Memory-Tight Multi-Challenge Security of
Public-Key Encryption

Joseph Jaeger and Akshaya Kumar

School of Cybersecurity and Privacy
Georgia Institute of Technology, Atlanta, Georgia, US
{josephjaeger, akshayakumar}@gatech.edu

Abstract. We give the first examples of public-key encryption schemes
which can be proven to achieve multi-challenge, multi-user CCA security
via reductions that are tight in time, advantage, and memory. Our con-
structions are obtained by applying the KEM-DEM paradigm to variants
of Hashed ElGamal and the Fujisaki-Okamoto transformation that are
augmented by adding uniformly random strings to their ciphertexts.
The reductions carefully combine recent proof techniques introduced by
Bhattacharyya’20 and Ghoshal-Ghosal-Jaeger-Tessaro’22. Our proofs for
the augmented ECIES version of Hashed-ElGamal make use of a new
computational Diffie-Hellman assumption wherein the adversary is given
access to a pairing to a random group, which we believe may be of
independent interest.

Keywords: Public-key cryptography, provably security, memory-tightness

1 Introduction

Secure deployment of cryptography requires concrete analysis of schemes to un-
derstand how the success probabilities of attackers grow with the amount of
resources they employ to attack a system. The use of reduction-based cryp-
tography enables such analysis by using an attacker with running time ¢ and
success probability € to construct a related adversary with running time ¢’ and
success probability €' against a computational problem whose security is better
understood. A gold standard for concrete security reductions are tight reduc-
tions for which ¢’ ~ ¢ and ¢ ~ e. We refer to such a reduction as TA-tight
(time-advantage-tight) to distinguish it from other notions of tightness.

Auerbach, Cash, Fersch, and Kiltz [3] argued that the memory usage of an at-
tacker can be crucial in determining its likelihood of success. This kicked of a line
of works [31, 30,24, 12,11,7,19,18,9,28,10, 17] on memory-aware cryptography
which accounts for the memory usage of attackers in security analyses. Auer-
bach, et al. focused in particular on incorporating memory considerations into
the study of reductions. We refer to a reduction as TAM-tight if it is TA-tight
and additionally s ~ s’ where these variables, respectively, denote the amount
of memory used by the original adversary and the reduction adversary.

In this work, we construct the first public-key encryption schemes with TAM-
tight proofs of multi-challenge (and multi-user) chosen-ciphertext attack (CCA)
security. Our schemes are based on variants of the Hashed ElGamal and Fujisaki-
Okamoto transformation key encapsulation mechanisms. These variants augment
ciphertexts with random strings that are included in hash function calls.

MULTI-CHALLENGE SETTING. As mentioned, our focus in this work is on multi-
challenge and multi-user security. This is simply motivated by the fact that
encryption schemes get deployed across many different users each of whom will
encrypt many messages, so it is important to understand how the security of a
scheme degrades as the number of encryptions increase. In particular, the goal
of tight proofs is to show that security does not meaningfully degrade. Multiple
papers [22, 25, 16] have looked at this in the non-memory-aware setting, providing
schemes with TA-tight proofs of security. However, extending any of these proofs
to the memory-aware setting is quite difficult.

Prior works on memory-tight CCA secure encryption have identified a pri-
mary difficulty in the multi-challenge setting which lies in how the decryption
oracle handles challenge ciphertexts. Simply decrypting a challenge ciphertext
would lead to trivial attacks against any scheme, so instead the decryption oracle
has to recognize these ciphertexts and respond to them in a special manner.’
This makes writing memory-tight security proofs difficult because the reduction
adversary must emulate this differing behavior on decryption queries for chal-
lenge or non-challenge ciphertexts, but it is unclear how to go about identifying
which are challenge ciphertexts other than remembering and checking against all
ciphertexts that were previously returned to encryption queries. In the single-
challenge setting is a non-issue, because storing the single challenge ciphertext
requires minimal memory.

MEMORY-TIGHTNESS OF HASHED ELGAMAL. In recent years, several papers
have discussed the challenge of providing memory-tight security proofs for Hashed
ElGamal. Auerbach, et al. [3] gave it at as an example of a proof they considered
the memory complexty of, but were unable to improve. Follow-up work by Bhat-
tacharyya [7] and Ghoshal and Tessaro [19] analyzed this further, giving what
might seem at first to be contradictory results. Bhattacharyya gave a memory-
tight proof for Hashed ElGamal in the single-challenge setting while Ghoshal
and Tessaro proved a lower-bound establishing that a memory-tight proof for
Hashed ElGamal was not possible.

Resolving this contradiction requires more precisely understanding each re-
sult. The lower bound applies specifically for reductions to Strong Computational
Diffie-Hellman (CDH) security [2] which are “black-box” in several ways, includ-
ing that they do not depend on the particular group used. Ghoshal and Tessaro
note that Bhattacharyya’s result (for single-challenge security) avoids the lower
bound by not being black-box in this manner; it depends on the group having

! An alternate definitional style would disallow the adversary from querying challenge
ciphertexts to its decryption oracle, but prior the works argue this is an inappropriate
restriction in the memory-bounded setting [18,17].

l Scheme/Transform [Assumption [Result

Hashed ElGamal (aECIES) Pair CDH $CCA KEM
Cramer-Shoup ElGamal (aCS)| Strong CDH $CCA KEM
Twin ElGamal (aTWIN) CDH $CCA KEM

T $CPA PKE OW-PCA PKE

aV OW-PCA PKE |OW-PCVA PKE
aU™ OW-PCVA PKE [CCA KEM
KEM/DEM (KD) $CCA KEM/SKE| $CCA PKE

Fig. 1. TAM-tight reductions we provide. Transformations T,aV, and aUt are FO
transforms discussed in Section 5. Results are multi-user, multi-challenge security.

an efficient pairing. However, for efficiency it is preferable to implement schemes
using elliptical curves for which efficient pairing are believed not to exist.

Our result for Hashed ElGamal is black-box in the sense of Ghoshal and Tes-
saro. We avoid the lower-bound without requiring an efficient pairing by intro-
ducing and using an assumption (Pair CDH) which is stronger than Strong CDH,
but is reasonable to assume holds in typical groups based on elliptic curves.? We
discuss this assumption in more detail momentarily. Indeed, Ghoshal and Tes-
saro say in their paper [19, Sec. 3.1, p.42], “it appears much harder to extend
our result to different types of oracles than [the Strong CDH oracle], as our proof
is tailored at this oracle.” Our new security notion gives an example of such an
oracle to which their result cannot be extended.

1.1 Our results

We summarize our results in Fig. 1. Omitted proofs and results are provided in
the full version of this paper [23].

HasHED ELGAMAL. Our first results consider the security of Hashed ElGamal.
Following Bhattacharyya, we actually consider two variants which we refer to
as the ECIES [1] and the Cramer-Shoup [8] variants. The negative results of
Ghoshal and Tessaro apply only to the ECIES variant. In both, the decryption
key is a value x € Z;; and the encapsulation key is X = g”. Here g is a generator
of a group of prime order p. For encapsulation, one samples a fresh y «s Z} and
returns g¥ as the ciphertext. For ECIES the derived key is H(XY), while for
Cramer-Shoup it is H(g¥, X¥). Our main results concern “augmented” versions
of both of these schemes where the ciphertexts are instead (a,g?) where a is a
uniformly random bitstring used as an additional input to the hash function.

2 Technically, the lower bound also does not apply because we are considering an
augmented scheme which differs from the one analyzed by Ghoshal and Tessaro.
However, the augmentation is not important for this comparison, because in the
single-challenge setting where the lower-bound was proven, Pair CDH TAM-tightly
implies security of the non-augmented scheme as well.

To understand these results, let us discuss the high level idea of proving secu-
rity for ECIES. A standard, single-challenge proof would work from the Strong
CDH assumption in the random oracle model. In Strong CDH an adversary is
given X = g* Y = gV and an oracle O which on input B,C tells whether
B = (. Tts goal is to return X¥. The only way to distinguish H(X?) from
random is to query H on input XY. So a reduction adversary will give X as
the encryption key, Y as the challenge ciphertext, simulate random oracle and
decapsulation queries, and checks if any of the random oracle queries are XV
in which case it returns that. The oracle O is used for checking whether ran-
dom oracle queries are X¥ (for a random oracle query Z, one queries O(Y, Z)
to check) and for maintaining consistency between random oracle and decapsu-
lation queries for non-challenge ciphertexts. A decapsulation query for Y and
a random oracle query for Y, Z should return the same result if Y* = Z. The
reduction can maintain this consistency by remembering all of the queries made
to both oracles and then using O to check for this consistency. This is neither
time- nor memory-tight.

Bhattacharyya was able to make this TAM-tight by introducing a new tech-
nique for this consistency aspect. They simulate the random oracle H(C) by
h(e(g,C)) where h is a random function and e is a pairing. Then the output
of a non-challenge decapsulation query B can be simulated as h(e(X, B)). In
our proof we use a similar technique, but replace the requirement for a pairing-
friendly group by using a new variant of CDH we will discuss momentarily.

The first step in making the proof work in the multi-challenge setting is to
use Diffie-Hellman rerandomization techniques so we can have multiple Diffie-
Hellman challenges. We let the u-th user’s public key be X*+ and the i-th cipher-
text by Y. For memory-tightness, we pick z,, and y; using a (pseudo-)random
function.® Then if the adversary makes a random oracle query H(C) where
C = X®w¥¥: we have CV/(#u¥u) — X¥_ A challenge here is to know which u
and 7 to use for such a random oracle query. A reduction could check each choice
of u, 7, but this would lose time-tightness. At the same time, for a decapsulation
query B we must be able to identify if B was a prior challenge query. Storing
all prior challenge queries loses memory-tightness.

Both of these issues are solved by our addition of an auxiliary string a to
each ciphertext and hash query. The idea here is based on memory-tightness
techniques of GGJT [17], in that we are going to hide the pertinent information
we need in a. Rather than sampling a at random, if the i-th challenge query is
made to user u then our reduction adversary picks a to be the “encryption” of
(u,4). Now on future random oracle and decapsulation queries we can recover u, i
by “decrypting” a. This allows us to properly simulate the view of the adversary.

PAIrR CDH SECURITY. As we have been mentioning, we avoid the need for groups
with pairing in our result for ECIES by making use of a new computational
assumption. This assumption, we refer to as Pair CDH security, extends CDH
security by giving the adversary access to an oracle which, on input A and B

3 In the body, this is separated out as a proof that single-challenge CDH tightly implies
multi-challenge CDH.

(with discrete logarithms a and b) computes a and b then returns a random
function applied to a-b. This acts, in essence, as a pairing from the group under
consideration to a randomly chosen group. Our use of this in our security proof
for ECIES takes advantage of the fact that (i) the pairing is only needed for the
proof, not in the construction itself and (ii) the proof does not require the ability
to efficiently perform group operations with the output of the pairing. We think
this notion may be of further interest if other proofs can be found where better
tightness can be achieved using a pairing only in the reduction.

