
Attaining GOD Beyond Honest Majority With
Friends and Foes⋆

Aditya Hegde1⋆⋆, Nishat Koti2, Varsha Bhat Kukkala2, Shravani Patil2, Arpita
Patra2, and Protik Paul2

1 Johns Hopkins University ahegde@cs.jhu.edu
2 Indian Institute of Science, Bangalore

{kotis,varshak,shravanip,arpita,protikpaul}@iisc.ac.in

Abstract. In the classical notion of multiparty computation (MPC), an
honest party learning private inputs of others, either as a part of protocol
specification or due to a malicious party’s unspecified messages, is not
considered a potential breach. Several works in the literature exploit this
seemingly minor loophole to achieve the strongest security of guaranteed
output delivery via a trusted third party, which nullifies the purpose of
MPC. Alon et al. (CRYPTO 2020) presented the notion of Friends and
Foes (FaF) security, which accounts for such undesired leakage towards
honest parties by modelling them as semi-honest (friends) who do not
collude with malicious parties (foes). With real-world applications in
mind, it’s more realistic to assume parties are semi-honest rather than
completely honest, hence it is imperative to design efficient protocols
conforming to the FaF security model.
Our contributions are not only motivated by the practical viewpoint,
but also consider the theoretical aspects of FaF security. We prove the
necessity of semi-honest oblivious transfer for FaF-secure protocols with
optimal resiliency. On the practical side, we present QuadSquad, a ring-
based 4PC protocol, which achieves fairness and GOD in the FaF model,
with an optimal corruption of 1 malicious and 1 semi-honest party. Quad-
Squad is, to the best of our knowledge, the first practically efficient FaF
secure protocol with optimal resiliency. Its performance is comparable
to the state-of-the-art dishonest majority protocols while improving the
security guarantee from abort to fairness and GOD. Further, QuadSquad
elevates the security by tackling a stronger adversarial model over the
state-of-the-art honest-majority protocols, while offering a comparable
performance for the input-dependent computation. We corroborate these
claims by benchmarking the performance of QuadSquad. We consider
the application of liquidity matching that deals with sensitive financial
transaction data, where FaF security is apt. We design a range of FaF
secure building blocks to securely realize liquidity matching as well as
other popular applications such as privacy-preserving machine learning.
Inclusion of these blocks makes QuadSquad a comprehensive framework.

Keywords: Friends and Foes · Multiparty Computation · Oblivious
Transfer

⋆ Full version available at https://eprint.iacr.org/2022/1207.pdf
⋆⋆ Work done while at International Institute of Information Technology Bangalore.

https://eprint.iacr.org/2022/1207.pdf

2 Hegde et al.

1 Introduction

The classical notion of multiparty computation (MPC) enables n mutually dis-
trusting parties to compute a function over their private inputs, such that an
adversary controlling up to t parties does not learn anything other than the out-
put. Depending on its behaviour, the adversary can be categorized as semi-honest
or malicious. A maliciously-secure MPC protocol may offer security guarantee
with abort, fairness or guaranteed output delivery (GOD). While security with
abort may allow the adversary alone to receive the output (leaving out the honest
parties), fairness makes sure either all or none receive the output. The strongest
guarantee of GOD ensures that all honest participants receive the output irre-
spective of the adversarial behaviour. It is well known that honest majority is
necessary to achieve GOD, whereas a dishonest majority setting can at best of-
fer security with abort for general functionalities [28]. GOD is undoubtedly one
of the most attractive features of an MPC protocol. Preventing repeated fail-
ures, it upholds the trust and interest of participants in the deployed protocol
and saves a participant’s valuable time and resources. Moreover, it also captures
unforeseeable scenarios such as machine crashes and network delay.

It is well-known that the honest majority setting lends itself well for con-
structing efficient protocols for a large number of parties [33,2,1,18,45] and has
been shown to be practical [64,6]. In this setting, MPC for a small number of
parties [5,40,4,58,27,63,61,49,63,22] has gained popularity over the last few years
due to applications such as financial data analysis [17] and privacy-preserving
statistical studies [15] which typically involve 3 parties. This is corroborated by
the popularity of MPC framework such as Sharemind [16] which works over 3
parties. In the literature, of all MPC protocols for a small population, several
achieve the highest security guarantee of GOD [49,21,44,20,23,55,56]. In most of
these protocols, when any malicious behaviour is detected, parties identify an
honest party, referred to as Trusted Third Party (TTP) and make their inputs
available to it in clear. Thereafter, TTP computes the desired function on par-
ties’ private inputs and returns the respective outputs. Such learning of inputs
by an honest party is allowed in the traditional definition of security, although
it nullifies the main purpose of MPC. In many real-world applications that deal
with highly sensitive data, such as those in financial and healthcare sectors, in-
formation leak, even to an honest party, is unacceptable. Further, in the secure
outsourced computation setting, where servers (typically run by reputed com-
panies such as Amazon, Google, etc.) are hired to carry out the computation, it
may be unacceptable to reveal private inputs to the server identified as a TTP.

Another issue that persists in traditionally secure MPC protocols is the fol-
lowing. The malicious adversary can potentially breach privacy of protocols by
sending its view to some of the honest parties. However, traditional definitions
do not acknowledge this view-leakage as an attack as honest parties are assumed
to discard any non-protocol messages. In this way, traditional definition fails to
account for the possibly curious nature of honest parties, which is a given in real-
world scenarios. Consequently, many well-known protocols relying on threshold
secret sharing (such as BGW [14]), satisfying traditional security against t ma-

Attaining GOD Beyond Honest Majority With Friends and Foes 3

licious corruptions, immediately fall prey to this view-leakage attack. Indeed,
an honest party on receiving the view of any t corrupt parties can learn the
inputs of all the parties. Note that the traditional MPC protocols are vulnerable
to this view-leakage attack which are not just restricted to GOD protocols but
also protocols with weaker security notion of fairness. We emphasize that such
a view-leakage attack is not irrational on the part of adversary’s behaviour as it
can be motivated by monetary incentives.

We showcase how reliance on a TTP and the view-leakage attack inherent in
traditionally secure MPC is detrimental to data privacy in real-world applica-
tions via the example of liquidity matching. Consider a set of banks that have
outstanding transactions that need to be settled among themselves. Liquidity
matching enables settlement of inter-bank transactions while ensuring that each
bank has sufficient liquidity. Here, liquidity means the balance of a bank, and
matching requires that each bank, upon processing of the outstanding transac-
tions, has non-negative balance. Since transactions comprise sensitive financial
data, it is required to perform liquidity matching in a privacy-preserving man-
ner. Hence, when designing MPC protocols for the same. It is imperative for the
protocol to provide GOD, owing to the real-time nature of such transactions.
That is, aborting the execution is not an acceptable option as it may lead to an
indefinite delay in processing the transactions. The work of [7] has explored this
application in the traditionally secure MPC setting. However, given the sensitive
nature of the application, reliance on a TTP to attain GOD, and the view-leakage
attack, render the traditionally secure MPC solution futile.

Inspired by the above compelling concerns of reliance on a TTP and view-
leakage, [3] proposed a newMPC security definition, Friends & Foes (FaF). In this
definition, an honest party’s input is required to be safeguarded from quorums of
other honest parties, in addition to the standard security against an adversary.
This dual need is modelled through a decentralized adversary. Specifically, there
is one malicious adversary that corrupts at most t out of n parties (Foes) and
another semi-honest adversary, controlling at most h∗ parties (Friends) out of
the remaining n− t parties. A protocol secure against such adversaries is said to
be (t, h∗)-FaF secure. Technically, in the FaF model, not only should the views of
t malicious parties, but also the views of every (disjoint) subset of h∗ semi-honest
parties, be simulatable separately. Moreover, FaF requires security to hold even
when the malicious adversary sends its view to some of the other parties (semi-
honest). Thus, FaF-security is a better fit for applications that deal with highly
sensitive data, as in the case of liquidity matching.

Alon et al. showed in [3] that any functionality can be computed with fairness
and GOD in the (t, h∗)-FaF model, iff 2t+ h∗ < n holds. Since protocols with a
small number of parties are pragmatic, from the above condition it is evident that
a minimum of 4 parties is necessary to achieve the desired level of FaF-security.
This implies that t = 1, h∗ = 1. While the sufficiency of t = 1 is well established
in the literature [59,67,55,56,31,44,20,21,23], we trust that h∗ = 1 also suffices
for most practical purposes, assuming honest parties do not collude. Thus, we
design protocols in the 4PC setting providing (1, 1)-FaF security. It is worth

4 Hegde et al.

noting that relying on a 4PC protocol with 2 malicious corruptions to achieve
this goal is insufficient, since GOD is known to be impossible in this setting. On
the other hand, although the 4 party honest-majority setting tackling a single
corruption can offer GOD security, it is susceptible to the view-leakage attack.

Keeping practicality in mind, for the optimal 4PC setting considered, we de-
scribe the design choices made to attain an efficient protocol. To obtain a fast-
response time as required for real-time applications, we operate in the prepro-
cessing paradigm which has been extensively explored [35,9,34,54,55,56]. Here,
the protocols are partitioned into two phases, a function dependent (input inde-
pendent) preprocessing phase and an input dependent online phase. Following re-
cent works [16,34,36,32] we build our protocols over 32 or 64 bit rings to leverage
CPU optimizations. Further, to aid resource constrained clients in performing
computationally intensive tasks, the paradigm of secure outsourced computation
(SOC) has gained popularity. In this setting, clients can avail computationally
powerful servers on a ‘pay-per-use’ basis from Cloud service providers. In this
work, we provide secure protocols for performing computations in the 4-server
SOC setting. The servers here are mapped to the parties of our 4PC.

When designing FaF-secure protocols in a given setting, it is both theoreti-
cally profound and practically important to know, whether information-theoretic
security is possible to be achieved. If not, it is important to identify what crypto-
graphic assumption is required. [3] shows impossibility of information-theoretic
FaF-secure MPC with less than 2t+ 2h∗ parties and presents a protocol relying
on semi-honest oblivious transfer (OT) with at least 2t + h∗ + 1 parties. How-
ever, the necessity of OT in the latter setting was not known. We settle this
question, showing the necessity of semi-honest OT. This proves the tightness of
the protocol of [3] in terms of assumption, and implies that any 4PC in (1, 1)-FaF
setting requires semi-honest OT. This requirement puts FaF security closer to
the dishonest majority setting where the same necessity holds [43,50], than the
honest majority setting which is known to offer even the strongest security of
GOD information-theoretically.

1.1 Related Work

We restrict the discussion to practically-efficient secret-sharing based (high through-
put regime) MPC protocols over small population for arithmetic and Boolean
world, since this is the regime of focus in this work.

In the honest-majority setting, we restrict to protocols achieving fairness and
GOD over rings. The GOD protocol offering the best overall communication cost
is that of [20]. [24,67,55], present 3PC protocols in the preprocessing paradigm,
and thus have faster online phase than [20]. Of these, [55] elevates the security
of the former two, from fairness to GOD. In the 4PC regime, [56] presents the
best GOD protocol improving over the previously best-known fair protocol of
[25] and GOD protocol of [21,55].

