construction that is
not necessary for the security of the TREnc, but as far as we know there is
no obvious generic construction leading to a TREnc without extractability. In
the next section we turn to the construction of an ad-hoc efficient instance of a
TREnc based on a standard computational assumption that also avoid the costly
bit-by-bit decomposition.

4 Pairing-Based Construction under SXDH

This section provides a secure TREnc in the standard model, only relying on
the SXDH assumption and on a CRS. Contrary to our previous construction,
this one is not extractable – extractability was just a convenience but does not
offer any security benefit. This allows us to get a more efficient solution, here, in
asymmetric bilinear groups. Moreover, our construction enjoys a short public-key
and short ciphertexts as they only contain a constant number of group elements
to encrypt a full group element, contrary to previous proposals that required to
process the message bit by bit [10,15].

We first introduce the cryptographic assumptions on which we will rely, as
well as the main existing building block that we will use: linearly homomorphic
structure-preserving signatures.



Traceable Receipt-Free Encryption 15

4.1 Computational setting

We rely on an efficient Setup algorithm that generates common public parameters
pp. Given a security parameter λ, Setup(1λ) generates a bilinear group pp =

(G, Ĝ,GT , p, e, g, ĝ, ĥ) of prime order p > 2poly(λ) for some polynomial poly, where

g←$G and ĝ, ĥ←$ Ĝ are random generators and e : G× Ĝ→ GT is a bilinear
map. In this setting, we rely on the SXDH assumption, which states that the DDH
problem must be hard in both G and Ĝ. Following the Groth-Sahai standard
notation, we also define the linear map ι : G→ G2 with ι : Z 7→ (1, Z).

4.2 Linearly Homomorphic Structure-Preserving Signatures

A central tool for our efficient TREnc construction is linearly homomorphic
structure-preserving signatures. The structure preserving [2][1] property makes it
possible to sign messages that are group elements (and not just bits as in schemes
based on the Waters signature), while the additional linearly homomorphic
feature, introduced by Libert et al. [32], will be used to make the signatures
randomizable while guaranteeing the non-malleability of the plaintext.

Keygen(pp, n): given the public parameter pp and the (polynomial) space

dimension n ∈ N, choose χi, γi←$Zp and compute ĝi = ĝχi ĥγi , for i = 1 to n.
The private key is sk = {(χi, γi)}ni=1 and the public key is pk = {ĝi}ni=1 ∈ Gn.

Sign(sk, (M1, . . . ,Mn)): to sign a vector (M1, . . . ,Mn) ∈ Gn using sk =
{(χi, γi)}ni=1, output σ = (Z,R) =

(∏n
i=1M

χi
i ,
∏n
i=1,M

γi
i

)
.

SignDerive(pk, {(ωi, σ
(i))}`i=1): given pk as well as ` tuples (ωi, σ

(i)), parse
σ(i) as σ(i) =

(
Zi, Ri

)
for i = 1 to `. Return the triple σ = (Z,R) ∈ G, where

Z =
∏`
i=1 Z

ωi
i , R =

∏`
i=1R

ωi
i .

Verify(pk, σ, (M1, . . . ,Mn)): given σ = (Z,R) ∈ G2 and (M1, . . . ,Mn), return
1 if and only if (M1, . . . ,Mn) 6= (1G, . . . , 1G) and (Z,R) satisfies

e(Z, ĝ) · e(R, ĥ) =
∏n
i=1e(Mi, ĝi) . (1)

4.3 Intuition of our construction

To encrypt a message m ∈ G, we combine a CPA encryption c = (c0, c1, c2) of
the form c0 = m · fθ, c1 = gθ, c2 = hθ and and a randomizable publicly verifiable
proof that logg c1 = logh c2, à la Cramer-Shoup. For that purpose, we can rely on
the idea to include a one-time LHSP signature on top of c as first suggested in
[32]. That means that the public key contains an LHSP signature Σ on (g, h) so
that we can derive a signature on (g, h)θ if indeed (c1, c2) lies in span〈(g, h)〉 by
computing π = Σθ. Such a proof is quasi-adaptive [27] as the CRS depends on the
language of which we have to prove membership. Here, the public key includes a
CRS that contains a signature on the basis of the linear subspace span〈(g, h)〉 of
G2. Given c and the LHSP signature π one can easily randomize the ciphertext
as follows: compute c′ = c · (f, g, h)θ