To justify our new assumption we analyze how it compares to existing as-
sumptions. Pair CDH security is implied by CDH security if the group under
consideration has an efficient pairing. This holds because we can emulate the ran-
dom pairing by first applying the efficient pairing and then applying a random
function (which may be pseudorandomly instantiated for efficiency). In turn,
Pair CDH implies the Gap CDH assumption because a pairing can be used to
check whether given group elements form a Diffie-Hellman triple.

These results do not justify the use of Pair CDH security for typical groups
based on elliptic curves which do not have pairings. For this, we turn to non-
standard models (i.e. algebraic or generic group models [29,26,13]). In these
models, we are able to show that CDH and Pair CDH are equivalent because
learning anything from the oracle requires the ability to find non-trivial collisions
in the pairing. The ability to find such collisions can in turn be used to solve the
discrete logarithm problem.

FuiisaAkI-OKAMOTO TRANSFORMATION. The other KEMs we consider are those
derived from the Fujisaki-Okamoto Transformation which starts with a CPA
secure public key encryption scheme and applies several random oracle based
transformations to construct a CCA secure KEM. Hofheinz, Hovelmanns, and
Kiltz [21] gave a nice modular approach for proving the security of several vari-
ants of this transformation. Bhattacharyya showed how to make these proofs
memory-tight in the single-challenge setting (in some cases requiring one ad-
ditional intermediate transformation). We extend these to the multi-challenge
setting. For the final step of the transform, we need to consider an augmented
transform of the existing scheme in which random strings are added to each ci-
phertext and incorporated into the hash queries. As before, our reduction sam-
ples these string as the encryption of the pertinent information it would need to
identify challenge ciphertexts and respond to them appropriately.

For these results, we require that the starting CPA scheme have good multi-
challenge security. This is a significantly weaker starter point than multi-challenge
CCA security because it avoids the issue of having to be able to identify challenge
ciphertexts for the decryption oracle.

LIFTING TO PUBLIC-KEY ENCRYPTION. The approaches described above are for
key encapsulation mechanisms. This raises the question of whether these tight
reductions can be applied to public-key encryption via the KEM-DEM paradigm.
It uses a KEM to generate a new symmetric key for a data encapsulation mech-
anism to encrypt the actual message with. This was previously looked at by
GGJT [17], who gave a TAM-tight proof of security. However, because of their

particular motivations, the proof assumed the KEM was constructed from a
public-key encryption scheme. We show that (with some modifications) the proof
works with generic KEMs as well.

2 Preliminaries

2.1 Notation

We recall basic notion and security definitions we will use in our paper.

PSEUDOCODE. For our proofs, we use the code based framework of [6]. If A is
an algorithm, then z < A (z1, x2,...;7) denotes running A on inputs zy, zo, ...
with coins r and having access to the set of oracles O to produce output x. We
use the notation «s instead of « when not explicitly specifying the coins r. If
S is a set, |S| denotes its size and x «s .S denotes sampling = uniformly from
S. We use the symbol L to indicate rejection. When not specified, tables are
initialized empty and integers are initialized to O.

Security notions are defined with games such as the one in Fig. 3. The prob-
ability that the game G outputs true is Pr[G]. We sometimes use a sequence
of “hybrid” games in one figure for our proofs. We use comments of the form
//Gri;) to indicate that a line of code is included in games Gy for i < k < j. To
identify changes made to the k' hybrid, one looks for lines of code commented
as //Gy; 1 for code that is no longer included in the k™ hybrid and //Gp; ;) for
code that is new to the k*" hybrid.

COMPLEXITY MEASURES. Following ACFK [3], we measure the local complexi-
ties of algorithms and do not include the complexity of oracles that they interact
with. We focus on the worst case runtime Time(A) and memory used for local
computation Mem(A) of any algorithm A.

FUNCTIONS AND IDEAL MODELS. We define Fes(D, R) (resp. Inj(D, R)) to be the
set of all functions (resp. injections) mapping from D to R. For f € Inj(D, R),
we define f~! to be its inverse (with f~1(y) = L if y has no preimage). If D;
and R; are sets for each ¢t € T, then we define Fes(T, D, R) (resp. Inj(T, D, R)) to
be the set of functions f so that f(¢,-) € Fes(Dy, R;) (resp. f(t,-) € Inj(Dy, Ry)).
We let fi(-) = f(t,-).

For f € Inj(D, R) we let f* denote the function defined by f*(+,z) = f(x)
and f*(—,z) = f~(x). We often write f(z) or f~!(x) in place of f*(+,z) or
fE(—,z). We let Inj*(D,R) = {f* : f € Inj(D,R)} and extend this to define
Inj* (T, D, R) analogously.

Ideal models (e.g. the random oracle or ideal cipher model) are captured by
having a scheme S specify a set of functions S.IM. Then, at the beginning of a
security game for S, a random H € S.IM is sampled. The adversary and some
algorithms of the scheme S are then given oracle access to H. The standard
model is captured by S.IM being a singleton set containing the identity function.

If F and G are sets of functions, then we define (F,G) = F x G = { f x
g : fe€F,ge G} Here, f x g is the function defined by f x g(0,2) = f(z)
and f x g(1,2) = g(z). In the code of an algorithm expecting oracle access to

f xgeF x G, we write f(x) or g(x) with the natural meaning. We extend this
notation to more than two sets of functions as well.

SWITCHING LEMMA. Our proofs make use of the indistinguishability of random
functions and injections, as captured by the following standard result.

Lemma 1 (Switching Lemma). Fiz T, D, R and N = miner |R;|. For any
adversary A making at most q queries, it holds that | Pr[Af = 1] — Pr[AY9 =
1]] < 0.5-¢>/N, where the probability is taken over the randomness of A, sampling
f <sFes(T, D, R), and sampling g <s Inj(T, D, R).

2.2 Memory-tightness background

F-ORACLE ADVERSARIES. We adopt GGJT’s [17] oracle adversary formulation
for our proofs in the memory-aware setting, i.e., we allow reductions to access
uniformly random functions or invertible random injections. Our reductions are
of the form shown below for some set of functions F and algorithm B. We call
such an adversary A an F-oracle adversary.

Adversary A°(in)
fesF

out «s BY(in)
Return out

The complexity of adversary A would include the (large) complexity of sampling,
storing, and computing f. However, as proposed in [17], we present theorems in
terms of the reduced complexity of an oracle aided adversary which is defined as
Time*(A) = Time(B) and Mem™ (A) = Mem(B).

We refer readers to Lemma 2 of [17] which bounds how much an adversary
may be aided by a random object by replacing it with a pseudorandom version
of the object. Pseudorandom injections can typically be instantiated by appro-
priately chosen encryption schemes.

There is a small issue when pseudorandomly instantiating a random function
if the game A plays is inefficient. This is the case for some of our reduction
adversaries playing CDH variants wherein they have access to some inefficient
oracle based on the group. Then the pseudorandomness reduction adversary
from [17] will be inefficient because it simulates the game that A is playing.
However, we can simply use pseudorandom schemes believed to be secure even
against adversaries with access to the inefficient oracle. This seems reasonable
as we can choose a pseudorandom scheme which seems unrelated to the group.

MESSAGE ENCODING TECHNIQUES. The message encoding technique proposed
by GGJT in [17] programs randomness that a reduction provides to an adversary
in a special way that stores retrievable state information. This is achieved by
generating randomness as the output of random injections. The reduction may
then invert randomness generated thusly to retrieve state information. For ex-
ample, consider a key encapsulation mechanism that outputs ciphertexts of the

PKE Syntax KEM Syntax SKE Syntax
(ek,dk) «s PKE.K |(ek,dk) «s KEM.K K «sSKE.K
c s PKE.E® (ek,m) |(c, K) «s KEM.E* (ek) |c «s SKE.E* (K, m)
m <« PKE.D*(dk,c) | K < KEM.D*(dk,c) |m <« SKE.D™(K,c)

Fig. 2. Syntax of a public key encryption scheme PKE, key encapsulation mechanism
KEM, and symmetric key encryption scheme SKE. The ideal model oracle is H.

form (a,c) where a is uniformly random. Then a reduction can simulate chal-
lenge ciphertexts by setting a = f(i) where f is a random injection and 7 is some
pertinent information the reduction would want to know if the adversary later
makes oracle queries for the same ciphertext. Then the reduction can recover
this information during future queries as i < f~!(a).

MAP-THEN-RANDOM-FUNCTION. We describe the main proof technique of Bhat-
tacharyya [7], namely “map-then-rf”.# This technique allows the reduction to
use the composition of an injection and a random function to replace a random
function. This relies on the simple fact that if h € Inj(D, S), then sampling f ac-
cording to f «sFcs(D, R) or g <s Fcs(S, R); f < g o h are equivalent, meaning,
if g is a random function, and h is any injection, then f < g o h is a random
function. This allows a reduction to compute the output f(z) given h(z), even
if it does not know =x.

2.3 Public Key Encryption

SYNTAX. A public key encryption scheme, PKE, specifies three algorithms - the
key generation algorithm (PKE.K) that returns a pair of keys (ek, dk) where ek
is the encryption key and dk is the corresponding decryption key, the encryption
algorithm (PKE.E) that takes the encryption key ek and a message m and returns
ciphertext ¢, and the decryption algorithm PKE.D that takes the decryption key
dk and a ciphertext ¢ and returns message m (or the special symbol L to indicate
rejection). The syntax of these algorithms is given in Fig. 2.

Perfect correctness requires PKE.D*(dk,c) = m for all (ek,dk) € [PKE.K],
all m, all H € PKE.IM, and all ¢ € [PKE.E*(ek,m)]. The weaker notion of
d-correctness requires that for all (not necessarily efficient) D,

Pr[PKE.D™(dk, PKE.E*(ek,m)) # m : m «s D" (ek,dk)] < d(q)

where ¢ upper bounds the number of H queries D makes. The probability is
over (ek,dk) <sPKE.K, H «s PKE.IM, and the coins of D and PKE.E. When
not stated otherwise, schemes are assumed to be perfectly correct.