The work that comes closest to ours in terms of security achieved is that
of Fantastic Four [31] which is devoid of function dependent preprocessing. It
attempts to offer a variant of GOD, referred to as private robustness without the

Attaining GOD Beyond Honest Majority With Friends and Foes 5

honest party learning other parties’ inputs. However, this work does not capture
the behaviour of a malicious adversary which allows it to send its complete view
to an honest party, thus falling short of satisfying the FaF security notion.

In the dishonest-majority setting, the study of practically-efficient protocols
started with the work of [35] which was followed by [53,54]. This line of work cul-
minated with [13] which has the fastest online phase. However, these protocols
work over fields. The works that extend over rings are [30,65] and of these the lat-
ter is a better performer. In this regime, all the protocols work in preprocessing
paradigm, where the common trend had been to generate Beaver multiplication
triples [11] in the preprocessing and consume them in the online phase for mul-
tiplication. The majority of the works focus on bettering the preprocessing and
choose either Oblivious Transfer (OT) [53] or Somewhat Homomorphic Encryp-
tion (SHE) [35,30,65] to enable triple generation.

1.2 Our Contribution

QuadSquad: A (1, 1)-FaF Secure 4PC.We propose the first, efficient, (1, 1)-FaF
secure, 4PC protocol in the preprocessing paradigm, over rings (both Z2λ and
Z2), that achieves fairness and GOD. Casting our protocol in the preprocessing
paradigm allows us to obtain a fast online phase, with a cost comparable to
the best-known dishonest as well as honest majority protocols. Furthermore, we
achieve GOD, without incurring any additional overhead in the online phase, in
comparison to our fair protocol. This is depicted in Table 1.

Ref. Preproc. Online Model Security

Comm. Rounds Comm.

Tetrad (Z2λ) 2 1 3 HM GOD

Fantastic Four (Z2λ) NA 1 6 HM GOD

MASCOT (F) 7713 2 12 DM abort

QuadSquad (Z2λ) 1558 3 7 FaF Fair

QuadSquad (Z2λ) 3110 3 7 FaF GOD

– The comm. complexity is given in
terms of elements from Z2λ/F (of size
264), as applicable. HM: Honest ma-
jority; DM: Dishonest majority.

Table 1: Comparison of mult of MAS-
COT, Fantastic Four and Tetrad with
QuadSquad

Here, with respect to honest-
majority protocols, we compare Quad-
Squad’s multiplication with the best-
known 4PC of Tetrad [56] which relies
on a TTP, and the protocol of Fantastic
Four [31] which offers private robustness
without relying on a TTP. With re-
spect to dishonest-majority protocols,
we compare with the best-known OT-
based protocol of MASCOT [53] since
our protocol also relies on OTs in the
preprocessing. While QuadSquad, [31]
and [56] work over ring, [53] exploits
field (F) structure. Further, the proto-
col in [31] does not have a separate pre-
processing phase. We indicate this in
Table 1 by “NA” (Not Applicable). As
per the table, QuadSquad is compara-
ble to both the honest-majority and dishonest-majority protocols in the online
phase and outperforms [53] in the preprocessing. Our offer over [56], [31] is
stronger security against an additional semi-honest corruption, with a compa-
rable online cost. Our offer over [53] is the stronger guarantee of fairness/GOD
with comparable online cost (and better preprocessing cost).

6 Hegde et al.

Necessity of OT. FaF is closer to dishonest majority (with 2 corruptions out of
4), and hence, public-key primitives are inevitable. We back this up by proving
the necessity of OT. We prove the necessity of semi-honest OT for (t, h∗)-FaF
(abort) secure protocol with n ≤ 2t+ 2h∗ (by constructing the former from the
latter). The goal of this result is to justify that a protocol, including ours, in
FaF-model will require public-key primitives. Given this, we use semi-honest OT,
but restrict its use to preprocessing alone3.

Building blocks and applications. We consider the application of liquidity
matching where FaF security is more apt. We design a range of FaF secure build-
ing blocks to securely realize liquidity matching, as well as other popular appli-
cations such as privacy-preserving machine learning (PPML). The description of
the building blocks appears in Table 2. Although these can be naively obtained
by extending techniques from the literature, the resultant building blocks have a
heavy communication overhead. We therefore go one step ahead and design cus-
tomised building blocks which are efficient and help in improving the response
time of these applications.

Protocol Input Output Description

J·K-ShSOC v JvK User J·K-shares input v with the servers

J·K-RecSOC JvK v Servers reconstruct v to U

BitExt JvK Jmsb(v)KB Extracts most significant bit of an arithmetic shared value v

Bit2A JbKB JbK Converts boolean sharing of a bit b to arithmetic sharing

BitInj JbKB, JvK Jb · vK Outputs J·K-shares of b · v, where bit b is J·KB-shared and v is J·K-shared

DotPTr {JxsK, JysK}s∈[n] J
∑

s∈[n] x
s · ysK Outputs J·K-shares of dot product of J·K-shared vectors {xs}s∈n, {ys}s∈n

Table 2: Build blocks for various applications

Benchmarks. We showcase the practicality of QuadSquad by benchmarking
its MPC, as well as the performance of secure liquidity matching and PPML
inference for two Neural Networks (NN). We implement and benchmark our
4PC protocol over a WAN network using the ring Z264 , and report the latency,
throughput and communication costs in the preprocessing and online phase. We
observe that the throughput of our GOD protocol is comparable to that of the
fair protocol, and has an overhead of up to 4.5× in the online phase over [56]
and [31]. This overhead indicates the cost to achieve the stronger notion of FaF-
security. On the other hand, QuadSquad outperforms [53] by a factor of up to
4.5× in the online phase. With respect to the applications, we observe a runtime
of 6 and 10 seconds for the two NNs, and a runtime of 15 seconds for liquidity
matching. The reported runtime for both applications is practical.

3 As mentioned in §1.1, SHE offers an alternative to OT. However, relying on the heels
of recent interesting work on OT [72] and the huge effort on improving OT in the
last decade [19,52], we opt for OT based approach. Translating our approach in the
SHE regime is left for future exploration.

Attaining GOD Beyond Honest Majority With Friends and Foes 7

1.3 Technical Highlights

In this section, we elaborate on the design choices of our protocol, the challenges
involved and the approach taken to tackle them. One approach to achieving
(1, 1)-FaF security in the 4PC setting is via a 4-party identifiable abort (IA)
protocol, where upon detecting misbehaviour, the protocol can be re-run with
a default input for the identified corrupt party. However, we deviate from this
approach and choose dispute pair identification for achieving the desired security
due to the following reasons. First, note that there is no customised 4PC IA pro-
tocol in the literature. Moreover, since the threshold of corruption in (1, 1)-FaF
considering malicious as well as semi-honest parties corresponds to a dishonest
majority, we have to consider IA protocols in the same setting to prevent sus-
ceptibility to view-leakage attack. This would inherently require us to consider
generic n-party dishonest majority IA protocols, instantiated for the specific case
of n = 4 and t = 2, which do not offer a practically efficient solution. Specifically,
the state-of-the-art protocol in this setting [10] requires online communication of
24 elements per multiplication-gate, which is significantly higher than the online
communication cost of our protocol. Designing a customised 4PC IA protocol is
an orthogonal question which is left as an open problem.

Necessity of OT. To prove the necessity of semi-honest OT for a generic n-party
(t, h∗)-FaF secure (abort) protocol with t+ h∗ < n ≤ 2t+ 2h∗, we construct the
former from the latter. Recall that the necessity of n > t+ h∗ for abort security
and n > 2t+h∗ for GOD in the FaF model is known from [3]. Note that our proof
holds up to n ≤ 2t+2h∗, which subsumes the optimal bound on n for the GOD
setting. We show that an n-party (t, h∗)-FaF secure protocol πf for computing
the function f((m0,m1),⊥, . . . ,⊥, b) = (⊥,⊥, . . . ,⊥,mb), where n ≤ 2t + 2h∗,
can be used to construct a semi-honest OT. We give the formal proof in §3.

QuadSquad: Robust (1, 1)-FaF Secure 4PC. The core idea of our 4PC pro-
tocol lies in designing the sharing, reconstruction and multiplication primitives.

Sharing: To facilitate operating over rings and ensure privacy in FaF model
with 1 malicious and 1 semi-honest party, we rely on Replicated Secret Sharing
(RSS) with a threshold of 2. This requires 6 components where each pair of
parties holds a common component. This is higher than the 4 components in
RSS with threshold 1 and 3 which are typically used in honest and dishonest
majority settings respectively. In QuadSquad, each party has only 3 components
of a sharing which poses the challenge in ensuring an efficient reconstruction.

Reconstruction: Although a naive reconstruction towards all would require a
communication of 12 elements, our protocol reduces this to an amortized cost
of 7 elements. Both our sharing and reconstruction protocols extensively rely on
primitives which leverage the honest behaviour of at least 3 parties to ensure
dispute pair (DP) identification.

Multiplication: The higher number of components in our sharing semantics makes
our multiplication protocol non-trivial. At a high level, the multiplication of

8 Hegde et al.

2 shared values results in 36 summands, which we broadly categorize into 3
types based on the number of parties which can locally compute each summand.
We give separate treatment to each category, of which the summands that can
be computed by a single party and those which cannot be computed by any
party are of particular interest. The main challenge in the former is ensuring the
correctness of a party’s computation, for which we build upon the distributed
Zero-Knowledge (ZK) protocol of [20]. The latter requires a new distributed
multiplication protocol where two distinct pairs of parties hold the inputs to the
multiplication and the goal is to additively share the product between the pairs.
This primitive relies on OT. Here, the main challenge is ensuring the correctness
of inputs to OT, for which we leverage the (semi) honest behaviour of at least 3
parties and the fact that every pair of parties holds a common component. Apart
from several optimization techniques, the primary technical highlight in this part
includes the new batch reconstruction and the distributed multiplication, both
of which contribute to a highly efficient multiplication protocol.

Online: For efficiency, we follow the masked evaluation paradigm by tweaking
RSS as follows. We share a value using a mask which is RSS shared and a masked
value which is public. Circuit evaluation is then performed on the public masked
values which are required to be reconstructed in the online phase [44,13,66].

Fair to GOD: In the optimistic run (where all parties behave honestly) of our
4PC protocol the function output is computed correctly. However, in case any
malicious behaviour is detected during protocol execution, a dispute pair (DP) is
identified which is assured to include the malicious party. The protocol that we
obtain by terminating at the earliest point of dispute discovery, offers fairness.
Note that the fair protocols existing in the literature [67,55,56] are susceptible to
the view-leakage attack and thus are not FaF secure. Further, to extend the se-
curity guarantee to GOD without incurring additional communication overhead
in the online phase, we follow the commonly used approach of segmented eval-
uation of a circuit. Specifically, we segment the circuit and execute the above
protocol in a segment-by-segment manner. In case malicious behaviour is de-
tected in any segment, as in our fair protocol, we identify a DP. Following this,
for computation of the remaining segments, we resort to a single instance of a
semi-honest 2PC which is executed by parties outside DP, which we refer to as
the trusted pair (TP). We use the semi-honest 2PC in a black-box manner, and
this can be instantiated with the state-of-the-art protocol. We use ABY2.0 [66],
for this purpose, which is also designed in the preprocessing paradigm. To extend
support for the online phase of [66], each pair of parties executes an instance
of the preprocessing of [66], along with the preprocessing of QuadSquad. This
ensures that in case DP is identified during the online phase, parties have the
necessary preprocessed data for the 2PC.