′
, and adapt the proof π′ = π ·Σθ′ . While
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this solution is perfectly randomizable and the signing key allows to perfectly
simulate the proof, it only provides a CCA1 security. Still, this technique has
been enhanced to provide tag-based simulation-sound proof system which is
reminiscent to building CCA-like secure encryption. The underlying technique is
to generate a one-time key pair (opk, osk) of some one-time signature scheme that
will be discussed in the next paragraph, and to define the tag as τ = H(opk), for
some collision-resistant hash function H,2 before computing π that (c1, c2) lies
in span〈(g, h)〉 based on τ . The ciphertext is then completed by signing (c, π)
with osk, resulting in the ciphertext (c, π, σ, opk). A natural solution would be to
borrow the first solution due to [33] but it only provides selective-tag simulation
soundness. Since we will be using opk as the trace of our TREnc construction, the
TCCA security implies that our underlying tag-based encryption must achieve
tag-based weak CCA security, and selective-tag security is not enough. Indeed,
the tag τ∗ = H(opk∗) involved in the challenge ciphertext may be chosen by the
adversary at any time. Furthermore, we must be able to answer any pre-challenge
decryption queries, so even those that already used τ∗. That means that we
cannot program the public key to embed τ∗ that will help us to incorporate an
SXDH instance in the computation of the challenge ciphertext. Fortunately, by
including a signature Σu on (g, h, 1, 1) and another signature Σv on (1, 1, g, h) in
the public key, given a tag τ , the computation of π = (Στ

uΣv)
θ due to [30] is an

LHSP signature on (cτ1 , c
τ
2 , c1, c2) which gives us the expected security and still

enjoys a perfect randomizability, but for the given tag τ (and trace opk), only,
which is still what we were looking for.

Now, we come back on the signature σ of (c, π). Usually, (opk, osk) is a key
pair of a strongly unforgeable signature scheme providing non-malleability of
ciphertext. However, we want to keep the malleability of the ciphertext as we
want to be able to fully randomize it up to opk that will serve as our trace,
but we also want to retain the non-malleability of the encrypted message m
to satisfy traceability. Here again, in the standard model under SXDH, LHSP
signature scheme comes in handy. If our fresh key pair (opk, osk) is generated
from a one-time LHSP signature scheme, we can fix the message and preserve
the randomizability of (c, π) by computing one-time LHSP signatures σ1 on
(g, c0, c1, c2) and σ2 on (1, f, g, h). Like this, when we randomize (c, π, σ1, σ2) as
c′ = c · (f, g, h)θ

′
, π′ = π · (Στ

uΣv)θ
′

we can also adapt the signature σ′1 = σ1 ·σθ
′

2

on (g, c′0, c
′
1, c
′
2) = (g, c0, c1, c2) · (1, f, g, h)θ

′
, and simply keep σ2. While the

correctness follows by inspection, we have several comments to make that are
less obvious. First, the reason why we are no more able to modify m is due to
the presence of the constant g that must be the first component of the signed
vector associated to σ1 and any adaptation σ′1. Modifying m requires computing
a one-time LHSP signature on a vector necessarily outside the span generated by
(g, c0, c1, c2) and (1, f, g, h). Second, the signature σ2 is unchanged during the
randomization. Still, it is a signature on a fixed vector and the one-time LHSP
signing algorithm is deterministic. Moreover, if we have two distinct signatures

2 H must not only be second-preimage resistance as in [29] since the adversary can
choose opk∗ adaptively.
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on a single vector we can solve SXDH. That means that any other adversarially
generated ciphertext for opk (as the adversary might know osk) will have to share
σ2 and our randomizability holds. Third, while the tag-based simulation-sound
QA-NIZK proof π can be simulated if we embed a random triple (F,G,H) into
(c0, c1, c2) we also have to produce a valid looking adaptation of σ1 while we do
not know osk∗. To avoid extracting osk from a costly bit-by-bit proof of knowledge
in the standard model since osk consists of random scalars,3 we would like to
add (1, F,G,H) in the public key and requires the ciphertext to further compute
a signature σ3 on it with osk. However, if we reveal (1, F,G,H), computing
(g, c∗0, c

∗
1, c
∗
2) = (g, c0, c1, c2) · (1, f, g, h)θ

∗ · (1, F,G,H)ρ∗ allows deriving a valid

σ∗1 = σ1 · σθ
∗

2 · σ
ρ∗

3 but c∗ = (c∗0, c
∗
1, c
∗
2) will not be random even if (F,G,H) is

random. Fortunately, it is actually sufficient for the traceability to use (opk, osk)
to sign the shorter vectors (g, c0, c1), (1, f, g) and (1, F,G), and keep H away
from the adversary’s view to have a statistically random c∗ in the reduction.
When (1, F,G) is not in span〈(1, f, g)〉, the proof π simply prevents the adversary
from randomizing ciphertexts with (1, F,G) without losing validity.

For technical reason, we hide σ1 in the ciphertext and make a randomizable
NIWI Groth-Sahai proof to show the randomizability and the TCCA security
of the scheme. While we can adapt the σ1 component when we randomize one
of the two ciphertexts given by the adversary in the challenge phase (or in the
randomization experiment), and that trace to each other, since the adversary
might know osk it might infer more information about how we adapt this signature
into σ∗1 if we left it in the clear.

4.4 Description

Gen(1λ): Choose bilinear groups (G, Ĝ,GT ) of prime order p > 2poly(λ) together

with g, h←$G and ĝ, ĥ←$ Ĝ.