4 Bhattacharyya actually uses “map-then-prf”, as they were not using the oracle ad-
versary formulation.

Game G?&'Esfgca (A) ENCy (u, m) DEc(u, c)

H «s PKE.IM c1 s PKE.E™ (ek,,, m)|If M[u,c] # L
(ek(.y, dk(,)) <s PKE.K |co «<s PKE.C(eky, |m|)| Return M[u,c]

b/ s ANEW,ENC,,,DEC,H]\4-[u7 Cb] -m m «— PKE.DH(dlac)
Return ¥’ =1 Return ¢ Return m

NEW(u)

Return ek,

Fig. 3. Game defining mu-$cca security of PKE.

We define the encryption keyspace as PKE.Ek = {ek : (ek,dk) € [PKE.K]}
and assume that for each ek € PKE.Ek and allowed message length n, there exists
a set PKE.C(ek,n) such that PKE.E* (ek, m) € PKE.C(ek,|m|) always holds. We
assume this set is disjoint for distinct message lengths and let PKE.C~!(ek, c)
return n such that ¢ € PKE.C(ek,n). We let PKE.R denote the set from which
PKE.E draws its randomness. Sometimes we assume that all messages to be
encrypted are drawn from a set PKE.M of equal length messages and then let
PKE.C simply denote the set of all possible ciphertexts.

INDISTINGUISHABLE FROM RANDOM SECURITY. We consider indistinguishable
from random, chosen ciphertext attack (JCCA) security as captured by Fig. 3.
The definition multi-user and multi-challenge (allowing multiple challenges per
user). It requires ciphertexts output by the encryption scheme be indistinguish-
able from random, even when given access to a decryption oracle. In this game,
the adversary obtains the encryption key ek, for user u by querying NEw(u). It
makes an encryption query ENC(u, m) to receive a challenge encryption of m by
u and a decryption query DEC(u,c) to have u decrypt c¢. The adversary needs
to distinguish between the real world (b = 1) in which a query to ENC(u,m)
returns a real encryption of m and the ideal world (b = 0) in which the same
query returns a uniformly random element of PKE.C(ek,, |m|).

Table entry M[u,c] stores the message encrypted in user u’s challenge ci-
phertext c. If the adversary queries DEC with a challenge ciphertext it returns
M{u, c] rather than performing the decryption. Prior works on memory-aware
cryptography [19, 17] considered other ways a decryption oracle might respond to
challenge ciphertexts and argued that this is the “correct” convention. The ad-
vantage of an adversary A is0 AdvEEe < (A) = Pr[GQ}‘;}Eﬂfica (A)]—Pr[GrF‘?;ggca (A)].
In this and future definition we let U denote the set of allowed user identifiers u.

The general framework of capturing multi-user security by allowing the at-
tacker to access separate instances of oracles for each user with shared secret bit
across them is originally due to Bellare, Boldyreva, and Micali [5] who provided
a definition for IND-CPA secure public-key encryption.

ONE-WAYNESS SECURITY. Following the one-wayness security definitions in [21],
we define variants of one-wayness security of PKE schemes in the multi-user,

Game G ™ (A) CHAL(u, 1) PCO(u,m,c)
H s PKE.IM If Clu,d] # L m' «— PKE.D*(dky, c)
(ek¢y,dky) <s PKE.K Return Cu,] Return m = m/’
O« 1 //w=cpa m «—s PKE.M
O — PCO //w = pca ¢ s PKE.EX (cky,m)| YO0
O « (PCO,CVO) //w = peva |Clu,i] <« ¢ m' « PKE.D"(dku, c)
(', 7) s ANEWCHALOLK Return ¢ Return (m' € PKE.M)
Return PCO(u, m’, CHAL(u,)) NEW(u)

Return ek,

Fig. 4. Game defining mu-ow-w security of PKE for w € {cpa, pca, pcva}.

multi-challenge setting in Fig. 4. We define three variants - One-Wayness under
Chosen Plaintext Attacks (OW-CPA), One-Wayness under Plaintext Checking
Attacks (OW-PCA) and One-Wayness under Plaintext and Validity Checking
Attacks (OW-PCVA). The difference between each variant w € {cpa, pca, pcva}
is in the auxilliary oracle(s) O that the adversary is given access to.

In each variant, the adversary is tasked with finding the decryption of a
challenge ciphertext which encrypt a message randomly sampled from PKE. M.

In the game Gpep " ", the adversary does not have access to any auxilliary

oracle as indicated by O « L. In the game GJy ¢ " "<, the adversary has access
to the Plaintext Checking Oracle PCO which takes as input a valid message-
ciphertext pair, and returns true if the message is a valid decryption of the
ciphertext and false otherwise. The adversary has access to both oracles, PCO
and CVO, in Gpep " P where CVO takes as input a ciphertext, and returns
true if the ciphertext decrypts to a valid message. For each variant, we define
Advpie" " (A) = Pr[GPERY ™]. Note that an adversary may re-query CHAL(u, 7)
to get back the same ciphertext. This makes it hard to prove one-wayness, but
easier write proofs starting from one-wayness. We sometime assume challenge

identifiers, ¢, are drawn from a fixed set Z.

2.4 Key Encapsulation Mechanisms

SyYNTAX. A key encapsulation mechanism, KEM, consists of three algorithms
- the key generation algorithm (KEM.K) that returns a pair of keys (ek,dk)
where ek is the encapsulation key and dk is the corresponding decapsulation key,
the encapsulation algorithm (KEM.E) that takes the encapsulation key ek and
returns a ciphertext-key pair (¢, K) where K € KEM.K and the decapsulation
algorithm KEM.D that takes the decapsulation key dk and a ciphertext ¢ and
returns a key K (or L to indicate rejection). The syntax of these algorithms is
shown in Fig. 2. Perfect correctness requires that KEM.D*(dk,c) = K for all
(ek, dk) € [KEM.K], all H € KEM.IM, and all (¢, K) € [KEM.E*(ek)].

10

Game G5 (A) ENCAPy (u) DECAP(u, c)

H s KEM.IM (c1, K1) <s KEM.E® (ek,,) |1 Tlu,c] # L:

(ek(y, dk(y) <s KEM.K |co «s KEM.C(eky) Return T'u, c]

b/ s ANE\V,ENCAPb,DECAP,H KO «s KEM.K K « KEM.DH (dku, C)
Return ¥’ =1 Tlu, o] «— Kp Return K

NEW (u) Return (cp, Kp)

Return ek,

Fig. 5. Game defining mu-$cca security of KEM.

We define encryption keyspace KEM.Ek = {ek : (ek, dk) € [KEM.K]}. For ek €
KEM.Ek we let KEM.C(ek) denote the ciphertext set {c: (¢, K) € [KEM.E(ek)]}
and define |KEM.C| = minggekem.ex |[KEM.C(ek)|. We let KEM.R denote the set
from which KEM.K draws it randomness. We say that KEM is e-uniform if for
all ek € KEM.Ek, H € KEM.IM, and (not necessarily efficient) D it holds that

Pr[D(c) = 1: c «s KEM.C(ek)] — Pr[D(c) = 1: (c,-) «s KEM.E?!(ek)] < e.

INDISTINGUISHABLE FROM RANDOM SECURITY. Our notion of $CCA security
for KEMs is presented in Fig. 5, which requires that keys and ciphertexts out-
put by the scheme be indistinguishable from random. The adversary is given a
user instantiation oracle NEW, encapsulation oracle ENCAP, and a decapsulation
oracle DECAP. Its goal is to distinguish between the real world (b = 1) where
ENCAP returns true outputs from KEM.E and the ideal world (b = 0) where it
returns a pair (¢, K) chosen uniformly at random from KEM.C(ek) x KEM.K.

The table T stores the keys corresponding to challenge ciphertexts output
by the encapsulation oracle. The decapsulation oracle uses T to respond to chal-
lenge queries. The advantage of an adversary A is defined as Adviiesc®(A) =
Pr[GEE[\fﬁca (A)] - Pr[G[?E,'\ffoca (A)]. We also define CCA security (via Advggm
and GREyG) analogously to $CCA security, except in the ENCAP oracle ¢ is set
to equal ¢y rather than being sampled at random.

2.5 Symmetric Key Encryption

SYNTAX. A symmetric key encryption scheme, SKE, consists of three algorithms
- the key generation algorithm (SKE.K) that returns a key K, the encryption
algorithm (SKE.E) that takes the key K and a message m and returns ciphertext
¢, and the decryption algorithm SKE.D that takes the key K and a ciphertext
¢ and returns message m (or L to indicate rejection). The syntax of these algo-
rithms is given in Fig. 2. Perfect correctness requires that SKE.D™(K,c) = m
for K € [SKE.K], all m, all H € SKE.IM, and all ¢ € [SKE.E?*(K,m)]. We de-
fine the ciphertext, message, and expansion lengths of SKE by SKE.cl(|m|) =
|SKE.E* (K, m)| (requiring this to hold for all H, K, m), SKE.mI(SKE.cl(l)) = I,
and SKE.x| = min; SKE.cl(l) — [respectively.

11

Game Gsm,;'glfca (A) |ENCy(u,m) DEC(u, ¢)

H «s SKE.IM 1 s SKE.EM(K,,,m) |If M[u,c] # L:

Ky <sSKE.K co < {0, 1}5KE-C|(\"LD Return M|u, c]

b s AENCb,DEC,’H M[u, Cb] -m m «— SKE.DH(Ku, C)
Return ¥’ =1 Return cp Return m

Fig. 6. Game defining mu-$cca security of SKE.

INDISTINGUISHABLE FROM RANDOM CCA SECURITY. Our notion of $CCA
security for SKE schemes is captured by Fig. 6, which requires that cipher-
texts output by the encryption scheme be indistinguishable from ciphertexts
chosen at random. In this game, the adversary is given access to an encryp-
tion oracle ENC and a decryption oracle DEC. The adversary needs to distin-
guish between the real world (b = 1), where ENC returns an encryption of
m under K, and the ideal world (b = 0) where the output of ENC is sam-
pled uniformly at random. The advantage of an adversary A is defined as
AdvIizseea(4) = Pr[GrS"k’glcca (.A)]—Plr[GS”}z'Eﬁ‘jCa (A)]. We will only need “one-time”
security in which the adversary only makes one encryption query per user.

3 Diffie-Hellman Definitions

In this section, we introduce the Computational Diffie-Hellman (CDH) assump-
tions we need for our later proofs. The first is a multi-user, multi-challenge
variant of Strong CDH (which we need for one of our coming KEM proofs). We
verify this is TAM-tightly implied by single-challenge variants. The second is a
new definition we introduce, Pair CDH, which gives the adversary oracle access
to a pairing from the group under consideration to a random group. We provide
several results to understand the plausibility of Pair CDH security. We show
that it always implies Gap CDH security and is {AM,TM}-tightly equivalent to
CDH in algebraic/generic group models [29, 26, 13] or if the group has a pairing.