Key differences from Tetrad, Fantastic Four and MASCOT. The best
known honest-majority 4PC given in Tetrad differs from our construction in
many aspects starting with reliance on RSS with threshold 1. This ensures every
party misses a single (as opposed to 3 for us) component, offering a very efficient

Attaining GOD Beyond Honest Majority With Friends and Foes 9

reconstruction. They further utilize high redundancy (every component is held
by 3 parties) and heavily rely on isolating one of the parties from most of the
computation. This, together with the threshold of 1 guarantees that, in case
malicious behaviour is detected during the computation, the isolated party is
honest. This honest party is then elevated to a TTP. The protocol of [55] follows
a similar approach for efficiency. In FaF-model, we fall short of the first and
the latter paradigm fails due to the presence of an additional semi-honest party.
Thus, our multiplication protocol involves all four parties and enforces different
mechanisms to detect and handle malicious behaviour compared to the Tetrad
protocol. Similar to [56,55], the efficiency of Fantastic Four can be attributed to
the benefits of redundancy offered by RSS with threshold 1. Their work achieves
a variant of GOD referred to as private robustness by first identifying a dispute
pair in the execution involving all 4 parties, followed by reducing the computation
to a 3-party malicious protocol. For this, their work eliminates one party from the
dispute pair arbitrarily. Any malicious behaviour hereafter, asserts that the party
from the dispute pair included in the 3PC is malicious. To achieve robustness,
they execute a semi-honest 2-party protocol using the parties guaranteed to be
honest. Although their approach circumvents revealing private inputs to a TTP
for achieving robustness, it falls short of offering FaF-security. In particular, it
is susceptible to the view-leakage attack in all the instances of its sub-protocols
involving 2, 3 and 4 parties. Moreover, in [31], the switch from 4PC to 3PC
upon identifying malicious behaviour is non-interactive. This can be attributed
to the threshold of 1 which ensures that any three parties together possess all
the components of the sharing. However, in our case, if any malicious behaviour
is detected we fall back on a semi-honest 2PC. The sharing semantics of our
protocol (required to prevent view-leakage attack) are such that a pair of parties
does not hold all the shares. Hence we need additional interaction for converting
from 4PC sharing to a 2PC sharing.

On the other hand, MASCOT [53] relies on RSS with threshold 3 (same as
additive sharing). Though every party misses 3 shares like our case, riding on the
advantage of shooting for a weaker guarantee of abort, they are able to leverage
king-based approach [33] for reconstruction (only one party/king is enabled to
reconstruct, which later sends the value to the rest) which only ensures detection,
but falls short of recovery, from a malicious behaviour. [53] delegates checks to
detect malicious behaviour to the end of the protocol whereas we need to verify
correct behaviour at each step to ensure fairness/GOD.

Our work leaves open several interesting questions. We elaborate on these
and the challenges involved therein in the full version of the paper.

2 Preliminaries

Setting and Security. We consider a set of four parties P = {P1, P2, P3, P4}
which are connected by pair-wise private and authenticated channels in a syn-
chronous network. The function to be computed is expressed as a circuit whose
topology is public and is evaluated over a ring Z2λ of size 2λ. Our protocols are

10 Hegde et al.

designed in the FaF model with a static malicious adversary and a (different)
semi-honest adversary each corrupting at most one (distinct) party. We make
use of broadcast channel for simplicity of presentation, which can be instantiated
using any protocol such as [38]. Our constructions achieve the strongest security
guarantee of GOD, wherein parties receive the protocol output irrespective of
the malicious adversary’s strategy. We prove the security of our protocols in the
ideal world/real world simulation paradigm. The security definitions and proofs
appear in the full version of the paper.

In the SOC setting, the four servers execute our protocol. For client-server
based computation, a client secret-shares its data with the servers. Servers per-
form the required operations on secret-shared data and obtain the secret-shared
output. Finally, to provide the client’s output, servers reconstruct the output to-
wards it. The underlying assumption here is that the corrupt server can collude
with a corrupt client. We consider computation over Z2λ and Z21 . To deal with
decimal values, we use Fixed-Point Arithmetic (FPA) [62,60,24,67] in which a
value is represented as a λ-bit integer in signed 2’s complement representation.
The most significant bit (msb) denotes the sign bit, and d least significant bits
are reserved for the fractional part. The λ-bit integer is then viewed as an ele-
ment of Z2λ , and operations are performed modulo 2λ. We set λ = 64, d = 13,
leaving λ − d − 1 bits for the integer part. Our protocols are cast in the pre-
processing paradigm, wherein a protocol is divided into (a) function dependent
(input independent) preprocessing phase and (b) input dependent online phase.

Notation 1 Wherever necessary, we denote P by the unordered set {Pi, Pj , Pk,
Pm} and {Pi, Pi+1, Pi+2, Pi+3}. Note that i, j, k,m ∈ [4] do not correspond to
any fixed ordering, only constraint being i ̸= j ̸= k ̸= m. Similarly for i, i+1, i+
2, i+ 3, corresponding to a Pi, say P2, Pi+1 = P3, Pi+2 = P4, Pi+3 = P1.

Standard Building Blocks. Parties make use of a one-time key setup captured
by functionality Fsetup (Fig. ??), to establish pre-shared random keys for pseudo-
random functions (PRF) among them. This functionality incurs a one-time cost,
and thus can be instantiated using any FaF-secure protocol such as that of [3].
We make use of a collision-resistant hash function H and a commitment scheme
Com.

Advanced Building Blocks. Here we discuss 4 primitives at a high-level: (a)
3-party joint message passing (jmp) from [55], with minor modifications (b) a
related 4-party jmp primitive, (c) oblivious product evaluation (OPE) and (d)
distributed zero-knowledge protocol.

3-Party Joint Message Passing (jmp3). The jmp primitive from [55] allows
two parties Pi, Pj holding a common value v, to send it to a party Pk such
that either Pk receives the correct v, or TTP is identified. For our purpose,
we trivially modify their protocol to give out a dispute pair (DP) instead of a
TTP to all the 4 parties. In [55], the jmp primitive is invoked for sending each
value independently and the verification is amortized over many sends. Their
protocol allows for such a decoupling due to its asymmetry and a pre-specified
order of verification. For our protocol however, postponing verification causes
security issues. Specifically, batching the verification of different layers of the

Attaining GOD Beyond Honest Majority With Friends and Foes 11

circuit together allows an adversary to follow a strategy which ensures that DP
comprises of two (semi) honest parties. This is contrary to the requirement that
DP must include the malicious party. To avoid this problem, we compress the
send and verification of jmp so that an optimistic (no error) run takes one round
and batch them together for many instances corresponding to a pair of senders.
That is, a pair of parties, say Pi, Pj invoke jmp to send a vector −→v to Pk, and
in parallel verification of correctness takes place. We call the modified variant as
jmp3. It requires an amortized communication of 1 element.

4-Party Joint Message Passing (jmp4). jmp4 allows two parties Pi, Pj holding
a common value v, to send it to the other two parties Pk, Pm such that, either
both the parties receive the correct v or all the parties identify DP.

Notation 2 We refer to the invocation of jmp3(Pi, Pj , v, Pk) as “Pi, Pj jmp3-send
v to Pk” and jmp4(Pi, Pj , v, Pk, Pm) as “Pi, Pj jmp4-send v to Pk, Pm”.

Oblivious Product Evaluation (OPE). OPE (adapted from [53]) allows two
parties holding x ∈ Z2λ and y, z ∈ Z2λ respectively, to compute an additive
sharing of the product xy, such that one party holds xy+ z ∈ Z2λ and the other
holds z ∈ Z2λ . We rely on techniques from [42,53] to obtain an OPE for λ-bit
strings by running a total of λ 1-out-of-2 OTs on λ bits strings. In this work, we
instantiate OTs using the protocol from Ferret [72], which incurs an (amortized)
cost of 0.44 bits for generating one random correlated OT (amortized over batch
generation of 107 correlated OTs). We can obtain an input-dependent OT (using
techniques from [12,48]) at an additional cost of 2 elements and 1 bit. This
results in a cost of 2λ + 1.44 bits per OT. So an instantiation of OPE requires
an amortised cost of λ(2λ + 1.44) bits and 4 rounds. Note that we use OT in
a black-box manner; thus, any improvement in OT, will improve the efficiency
of our construction. Further, although OPE can be realised with oblivious linear
evaluation (OLE), we opt for the approach of [53] due to better efficiency of
OT. Hence, any improvements in OLE that surpasses OT can be translated to
improving our protocol by replacing OPE with OLE.

Distributed Zero-knowledge (ZK). To verify a party Pi’s correct behaviour,
we extend the distributed zero-knowledge proofs introduced first in [18] offering
abort security, and further optimized by Boyle et al. [20] to provide robust veri-
fication of degree-two relations. Such proofs involve a single prover and multiple
verifiers, where the prover intends to prove the correctness of its (degree-two)
computation over data which is additively distributed among the verifiers. In
[20], the authors provide a distributed ZK protocol with sub-linear proof size,
which is adapted for the verification of messages sent in a 3PC protocol with
one corruption. Their ZK protocol extends in a straightforward manner to the
4-party case with one malicious corruption and one semi-honest corruption in
the FaF model where a dispute pair is identified in case the verification fails. This
is identical to extending the distributed ZK protocol to the case of 4 parties with
1 malicious corruption in the classical model and does not incur any overhead in
our setting. Since the protocol in [20], and correspondingly ours, is constructed
over fields, to support verification over rings, as in [20] verification operations

12 Hegde et al.

are carried out on the extended ring Z2λ/f(x), which is the ring of all polyno-
mials with coefficients in Z2λ modulo a polynomial f , of degree η, irreducible
over Z21 . Each element in Z2λ is lifted to a η-degree polynomial in Z2λ [x]/f(x)
(which results in blowing up the communication by a factor η).

The details of the building blocks, including functionalities, protocols and
proofs appear in the full version.

3 Necessity of Oblivious Transfer

Here, we show that semi-honest OT is necessary for a FaF-secure protocol. Our
claim holds for n ≤ 2t + 2h∗ which subsumes the case of n-party (t, h∗)-FaF
security with optimal threshold of t + h∗ + 1 and 2t + h∗ + 1 for abort and
GOD [3] respectively, and the special case of 4-party (1, 1)-FaF security. The
theorem and proof sketch are given below.

Theorem 3. An n-party (t, h∗)-FaF secure (abort) protocol with n ≤ 2t + 2h∗

implies 2-party semi-honest OT.