1. Pick random α, β←$Zp and set f = gαhβ .

2. Pick δ←$Zp and compute (F,G,H) = (f, g, h)δ.

3. Generate a Groth-Sahai CRS crsw = (~w1, ~w2) ∈ G4 to commit to groups
elements of G, where ~w1 = (w11, w12) and ~ww = (w21, w22) are generated
in the perfect NIWI mode, i.e., crsw←$G4.

4. Define the vector v = (g, h) and generate 2 key pairs (sku, pku) and
(sku, pku) for the one-time linearly homomorphic signature of Section 4.2
in order to sign vectors of dimension n = 2, given the common public
parameters ĝ, ĥ. Let pku = {û1, û2} and pkv = {v̂1, v̂2}. Using sku (resp.
skv), generate a one-time LHSP signature Σu = (Zu, Ru) (resp. Σv =

(Zv, Rv)) on v. In other words, for pkqazk
lhsp = {û1, û2, v̂1, v̂2}, Σu, Σv are

3 There is no fully structure-preserving signature schemes under SXDH and none with
full randomizability (except in the generic group model [24]), which might still not
be enough to be combined with a ciphertext as an SRC). And, we are not aware of
any fully structure-preserving LHSP signature scheme, where the secret keys only
contain source group elements.
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one-time LHSP signatures on the rows of the matrix

P =

(
g h 1 1

1 1 g h

)
.

The private key consists of SK = (α, β) and the public key PK ∈ G13 × Ĝ6 is

PK =
(
f, g, h, F, G, crsw, Σu, Σv, pkqazk

lhsp , ĝ, ĥ
)
.

Enc(PK,m): to encrypt a message m ∈ G, first run LGen(PK): Generate a key
pair (osk, opk) for the one-time linearly homomorphic signature of Section 4.2

from the public generators ĝ, ĥ in order to sign vectors of dimension 3. Let
lk = osk = {(ηi, ζi)}3i=1 be the private key, of which the corresponding public

key is opk = {f̂i}3i=1. Then, conduct the following steps of LEnc(PK, lk,m):

1. Pick θ←$Zp and compute the CPA encryption c = (c0, c1, c2), where
c0 = mfθ, c1 = gθ and c2 = hθ, and keep the random coin θ.
Next steps 2-3 are dedicated to the tracing part.

2. To allow tracing, authenticate the row space of the matrix T=
(
Ti,j
)
1≤i,j≤3

T =

g c0 c1

1 f g

1 F G

 (2)

by using lk = osk. Namely, sign each row ~Ti = (Ti,1, Ti,2, Ti,3) of T
resulting in σ = (σi)

3
i=1 ∈ G6, where σi = (Zi, Ri) ∈ G2.

3. To allow strong randomizability, commit to σ1 using the Groth-Sahai
CRS crsw by computing CZ = ι(Z1)~wz11 ~wz22 and CR = ι(R1)~wr11 ~wr22 . To
ensure that σ1 is a valid one-time LHSP signature on (g, c0, c1) compute

the proof π̂sig = (P̂1, P̂2) ∈ Ĝ2 such that P̂1 = ĝz1 ĥr1 and P̂2 = ĝz2 ĥr2 .
Next step 4 shows the validity of c associated to the tag τ = H(opk).

4. Given θ and τ = H(opk), compute a randomizable simulation-sound
proof that (c1, c2) ∈ span〈(g, h)〉. Namely, derive the LHSP signature π =
(Στ

uΣv)θ=:(Zπ, Rπ) on the vector (cτ1 , c
τ
2 , c1, c2)=((g, h, 1, 1)τ (1, 1, g, h))θ.

Output the ciphertext

CT =
(
c,CZ ,CR, σ2, σ3, π, π̂sig, opk = {f̂i}3i=1

)
∈ G13 × Ĝ5

Trace(PK,CT): Parse PK and CT as above, and output opk in the obvious way.

Rand(PK,CT): If PK and CT do not parse as the outputs of Gen and Enc, abort.
Otherwise, conduct the following steps:

1. Parse the CPA encryption part c = (c0, c1, c2), pick θ′←$Zp and compute

c′ = c · (f, g, h)θ
′
, so that c′0 = c0f

θ′ , c′1 = c1g
θ′ and c′2 = c2h

θ′ .



Traceable Receipt-Free Encryption 19

2. Implicitly adapt the committed signature σ1 of the tracing part. First,
compute σ̃1 = (Z̃1, R̃1) = (Zθ

′

2 , R
θ′

2 ) = σθ
′

2 , which consists of a one-time
LHSP signature on (1, f, g)θ

′
for opk. Second, adapt the commitments

C ′Z = CZ · ι(Z̃1)~w
z′1
1 ~w

z′2
2 and C ′R = CR · ι(R̃1)~w

r′1
1 ~w

r′2
2 , for some random

scalars z′1, z
′
2, r
′
1, r
′
2←$Zp, which should commit to the valid one-time

LHSP signature σ′1 =σ1σ
θ′

2 on (g, c′0, c
′
1) for opk. Third, adapt the proof

π̂sig =(P̂1, P̂2) as π̂′sig =(P̂ ′1, P̂
′
2), where P̂ ′1 = P̂1 · ĝz

′
1 ĥr

′
1 and P̂ ′2 = P̂2 · ĝz

′
2 ĥr

′
2 .