3.1 Group Syntax

A prime order group G is a tuple (g, p, o) where g is a group generator of prime
order p under the group operation o. In our definitions we will treat the group
as a priori fixed. We typically omit writing the group operation o explicitly and
instead write group operations using multiplicative notation. We let (g) = {g® :
a € N}. The discrete log(arithm) of an element X € {(g) is the value dlog(X) € Z,
such that gd°e(X) — X We let 1g = g° denote the identity element. A pairing
from G = (g,p,0) to Gy = (g2, p2,02) is a map e : (g) x {(g) — {ga) satisfying
e(g®,g¥) = g5”. We let Time(G) and Mem(G) denote the time and memory
complexity of computing exponentiations or multiplications in {g).

12

Game G35 (A) NEW(u) Gapr(A, B,C)

(g,p,0) — G X, < g"; Return X, a — dlog(A); b — dlog(B)
CHAL(u,) Return (C' = g®)

Yu,i < g¥¢; Return Y, ; |STRONG(u, B,C)

Return Gar(g™, B,(C)

Ty S Ly —s Lh
O« L //G"

O « STrRONG //G™"
O «— Gap //Geh

O « PaIr //GPeh PAIR(A, B)
f <sInj(Zy,Z,) //GP" a < dlog(A); b « dlog(B)
(u,i, Z) s ANEW,CHAL,O Return f(ab)

Return (Z = g®«Ywi)

Fig. 7. Security games capturing several variants of the computational Diffie-Hellman
problem, namely, CDH, Gap CDH, Strong CDH, and Pair CDH. The last of these is
a new notion we introduce which gives the attacker access to a pairing from G to a
random group.

3.2 Computational Diffie-Hellman variants

In this paper we will make use of several variants of the Computational Diffie-
Hellman assumption. These security notions are defined by the game shown in
Fig. 7. In each, the adversary is given access to a g” and g¥ with the goal
of producing g®¥. For our later security proofs, it was useful to write “multi-
user” and “multi-challenge” version of these games. Thus rather than giving the
adversary a single g”, we give it access to an oracle NEw which on input a
string u (which we think of as identifying a user) returns a fresh g®. Similarly,
the adversary is given access to an oracle CHAL which on inputs string v and
i (which we think of as identifying a challenge) returns a fresh g¥+i. For the
memory-tightness of future proofs, it is important that the attacker can repeat
queries, obtaining the same result as before. The goal of the attacker is to return
g¥uYu.i for any choice of u and 1.

The different variants of CDH are captured by the games differing in what
(if any) auxiliary oracle O the adversary is given. The standard notion of CDH
security is captured by the game G in which the adversary is not given any aux-
iliary oracle, as expressed by the code O «— L. Gap CDH security [27] is captured
by G&«h in which the adversary’s oracle GAP takes as input a tuple (4, B, C)
and outputs a boolean indicating whether this is a valid Diffie-Hellman tuple
(i.e. C = gllos(A) dlog(B)) The Strong CDH game G [2] is a weakened version
of Gap CDH in which the oracle only allows tuples of the form (g*+, B, C).

The final variant is a new security notion we introduce called Pair CDH.
In this game GP" the adversary is given access to the oracle PAIR which on
input (A, B) returns f(g®) where a,b are the discrete logs of A, B and f is a
random injection. This oracle can be thought of being a pairing to a random
group Gy — (g.p,02) where g5 — PAIR(g. g) and hoy I = f(f1(h)o f~L(R)).
Note that A is not able to efficiently compute the operation o,.

13

Adversary By W10 SIMNEW (u)
(8,p,0) <G @y, — g(u)
gsFes(U,Z}); h—sFes(U X Z,Z%) |Return X%u
X <« NEw(1); Y « CuAL(1,1)

If x = scdh then SIMO « SIMSTRONG - :
Else SIMO «— O Yu,s < h(u,i)
(u i Z) s ASII\JNEW,SIMCHAL,SIMO Return ngmi
xy < g(u); Yu,i < h(u,i)
Return (1,1, 2Y/®uvu.))

SIMCHAL(u, ©)

SIMSTRONG (u, B, C)
'y g(u)
Return O(l,B,Cl/’”L)

Fig. 8. Adversary used for Lemma 2.

For x € {cdh,scdh, gcdh, pcdh} we define Advg(A) = Pr[Gg(A)]. We some-
times need to restrict user identifiers, u, to be from some fixed set U and challenge
identifiers, i, to be a from a fixed set Z.

MULTI-CHALLENGE SECURITY. Standard proofs use Diffie-Hellman rerandomiza-
tion techniques to show that single-challenge security TA-tightly implies multi-
challenge security for most variants of Diffie-Hellman-based security notions.
The following lemma extends this to TAM-tightness for the notions considered
in this paper. The proof is an extension of standard Diffie-Hellman rerandom-
ization techniques that picks the values used for rerandomization as the output
of a random function, rather than picking them randomly and storing them.

Lemma 2 (Single-challenge = multi-challenge). Let G be a group and
x € {cdh, scdh, gcdh, pcdh}. Let A be an adversary for Gf, with (qnew, gcuar, o) =
Query(A). Then we can construct a (Fes(U,Z}),Fes(U x Z,7Z))-oracle adver-
sary By (given in the proof) such that

Advg (A) = Advg (By)

Query(Bx) = (1,1,q0)

Time*(Bx) = O(Time(A) + (qNEW + gcuaL +qo + 1)Time(G))
Mem*(By) = O(Mem(A) + 2Mem(G)).

Proof (of Lemma 2). Consider the adversary By shown in Fig. 8. It makes a
single query NEW(1) to obtain a group element X and a single query CHAL(L, 1)
to obtain a group element Y. Then it runs A. Let = dlog(X) and y = dlog(Y").

It responds to SIMNEW (1) queries with X#u for 2/, the output of its random
function. Letting z,, = zz!,, note that X T = g® and z, is uniformly random
because 7, is. So this oracle has the correct distribution. It responds to SIMCHAL
queries with YVui for yim- output by its random function. Letting y.; = yy;, ;,

note that Y¥u.i — g¥«i and that Yu,i is uniformly random because y;, ; is.

14

For CDH, Gap CDH, or Pair CDH security B, gives A direct access to O. For
Strong CDH security (x = scdh), B, simulates the oracle by replacing a query
(u, B, C) with a query (1, B, C'/%4) which has the same behavior.

When A finally halts and outputs (u, i, Z) the adversary By halts and outputs
(1,1, Zl/(%y’/w)). We claim that B, wins whenever A would. To see this, note
that if A wins then Z = g=wi = g W) and so ZY/(@ubu) = gov, o

3.3 Studying Pair CDH

Pair CDH is a new computational assumption that we’'ve introduced for this
work. In this section we provide a few results to give a sense of its difficulty.
Namely, we note that Pair CDH security implies Gap CDH security and that it
is equivalent to CDH security in certain settings (if G has an efficient pairing
to some Go, in the algebraic model, and in the generic group model). Given
Lemma 2, we focus on the case that the adversary makes only single query each
to NEW and CHAL. For brevity, we sketch the relationships here.

Pair CDH = Gapr CDH. To see that Pair CDH security implies Gap CDH
security we need only note that GAP(A, B, C') = true if and only if PAIR(A, B) =
PAIR(g, C). Hence a Pair CDH adversary can efficiently simulate the view of a
Gap CDH adversary.

CDH + PAIRING = PAIR CDH. We claim that CDH security implies Pair
CDH security if G has an efficient pairing e to some group Gs with generator
g2. We can achieve TAM-tightness in this implication by using a Inj({g2), Zy)-
oracle adversary. Letting f’ denote the random injection, our CDH adversary
can simulate PAIR by responding to queries for (A, B) with f'(e(4, B)). If a =
dlog(A) and b = dlog(B), then f’(e(A, B)) = f'(e(g,g)®). Note that F(-) =
e(g,g)) is an injection and so f(-) = f'(e(g,g)"")) is a random injection. Hence
this perfectly emulates PAIR.

CDH + AGM/GGM = Pair CDH. We claimed that CDH security implies
Pair CDH security in the algebraic group model. More precisely, we {AM,TM}-
tightly show that CDH security implies Pair CDH security using a ch(Zg, Zy)-
oracle adversary. We show a way to imperfectly simulate PAIR for algebraic
adversaries such that distinguishing this from the real oracle requires the ability
to solve the discrete log problem (given g© for a random ¢, find ¢). Noting that
CDH security implies discrete log security gives our claim.

Let X and Y denote the challenge group elements and let x = dlog(X) and
y = dlog(Y). An algebraic adversary, when making an oracle query (A4, B) to
PAIR is required to additionally provide “explanations” (a1, as, as) and (by, ba, bs)
such that A = ¢g® XY and B = ¢" X%V, Then the true PAIR would re-
spond with f((a; + asx + asy) - (b1 + baz + b3y)). Our CDH adversary will
think of this input to f as a degree-two polynomial P p(x,y) € Z,[x,y]
whose coefficients it can compute given the explanations for A and B. Let-
ting (ci1,¢a,...,cg) denote these coefficients and f' € ch(Zg,Zp), we simulate
the output of PAIR as f(c1,ca,. .., cs). Distinguishing this from the true oracle
requires finding (A, B) and (A’, B') such that P4 g # Pa/ p (as polynomials),

15

but P4 p(z,y) = Pa p/(x,y). Using analysis techniques from [4], we can use the
ability to find such “colliding” polynomials to solve the discrete log problem. We
provide details of this analysis in the full version [23].

To achieve TM-tightness, the discrete log reduction picks two of the PAIR
oracle queries at random and assumes that they give colliding polynomials. To
achieve AM-tightness, we can check every pair of queries for collisions using
the memory-tight rewinding technique of Auerbach, et al [3]. Namely, each time
we reach a new PAIR oracle query while running the Pair CDH adversary, we
pause and run an extra copy of that adversary from the start using the same
coins. While running this extra copy, each time it makes a PAIR oracle query
we check if this gives a colliding polynomial with the query we paused at in the
first adversary. Ignoring memory tightness, A could simply remember all of the
PAIR oracle queries and check them at the end of execution, but then it is not
clear how to achieve better time efficiency than checking each pair of queries.

When working in a generic group model [29,26] we can use the same line
of reasoning and then information theoretically bound the probability that an
adversary finds colliding polynomials by O(q?/p) where ¢ is the number of queries
the Pair CDH adversary makes.

4 Hashed ElGamal KEMs

In this section we present the first example of KEMs with TAM-tight proofs in
the multi-challenge setting. The KEMs we consider are variants of the ECIES
and Cramer-Shoup Hashed ElGamal KEMs. These variants augment the existing
schemes by adding random strings to the ciphertexts and random oracle queries.
Our reductions make use of these strings to store pertinent information that will
be needed to answer later oracle queries.