Proof. Without loss of generality, we consider n = 2t+2h∗. Let πf be an n-party
(t, h∗)-FaF secure abort protocol for computing the function f((m0,m1),⊥, . . . ,
⊥, b) = (⊥,⊥, . . . ,⊥,mb). We construct a 2-party semi-honest OT protocol πOT

between a sender PS with inputs (m0,m1) and a receiver PR with input b using
πf . In πOT, PS emulates the role of QS = {P1, P2, . . . Pt+h∗} while PR emulates
the role of QR = {Pt+h∗+1, . . . , Pn} to run πf . PR outputs the same mb as
output by party Pn which it emulates while PS outputs ⊥. To prove the security
of πOT, we construct simulators SS and SR that generate the view of PS and PR

respectively from their inputs.
Let PS be corrupted by the semi-honest adversary AOT and let H = {P1,

. . . , Ph∗} and I = QS\H. We now map AOT to an adversarial strategy against πf

as follows. Consider a malicious adversary A for πf that corrupts parties in I but
does not deviate from the protocol (since AOT is semi-honest). However, it sends
the random tape, inputs and messages of all parties in I to every other party in
H at the end of the protocol execution. Note that such an attack of leaking the
view of the maliciously corrupted parties to the semi-honest adversary is valid in
the FaF model. The semi-honest adversary AH for πf runs AOT on the joint view
of the parties in I∪H (AH receives the view of parties in I from A) and outputs
the same value as AOT. Since |I| = t and |H| = h∗, the security of πf ensures
that there exist simulators SA and SAH corresponding to the adversaries A and
AH. We construct the simulator SS to run SA followed by SAH on PS ’s input
(m0,m1) and output the view generated by SAH . Since AH receives the view of
parties in I, the view generated by SAH includes the view of parties in I ∪H.
Note that although A considered is malicious in πf , it is emulated by a semi-
honest adversary in the outer πOT protocol and hence does not deviate from the
protocol. Corresponding to such adversarial strategy of A, the simulator SA may
need to choose the input on behalf of A. A simulator for a semi-honest adversary
is not allowed to choose the input on behalf of the adversary, as discussed in [46].

Attaining GOD Beyond Honest Majority With Friends and Foes 13

However, since the parties in I controlled by the adversary A do not have inputs
for f , this does not pose a problem in the proof and SS can thus use SA.

This proves the necessity of semi-honest-OT for (t, h∗)-FaF secure protocol
where t+h∗ < n ≤ 2t+2h∗. Moreover, the sufficiency of OT for the same is given
in [3, Theorem 4.1]. The detailed constructions of the OT protocol, simulators
and the corresponding indistinguishabilty argument appears in the full version.

Corollary 1. An n-party (t, h∗)-FaF secure abort protocol with n = t + h∗ + 1
implies 2-party semi-honest OT.

Corollary 2. An n-party (t, h∗)-FaF secure GOD protocol with n = 2t+ h∗ + 1
implies 2-party semi-honest OT.

Both Corollary 1 and 2 follow directly from Theorem 3. For Corollary 1, the
sender emulates t+h∗ parties and the receiver emulates 1 party. For the corrupt
receiver we consider I = ϕ and H = {Pn}. For Corollary 2, the sender emulates
t + h∗ parties and the receiver emulates t + 1 parties. For the corrupt receiver
we consider I = {Pt+h∗+1, . . . , P2t+h∗} and H = {Pn}.

4 Input Sharing and Reconstruction

To enforce security, we perform computation on secret-shared data. This section
starts with the various sharing semantics we use, followed by a sharing and
a reconstruction protocol for secret-shared computation. We further present an
efficient batch reconstruction for a second type of sharing, which in turn, will act
as the primary building block for our efficient (batch) multiplication protocol.

We begin with the motivation for the choice of our sharing semantics. As
explained earlier, we rely on RSS with threshold 2 to tackle view-leakage attack
where the semi-honest adversary may receive the view of the malicious adversary.
Instead of using RSS directly, we slightly augment our sharing to RSS-share a
random mask and make the masked secret available to all. This sharing style
makes the online cost of a multiplication one reconstruction instead of two. If we
use RSS directly for sharing a secret, then relying on the Beaver’s multiplication
triple technique [11], we would need reconstructing x+αx and y+αy, where x, y
are the inputs and αx, αy are the corresponding random masks. However, as per
the latter sharing, we include the masked values βx = x+ αx, βy = y+ αy along
with RSS shares of αx and αy respectively in our sharing semantics. So the only
reconstruction needed now is that of the masked valued of xy. This idea goes
back to [66]. We now describe the sharing semantics.

1. [·]-sharing: A value v ∈ Z2λ is said to be [·]-shared (additively shared) among
parties Pi, Pj , if Pi holds [v]i ∈ Z2λ and Pj holds [v]j ∈ Z2λ such that
v = [v]i + [v]j .

2. ⟨·⟩-sharing: A value v ∈ Z2λ is said to be ⟨·⟩-shared among P if, each pair
of parties (Pi, Pj), where 1 ≤ i < j ≤ 4, holds ⟨v⟩ij ∈ Z2λ such that
v =

∑
(i,j)⟨v⟩ij . This is equivalent to RSS of a value among 4 parties with

14 Hegde et al.

threshold 2. Note that since ⟨v⟩ij represents the common share held by Pi, Pj ,
throughout the protocol we assume the invariant that ⟨v⟩ij = ⟨v⟩ji, for all
1 ≤ i < j ≤ 4. ⟨v⟩i denotes Pi’s share in the ⟨·⟩-sharing of v.

3. J·K-sharing: A value v ∈ Z2λ is J·K-shared if
– there exists αv ∈ Z2λ that is ⟨·⟩-shared amongst P and

– each Pi ∈ P holds βv = v + αv.
Note that the value αv acts as the mask for v. We denote by JvKi, Pi’s share
in the J·K-sharing of v.

Note that all these sharings are linear i.e. given sharings of values a1, . . . , am
and public constants c1, . . . , cm, sharing of

∑m
i=1 ciai can be computed non-

interactively for an integer m.

4.1 J·K-sharing: Sharing and Reconstruction

Sharing. Protocol J·K-Sh either allows a party Ps to share a value v or ensures
dispute pair (DP) detection. To generate JvK, in the preprocessing phase, Ps

together with every other party Pi, samples a random ⟨αv⟩si ∈ Z2λ , while Ps

samples a random ⟨αv⟩ij ∈ Z2λ with every pair of parties Pi, Pj . This allows Ps to
learn αv in clear. In the online phase, Ps computes βv = v+αv and sends it to Pt.
Parties Ps, Pt then jmp4-send βv to the rest. This step either allows the sharing
to complete or identifies a DP. The protocol appears in Fig. 1.

• Input, Output: Ps has v. The parties output JvK.
• Primitives: jmp4-send (§2).

Preprocessing: Ps together with (a) Pi, for each Pi ∈ P\Ps samples random

⟨αv⟩si ∈ Z2λ ; (b) Pi, Pj ∈ P\Ps, where i ̸= j, samples random ⟨αv⟩ij ∈ Z2λ .

Online: Ps computes βv = v +
∑

(i,j)⟨αv⟩ij and sends it to Pt, where s ̸= t. Ps, Pt

jmp4-send βv to P\{Ps, Pt}.

Protocol J·K-Sh

Fig. 1: J·K-sharing a value

Reconstruction. Protocol J·K-Rec allows parties to reconstruct v from JvK such
that either v is obtained by all the parties or a DP is identified. As observed, a
party misses three shares of ⟨αv⟩, which are needed for reconstructing v, each
of which is held by two other parties. To reconstruct v towards a party Ps, in
the preprocessing each pair (Pi, Pj) jmp3-send a commitment of their common
share Com(⟨αv⟩ij) to Ps. The common source of randomness (generated via
the shared key setup) can be used for generating the commitments, so that it
is identically generated by both the senders. Then in the online phase all the
parties open the commitments sent during preprocessing. Ps first reconstructs

Attaining GOD Beyond Honest Majority With Friends and Foes 15

αv from consistent openings and then computes v = βv − αv. Due to the use of
jmp3, the preprocessing may fail, however once it is successful the online phase is
robust. Hence, this reconstruction ensures fairness i.e. either all or none receive
the output (in the latter case DP has been identified). In case the reconstruction
protocol terminates with a dispute pair, to extend security to GOD, parties
perform the circuit evaluation using a semi-honest 2PC protocol.

• Input, Output: The parties input JvK. The parties output v.

• Primitives: jmp4-send and Com (§2).

Preprocessing: Each Pi, Pj , 1 ≤ i < j ≤ 4 compute Com(⟨αv⟩ij) and jmp4-send it

to Pk, Pm.

Online: Each Pi, Pj , 1 ≤ i < j ≤ 4 open Com(⟨αv⟩ij) to Pk and Pm. Each Pi

accepts the opening consistent with the commitment received earlier and computes
v = βv −

∑
(i,j)⟨αv⟩ij .

Protocol J·K-Rec

Fig. 2: Reconstructing a J·K-shared value

4.2 ⟨·⟩-sharing: Reconstruction

In our MPC protocol, for each multiplication gate we require to reconstruct a
⟨·⟩-shared value in the online phase. Note that a party misses three shares of
⟨v⟩ needed for reconstruction, each of which is held by two other parties. For
reconstructing v towards all the parties, naively, each pair can jmp4-send their
common share to the other two parties. This requires 6 invocations of jmp4, thus
a communication of 12 elements. Since reconstructing ⟨·⟩-shared value is the only
communication bottleneck in the online phase of our multiplication protocol, it
is imperative to improve its efficiency.

Taking a step towards this, we allow two parties, say P3, P4 (w.l.o.g) to first
reconstruct v and use jmp4-send to send it to the other two parties. Naively,
the reconstruction towards P3, P4 requires 6 instances of jmp3-send, three per
party to send its missing shares. To improve the communication cost further,
we improve the cost of the second instance of the reconstruction of v (towards
P4 in our case), to 2 jmp3-send instances, leveraging the communication already
done for the reconstruction towards P3. This reduces the communication cost to
7 elements. Our protocol appears in Fig. 3.

Since jmp3 is defined for a vector of values, in ⟨·⟩-Rec, parties execute recon-
struction of multiple values together. The protocol is described for a single value.
Extending it to a vector is straightforward. In our multiplication protocol, this
translates to reconstruction of the output of all multiplication gates in a level of
the circuit simultaneously.

Note that we can reconstruct v from JvK using ⟨·⟩-Rec to reconstruct αv.
However, while J·K-Rec offers fairness, ⟨·⟩-Rec does not. This implies if we use

16 Hegde et al.

⟨·⟩-Rec for the final output, it is possible that the adversary gets the output
while the honest parties do not. Further, when the computation is rerun in 2PC
mode, the adversary can use a different input and obtain another evaluation,
thus breaching security.

• Input, Output: The parties input ⟨v⟩. The parties output v.

• Primitives: jmp3-send and jmp4-send (§2).

Online:

– (Reconstructing v to P3.) P1, P2 jmp3-send ⟨v⟩12 to P3. P1, P4

jmp3-send ⟨v⟩14 to P3. P2, P4 jmp3-send ⟨v⟩24 to P3.

– (Reconstructing v to P4.) P1, P3 jmp3-send ⟨v⟩13 to P4. P2, P3

jmp3-send ⟨v⟩12 + ⟨v⟩23 to P4.

– (Reconstructing v to P1, P2.) P3, P4 jmp4-send v =
∑

(i,j)⟨v⟩ij to P1, P2.

Protocol ⟨·⟩-Rec

Fig. 3: Reconstructing a ⟨·⟩-shared value

5 Multiplication

In this section, we present a multiplication protocol. Taking a top-down ap-
proach, we first present our multiplication protocol relying on a triple generation
protocol in a black-box way. We then conclude with a triple generation protocol.
To gain efficiency, several layers of amortisation are used. We mention them on
the go and summarise at the end of the section.