3. Adapt the proof of the validity of the CPA ciphertext. Namely, computes
π′ = π · (Στ

uΣv)
θ′= (Zπ(ZτuZv)

θ′, Rπ(RτuRv)
θ′), where τ = H(opk).

Output the re-randomized ciphertext

CT =
(
c′,C ′Z ,C

′
R, σ2, σ3, π

′, π̂′sig, opk
)
.

Ver(PK,CT): First, abort and output 0 if PK or CT does not parse properly.
Second, verify the validity of the signatures σ2 and σ3 on the 2 last rows
{~Ti}3i=2 of the matrix T, and output 0 if it does not hold. Third, verify that:
1. The committed signature of the tracing part is valid, i.e., σ1 = (Z1, R1)

is a valid one-time LHSP signature on the vector (g, c1, c2). To hold, the
commitments CZ ,CR and the proof π̂sig = (P̂1, P̂2) must satisfy

E(CZ , ĝ) · e(CR, ĥ) = E(ι(g), f̂1) · E(ι(c0), f̂2) · E(ι(c1), f̂3) (3)

· E(~w1, P̂1) · E(~w2, P̂2)) ;

2. The proof that the CPA ciphertext is valid, i.e., π = (Zπ, Rπ) is a valid
one-time LHSP signature on the vector (cτ1 , c

τ
2 , c1, c2), which must satisfy

e(Zπ, ĝ) · e(Rπ, ĥ) = e(c1, û
τ
1 v̂1) · e(c2, ûτ2 v̂2), (4)

where τ = H(opk).
If at least one of theses checks fails, output 0, otherwise, output 1.

Dec(SK,PK,CT): If Ver(PK,CT) = 0, output ⊥. Otherwise, given SK = (α, β)

and c = (c0, c1, c2) included in CT, compute and output m = c0 · c−α1 · c
−β
2 .

4.5 Security

The security of our pairing-based TREnc relies solely on the SXDH assumption.
We first show the verifiability of this TREnc as it eases the analysis of the
traceability and the randomizability properties. The verifiability essentially relies
on the unforgeability of LHSP signatures since it also implies the (simulation-)
soundness of the (quasi-adaptive) proof of (subspace) membership. We refer to
the full version of the paper [21] for all the proofs of the theorems.

Theorem 2. The above TREnc is verifiable under the SXDH assumption. More
precisely, for any adversary A, we have Pr[Expver

A (λ) = 1] ≤ εsxdh + 1/p.

Theorem 3. The above TREnc Π is traceable under the SXDH assumption.
More precisely, for any adversary A, we have Pr[Exptrace

A,Π (λ) = 1] ≤ 2 · εsxdh + 2/p.
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Strong randomizability essentially relies on the verifiability, which shows
that computationally-bounded adversary only produces (except with negligible
probability) valid ciphertexts that are honest (but, possibly with biased randomness),
and the perfect randomization of honest ciphertexts.

Theorem 4. The above TREnc is strongly randomizable under the SXDH
assumption. More precisely, for any adversary A = (A1,A2), where A2 is possibly
unbounded, we have Pr[Exprand

A (λ) = 1] ≤ εsxdh + 2/p.

Theorem 5. The above TREnc is TCCA-secure under the SXDH assumption
and the collision resistance of the hash function. More precisely, we have Pr[Exptcca

A,Π(λ) =

1] ≤ 1
2 + εcr + 2 · εsxdh +Ω(2−λ).

4.6 Efficiency

This TREnc instance is reasonably efficient. In particular, in order to encrypt
a message, which is typically the bottleneck in voting applications because it
must run more or less transparently on low-end voter devices, we can encrypt
one group element using 29 exponentiations in G and 10 exponentiations in Ĝ.
This group element would make it possible to encode up to a few hundred bits in
practice, depending on the chosen security parameter.

In contrast, the SRC aiming at similar applications and used in the BeleniosRF
election system [15] requires 33 exponentiations in G and 22 exponentiations in

Ĝ for the (signed) encryption of only 1 bit. In general, their construction requires

11k + 22 exponentiations in G and 10k + 12 exponentiations in Ĝ in order to
encrypt k bits. These estimates are based on the reference code of the SRC, since
the paper does not entirely specify the algorithms (especially how commitments
and proofs are computed).

5 Voting scheme based on Traceable Receipt-Free
Encryption

Traceable Receipt-Free Encryption schemes are particularly well suited for the
design of voting systems offering receipt freeness, that is, systems in which voters
cannot demonstrate how they voted to a third party.