4.1 Augmented ECIES

AUGMENTED VERSION. We start with the ECIES [1] variant of Hashed ElGamal.
Our augmented version of ECIES includes a random string a in the ciphertext.
The augmented ECIES key encapsulation mechanism aECIES[G, K, [] is param-
eterized by a group G = (g, p, o), key space K, and length of the random string,
l. The parameters G, IC, and [are fixed for an instantiation of ECIES, so we use
aECIES and aECIES[G, K,] interchangeably. We define the scheme as follows
with aECIES.K = K and aECIES.IM = Fcs({0,1}! x G, K).

aECIES.K aECIES.E* (ek) aECIES.D*(dk, (a,Y))
T <$ Z;’; a<«s{0,1} Z «— Yk
ek — g” ye$Z; K «—H(a,2)
dk — x Y «—g¥ Return K
Return (ek, dk) |Z — ekV
K —*H(a,2)
Return ((a,Y), K)

16

OVERVIEW OF EXISTING TECHNIQUES AND ASSOCIATED CHALLENGES. Bhat-
tacharyya [7] studied ECIES in the memory-aware setting. They pointed out
the technique of simulating random oracles with PRFs introduced in [3] cannot
be used for this family of KEMSs, as in general, decapsulation queries cannot
be simulated by the reduction. For example, if a PRF F is used to compute
hashes as F(k, Z) instead of the random oracle H, for a decapsulation query Y
the reduction would need to return F(k, Y %) which it cannot compute.’

Bhattacharyya used the map-then-prf technique as a workaround for groups
with pairings. In this technique, the input Z to the random oracle is first operated
on by a bilinear map e(g, Z), and then by the PRF F. Hence, the query H(Z)
is simulated as F(k, e(g, Z)) and a decapsulation query for Y can be simulated
as F(k,e(ek,Y)) for all non-challenge ciphertexts. The reduction remembers the
challenge ciphertext and returns appropriately when it is queried to DECAP.

This does not scale to the multi-user, multi-challenge setting since it requires
that the reduction remembers all the challenge ciphertexts, incurring a memory
overhead. Our solution for augmented ECIES combines Ghoshal et al.’s message
encoding technique [17] with the map-then-rf technique. We encode the identi-
fying information of challenge ciphertexts in a using a random injection so that
this information can be recovered when an appropriate oracle query is made. To
avoid the need for an efficiently computable pairing we make use of our new Pair
CDH assumption. Our result is captured in Theorem 1.

Theorem 1 (Pair CDH = $CCA). Let aECIES = aECIES[G, K,] where
G = (g,p,0) is a prime order group. Define Dy = {0,1} x G and Dy = U x
[qENCAP]~ Let A be an adversary with QuerY(A) = (QNEVVa gENCcAP; @DECAP QH) and
assume 2! > |U|-qrxcap. Then Fig. 12 gives a (Fcs(Dy, K), Inj(D2, {0,1}!))-oracle
adversary B such that

2
mu-$ cdh q 2¢Excar (2qDecar + U] - qu)
AdvIECES? (A) < 2AdvE"(B) + ng“’ 4 AR o gf’)
QueI'Y(B) = ((qNEW + qENCAP)7 (qENCAP + @Decar t+ QH)7 (qENCAP + gDEcar + 2QH))
Time*(B) = O(Time(A)) and Mem™ (B) = O(Mem/(A)).

CHOOSING THE AUXILIARY STRING LENGTH. When instantiating this scheme one
must choose the parameter | which determines the length of a. Larger [incurs
a communication cost, while too small of a [can harm the concrete security
results. We can expect the g2,/ 2! term to dominate the information theoretic
part of the bound. With cautious choice of [= 256, the size of the ciphertext
is not too significantly increased, but even with gexcap = 2% encapsulations (an
intentional overestimate of what seems likely) we get ¢&..,,/2! = 2712,
Several of coming theorems use of an auxiliary string a of length [. Similar
reasoning applies and | = 256 seems like a sufficient choice for all of them.

5 We discuss the use of PRFs to match prior work, but in the oracle adversary frame-
work, we use random function oracles instead.

17

INTUITION. For each ENCAP query, our Pair CDH adversary programs the ran-
dom string a as the output of a random injection applied to user identity v and
counter i and simulates the random oracle H(a, Z) as H(a, PAIR(g, Z)). This
allows us to simulate decapsulations because PAIR(g", g¥) = PAIR(g, g%¥).

Our adversary simulates j-th challenge ciphertexts Y, ; as CHAL(u,4). To
determine if a decapsulation query (u,a,Y’) is for a challenge ciphertext, the
reduction first inverts a to obtain (v, 7). If v = u, it re-queries CHAL(u, j) obtain
the corresponding ciphertext Y, ;. If Y =Y, ;, the reduction assumes this was
a challenge ciphertext. Finally, when the adversary A queries the oracle H with
(a,Z) such that a=! = (u,j) and PAIR(g, Z) = PAIR(NEW(u), CHAL(u, j)), the
reduction outputs Z and wins the Pair CDH game.

Proof (of Theorem 1). We use a sequence of hybrids H} through H}, HZ through
H3, and HJ through H3 presented in Figures 9, 10, and 11 where we establish
the following claims that upper bound the advantage of adversary A.

qE.\ICAP(quEC.\PJFlM"qH)
r[Hz] + 2H(p—1)

L. AdVIEGES® (A) 3
r[H3] + Pr[bad]

2Pr[H{] =1 6. Pr[H3]
2

<P
2. PrlHY] < Pr[H}] + e 7. Pr[H3] < P
3. Pr[H{] = Pr[H3] = Pr[H3] 8 Pr[Hg] <1
4. Pr[H?] = Pr[H3] = Pr[H{] Pr[bad] < AdvZ=" (B)
5. Pr[H3] = Pr[H3]

TRANSITION TO H{. We claim that the view of A in H{ is identical to its view
G;"E“Cﬁfscab (Fig. 5) if b is chosen uniformly. In the latter, ENCAP; returns a
mphertext key pair (c1, K1) such that c is the encapsulation of K7, and ENCAPg
returns a ciphertext-key pair (co, Ko) where ¢y and Ky are uniformly random
elements of the ciphertext space and key space respectively. The same holds for
the ENCAP oracle in H§. The table T in GMi-ice is indexed by (u,c) and stores
the key that was returned by the ENCcAP, oracle for ciphertext c. The table T'
in H} behaves analogously. The DECAP oracle in G;”g‘aﬁfs‘ab returns key K that
was output by the ENCAP;, oracle when queried on a challenge ciphertext, and
returns honest decapsulations otherwise. The same is true for H}. Note that H}’s
final output is whether & = b, so standard conditional probability calculations
give that AdvTEZiee®(A) = 2 Pr[HY] — 1.
TRANSITION H} TO Hi.In H}, we make the following changes.

1. In the ENCAP oracle we switch from

(a) sampling the values a(,,) uniformly to assigning them as the output of a
random injection g evaluated on (u,1).

(b) sampling the values y() uniformly to assigning them the output of a
random function h evaluated on (u, 7). Switching to the random function
h does not change the view of the adversary because the ordered pair
(u, i) never repeats.

2. In the DEcCAP oracle we switch the If condition from checking whether
T[u,a,Y] # L to evaluating the boolean u = vAj € I[u]AY = g"(®?) These
conditons are equivalent since T[u,a,Y] # L iff a = g(u,j) and Y = gh(®7)
for some j € Iu].

18

Hybrids Hx: for 0 < x < 1

NEW (u)

b«s{0,1}

1 «—0

() s Ly; Xy < g"0

H «s aECIES.IM

g <s Inj(D27 {0> 1}1) //Hlll,oc)
h s Fes(D2, Z) //H|11,m)

b/ s ANHW,E.\JCAP,,,DHCAP,H

Return X,
H(a, Z)
Return H(a, Z)

DEecaAP(u,a,Y)

(v,5) < g~ (a) //H1 o)
Yuyi < h(’“‘?]) //H%L,x)

Return b’ = b If Tlu,a,Y] # L //H%U.l)
ENCAPy (1) Ifu=vAje I[ulaAY = g+ //Hfl_%)
Te—irl Return T'[u,a,Y]
. Z «— Y*u
) o 1fu o (3} AR
Ay, < {07 1} //Hlo,1) Return K’

Yu,i <8 Z: //H%().l)

QAy,i <— g(U,i) //H%l’f)
Yu,i < h(u,z) //HEL’[)
Yu,i < g¥!

Zui — Xy

K’i,i — H(aw,iy Zu,i)
Kz(l],,i —s K

T[w, Gui, Yuyi] < Kﬁ,i
Return ((@u,i, Yu,i), K5.:)

Fig. 9. First set of hybrids Hy through Hi used for proof of Theorem 1.

The only change in the adversary’s view comes from 1(a). The switching lemma

2
(Lemma 1) gives us Pr[H§] < Pr[H]] 4 f&xge.
TRANSITION H} TO HZ. The transition to hybrid H2 is shown in Fig. 10. We have

highlighted the ways in which H3 differs from Hi. Our changes are the following.

1. In the ENCAP oracle, the table T has been added to record the responses to
the H queries made within ENCAP.

2. In the H oracle, an If block is added to check if the input tuple (a, Z) was
previously queried to H from within the ENCAP oracle. In essence, the If
block returns H(a, Z) when queried on a challenge ciphertext. The H oracle
would behave the same way without the If block, as in Hi.

Hence, Pr[H1] = Pr[HZ].
TRANSITION HZ TO H2.In game H?, we introduce the pairing oracle PAIR. It is
only used by oracles within the game; the adversary does not have direct access
to it. Note that PAIR(g, Z) = PAIR(g™,Y) iff Z = Y¥u.