5.1 Multiplication Protocol

The multiplication protocol (Fig. 4) allows parties to compute JzK, given JxK and
JyK, where z = x ·y. We reduce this problem to that of reconstructing a ⟨·⟩-shared
value, assuming that parties have access to (a) ⟨·⟩-sharing of a multiplication
triple (αx, αy, αxαy) for random αx, αy and (b) ⟨·⟩-sharing of a random αz. Both
the requirements are input (i.e. x, y) independent and can be fulfilled during the
preprocessing phase. The former requirement is obtained via a triple generation
protocol tripGen (Fig. 6), discussed subsequently. The latter requirement can be
achieved non-interactively using the shared key setup. The reduction works as
follows. The random and independent secret αz is taken as the mask for the J·K-
sharing of product z. Since αz is already ⟨·⟩-shared, to complete JzK, parties only
need to obtain the masked value βz = z+ αz. Since βz takes the following form
βz = z+αz = xy+αz = (βx−αx)(βy−αy)+αz = βxβy−βxαy−βyαx+αxαy+αz and
the parties hold ⟨αx⟩, ⟨αy⟩, ⟨αxαy⟩, ⟨αz⟩, and βx, βy in clear, the parties hold ⟨βz⟩.
Parties thus need to reconstruct βz. To leverage the amortised cost of ⟨·⟩-Rec,
we batch many multiplications together. While for simplicity, we present the

Attaining GOD Beyond Honest Majority With Friends and Foes 17

protocol in Fig. 4 for a single multiplication, our complexity analysis accounts
for amortization.

• Input and Output: The input is JxK, JyK and the output is JxyK.
• Primitives: tripGen (§5.2; Fig. 6) and ⟨·⟩-Rec (§4.2; Fig. 3).

Preprocessing:

– Each Pi, Pj where 1 ≤ i < j ≤ 4 sample random ⟨αz⟩ij ∈ Z2λ .

– Parties invoke tripGen with inputs ⟨αx⟩, ⟨αy⟩ to obtain ⟨αxαy⟩.
Online:

– Each Pi, Pj for 1 ≤ i < j ≤ 4 and (i, j) ̸= (1, 2) compute ⟨βz⟩ij such that
⟨βz⟩ij = −βx⟨αy⟩ij − βy⟨αx⟩ij + ⟨αxαy⟩ij + ⟨αz⟩ij .

– P1, P2 compute ⟨βz⟩12 = βxβy − βx⟨αy⟩12 − βy⟨αx⟩12 + ⟨αxαy⟩12 + ⟨αz⟩12.
– Parties invoke ⟨·⟩-Rec to obtain βz.

Protocol mult

Fig. 4: Multiplication Protocol

5.2 Triple Generation Protocol

As a building block to our triple generation protocol, we first present a dis-
tributed multiplication protocol, where two distinct pairs of parties hold inputs
to the multiplication and the goal is to additively share the product between the
pairs. We build on this protocol to complete our triple generation.

Distributed Multiplication Protocol Let Pi, Pj hold a and Pk, Pm hold b.
The goal of a distributed multiplication is to allow Pi, Pj compute c1 and Pk, Pm

to compute c2 such that c1+ c2 = ab. To achieve this, Pk and Pm locally sample
c2 (using one-time key setup) then parties engage in an instance of OPE (§2)
where Pi, Pj and respectively Pk, Pm enact the receiver’s and sender’s role.
– Pi, Pj as the receivers input a and output either c1 or DP.

– Pk, Pm as the senders input b, −c2 and output either ⊥ or DP.
Since the pair of receivers {Pi, Pj} hold identical inputs and use a shared

source of randomness, their corresponding messages in the underlying protocol
for OPE realisation will be identical. They send their messages to the senders via
an instance of jmp4. Recall that the jmp4 primitive ensures that a message com-
monly known to two sender parties is either communicated correctly to both the
receiving parties, or a dispute pair DP is identified. In the former case, the pair
of senders {Pk, Pm}, having the same input and receiver’s message, will prepare
identical sender messages as a part of OPE and communicate to the receivers
via another instance of jmp4 primitive, resulting in either a successful commu-
nication of the sender message to the receivers {Pi, Pj} or identification of DP.
In the former case, OPE is concluded successfully. Note that the verification of

18 Hegde et al.

jmp4 tackles any malicious behaviour, thus relying on semi-honest OPE suffices.
Otherwise, DP is identified and the pair is guaranteed to include the malicious
party. If fairness is the end goal, the protocol can terminate at this stage. Oth-
erwise, it switches to an execution of a semi-honest 2PC (such as ABY2.0 [66])
with the parties outside DP to achieve the stronger guarantee of GOD.

• Input and Output: Pi, Pj hold a. Pk, Pm hold b. The first pair outputs c1, the
second pair c2 such that c1 + c2 = ab. Otherwise the parties output DP.

• Primitives: OPE and jmp4 (§2).

– Pk and Pm locally sample a value c2, using their shared key.

– Pi, Pj execute OPE with input a using jmp4 to send messages to Pk, Pm.

– Pk, Pm execute OPE with inputs (b,−c2) using jmp4 to send messages to Pi, Pj .

Protocol disMult

Fig. 5: Distributed Multiplication Protocol

Triple Generation Protocol The triple generation protocol allows parties
holding ⟨αx⟩, ⟨αy⟩ to generate ⟨αxαy⟩. We write the product αxαy as below, con-
sisting of 36 summands, categorizing them into three types as below and as
shown in Table 3.

For the summands in type S0, no single party holds the two constituent shares
of αx, αy. For the summands in S1, exactly one party holds the two constituent
shares, and lastly for the summands in S2, exactly two parties hold the the two
constituent shares. Note that there are 6 summands each, of the types S0 and
S2 and 24 summands of type S1. To generate ⟨αxαy⟩, we generate ⟨·⟩-sharing
of each summand of αxαy and then sum them up to obtain ⟨αxαy⟩. The task of
generating ⟨·⟩-sharing for an individual summand differs based on the class it
belongs to.

αx · αy =
∑
(i,j)

1≤i<j≤4

⟨αx⟩ij ·
∑
(k,m)

1≤k<m≤4

⟨αy⟩km

=
∑
(i,j)

1≤i<j≤4

⟨αx⟩ij⟨αy⟩ij

︸ ︷︷ ︸
S2

+
∑

(i,j,k)
i,j,k∈[4]

⟨αx⟩ij⟨αy⟩ik

︸ ︷︷ ︸
S1

+
∑

(i,j),(k,m)
1≤i,k<j,m≤4

⟨αx⟩ij⟨αy⟩km

︸ ︷︷ ︸
S0

(1)

Summands of S2. Each summand in this type can be computed locally by
2 parties. For instance, ⟨αx⟩ij⟨αy⟩ij can be computed by Pi and Pj . Denoting
⟨αx⟩ij⟨αy⟩ij as τij , ⟨τij⟩ is computed as follows:

Pi, Pj set ⟨τij⟩ij = ⟨αx⟩ij⟨αy⟩ij and

Pu, Pv set ⟨τij⟩uv = 0,∀(u, v) ̸= (i, j)
(2)

Summands of S1. Each summand here can be computed locally by a single
party. For instance, ⟨αx⟩ij⟨αy⟩ik can be computed by Pi alone. Then Pi’s goal is

Attaining GOD Beyond Honest Majority With Friends and Foes 19

to share this amongst the four parties so that one share is held by both Pi, Pk

and the other by Pj , Pm. That is, for δi, δ
1
i , δ

2
i with δi = δ1i + δ2i = ⟨αx⟩ij⟨αy⟩ik,

Pi, Pk intend to obtain δ1i and Pj , Pm intend to obtain δ2i . The pairings {Pi, Pk}
and {Pj , Pm} for various parties are done to balance the share count across the
parties. We say that {Pi, Pk} and respectively {Pj , Pm} pair up for Pi’s instance.
Given this, ⟨δi⟩ can be computed as (we set k = i+ 3):

Pi, Pk set ⟨δi⟩ik = δ1i , Pj , Pm set ⟨δi⟩jm = δ2i

Pu, Pv set ⟨δi⟩uv = 0, for all (u, v) ̸= (i, k), (j,m)
(3)

⟨αx⟩12 ⟨αx⟩13 ⟨αx⟩14 ⟨αx⟩23 ⟨αx⟩24 ⟨αx⟩34
⟨αy⟩12 S2 S1 S1 S1 S1 S0

⟨αy⟩13 S1 S2 S1 S1 S0 S1

⟨αy⟩14 S1 S1 S2 S0 S1 S1

⟨αy⟩23 S1 S1 S0 S2 S1 S1

⟨αy⟩24 S1 S0 S1 S1 S2 S1

⟨αy⟩34 S0 S1 S1 S1 S1 S2

Table 3: The summands of αx ·αy with cat-
egory {S0, S1, S2}

Now to achieve the above dis-
tribution of additive shares (δ1i , δ

2
i),

Pi, Pj , Pm first locally sample δ2i (us-
ing the shared key setup) and further,
Pi computes and sends δ1i to Pk. To
keep Pi’s misbehaviour in check, Pi is
made to prove in zero-knowledge the
correctness of its computation. With
this high-level idea, we introduce two
cost-cutting techniques.

First, recall that there are 24 sum-
mands in S1 and every Pi is capable of
locally computing 6 of them. We combine the above procedure for 6 summands
together. That is, δ1i , δ

2
i are additive shares of δi =

∑
(j,k)⟨αx⟩ij⟨αy⟩ik. This cuts

our cost by 1/6th. Next, leveraging the malicious-minority and non-collusion of
the malicious and semi-honest adversaries (implied by FaF model), we customise
disZK (§2) of [20] to prove that

∑
(j,k)⟨αx⟩ij⟨αy⟩ik− δ1i − δ2i = 0. As per the need

of such ZK, each term in the statement is additively shared amongst Pj , Pk, Pm

and is possessed in entirety by the prover Pi. For instance, ⟨αx⟩ij is additively
shared amongst Pj , Pk, Pm with Pj ’s share as ⟨αx⟩ij and the shares of the rest
set to 0. Similarly for other shares of αx and αy. δ

2
i is additively shared amongst

Pj , Pk, Pm with Pj ’s share as δ2i and the shares of the rest set to 0. Lastly, δ1i is
additively shared amongst Pj , Pk, Pm with Pk’s share as δ

1
i and the shares of the

rest set to 0. If the disZK is successful, then Pi, Pk output δ1i and Pj , Pm output
δ2i , using which ⟨δi⟩ an be computed as above. Otherwise, the disZK returns a
dispute pair. This is executed for every party’s collection of S1 summands.

Summands of S0. No single party can compute the summands in this cat-
egory. For instance, ⟨αx⟩ij⟨αy⟩km cannot be computed by any of the parties
locally. We invoke the distributed multiplication protocol disMult (Fig. 5) for
each such term, where the common input of {Pi, Pj} and {Pk, Pm} are ⟨αx⟩ij
and ⟨αy⟩km respectively and their respective outputs are γ1

ij,km, γ2
ij,km, in case

of success, or a dispute pair. Denoting γij,km = γ1
ij,km + γ2

ij,km = ⟨αx⟩ij⟨αy⟩km,
the parties can now generate ⟨γij,km⟩ as:

Pi, Pj set ⟨γij,km⟩ij = γ1
ij,km, Pk, Pm set ⟨γij,km⟩km = γ2

ij,km

Pu, Pv set ⟨γij,km⟩uv = 0, for all (u, v) ̸= (i, j), (k,m)
(4)

20 Hegde et al.

• Input and Output: The parties input ⟨αx⟩, ⟨αy⟩. The output is ⟨αxαy⟩.
• Primitives: Protocol disMult (§5.2) and Protocol disZK (§2).