We are now formalizing the notion of voting system (Sec. 5.1) and receipt-
freeness (Sec. 5.2), using a definition closely related to the one of Chaidos et
al. [15], while fixing two technical issues that it contains, then show how to build
a receipt-free voting scheme from a TREnc (Sec. 5.3).

5.1 Definitions and notations

We define voting protocols in a way that largely follows the SOK from Bernhard
et al. [8] and BeleniosRF [15]. In our voting protocols, we consider the following
parties:
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– The voters are participating in the election and are willing to cast a ballot
representing their vote intent.

– The election administrator is organizing the election and is responsible for
coordinating the protocol execution.

– The ballot box manager is gathering the ballots of the voters on a bulletin
board BB and provides a public view PBB of those ballots, for verifiability.

– The trustees are responsible for correctly tallying the ballot box and providing
a proof of the correctness of the tally. We consider a k-threshold tallying
system, that is k honest trustees are required to compute the tally of the
election.

These parties are standard entities in the voting literature. In some cases, we
will also refer to the ballot box manager as the rerandomizing server, in order
to make its receipt-freeness related role more visible. We also define a family
of deterministic results functions ρm which given m votes, returns the result of
the election for these votes. The following definition encompasses the procedures
used in a voting system.

Definition 10 (Voting System). A Voting System is a tuple of probabilistic
polynomial-time algorithms (SetupElection, Vote, ProcessBallot, TraceBallot, Valid,
Append, Publish, VerifyVote, Tally, VerifyResult) associated to a result function
ρm : Vm ∪ {⊥} → R where V is the set of valid votes and R is the result space
such that:

– SetupElection(1λ): on input security parameter 1λ, generate the public and
secret keys (pk, sk) of the election.

– Vote(id, v): when receiving a voter id and a vote v, outputs a ballot b and
auxiliary data aux. It will also be possible to call Vote(id, v, aux) in order to
obtain a ballot (without auxiliary data this time) for vote v using aux. This
auxiliary data will be useful to define security and enables the creation of
ballots that share the same aux.

– ProcessBallot(b): on input ballot b, outputs an updated ballot b′. In our case,
b′ would be a rerandomization of b.

– TraceBallot(b): on input ballot b, outputs a tag t. The tag is the information
that a voter can use to trace his ballot, using VerifyVote.

– Valid(BB, b): on input ballot box BB and ballot b, outputs 0 or 1. The algorithm
outputs 1 if and only if the ballot is valid.

– Append(BB, b): on input ballot box BB and ballot b, appends ProcessBallot(b)
to BB if Valid(BB, b) = 1.

– Publish(BB): on input ballot box BB, outputs the public view PBB of BB,
which is the one that is used to verify the election. Depending on the context,
it may be used to remove some voter credentials for instance.

– VerifyVote(PBB, t): on input public ballot box PBB and tag t, outputs 0 or 1.
This algorithm is used by voters to check if their ballot has been processed
and recorded properly.

– Tally(BB, sk): on input ballot box BB and private key of the election sk, outputs
the tally r and a proof Π that the tally is correct w.r.t. the result function ρm.
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– VerifyResult(PBB, r,Π): on input public ballot box PBB, result of the tally
r and proof of the tally Π, outputs 0 or 1. The algorithm outputs 1 if and
only if Π is a valid proof that r is the election result, computed w.r.t. ρm,
corresponding to the ballots on PBB.

For all of these algorithms except SetupElection, the public key of the election pk
is an implicit argument.

These algorithms are used as follows in a typical election, the election
authorities first generate the election public and secret keys with SetupElection.
Then, using the public key of the election, each voter can prepare a ballot bwith
the Vote algorithm and send it to the ballot box manager. The voter also keeps
TraceBallot(b) in order to be able to trace its ballot on the election public bulletin
board. Each time the ballot box manager receives a ballot, it checks if it is valid
with the Valid algorithm. If this is the case, it runs the ProcessBallot algorithm
on it and appends the resulting ballot to the ballot box using Append.

The ballot box manager also applies Publish on the ballot box in order to
obtain the content that is made available on a public bulletin board PBB. Voters
can check that their ballot has been correctly recorded on PBBusing VerifyVote.

Eventually, the trustees run the Tally algorithm on the ballot box in order to
compute the election result and a proof of correctness of this result. Anyone can
use these, together with the content of PBB, in order to verify the election result
using VerifyResult.

This definition differs from [8] and [15] in two important ways. First, we
introduce the TraceBallot algorithm. Such a procedure is implicit other voting
system descriptions, often because voters simply check the presence on PBBof
their ballot, in which case TraceBallotwould simply be the identity function. In
our case, TraceBallotmust extract the signature verification key that is generated
at voting time by Vote, making this algorithm non-trivial.

The correctness guarantees of the various algorithms listed above are as usual
and follow the intuitions given above. We only formalize the correctness guarantee
of TraceBallot, which is novel.