In the H oracle, we switch the condition from checking T[mZ] # 1 to
evaluating the boolean j € I[u] A PAIR(g, Z) = PAIR(X,,Y) where (u,j) =
g (a),Y = g"®i), These two conditions are equivalent. Note that T[a, Z] # L

19

Hybrids Hi for0<KxK <2

b<«s{0,1}

i <—0

T() <8 Z;k; Xy < g”o

H s aECIES.IM //Hﬁu)

H s Fes(Dy, K) //H o0

q < Inj(Zyp, Zyp) //ngl,oc)

g < Inj(Da, {0, 1}"); h «<s Fes(D2, Z})

b/ s ANEW,ENCAPb ,DECcAP,H

Return b’ = b

ENCAPy(u)

te—1+1

Iu] « Iu] v {i}

au,i — g(u,1)

Yu,i < h(“v Z)

Yo« gVl

Zui < X"

Ki,i <~ H(au,ia Zu,i) //Hfo.‘z)
Ki,i — #(au,iv PAIR(g, Zu,i)) //Hfzv)
Kg,i s

T[au,ia Zu,i] = K}L,l

T[uy A,y Yu,z] <~ Kﬁ,z
Return ((@u,i, Yu,i), K2 ;)

NEW (u)

Return X,

H(a, Z)

(u,j) - gil(a) //H|21.Yt)

Yu,j < h(u,5); Yu; < g¥7 //H.|21Af/)

If Tla, Z] # L //H, o)

If j € I[u] APAIR(g, Z) = PAIR(X 4, Ya,5) //H{1)
Return T'[a, Z]

Return ?:l(a,Z) //Hfo‘g)

Return H(a, PAIR(g, Z)) //Hf27)

PAIR(X,Y) //Hflx) internal

z « dlog(X); y « dlog(Y)

Return g(zy)

DECAP(u,a,Y)

(0.9) — 97 (@)

Yu,j < h(um])

Hfu=vAjellulAY =g¥i
Return T'[u,a,Y]

Z « Y?*u

K « 7:‘(“» Z) //Hfoa)

K — H(a,PAIR(g, Z)) //H,)

Return K

Fig.10. Second set of hybrids HZ through HZ used for proof of Theorem 1.
Grey highlighting is used to show the difference between H} and HZ. Note that PAIR is
used internally by other oracles and is not directly accessible to .A.

means it was filled in an encapsulation query. Suppose this was the j-th query
and was to u. Then a = g(u, j) must hold, j would have been added to I[u], and

Z = X029 (so PaIR(g, Z) = PAIR(X,,Y)). Thus, Pr[H2] = Pr[H2].

TRANSITION H} TO H3(MAP-THEN-RF). In H3, the random function H is re-
placed by a random function H from Fcs(Dy,K) where D = {0,1}! x Z,,. We

replaced the function H as H(a,Z) =

H(a, PAIR(g, Z)). Then H is a random

function if # is, PAIR(g,.) is an injection. Hence, Pr[H?] = Pr[H3].

TRANSITION HZ To H}. Game HJ is shown in Fig. 11. We have highlighted the
ways in which H} differs from H3. In H}, the key K{ | is assigned the output of a

random function £ from Fecs(Dy, K), instead of sampling it at random. This does
not change the adversary’s view as a never repeats. Hence, Pr[H3] = Pr[H3].

TRANSITION H3 TO H3.In H3, the table T is no longer used. The change is in the
DECAP oracle where the If condition evaluates whether the bit b is 0. Note that

the DECAP oracle always returns K°.

When b = 0, it returns &(a, PAIR(g, Z))

20

Hybrids Hi for0< k<3
b<«s{0,1}

i <—0

T() s Z;; Xy < g”o
H s Fes(Dy, K)

& «sFes(D1,K)

q <sInj(Zy,Zy)

g <s Inj(D27 {0, 1}l)§

h s Fes(Da, Z¥)

bad < false //Hfgk)

b/ —s ANEW,ENCAPb,DECAP,H

NEW (u)
Return X,
H(a, Z)

(u,5) < g~ (a)
Yuj < h(u,j); Yu,; — g
If j € Iu] A PAIR(g, Z) = PAIR(X 4, Yu,;) //H{o 2
If PAIR(g, Z) = PAIR(Xu, Ya;) //HE,)
Return i“[a7 Z] //H:E(w)
bad « true //H:E&,E)
ABORT //H:E&‘)C)

Return ' = b Return #(a, PAIR(g, Z))
ENCAPy (u) PAIR(X,Y) //Internal
t—i+1 z «— dlog(X); y « dlog(Y)

Iu] < I[u] U {i} //Hfy) Return g(zy)

i = 9(w,) DEcap(u,a,Y)

w,i < h(u, , —
AR w) — 97 (@
Yus — 800 g = b,)
u, u Z «— qu

K} < H(au,i, PAIR(E, Zu,i))
Kg,i «— E(au,i, PAIR(g, Zu,i))
T[au’iv Zui] < Ki,i //Hﬁ),:a)
T, Gu,iy Ya,i] < 3,1‘ //H?o‘,l)
Return ((au,iYu,i),KZ,i)

fu=vAjellul AY =g¥ui //H]go,z)
fu=vAajellul AnY =gVui /\b=0//H:|31A2)
fu=vAY =glui /\b=0//H]32,m)

Return T[u,a,Y] //Hf().l)

Return &(a, PAIR(g, Z)) //Hf1,q;)
K — H(a, PAIR(g, Z))
Return K

Fig. 11. Third set of hybrids H3 through H3 used for proof of Theorem 1.

which is what was used to compute K° in ENCAP. The If condition evaluates to
false under two cases

1. (a,Y) is a challenge ciphertext and b = 1
2. (a,Y) is not a challenge ciphertext.

In both these cases, the DECAP oracle returns H(a, PAIR(g, Z)) which is the same
as K. Therefore, this modification does not change the view of the adversary
and Pr[H3] = Pr[H3].

TRANSITION H} TO H3.In H3 we change the If statements in the H and DECAP
oracles. In both places, we remove the check j € I[u]. H} and H3 differ only
under the following events:

1. The adversary makes a DECAP query for (u,a,Y’) such that (u,j) = g~ (a)
and Y = g"%J) but j ¢ ITu].

21

2. The adversary makes a H query for (a, Z) such that PAIR(g, Z) = PAIR(X,,Y)
and Y = gM®J) (where (u,j) = g~ '(a)) but j ¢ I[u].

To cause either of these events, the adversary must “guess” a point a in the
image of g other than the at most ggycap such points for which it was given the
corresponding ciphertexts by ENCAP. We analyze the probability of this event
in H} where the behaviors of DECAP and H can only depend on the values of
h(u,-) and g(u, -) for inputs in I[u]. Hence, A only learns about h(u,) and g(u, -)
through its queries to ENCAP. At some fixed point in time, let n denote the total
number of ENCAP queries that A has made so far and n, denote the number of
ENCAP queries it has made to user wu.

First consider a query DECAP(u, a,Y). For this to differ between the games it
must hold that a is in the image of g(u,). There are ggxcap total such values, of
which the adversary has already seen n,, from ENCAP. This is out of the 2! values
in the codomain, of which the adversary has already seen n from ENcAP. Thus
there is a (gExcar — 7u)/ (28 = 1) < (gExcar — N +1)/2! < 2qEncar/2! chance that
the adversary picks such an a. The adversary must additionally have guessed
the correct g"*7) | which it has an at most 1/(p — 1) chance of having done.

Now consider a query H(a, Z). For this to differ between the games it must
hold that a is in the image of g(-,-). There are |U| - grncap total such values,
of which the adversary has already seen n from ENCAP. This is out of the 2!
values in the codomain, of which the adversary has already seen n from ENCAP.
Thus there is a (U] - qexcar — 1)/(28 — n) < |[U| - qexcar/2' chance that the
adversary picks such an a. The adversary must additionally have guessed the

(u,5)

correct X0 which it has an at most 1 /(p — 1) chance of having done.

Applying a union bound over all DECAP and H queries gives the claimed
bound PT[H:{’] < PT[HS] + (2qEncarqDEcar + U/ - qENCAPqH)/(Ql (p—1)).

TRANSITION H3 TO H3. In H3, the table T is removed. The change is in the H
oracle, wherein if the adversary queries the H oracle with a challenge cipher-
text, the H oracle aborts. Using the fundamental lemma of game playing, this
probability is bounded as Pr[H3] < Pr[H3] + Pr[bad].

In H3, the adversary is unable to compute H(a, Z) for challenge ciphertexts
using the H oracle or the DECAP oracle. The DECAP oracle returns K} on all
challenge ciphertexts (which is the same value that was returned by the ENCAP
oracle) and the H oracle aborts on challenge ciphertexts. Therefore, the adver-
sary’s view in H3 is independent of the bit b. Hence, Pr[H3] < 1/2.

To bound Pr[bad], we construct an adversary B given in Fig. 12 against the
Pair CDH security of G. We claim that B perfectly simulates H3 for .A. Note
that the challenege ciphertext is computed using B’s challenge oracle, and the If
condition in the H has been replaced with a call to B’s PAIR oracle. Whenever
the flag bad is set, B outputs the corresponding (u, j, Z) and wins the Pair CDH
game. Therefore, Pr[bad] < AdV(Eth(B). =

22

Adversary BS&‘E’CH*‘L‘PAIR SIMENCAP; (u)

b s {0,1} i—it1

1< 0 X, < NEW(u)

H s Fes(Dy, K) au,i < g(u, i)

& «sFes(Dq,K) Yu,i < CHAL(u,)

g < Inj(D2,{0,1}}) w < PATR(Xy, Ya,i)

bad « false K, — H(a,w)

b/ <«—$ AO Kg,z <~ g(a7 w)

Return L Return ((au,iYu,i), K5.:)

SmMH(a, Z) SIMDECAP(u, a,Y)

(u,5) < g~ (a) (v,4) < g~ '(a)

Xy < NEW(u) Xu < NEW(u)

Yu,; < CHAL(w, j) Yu,j < CHAL(y, j)

If PATIR(X,, Ya,;) < PAIR(g, Z) fu=vAY=Y,; Ab=0
bad « true Return &(a, PAIR(X .y, Yu,;))
OUTPUT (u, 7, Z) K «— H(a, PAIR(Xy, Yy 5))

Return H(a, PAIR(g, Z)) Return K

Fig. 12. Adversary B for Theorem 1; O = {NEW, SIMENCAP;,, SIMDECAP, SIMH}.

4.2 Augmented Cramer-Shoup KEM

AUGMENTED VERSION. In this section we present a memory-tight reduction for
an augmented version of the Cramer-Shoup KEM [8]. The augmented Cramer-
Shoup key encapsulation mechanism aCS[G, K,] is parameterized by a group
G = (g,p,0), key space K, and length of the random string, I. The parameters
G, K, and [are constants for any instantiation of the Cramer-Shoup KEM and
hence, we override notation and use aCS and aCS[G, K,] interchangably. We let
aCS.IM = Fcs({0,1}! x G2,K) and define the scheme as follows.

aCS.K aCS.E"(ek) aCS.D*(dk, (a,Y))
€T s Z; m Z Y
ek —g* y s Z* K —H(a,Y,Z)
dk «— x Y gV Return K
Return (ek, dk) |Z — ekV

K —H(a,Y,Z)

Return ((a,Y), K)

OVERVIEW OF EXISTING TECHNIQUES AND ASSOCIATED CHALLENGES. A tra-
ditional security reduction for the Cramer-Shoup KEM from the Strong CDH
problem in the single-user, single-challenge setting would use [= 0 and the
lazy sampling technique to simulate H as a random oracle. The reduction would
maintain a table T to store H queries and corresponding responses. When the

23

adversary makes a decapsulation query on Y, the reduction would check the ta-
ble to see if an entry T[Y, Z] exists such that GAP(X,Y, Z) = true where X = g
is the public key. If the entry exists, it would return the corresponding value,
and if it does not exist, the reduction would sample a new uniformly random
element K from the key set K. The reduction would then store T'[Y,_] <« K and
return K. The second entry would be filed in the table 7" when the adversary
makes a hash query for (Y, Z) such that GAP(X,Y,Z) = true. The reduction
wins the Strong CDH game if it outputs a Z such that Z = g*¥, which it does
by waiting for the Cramer-Shoup adversary to query its hash oracle on inputs
(Y, Z) such that GAP(X,Y, Z) = true.