– For each of the 6 summands of the form ⟨αx⟩ij⟨αy⟩km for unordered pairs {Pi, Pj}
and {Pk, Pm} in S0, the parties execute disMult with the inputs of {Pi, Pj}, {Pk, Pm}
as ⟨αx⟩ij and ⟨αy⟩km respectively. The parties either output DP or {Pi, Pj}, {Pk, Pm}
output γ1

ij,km and γ2
ij,km respectively. In the latter case, parties compute ⟨γij,km⟩

as shown in Equation 4.

– For every i, consider all the 6 summands of the form ⟨αx⟩ij⟨αy⟩ik for unordered
pairs {Pi, Pj} and {Pi, Pk} in S1.

1. The parties Pi, Pj , Pm locally sample δ2i (using the shared key setup).
2. Pi computes and sends δ1i =

∑
(j,k)⟨αx⟩ij · ⟨αy⟩ik − δ2i to Pk.

3. Parties invoke disZK to verify if
∑

(j,k)⟨αx⟩ij⟨αy⟩ik−δ1i −δ2i = 0. If disZK returns

success, then Pi, Pj , Pk, Pm output ⟨δi⟩ as shown in Equation 3. Otherwise,
output the DP returned by disZK.

– For each of the 6 summands of S2, of the form ⟨αx⟩ij⟨αy⟩ij , parties compute ⟨τij⟩-
sharing as shown in Equation 2.

– Every Pr for every s ̸= r computes

⟨αxαy⟩rs =
∑

u,v:u̸=v

⟨τu,v⟩rs +
∑

1≤ℓ≤4

⟨δℓ⟩rs +
∑

u,v:u̸=v
p,q:p̸=q

⟨γuv,pq⟩rs

Protocol tripGen

Fig. 6: Triple Generation Protocol

5.3 Summary

Amortizations We summarise the various layers of amortization we use to get
the best efficiency of our protocols. First, given a circuit with ℓ multiplication
gates, the triple generation protocol creates ⟨·⟩-sharing of ℓ triples at one go.
All the summands of the form ⟨αx⟩ij⟨αy⟩km from S0 category across all the ℓ
instances use jmp4 for communication, whose verification is inherently batched
for amortization. Next, the distributed ZK used for tackling the summands in S1

can be used in an amortized sense as well. Recall that corresponding to a single
triple generation, every Pi runs a single instance of distributed ZK to tackle 6
summands in its possession. However, we can extend this to accommodate 6ℓ
summands across all the ℓ triples to achieve 40 bits of statistical security while
working over a ring, by performing verification on the extended ring [20,1]. This
means that we need to run overall 4 distributed ZK, one for every party. These
cover all the amortizations done in the triple sharing protocol which consti-
tutes the preprocessing of the multiplication protocol. The online phase of the
multiplication protocol too exploits amortization of the batch ⟨·⟩-reconstruction
protocol. In the MPC protocol, we thus proceed level by level and execute all
the multiplications placed in a level at one go.

Attaining GOD Beyond Honest Majority With Friends and Foes 21

Achieving Fairness. To obtain fairness, we can stop immediately after sensing
a dispute. This means, in some cases, the effort needed for identifying a dispute
pair, beyond sensing a dispute (which only says something is wrong and nothing
beyond), can be slashed. For instance, in jmp4 parties can terminate immediately
upon detecting conflict without identifying a dispute pair.

6 (1, 1)-FaF Secure 4PC Protocol

Our complete protocol (4PC) realising the 4PC functionality (F4PC-FaF) for evalu-
ating a circuit in the (1, 1)-FaF security model with fairness and GOD is described
here as a composition of the protocols discussed so far. Formal details appear in
the full version of the paper. Recall that our protocol is cast in the preprocess-
ing paradigm. In the preprocessing phase, for each input gate u, parties execute
the preprocessing of J·K-Sh to precompute ⟨αu⟩. Further, for each multiplication
gate with input wires u, v and output wire w, parties obtain ⟨αw⟩ and ⟨αuαv⟩
by running the preprocessing of mult. This computation is done in parallel for
all the multiplication gates. Finally, for each output gate of the circuit, parties
execute the preprocessing phase of J·K-Rec. This completes the preprocessing.

In the online phase, parties evaluate the circuit gate-by-gate in a predeter-
mined topological order. For each input gate u, they execute the online phase of
J·K-Sh to obtain βu. Addition gates are handled locally. For each multiplication
gate with input wires u, v and output wire w, parties perform the online phase
of mult to compute βw. Finally, they reconstruct the value of an output wire w,
using the online phase of J·K-Rec. As mentioned in §2, we batch the verification of
all the parallel instances of jmp3 and jmp4 respectively for every pair of parties,
and perform it with the send in the same round. In case of malicious behaviour in
these instances, additionally at most 2 rounds are required to identify a dispute
pair. The above protocol either succeeds or a dispute pair is identified, which
includes the malicious party. This construction achieves fairness.

To attain GOD without incurring additional overhead in the online phase,
we follow the approach of segmented evaluation described in [31]. Specifically,
we divide the circuit into segments, and the protocol proceeds as described in
a segment-by-segment manner with topological order. As in the case of our fair
protocol, either the execution of a segment completes successfully, or a dispute
pair is identified. In the latter case, the segment where the fault occurs and
all the segments following it are evaluated using a semi-honest 2PC, which is
executed by the parties outside the dispute pair. Using this approach, only the
segment where the fault occurs incurs the cost of 2PC in addition to the cost
of our fair protocol. Hence, this overhead which is limited to a single segment
is insignificant. The cost of evaluating the subsequent segments is solely that
of the semi-honest 2PC which we instantiate with [66]. Note that in segmented
evaluation of the circuit, the output of a segment acts as the input to the fol-
lowing segment. Hence, rerunning the segment where malicious behaviour was
detected requires the outputs from the prior segment with 4PC sharing seman-
tics to be translated to 2PC sharing semantics. However, due to a threshold of 2

22 Hegde et al.

in the 4PC, no pair of parties hold all the components of sharing corresponding
to any secret. This necessitates interaction among parties. Suppose Sm is the
segment where malicious activity is detected and w.l.o.g. {P3, P4} is identified
as the dispute pair, which means the evaluation till segment Sm−1 happened
correctly. W.l.o.g let z be the output of the segment Sm−1 which is also an input
to the segment Sm. Since the evaluation of Sm−1 was correct, all 4 parties have
the correct J·K sharing of z, which comprises of βz and ⟨αz⟩. But to rerun Sm

with {P1, P2}, they need the 2PC sharing of z. However, {P1, P2} miss the ⟨αz⟩34
component which is common to P3, P4 and hence cannot obtain the 2PC sharing
of z locally. Making P3, P4 send this value to P1 or P2 or both does not suffice.
Since either P3 or P4 is malicious, the malicious party can send a wrong value
which will lead to an inconclusive state for {P1, P2}, failing to achieve the end
goal of 2PC sharing. To address this problem, we resort to the same idea as that
of J·K-Rec. That is, for each output wire z of all the segments, all pairs of par-
ties Pi, Pj commit to their common share ⟨αz⟩ij in the preprocessing phase and
jmp4-send the commitment to the other two parties. Now with the commitments
established, parties in the dispute pair can send the opening corresponding to
their respective commitments to the remaining two parties. In the above exam-
ple, this corresponds to P3, P4 sending the opening of their commitments which
contains ⟨αz⟩34 to P1, P2. Following this, P1, P2 can decide the correct value of
⟨αz⟩34 based on a valid opening, which is guaranteed to exist since one of P3, P4

is honest. Note that sending ⟨αz⟩34 does not breach privacy since the malicious
party can anyway send this value to other parties as a part of view-leakage,
which is handled by our sharing semantics. Now P1 sets its 2PC additive share
[αz]1 = ⟨αz⟩12+⟨αz⟩13+⟨αz⟩14 and P2 sets [αz]2 = ⟨αz⟩23+⟨αz⟩24+⟨αz⟩34, where
αz = [αz]1+[αz]2. Note that (βz, [αz]1) and (βz, [αz]2) is a valid 2PC sharing of z
as per the semantics of [66]. However, as we describe below, this does not suffice.

Observe that the preprocessing of 2PC is performed along with the prepro-
cessing of our 4PC protocol. Therefore, the value of mask corresponding to a wire
z may differ in these two scenarios. To perform the 2PC execution of the circuit,
we need to use the mask values selected during preprocessing for the 2PC. Let
α′
z be the mask corresponding to wire z in the 2PC and [α′

z]1 and [α′
z]2 be the

shares corresponding to P1, P2 respectively. Thus, the sharing of z requires to be
updated according to α′

z, which essentially means updating the corresponding
masked value, say β′

z such that β′
z = z + α′

z = (βz − αz) + α′
z. Towards this,

P1 computes v1 = βz − [αz]1 + [α′
z]1 and sends it to P2. Similarly, P2 computes

v2 = [α′
z]2 − [αz]2 and sends it to P1. Then P1, P2 locally obtain β′

z = v1 + v2 to
complete the required 2PC sharing of z. Note that since both P1, P2 are (semi)
honest, they send the correct values. Further, sending v1 or v2 does not breach
privacy since they can learn these values from their own shares (for example, P1

can compute v2 given its shares βz, β
′
z, [αz]1 , [α

′
z]1). The security of protocol 4PC

as per the functionality F4PC-FaF is stated below.

Theorem 4. Assuming collision resistant hash functions and semi-honest OT
exists, protocol 4PC realizes F4PC-FaF with computational (1, 1)-FaF security.

Attaining GOD Beyond Honest Majority With Friends and Foes 23

Security against a mixed adversary. A closely related notion of security is
that of a mixed adversary [26,37,39,8,41,47] which can simultaneously corrupt
a subset of t parties maliciously and a disjoint subset of h∗ parties in a semi-
honest manner. In contrast to the FaF model, the adversary here is centralized.
Consequently, the mixed security model allows the view of semi-honest parties
to be available to the adversary while determining a strategy for the malicious
parties. Although the mixed adversarial model might seem to subsume FaF,
Alon et al. [3] showed that (t, h∗) mixed security does not necessarily imply
(t, h∗)-FaF security. Given this, we constructed a 4PC protocol which is secure
in the FaF model. However, we go a step beyond and show that our protocol
is also secure against a (1, 1)-mixed adversary. For this, the crucial observation
is that our protocol can withstand the scenario where the malicious adversary
is provided with the view of semi-honest parties, which essentially captures the
mixed adversarial model. Refer to the full version for details.