Definition 11 (Tracing correctness). For every v, BB, (b, aux)← Vote(id, v)
and t← TraceBallot(b), after Append(BB, b) we have that VerifyVote(Publish(BB), t)
= 1 with overwhelming probability.

As a second difference, we omit the voter registration procedure, of which
we make no use here: it is used in some protocols in order to obtain some forms
of delegated verifiability where an extra authority is partially trusted to handle
voter credentials, but this is not our focus. To make things concrete here, one
can imagine that voter authentication is handled with a process similar to the
one used in Helios [3], where the ballot box manager distributes credentials (e.g.,
passwords) to the voters and publishes the voter names next to their ballot on
PBB. Voters who did not vote can then verify that there is no ballot recorded
for them, and auditors can sample voters and contact them to perform similar
verification steps. (We make no claim regarding the effectiveness of this process
in practice – it is just here for context.)
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5.2 Receipt-freeness

We adopt here a definition of receipt-freeness that is similar to the one of Chaidos
et al [15]. Various other definitions exist, but they are either too informal for
our purpose (e.g., [25]), or focus on the stronger notion of coercion resistance, in
which voters need to adopt a specific counter-strategy depending on instructions
of the coercer (e.g., [35,40,31,4]).

This definition requires that voters should not be able to pick a ballot, possibly
from a distribution that deviates from the honest one, in such a way that no third
party, by looking at the election public bulletin board, and knowing exactly how
the voter’s announced ballot was built, is able to decide whether that ballot was
submitted by the voter rather than another ballot that could encode a vote for a
different candidate. This definition also considers that the channels between the
voters and the ballot box manager is private and, indeed, without the assumption
that such private channels are available, achieving receipt-freeness in a verifiable
election is impossible [18].

Definition 12 (Receipt-Freeness). A voting system V has receipt-freeness
if there exists algorithms SimSetupElection and SimProof such that no PPT
adversary A can distinguish between games Expsrf,0

A,V (λ) and Expsrf,1
A,V (λ) defined by

the oracles in Figure 3, that is for any efficient algorithm A:∣∣∣Pr [Expsrf,0
A,V (λ) = 1

]
− Pr

[
Expsrf,1
A,V (λ) = 1

]∣∣∣
is negligible in λ.

Oinit(λ)

if β = 0 then (pk, sk)← SetupElection(1λ)

else (pk, sk, τ)← SimSetupElection(1λ)

BB0 ← ⊥; BB1 ← ⊥
return pk

OreceiptLR(b0, b1)

if TraceBallot(b0) 6= TraceBallot(b1)
or Valid(BB0, b0) = 0 or Valid(BB1, b1) = 0
then return ⊥
else Append(BB0, b0); Append(BB1, b1)

Oboard()

return Publish(BBβ)

Otally()

(r,Π)← Tally(BB0, sk)
if β = 1 then Π← SimProof(BB1, r)
return (r,Π)

Fig. 3. Oracles used in the Expsrf,β
A,V (λ) experiment. The adversary first calls Oinit and

then can call Oboard and OreceiptLR as much as it wants. Finally, the adversary calls
Otally, receives the result of the election and must return its guess, which is the output
of the experiment.

In this game, parameterized by a bit β, the adversary has access to the
following oracles:

– Oinit: initializes the voting system. It generates the public and privates keys
of election and returns the public key to the adversary. When β = 1, a
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simulated setup may be performed, depending on the computational model,
which will offer some trapdoor information that may be needed to produced
a simulated tally correctness proof for instance. Eventually, two empty ballot
boxes are created: the real ballot box BB0 that will be tallied and the fake
ballot box BB1. Both boxes will be populated during the game, but the
adversary will only see Publish(BBβ).

– OreceiptLR(b0, b1): Lets the adversary cast ballots b0 in the real ballot box
BB0 and b1 in the fake ballot box BB1, as long as both ballots are valid and
have the same trace. This oracle is the central one for receipt-freeness.

– Oboard: Returns Publish(BBβ), which represents its view of the public bulletin
board.

– Otally: Returns the result of the election based on the ballots on BB0, as well
as a proof of correctness of the tally. If β = 1, this proof is simulated w.r.t.
the content derived from BB1.

Several observations can be made about this game. First, and as expected,
it can be seen that the ballot box manager is considered to behave honestly. A
dishonest ballot box manager could simply replace ProcessBallot and Publish with
the identity function, which would make the game trivial to win, independently
of any cryptographic operation. The Tally operation is also performed honestly:
dishonest talliers could decrypt all the ballots individually, which would again
make the game trivial to win. In practice, this assumption can be mitigated by
using a distributed decryption process, which is always possible using MPC but
can typically be done more efficiently.

Second, this game prompts for the introduction of an extra correctness
requirement on the definition of Vote and TraceBallot, in order to make sure that
ballots that encode different votes and have the same tag can be computed.