Like with ECIES, the random oracle simulation using PRF technique cannot
be used here as it is not possible for the reduction to simulate decapsulation
queries using the PRF. Bhattacharya avoided this issue using the map-then-
prf technique, defining H(Y, Z) so that when Z = Y% #(Y, Z) is computable
from ek,Y. This allows properly responding to decapsulation queries when the
reduction only has access to Y and cannot compute Z = Y.

This proof breaks in the multi-challenge setting because it is not clear how
to identify and respond to challenge ciphertexts without simply storing them all.
Once again, augmentation with a random string a allows encoding the informa-
tion needed to respond to queries appropriately. Our result is captured by the
following theorem. The proof of Theorem 2 is given in the full version [23].

Theorem 2 (Strong CDH = $CCA). Let G = (g,p,0) be a group of prime
order p. Let K and 1 be fized. Define aCS = aCS[G, K,1].

Let Dy = {0,1}! x G x G U {*} and Dy = U x [gexcar]. Let A be a mu-$cca
adversary with Query(A) = (qNsw, ¢Excar, (Drcar, qu) and assume 2! > 2quxcap-
We construct a (Fcs(Dy,K) x Inj(D2, {0, 1}"))-oracle adversary B such that

2
mu-$cca < scdh 9Encap 2qENCAP(2qDECAP + |u|) QH)
AdVaCS (A) X 2AdVG (B) + 21 + 2l(p — 1)
QuerY(B) = (qNEW7 (qENCAP + gDecar T QH)a QH)
Time*(B) = O(Time(A)) and Mem™(B) = O(Mem/(A)).

INTUITION. For this proof, we program the random string a as the output of a
random injection g applied to a user identity v and a counter ¢ and simulate
the random oracle H using the random function H(a(a,Y,Z)) where a is an
injection from {0, 1}! x G x G U {*} to {0,1}! x {0, 1} x G? that can be computed
with knowing Z when Z = Yk,

Our reduction adversary plays the Strong CDH game where it gets its chal-
lenge ciphertexts Y from the oracle CHAL(u,). To determine if a decapsulation
query (u,a,Y’) is for a challenge ciphertext, the reduction first inverts a to ob-
tain (v,7). If w = v, it queries CHAL(u, j) to obtain the ciphertext Y,, ;. Then
it can simply check if Y =Y, ;. Finally, when the adversary A queries the ora-
cle H with (a,Y, Z) such that g~'(a) = (u,j) and STRONG(u,Y, Z) = true and
Y = CHAL(u, j), the reduction outputs (u, j, Z) and wins the Strong CDH game.

24

5 Fujisaki-Okamoto Transformation

The Fujisaki-Okamoto [14, 15] transformations use a random oracle to construct
an IND-CCA secure KEM from a weakly (IND-CPA) secure PKE scheme. Bhat-
tacharyya presented memory-tight reductions for the modules analyzed in [21] in
the single-user, single-challenge setting [7]. In our work, we use the message en-
coding technique along with map-then-rf technique to prove memory-tight reduc-
tions for one version of the Fujisaki-Okamoto transformations in the multi-user,
multi-challenge setting. In the following subsections, we present the definitions
and memory-tight reductions for the transformations T,aV, and aU+.

5.1 Transformation T [IND-CPA — OW-PCA]

The transformation T constructs a deterministic OW-PCA secure public key en-
cryption scheme TKE = T[PKE] from an IND-CPA secure public key encryption
scheme PKE. We define TKE as follows with TKE.IM = Fcs(PKE.M, PKE.R) x
PKE.IM and TKE.M = PKE.M.

TKE.E®*M (ek,m) TKE.D**M'((ek, dk), c)
¢ — PKE.EM (ek, m; H(m))|m' — PKE.D™ (dk, c)
Return ¢ If m' = L or PKE.E® (ek,m/; H(m')) # ¢
Return L
Return m/

For key generation, TKE.K samples (ek, dk) <s PKE.K and outputs (ek, (ek, dk)).
Note that TKE is tidy, meaning that if m = TKE.DHXH/((ek,dk),c), then ¢ =
TKE.E®*M (ek,m).

We present a memory-tight reduction for T in the multi-user, multi-challenge
setting using the randomness programming technique. Our result is captured in
Theorem 3, whose proof is given in the full version [23].

Theorem 3 (IND-CPA = OW-PCA). Let TKE = T[PKE]. If PKE is o-
correct, then TKE is §'-correct for §'(q) = (¢ + 1)6(q). Let A be an adversary
against TKE with Query(A) = (¢New,qCuaL, ¢pco, gu). Assume PKE’s algo-
rithms make at most gpeke oracle queries and define ¢* = qu + qonan(gpke +
1) + gpco(2gpke + 1) + gpke. We construct an (Fes(PKE.M, PKE.R), Inj™ (U x
Z,PKE.M))-oracle adversary B such that

O'5q%HAL + |UHI|(QH + gpco + 1)

AdvTU PR (A) < AdVTEEP(B) + U] - 6 (¢*) + IPKE.M|

QuerY(B) = (qNEW7qCIIAL)
Time*(B) = O(Time(A))
Mem*(B) = O(Mem(A)).
The notion of CPA security we require is interesting in that the adversary’s
encryption queries are of the form (u,,m) where i is a “challenge identifier”

and if it exactly repeats a query (u,i,m) it is given back the ciphertext from the
earlier query.

25

INTUITION. For this proof, we program the random messages m to be the output
of a random injection g applied to user identifier v and counter i. Our reduction
adversary simulates the CHAL oracle for A by its own encryption oracle on
g(u,). If any message that A queries to its random oracle or outputs at the end
of execution is in the image of g, then out reduction assumes it is in the real
world and outputs 1. In the ideal world, the view of A is independent of g so we
can information theoretically bound the probability it finds such a message.

5.2 Transformation aV [OW-PCA — OW-PCVA]

The augmented transformation aV constructs a deterministic OW-PCVA secure
public key encryption scheme VKE = aV[TKE] from a deterministic OW-PCA
secure scheme TKE. The unaugmented V transformation was given (with a single-
user, single-challenge memory-tight reduction) in [7]. Our augmentation adds a
random string to the encryption key which is included with every hash function
query. We define VKE as follows with VKE.IM = Fcs({0, 1}! x TKE.M, {0,1}7) x
TKE.IM and VKE.M = TKE.M, where [and ~ are fixed.

VKE.E**H ((a, ek), m)|VKE.D"* " ((a, ek, dk), ¢)
¢, «— TKE.EM (ek,m) |(c1,¢2) « ¢

co < H(a,m) m' — TKE.D™ (dk, ¢;)
¢« (c1,c2) If m’ = L or H(a,m') # ¢y or TKE.E® (ek,m/) # ¢1
Return ¢ Return L

Return m/

For key generation, VKE.K samples a «<s {0,1}! and (ek, dk) <—s TKE.K, then
returns ((a, ek), (a, ek, dk)). Note that aV is tidy and if T is tidy and ¢’-correct,
then aV is §’-correct.

We present a memory-tight reduction for aV in the multi-user, multi-challenge
setting using the randomness programming technique. Our result is captured in
Theorem 4 whose proof is given in the full version of the paper [23].

Theorem 4 (OW-PCA = OW-PCVA). Let VKE = aV[TKE] and sup-
pose TKE is §'-correct. Let A be an adversary against VKE with Query(A) =
(qu, qcnaL, GpCo; qevo, qu)- Assume TKE’s algorithms make at most qrke ora-
cle queries and define ¢* = qrie(qu + qenar + 2gpco + 2qevo). We construct an
(Fes({0, 1} x TKE.M, {0,1}7), Fes(TKE.C, {0,1}7), Inj* (U4, {0, 1}))-oracle adver-
sary B against TKE such that

Advye™ P (A) < AdVIREPA(B) + 4l - 0'(¢*) + 051U /2" + gevo /2
Query(B) = (gxuw, gCuar; gPco, qH * 4TKE)
Time*(B) = O(Time(A)) and Mem™(B) = O(Mem/(A)).

5.3 Augmented Transformation aU' [OW-PCVA — $IND-CCA]
The transformation aUt constructs an IND-CCA secure key encapsulation mech-

anism aUEM = aU*[VKE] from a deterministic, OW-PCVA secure public key

26

encryption scheme VKE. We define aUEM as follows where aUEM.K = VKE.K
and aUEM.IM = Fcs({0, 1}! x VKE.M x VKE.C,K) x VKE.IM (K is an arbitrary
set used as the key set of aUEM).

aUEM.E"*M (k) [aUEM.D**™'(dk, (a,¢))
m «—s VKE.M m «— VKE.D™'(dk, c)

a s {0,1}! Ifm=1

¢ — VKE.EM (ek,m)| Return L

K < H(a,m,c) K «— H(a,m,c)

Return ((a,c¢), K) |Return K

The following theorem gives our security result.

Theorem 5 (OW-PCVA = CCA). Let aUEM = aU*[VKE] where VKE is
tidy and 0'-correct. Let A be an adversary against aUEM with Query(A) =
(gNEw, @Encar, @Drcar, qu). Assume VKE’s algorithms make at most quke oracle
queries and define ¢* = quke(2qu +qExcar +2qDecar)- Let Dy = {0, 1} x VKE.MuU
{x} x VKE.C and Dy = U x I,. We construct an (Inj*(Ds,{0,1}"), Fes(Dy, K),
Fes(D1, K))-oracle adversary B such that

Advien” (A) < 2Advye™ P2 (B) + 2| - 0" (¢*) + 6| - |Z]/2'
QuerY(B) = (qNEW7 (qENCAP + gDecar + QH)v qH, QDECAP)
Time*(B) = O(Time(A)) and Mem*(B) = O(Mem(A)).

INTUITION. This proof is very similar to the proof of Theorem 2. Once again, we
program the random string a to be the output of the injective function g(u, 1),
and the message m to be the ouput of the random function hA(u,i). We use
the map-then-rf technique to simulate the oracle H using the random function
H(a(a,m,¢)) where o is an injective function.