7 Applications and Benchmarks

This section focuses on evaluating the performance of QuadSquad. We first eval-
uate the performance of MPC and draw comparisons to concretely efficient tra-
ditional MPC protocols that come closest to our setting. We then establish the
practicality of QuadSquad via the application of secure liquidity matching and
PPML for neural network inference. We refer the readers to the full version
for a detailed discussion on the benchmarking environment, secure protocols for
the applications considered and analysis of performance bottlenecks. The source
code of our implementation is available at quadsquad.

Environment. Benchmarks are performed over WAN using n1-standard-32
instances of Google Cloud, with machines located in East Australia (M0), South
Asia (M1), South East Asia (M2), and West Europe (M3). The machines are
equipped with 2.2GHz Intel Xeon processors supporting hyper-threading and
128GB RAM. Average bandwidth and round-trip time (rtt) between pair of
machines was observed to be 180 Mbps and 158.31 ms respectively; though
these values vary depending on the regions where the machines are located.

Software.We implement our protocol in C++17 using EMP toolkit [71]. Since
we use OT as a black-box, it can be instantiated with any state-of-the-art OT
protocol such as [29]. Since the public implementation of [29] is not available, we
use EMP toolkit’s Ferret OT [72]. We use the NTL library [68] for computation
over ring extensions for disZK protocol. [53] and [31] are benchmarked in the
MP-SPDZ [51] framework. Due to the unavailability of implementation of [56],
we estimate its performance from microbenchmarks. We instantiate the collision
resistant hash function with SHA256 and the PRF with AES-128 in counter
mode. Computation is performed over Z264 for [31,56] and QuadSquad, and over
Zp for [53] where p is a 64-bit prime. We set the computational security parameter
to κ = 128 and ensure statistical security of at least 2−40 for all the protocols.
In particular, we set the degree of the polynomial modulus of the extended ring
η = 47. We report the average value over 20 runs for each experiment.

https://github.com/cris-iisc/quadsquad
https://cloud.google.com/

24 Hegde et al.

Benchmarking Parameters. As a measure of performance, we report the on-
line and overall (preprocessing + online) communication per party and latency
for a single execution. To capture the combined effect of communication and
round complexity, we additionally use throughput (tp) as a benchmark parame-
ter, following prior works [56,60,67]. Here, tp denotes the number of operations
(triples for 4PC preprocessing and multiplications for 4PC online protocol) that
can be performed in one second.

7.1 Performance of 4PC QuadSquad

Depth Ref.
Online

Latency(s) Comm. (MB) tp

1
Fantastic Four 2.86 12.00 350066.51

Tetrad 1.44 6.00 692947.87
MASCOT 13.88 24.00 72023.80

QS 2.94 14.00 340506.67

20
Fantastic Four 4.04 12.00 247286.04

Tetrad 2.95 6.00 339321.22
MASCOT 25.94 24.00 38554.22

QS 7.42 14.00 134752.73

100
Fantastic Four 11.26 12.00 88771.32

Tetrad 9.28 6.00 107764.43
MASCOT 74.48 24.00 13425.63

QS 30.92 14.00 32337.66

1000
Fantastic Four 87.82 12.00 11387.21

Tetrad 80.52 6.00 12419.36
MASCOT 289.69 24.00 3451.94

QS 287.71 14.06 3475.69

Table 4: Online costs for evaluating circuits
with 106 mult gates over various depths.
(QS denotes QuadSquad.)

We compare the performance of
our 4PC to Fantastic Four [31],
Tetrad [56] and MASCOT [53]. We
evaluate a circuit comprising 106 mul-
tiplication gates distributed over dif-
ferent depths. Recall that the online
communication cost of our GOD pro-
tocol is similar to the fair protocol due
to segment-wise evaluation. Hence, we
only report the cost of the fair proto-
col for online comparison.

The performance of the online
phase appears in Table 4. The latency
of our protocol (fair and GOD) is
up to 3.5× higher compared to hon-
est majority protocol of [56] and the
abort variant of [31]. This captures
the overhead required to achieve the
stronger notion of FaF-security. On
the other hand, the dishonest major-
ity protocol of [53] bears an overhead
of 4.5× to 1.01× compared to ours.

The performance of the preprocessing depends only on the number of mul-
tiplication gates, not on the circuit depth. Hence, only the communication cost
and throughput are reported in Table 5. [31] does not have preprocessing and is
thus, not included. Further, unlike the online phase, Table 5 reports results for
both fair and GOD variants independently since their performance in the prepro-
cessing phase is different. The communication bottleneck in the preprocessing
of QuadSquad is due to computing summands of S0 which involves running six
instances of disMult, while the computational bottleneck is due to computing the
summands of S1 which involves running four instances of disZK. We implement
disZK using recursion as in [20] which ensures lower communication and compu-
tation costs at the expense of higher round complexity. Our benchmarks show
that disMult always tends to have a higher latency than disZK and constitutes
the performance bottleneck. Detailed discussion is provided in the full version.

Attaining GOD Beyond Honest Majority With Friends and Foes 25

Ref. Comm. (KB) tp

Tetrad 0.004 958918.39

MASCOT 67.6 4548.64

QS (Fair) 3.115 8051.27

QS (GOD) 6.22 3934.01

Table 5: Preprocessing phase
cost for generating a triple.

The GOD variant requires running the pre-
processing of [66] for every pair of parties which
has an overhead of around 3 KB per multipli-
cation gate per party. This approximately halves
the throughput in the preprocessing phase when
compared to the fair variant since the combined
preprocessing across all [66] instances is akin to
running six instances of disMult which in turn is
the main bottleneck in fair preprocessing. With
respect to throughput, [56] has the highest tp ow-
ing to its low communication costs while the tp of
QuadSquad Fair is around 1.8× that of [53]. The tp of QuadSquad GOD is com-
parable to that of [53] despite a significantly lower communication cost because
the implementation of [53] distributes the evaluation of OT instances across the
available threads while our implementation runs it in a single thread to allow
running the disZK protocol in parallel.

7.2 Applications

We consider applications of secure liquidity matching and PPML inference. Be-
fore describing these and evaluating their performance via QuadSquad, we de-
scribe the building blocks designed for the same.

Building blocks Each of these applications requires designing new building
blocks, as described in Table 2. Specifically, we develop the following build-
ing blocks: sharing and reconstruction for SOC setting, dot product (DotP),
dot product with truncation (DotPTr), conversion to arithmetic sharing from
a Boolean shared bit (Bit2A), bit extraction to obtain Boolean sharing of the
most significant bit (msb) from an arithmetic shared value (BitExt), bit injection
to obtain arithmetic sharing of b · v from a Boolean sharing of a bit b and the
arithmetic sharing of v (BitInj). Inclusion of these blocks makes QuadSquad a
comprehensive framework. The details of the constructions and the complexity
analysis are discussed in the full version.

Liquidity matching Secure liquidity matching involves executing a privacy-
preserving variant of the gridlock algorithm. This algorithm identifies a set of
transactions among banks which can be executed while ensuring that all the
banks possess sufficient liquidity to process them. The gridlock algorithm can be
considered for the following scenarios (i) the source and the destination banks of
the transactions are open (non-private) (sodoGR), (ii) the source is open, but the
destination is hidden (secret) (sodsGR), and (iii) the source and the destination
are hidden (ssdsGR). A secure realization for liquidity matching was provided in
[7], albeit via traditionally secure MPC. Given the sensitive nature of financial
data involved in liquidity matching, clearly, FaF-security is more apt. Hence, we
focus on designing FaF-secure protocols for the same. Further, with respect to

26 Hegde et al.

#banks #transactions
Online Fair Total∗ GOD Total∗

Latency(s) Comm. (KB) Latency(s) Comm. (MB) Latency(s) Comm. (MB)

256
50 5.23 21.28 9.46 4.75 10.35 14.56
100 5.46 23.71 10.22 5.53 10.64 16.11
250 5.70 32.04 10.56 7.87 11.06 20.77
500 5.94 47.97 10.95 11.77 11.61 28.53
1000 6.18 81.76 11.49 19.56 12.45 44.07

1024
50 5.70 74.41 10.72 7.98 12.17 44.91
100 5.94 76.59 10.99 8.76 12.47 46.46
250 6.18 83.36 11.32 11.10 12.89 51.13
500 6.42 96.13 11.71 15.0 13.43 58.88
1000 6.66 124.36 12.26 22.79 14.28 74.41

Table 6: Liquidity matching

the three scenarios described above, note that in most practical cases hiding the
transaction amount is sufficient. Hence, we consider only the sodoGR instance
(details in the full version). However, we note that extending our techniques to
the other two scenarios is also possible.

At a high level, the protocol is iterative where each iteration checks the
feasibility of clearing a subset of transactions. The protocol terminates with a
feasible set or reports a deadlock when no transactions can be cleared. Since
the communication and computation costs are identical across all iterations,
we benchmark the performance for a single iteration and report the costs in
Table 6. We see similar trends as observed while evaluating the performance of
MPC, where the GOD variant is on par with the fair variant with respect to
the overall latency. Further, we observe that the latency of an iteration for both
variants is within 15s even for a large number of banks and set of transactions.

PPML For the application of PPML inference, we consider the popularly
used [56,55,70,67] Neural Network (NN) architectures, given below.
• FCNN : Fully-Connected NN consists of two hidden layers, each with 128 nodes
followed by an output layer of 10 nodes. ReLU is applied after each layer.

• LeNet : This NN consists of 2 convolutional layers and 2 fully connected layers,
each followed by ReLU activation function. Moreover, the convolutional layers
are followed by an average-pooling layer.

The inference task is performed over the publicly available MNIST [57] dataset
which is a collection of 28 × 28 pixel, handwritten digit images with a label
between 0 and 9 for each. We note that our techniques easily extend to securely
evaluating other NN architectures such as convolutional neural network (CNN)
and VGG16 [69] used in other MPC-based PPML frameworks of [55,56,70].

We compare the performance of PPML inference via QuadSquad for the
above mentioned NN with the honest majority protocols of [56] and [31]. PPML
in the 4PC dishonest majority (malicious) setting has not been explored so
far. The results of our experiments are summarised in Table 7. Note that the
latency reported is obtained via a single instance of circuit evaluation, whereas
the throughput is computed by running the inference on larger batches. Here, tp
is the number of queries evaluated in a minute since inference over WAN requires

Attaining GOD Beyond Honest Majority With Friends and Foes 27

Network Ref. Online Total∗

Latency (s) Comm. (MB) tp (queries/min) Latency (s) Comm. (MB)

FCN Fantastic Four 48.06 27.71 43.75 48.06 27.71
FCN Tetrad 1.66 0.006 47099.05 2.38 0.02
FCN QS Fair 6.00 0.022 3176.65 29.77 371.15
FCN QS GOD 6.00 0.022 3176.65 44.49 746.46

LeNet Fantastic Four 220.17 134.28 84.22 220.17 134.28
LeNet Tetrad 2.45 0.36 787.09 3.25 0.91
LeNet QS Fair 10.36 1.27 64.24 308.89 7251.73
LeNet QS GOD 10.36 1.27 64.24 607.53 14868.07

Table 7: NN inference where QS denotes QuadSquad.

more than a second to complete. Our fair and GOD variants have an overhead
of 3x–4x in performance respectively. However we provide a stronger adversarial
model compared to [56]. The numbers in Table 7 for [31] from MP-SPDZ [51] are
unexpectedly high. We suspect that this anomaly is due to the preprocessing cost
of [31]. However, the benchmarks seem consistent with those reported in [31] and
pinpointing the exact cause is challenging due to the vast MP-SPDZ codebase.
It is worth noting that the communication cost of [31] per query for larger batch
sizes decreases to 0.93 MB per party for FCN and 0.46 MB per party for LeNet.
The QuadSquad protocols have higher cost in the preprocessing phase from using
more expensive primitives like OT and the feature dependent preprocessing phase
for dot-product. However, the comparable online performance to [56] and [31]
and the stronger security model make it a viable practical option despite the
overhead in preprocessing.