Definition 13 (Ballot traceability for receipt freeness). For every public
key pk in the range of SetupElection, the ballots produced for every pair of
voting choices (v0, v1) with the same auxiliary data trace to the same tag. That
is, for b0, aux←$ Vote(id, v0), b1←$ Vote(id, v1, aux), we have TraceBallot(b0) =
TraceBallot(b1).

Without this extra constraint, we could imagine a TraceBallot algorithm
which returns a tag depending on the vote inside the ballot. For example if
TraceBallot(b) = b as we discussed earlier, then Oreceipt(b0, b1) does nothing
except if the two ballots are identical and the adversary can never win the receipt-
freeness game. It is thus natural to require that a tag returned by TraceBallot
can be reached with any possible voting choice.

The related constraint that TraceBallot(b0) = TraceBallot(b1) is actually
missing from Chaidos’ definition[15], and makes their game trivial to win in most
natural case, including with their own protocol: an adversary could simply submit
two ballots that have different traces (or are signed with different keys in the
wording of their paper), and immediately identify which bulletin board he sees.

Compared to Chaidos’ definition, we also removed the Ocorrupt oracle, as we
simply assume that all the voters are under adversarial control. We also omitted
their Ocast and OvoteLR oracles, because OreceiptLR subsumes them.
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5.3 Voting scheme

We now explain how a generic voting system can be built from a TREnc. The
protocol in itself is of little interest: it essentially follows previous proposals [10,15].
Its central interest is that defining it from a TREnc makes the proof of its receipt-
freeness almost immediate, and independent of any specific TREnc instance.

A detailed pseudocode description is proposed in Figure 5.3. The protocol
executes as follow. The election authorities set-up the election in the following
way. They create an empty bulletin board and create the pair of public and
private keys (pk, sk) of the election by running the Gen algorithm of the TREnc
scheme with the desired security parameter. pk is distributed to every party
taking part to the election and sk is given to the tallier. Note that sk can be
generated in a distributed way, so that decryption requires the contribution
of multiple trustees – our TREnc constructions are compatible with standard
threshold key generation protocols for discrete log based cryptosystems, which
can be used as usual since the decryption of a ciphertext is independent from
the link key and the Trace algorithm [19,23]. We consider a unique tallier in the
following.

When a user wants to cast a vote v, they first generate a link key lk by running
the LGen(pk) algorithm, then encrypts the vote with the LEnc(pk, lk, v) algorithm
in order to obtain a ballot b, while aux is defined as lk. The voter then sends the
encrypted ballot to the ballot box manager of the voting system. It is utterly
important that the user erases the link key as soon as possible, as the integrity
of their vote may rely on the secrecy of this key. The voter will however store
TraceBallot(b) = Trace(b) in order to verify that a ballot with the correct trace
eventually appears on the public bulletin board.

When the ballot box manager receives a new ballot b, he verifies the validity
of the ballot by checking that Ver(b) succeeds and that no ballot with the same
trace was recorded before. Invalid ballots are dropped and valid ones are going
through Append(BB, b), which runs ProcessBallot(b) = Rand(pk, b) and appends
the result to BB.

The user can verify that their vote is on the bulletin board by checking with
the TraceBallot algorithm if any entry in the public bulletin board has the same
trace as the one they recorded when they produced their ballot. The traceability
property of the TREnc then guarantees that nobody (including the rerandomizing
server and the election authorities who hold the decryption key) could have forged
another valid ciphertext of another vote linked to this ballot with non-negligible
probability.

Once every voter has cast a vote, the tallier can gather the ballots on the
bulletin board and compute the result of the election r, as well as a proof of
correctness Π. The exact details of this process will depend on the ballot format
and the result function ρm that the voting protocol requires. One standard way
of performing this operation would be to process all the published ballots through
a verifiable mixnet: our TREnc ciphertexts are compatible with various standard
options that operate on votes encrypted as vectors of group elements, including
the Verificatum mixnet [42].
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SetupElection (λ)

(pk, sk)← Gen(1λ)
return pk

Vote(id, v[, aux])

if aux is specified then lk← aux
else lk←$ LGen(pk)
b← LEnc(pk, lk, v)
if aux is not specified then return b
else return b, lk

TraceBallot(b)

return Trace(b)

Valid(BB, b)

if Ver(b)∧
∀b′ ∈ BB,TraceBallot(b′) 6= TraceBallot(b)
then return 1 else return 0

ProcessBallot(b)

return Rand(pk, b)

VerifyVote(PBB, t)

if ∃b ∈ PBB : Valid(b) ∧ t == TraceBallot(b)

then return 1 else return 0

Fig. 4. Instantiation of our voting scheme from a generic TREnc scheme. Publish
is simply the identity function. Tally and VerifyResult are instantiated via standard
techniques, depending on the result function (homomorphic tallying, verifiable
mixnet, . . . ).