The reduction adversary gets challenge ciphertexts ¢ from the CHAL oracle.
To simulate the H oracle it uses the PCO oracle and to simulate the DECAP
oracle, it uses its CVO oracle. When the aUEM adversary queries the H oracle
with a tuple (a,m,c) such that PCO(u,m,c) = 1 and ¢ = CHAL(u,j) where
(u,7) = g~ '(a), the reduction outputs (u,j,m).

6 Memory-Tight Reduction for PKE Schemes

In this section, we provide a modified version of the TAM-tight security proof
from [17] to show the security of the KEM/DEM construction of public key
encryption. Thus, combining one of the KEMs studied in the rest of the paper
with an appropriate symmetric encryption scheme gives a PKE scheme with a
TAM-tight reduction in the multi-user, multi-challenge setting.

KEM/DEM ScHEME. Let SKE be a symmetric key encryption scheme and KEM
be a key encapsulation mechanism. Then the KEM/DEM encryption scheme
KD = KD[KEM, SKE] is defined as follows, with KD.IM = KEM.IM x SKE.IM.

27

KD[KEM, SKE].K |KD[KEM, SKE].E**™ (ek, m)|KD[KEM, SKE].D***'(dk, c)

(ek, dk) «s KEM.K|(cF, K) «<s KEM.E™ (ek) (cF,c?) —c
Return (ek,dk) |¢? s SKE.E® (K, m) K « KEM.D*(dk, c¥)
Return (c*, c?) If K = 1 then return L

Return SKE.D™' (K, ¢
The following theorem TAM-tightly proves the security of KD.

Theorem 6. Let SKE be a symmetric key encryption scheme, KEM be a e-
uniform key encapsulation mechanism, and KD = KD[SKE,KEM]. Let T' =
U < Uy pexen ex KEM.C(ek) x N, Let T = U x KEM.EK, Doy = [qenc] and
Riyery = KEM.C(ek). D{, &y = {0, 1}, and R, ., = {0,1}3F40. Let A
be a mu-$cca adversary against KD with Query(A) = (¢NgwsqExc, §Dic, GH)-
Then we can construct a (SKE.IM, Inji(T’,D’,R’))-omcle adversary Bkem and
(KEM.IM, Fes(U, KEM.R), Inj* (T, D, R))-oracle adversary against Bse such that

Advimh 5 (A) < 2AdVIES? (Brem) + AdvILES? (Bske) + qinc - €

1~5Q]%3Nc + 2¢EncGDrC Q%Nc + 2¢Drc
|KE|\/|.C| 2SKE.xI

The complexities of Bkem and Bske basically match those of A. Moreover, Bskg
makes at most one encryption query per user.

INSTANTIATING KD. This result proves the multi-challenge, multi-user security
of KD, but requires appropriate choices of KEM and SKE. Naturally, one could
choose any of the KEMs studied earlier in this work for the first component.®
For the symmetric encryption we need a scheme which achieves single-challenge,
multi-user security. We are not aware of any TAM-tight multi-user analysis of
symmetric encryption scheme, so one instead needs to pick a scheme whose multi-
user, single challenge security is sufficiently strong against memory-unbounded
adversaries. One reasonable option could be GCM with a random nonce. In the
ideal cipher model, Hoang, Tessaro, and Thiruvengadam [20] showed a strong
bound for this setting which is essentially independent of the number of users.

References

1. Michel Abdalla, Mihir Bellare, and Phillip Rogaway. DHIES: An encryption scheme
based on the Diffie-Hellman problem. Contributions to IEEE P1363a, September
1998.

2. Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman
assumptions and an analysis of DHIES. In David Naccache, editor, CT-RSA 2001,
volume 2020 of LNCS, pages 143—158. Springer, Heidelberg, April 2001.

3. Benedikt Auerbach, David Cash, Manuel Fersch, and Eike Kiltz. Memory-tight
reductions. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I,
volume 10401 of LNCS, pages 101-132. Springer, Heidelberg, August 2017.

5 For using the Fujisaki-Okamoto Transformation, which we proved CCA secure, note
that ‘Adv?Eﬁcca(BKEm) — Advien© (BKEM)| < @Enc * €.

28

10.

11.

12.

13.

14.

15.

16.

17.

Balthazar Bauer, Georg Fuchsbauer, and Julian Loss. A classification of com-
putational assumptions in the algebraic group model. In Daniele Micciancio and
Thomas Ristenpart, editors, CRYPTO 2020, Part 11, volume 12171 of LNCS, pages
121-151. Springer, Heidelberg, August 2020.

Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in
a multi-user setting: Security proofs and improvements. In Bart Preneel, editor,
EUROCRYPT 2000, volume 1807 of LNCS, pages 259-274. Springer, Heidelberg,
May 2000.

Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Serge Vaudenay, editor, FU-
ROCRYPT 2006, volume 4004 of LNCS, pages 409-426. Springer, Heidelberg,
May / June 2006.

Rishiraj Bhattacharyya. Memory-tight reductions for practical key encapsulation
mechanisms. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis
Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages 249-278. Springer,
Heidelberg, May 2020.

Ronald Cramer and Victor Shoup. Design and analysis of practical public-key
encryption schemes secure against adaptive chosen ciphertext attack. Cryptology
ePrint Archive, Report 2001/108, 2001. https://eprint.iacr.org/2001/108.

Wei Dai, Stefano Tessaro, and Xihu Zhang. Super-linear time-memory trade-offs for
symmetric encryption. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020,
Part II1, volume 12552 of LNCS, pages 335-365. Springer, Heidelberg, November
2020.

Denis Diemert, Kai Gellert, Tibor Jager, and Lin Lyu. Digital signatures with
memory-tight security in the multi-challenge setting. In Mehdi Tibouchi and Huax-
iong Wang, editors, ASTACRYPT 2021, Part IV, volume 13093 of LNCS, pages
403-433. Springer, Cham., December 2021.

Itai Dinur. On the streaming indistinguishability of a random permutation and a
random function. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part II, volume 12106 of LNCS, pages 433—460. Springer, Heidelberg, May 2020.
Itai Dinur. Tight time-space lower bounds for finding multiple collision pairs and
their applications. In Anne Canteaut and Yuval Ishai, editors, FUROCRYPT 2020,
Part I, volume 12105 of LNCS, pages 405-434. Springer, Heidelberg, May 2020.
Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33—62. Springer, Heidelberg,
August 2018.

Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. In Michael J. Wiener, editor, CRYPT 0’99, volume
1666 of LNCS, pages 537—-554. Springer, Heidelberg, August 1999.

Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. Journal of Cryptology, 26(1):80-101, January 2013.
Romain Gay, Dennis Hofheinz, Fike Kiltz, and Hoeteck Wee. Tightly CCA-secure
encryption without pairings. In Marc Fischlin and Jean-Sébastien Coron, editors,
EUROCRYPT 2016, Part I, volume 9665 of LNCS, pages 1-27. Springer, Heidel-
berg, May 2016.

Ashrujit Ghoshal, Riddhi Ghosal, Joseph Jaeger, and Stefano Tessaro. Hiding in
plain sight: Memory-tight proofs via randomness programming. In EUROCRYPT
2022, 2022. https://eprint.iacr.org/2021,/1409.

29

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Ashrujit Ghoshal, Joseph Jaeger, and Stefano Tessaro. The memory-tightness of
authenticated encryption. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part I, volume 12170 of LNCS, pages 127-156. Springer, Heidel-
berg, August 2020.

Ashrujit Ghoshal and Stefano Tessaro. On the memory-tightness of hashed El-
Gamal. In Anne Canteaut and Yuval Ishai, editors, FUROCRYPT 2020, Part II,
volume 12106 of LNCS, pages 33-62. Springer, Heidelberg, May 2020.

Viet Tung Hoang, Stefano Tessaro, and Aishwarya Thiruvengadam. The multi-user
security of GCM, revisited: Tight bounds for nonce randomization. In David Lie,
Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS
2018, pages 1429-1440. ACM Press, October 2018.

Dennis Hofheinz, Kathrin Hovelmanns, and Eike Kiltz. A modular analysis of
the Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin, editors,
TCC 2017, Part I, volume 10677 of LNCS, pages 341-371. Springer, Heidelberg,
November 2017.

Dennis Hofheinz and Tibor Jager. Tightly secure signatures and public-key encryp-
tion. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume
7417 of LNCS, pages 590—607. Springer, Heidelberg, August 2012.

Joseph Jaeger and Akshaya Kumar. Memory-tight multi-challenge security
of public-key encryption. Cryptology ePrint Archive (To Appear), 2022.
https://eprint.iacr.org/2022/.

Joseph Jaeger and Stefano Tessaro. Tight time-memory trade-offs for symmetric
encryption. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019,
Part I, volume 11476 of LNCS, pages 467-497. Springer, Heidelberg, May 2019.
Benoit Libert, Marc Joye, Moti Yung, and Thomas Peters. Concise multi-challenge
CCA-secure encryption and signatures with almost tight security. In Palash Sarkar
and Tetsu Iwata, editors, ASTACRYPT 201/, Part II, volume 8874 of LNCS, pages
1-21. Springer, Heidelberg, December 2014.

Ueli M. Maurer. Abstract models of computation in cryptography (invited paper).
In Nigel P. Smart, editor, 10th IMA International Conference on Cryptography and
Coding, volume 3796 of LNCS, pages 1-12. Springer, Heidelberg, December 2005.
Tatsuaki Okamoto and David Pointcheval. The gap-problems: A new class of
problems for the security of cryptographic schemes. In Kwangjo Kim, editor,
PKC 2001, volume 1992 of LNCS, pages 104-118. Springer, Heidelberg, February
2001.

Ido Shahaf, Or Ordentlich, and Gil Segev. An information-theoretic proof of the
streaming switching lemma for symmetric encryption. In 2020 IEEE International
Symposium on Information Theory (ISIT), pages 858-863, 2020.

Victor Shoup. Lower bounds for discrete logarithms and related problems. In
Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256—266.
Springer, Heidelberg, May 1997.

Stefano Tessaro and Aishwarya Thiruvengadam. Provable time-memory trade-offs:
Symmetric cryptography against memory-bounded adversaries. In Amos Beimel
and Stefan Dziembowski, editors, TCC 2018, Part I, volume 11239 of LNCS, pages
3-32. Springer, Heidelberg, November 2018.

Yuyu Wang, Takahiro Matsuda, Goichiro Hanaoka, and Keisuke Tanaka. Memory
lower bounds of reductions revisited. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 61-90. Springer,
Heidelberg, April / May 2018.

30