Acknowledgements

Arpita Patra would like to acknowledge financial support from DST National
Mission on Interdisciplinary Cyber-Physical Systems (NM-CPS) 2020-2025 and
SERB MATRICS (Theoretical Sciences) Grant 2020-2023. Varsha Bhat Kukkala
would like to acknowledge financial support from National Security Council, In-
dia. Nishat Koti would like to acknowledge support from Centre for Networked
Intelligence (a Cisco CSR initiative) at the Indian Institute of Science, Ben-
galuru. Shravani Patil would like to acknowledge financial support from DST
National Mission on Interdisciplinary Cyber-Physical Systems (NM-ICPS) 2020-
2025. The authors would also like to acknowledge the support from Google Cloud
for benchmarking.

References

1. Abspoel, M., Cramer, R., Damg̊ard, I., Escudero, D., Yuan, C.: Efficient
information-theoretic secure multiparty computation over Z/pkZ via galois rings.
In: TCC (2019)

28 Hegde et al.

2. Abspoel, M., Dalskov, A.P.K., Escudero, D., Nof, A.: An efficient passive-to-active
compiler for honest-majority MPC over rings. In: ACNS (2021)

3. Alon, B., Omri, E., Paskin-Cherniavsky, A.: Mpc with friends and foes. In:
CRYPTO (2020)

4. Araki, T., Barak, A., Furukawa, J., Lichter, T., Lindell, Y., Nof, A., Ohara, K.,
Watzman, A., Weinstein, O.: Optimized honest-majority MPC for malicious ad-
versaries - breaking the 1 billion-gate per second barrier. In: IEEE S&P (2017)

5. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: ACM CCS
(2016)

6. Archer, D.W., Bogdanov, D., Lindell, Y., Kamm, L., Nielsen, K., Pagter, J.I.,
Smart, N.P., Wright, R.N.: From keys to databases—real-world applications of
secure multi-party computation. The Computer Journal (2018)

7. Atapoor, S., Smart, N.P., Alaoui, Y.T.: Private liquidity matching using mpc.
IACR Cryptol. ePrint Arch. (2021)

8. Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: Secure mpc: laziness leads
to god. In: ASIACRYPT (2020)

9. Baum, C., Damg̊ard, I., Toft, T., Zakarias, R.W.: Better preprocessing for secure
multiparty computation. In: ACNS (2016)

10. Baum, C., Orsini, E., Scholl, P.: Efficient secure multiparty computation with
identifiable abort. In: Theory of Cryptography Conference (2016)

11. Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
CRYPTO (1991)

12. Beaver, D.: Precomputing oblivious transfer. In: CRYPTO (1995)
13. Ben-Efraim, A., Nielsen, M., Omri, E.: Turbospeedz: Double your online spdz!

improving spdz using function dependent preprocessing. In: ACNS (2019)
14. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-

cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC (1988)

15. Bogdanov, D., Kamm, L., Kubo, B., Rebane, R., Sokk, V., Talviste, R.: Students
and taxes: a privacy-preserving social study using secure computation. IACR Cryp-
tology ePrint Archive (2015)

16. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast privacy-
preserving computations. In: ESORICS (2008)

17. Bogdanov, D., Talviste, R., Willemson, J.: Deploying secure multi-party computa-
tion for financial data analysis - (short paper). In: FC (2012)

18. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Zero-knowledge
proofs on secret-shared data via fully linear pcps. In: CRYPTO (2019)

19. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudo-
random correlation generators: Silent ot extension and more. In: CRYPTO (2019)

20. Boyle, E., Gilboa, N., Ishai, Y., Nof, A.: Practical fully secure three-party compu-
tation via sublinear distributed zero-knowledge proofs. In: ACM CCS (2019)

21. Byali, M., Chaudhari, H., Patra, A., Suresh, A.: FLASH: fast and robust framework
for privacy-preserving machine learning. PETS (2020)

22. Byali, M., Hazay, C., Patra, A., Singla, S.: Fast actively secure five-party compu-
tation with security beyond abort. In: ACM CCS (2019)

23. Byali, M., Joseph, A., Patra, A., Ravi, D.: Fast secure computation for small pop-
ulation over the internet. In: ACM CCS (2018)

24. Chaudhari, H., Choudhury, A., Patra, A., Suresh, A.: ASTRA: High Throughput
3PC over Rings with Application to Secure Prediction. In: ACM CCSW@CCS
(2019)

Attaining GOD Beyond Honest Majority With Friends and Foes 29

25. Chaudhari, H., Rachuri, R., Suresh, A.: Trident: Efficient 4PC Framework for Pri-
vacy Preserving Machine Learning. NDSS (2020)

26. Chaum, D.: The spymasters double-agent problem: Multiparty computations
secure unconditionally from minorities and cryptographically from majorities;
crypto’89, lncs 435 (1990)

27. Chida, K., Genkin, D., Hamada, K., Ikarashi, D., Kikuchi, R., Lindell, Y., Nof,
A.: Fast large-scale honest-majority MPC for malicious adversaries. In: CRYPTO
(2018)

28. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: ACM STOC (1986)

29. Couteau, G., Rindal, P., Raghuraman, S.: Silver: Silent vole and oblivious transfer
from hardness of decoding structured ldpc codes. In: Annual International Cryp-
tology Conference. pp. 502–534. Springer (2021)

30. Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.: SPDZ2k : Efficient
MPC mod 2k for Dishonest Majority. In: CRYPTO (2018)

31. Dalskov, A., Escudero, D., Keller, M.: Fantastic four: Honest-majority four-party
secure computation with malicious security. In: USENIX Security (2021)

32. Damg̊ard, I., Escudero, D., Frederiksen, T.K., Keller, M., Scholl, P., Volgushev,
N.: New primitives for actively-secure MPC over rings with applications to private
machine learning. IEEE S&P (2019)

33. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: CRYPTO (2007)

34. Damg̊ard, I., Orlandi, C., Simkin, M.: Yet another compiler for active security or:
Efficient MPC over arbitrary rings. In: CRYPTO (2018)

35. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: CRYPTO (2012)

36. Demmler, D., Schneider, T., Zohner, M.: ABY - A framework for efficient mixed-
protocol secure two-party computation. In: NDSS (2015)

37. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission.
Journal of the ACM (JACM) (1993)

38. Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM
Journal on Computing (1983)

39. Fitzi, M., Hirt, M., Maurer, U.: Trading correctness for privacy in unconditional
multi-party computation. In: CRYPTO (1998)

40. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-
party computation for malicious adversaries and an honest majority. In: EURO-
CRYPT (2017)

41. Ghodosi, H., Pieprzyk, J.: Multi-party computation with omnipresent adversary.
In: PKC (2009)

42. Gilboa, N.: Two party rsa key generation. In: CRYPTO (1999)
43. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A

completeness theorem for protocols with honest majority. In: STOC (1987)
44. Gordon, S.D., Ranellucci, S., Wang, X.: Secure computation with low communica-

tion from cross-checking. In: ASIACRYPT (2018)
45. Goyal, V., Song, Y., Zhu, C.: Guaranteed output delivery comes free in honest

majority mpc. In: CRYPTO (2020)
46. Hazay, C., Lindell, Y.: A note on the relation between the definitions of security

for semi-honest and malicious adversaries. IACR Cryptol. ePrint Arch. (2010)
47. Hirt, M., Mularczyk, M.: Efficient mpc with a mixed adversary. LIPIcs (2020)
48. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-

ciently. In: CRYPTO (2003)

30 Hegde et al.

49. Ishai, Y., Kumaresan, R., Kushilevitz, E., Paskin-Cherniavsky, A.: Secure compu-
tation with minimal interaction, revisited. In: CRYPTO (2015)

50. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious
transfer–efficiently. In: CRYPTO (2008)

51. Keller, M.: MP-SPDZ: A versatile framework for multi-party computation. In:
ACM CCS (2020)

52. Keller, M., Orsini, E., Scholl, P.: Actively secure ot extension with optimal over-
head. In: CRYPTO (2015)

53. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure
computation with oblivious transfer. In: ACM CCS (2016)

54. Keller, M., Pastro, V., Rotaru, D.: Overdrive: Making SPDZ great again. In: EU-
ROCRYPT (2018)

55. Koti, N., Pancholi, M., Patra, A., Suresh, A.: SWIFT: Super-fast and Robust
Privacy-Preserving Machine Learning. In: USENIX Security (2021)

56. Koti, N., Patra, A., Rachuri, R., Suresh, A.: Tetrad: Actively secure 4pc for secure
training and inference. arXiv preprint arXiv:2106.02850 (2021)

57. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010), http://yann.
lecun.com/exdb/mnist/

58. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic cir-
cuits with malicious adversaries and an honest-majority. In: ACM CCS (2017)

59. Mazloom, S., Le, P.H., Ranellucci, S., Gordon, S.D.: Secure parallel computation
on national scale volumes of data. In: USENIX Security (2020)

60. Mohassel, P., Rindal, P.: ABY3: A mixed protocol framework for machine learning.
In: ACM CCS (2018)

61. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation:
The garbled circuit approach. In: ACM CCS (2015)

62. Mohassel, P., Zhang, Y.: Secureml: A system for scalable privacy-preserving ma-
chine learning. In: IEEE S&P (2017)

63. Nordholt, P.S., Veeningen, M.: Minimising communication in honest-majority
MPC by batchwise multiplication verification. In: ACNS (2018)

64. Orlandi, C.: Is multiparty computation any good in practice? In: IEEE ICASSP
(2011)

65. Orsini, E., Smart, N.P., Vercauteren, F.: Overdrive2k: Efficient secure mpc over
Z/2k from somewhat homomorphic encryption. In: CT-RSA (2020)

66. Patra, A., Schneider, T., Suresh, A., Yalame, H.: Aby2. 0: Improved mixed-protocol
secure two-party computation. In: USENIX Security (2021)

67. Patra, A., Suresh, A.: BLAZE: Blazing Fast Privacy-Preserving Machine Learning.
NDSS (2020)

68. Shoup, V.: NTL: A Library for doing Number Theory. https://libntl.org/ (2021)
69. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556 (2014)
70. Wagh, S., Tople, S., Benhamouda, F., Kushilevitz, E., Mittal, P., Rabin, T.: Fal-

con: Honest-majority maliciously secure framework for private deep learning. arXiv
preprint (2020)

71. Wang, X., Malozemoff, A.J., Katz, J.: EMP-toolkit: Efficient MultiParty compu-
tation toolkit. https://github.com/emp-toolkit (2016)

72. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: Fast extension for
correlated ot with small communication. In: ACM CCS (2020)

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://libntl.org/
https://github.com/emp-toolkit

	Attaining GOD Beyond Honest Majority With Friends and Foes