5.4 Security of the voting scheme

This voting scheme has receipt freeness, as claimed in the following theorem.

Theorem 6. If the TREnc used in the voting scheme is TCCA secure and
verifiable and if the proof system used to prove the correctness of the tally is
zero-knowledge, then the voting scheme has receipt freeness. More precisely, if the
advantage of any adversary at distinguishing a simulator from an honest prover
of the proof system is bounded by εZK and if the advantage of any adversary
at the TCCA experiment is bounded by a negligible function εTCCA, then every
adversary at the receipt freeness game making qr OreceiptLR requests has an
advantage bounded by εZK + qrεTCCA.

Proof. The proof uses two different games, where the first one is the receipt-
freeness game. In each of those games, we pick a random bit β corresponding to
either the real ballot box (β = 0) or the fake ballot box (β = 1). The adversary is
expected to guess in which case it is and to output a bit β′. We note Si the event
that β = β′ in the i-th game. We show that S0, the probability of an adversary
to win the receipt freeness game, is negligibly close in λ to 1

2 .

Game0(λ): We define Game0(λ) as the original receipt freeness experiment and A
as a PPT adversary for the game. We set SimSetup as the simulation trapdoor
for the proof systems used in the tally and SimProof(BB, r) as an algorithm
simulating fake proofs of the decryption of the ciphertexts in BB into the
plaintexts listed in r. By definition, A wins the game with probability Pr[S0].

Game1(λ): If β = 0, we generate the keys of the election with SimSetup instead
of the honest Setup algorithm. We also give a simulated proof of the tally as
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in the case β = 1.
Game0(λ)→ Game1(λ) : Since the proof system of the tally is zero-knowledge,
|Pr[S0]− Pr[S1]| ≤ εZK .

In the second game, the only difference between β = 0 and β = 1 are now in
the OreceiptLR oracle. We can reduce the q-TCCA experiment (the q challenge
variant of the TCCA game, which is proven to be equivalent to TCCA security
up to a factor q in the full version) to Game1(λ) in the following way. We build
an adversary against the q-TCCA challenger by instantiating the voting system
and simulating an efficient adversary for Game1(λ). Each time we are asked to
append ballots to the bulletin board from a OreceiptLR oracle call, we ask the
challenger to decrypt them. Then, we give both ballots as a challenge to the
challenger and receive a randomized ballot that we append to our bulletin board.
There are qr such requests. After all the requests, we can compute the result of
the election as we have the plaintext of every ballot in BB0. Moreover, we can use
SimProof to simulate a proof that our bulletin board has been correctly tallied.
Hence, this adversary wins the q-TCCA game with the same probability as the
simulated adversary wins the second game and Pr[S1] ≤ qrεTCCA. We conclude
that the probability that the adversary wins the receipt freeness experiment,
Pr[S0], is bounded by εZK + qrεTCCA. ut

It is immediate that our voting scheme also satisfies ballot traceability
(Def. 13), thanks to the link traceability of the TREnc (Def. 2).

This demonstrates the receipt-freeness of our protocol against an adversary
who sees the public bulletin board, and assuming a honest ballot box manager.
Our protocol also offers privacy against a malicious ballot box manager, as
demonstrated in the full version. As can be expected, proving privacy against
such an adversary requires taking advantage of the strong-randomization property
of the TREnc, which was not necessary for receipt-freeness.

It is also important to note that the notions of receipt-freeness and ballot
privacy only make sense when applied to voting protocols that satisfy some extra
correctness requirements (see Bernhard et al. [8] for instance) – a pathological
Valid process that would just drop all but one ballot could result in this ballot
been tallied alone, which could satisfy the definition or receipt-freeness but would
obviously be problematic from a privacy point of view. The notions of strong
consistence, correctness, and validity, defined in the full version of the paper,
address these questions.

We do not detail the verifiability of our voting system, which would require
to introduce a substantial machinery. We outline how this could work here:

– Individual verifiability requires that a voter who successfully completes
the VerifyVote verification steps can be convinced that his vote is properly
recorded. If the voter’s voting client is honest, this follows from the traceability
property of the TREnc and the single use of lk, which guarantee that any
ballot with the same trace as the ballot submitted by the voter would decrypt
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to the right vote. Detecting a malicious voting client that may encrypt a vote
different of the one chosen by the voter is more tricky. One option would
be to consider a variation on the Benaloh challenge, in which voters would
have the option to decide to spoil a ballot that has been posted on the public
bulletin board, and either ask for its decryption, or for the randomness used
both during the Vote process and during ProcessBallot. Any newly created
ballot would need to be generated using a fresh lk.

– Eligibility verifiability could proceed by adding the voter’s name next to each
ballot on the public bulletin board, and let auditors check whether these are
legitimate voters. Weaker but more convenient options include relying on a
trusted authentication server and/or on a PKI.

– Universal verifiability, which guarantees that the tally is computed correctly,
would result from the tallying process, e.g., from a verifiable mix-net.
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