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Abstract. We give a construction of an efficient one-out-of-many proof
system, in which a prover shows that he knows the pre-image for one
element in a set, based on the hardness of lattice problems. The con-
struction employs the recent zero-knowledge framework of Lyubashevsky
et al. (Crypto 2022) together with an improved, over prior lattice-based
one-out-of-many proofs, recursive procedure, and a novel rejection sam-
pling proof that allows to use the efficient bimodal rejection sampling
throughout the protocol.

Using these new primitives and techniques, we give instantiations of the
most compact lattice-based ring and group signatures schemes. The im-
provement in signature sizes over prior works ranges between 25% and
2X. Perhaps of even more significance, the size of the user public keys,
which need to be stored somewhere publicly accessible in order for ring
signatures to be meaningful, is reduced by factors ranging from 7X to
15X. In what could be of independent interest, we also provide notice-
ably improved proofs for integer relations which, together with one-out-
of-many proofs are key components of confidential payment systems.

Keywords: lattices, zero-knowledge, one-out-of-many proofs, ring signatures

1 Introduction

Zero-knowledge proofs are the cornerstone of privacy-enabling cryptography and
the ones based on lattice assumptions appear to currently be the most practical
potentially quantum-resistant variants. The fundamental hard problem upon
which lattice cryptography is based on is finding a vector § with a small norm
satisfying A5 = t mod p. Rapid recent progress in the area resulted in the proof
size for proving pre-image knowledge in this basic equation to be reduced from
being on the order of megabytes |[LNSW13| to as short as a dozen kilobytes
[YAZ"19, ESLL19, BLS19, [ALS20, [ENS20, LNS21al [LNP22].

A very useful extension of proving knowledge of a pre-image is proving knowl-
edge of a pre-image for one element in a set. That is, given a set {ﬂ, . ,fm}7 one
would like to prove knowledge of a short vector s such that As = ¢; mod p with-
out leaking any information about the § or the i. This type of a proof is related
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to concepts such as set membership proofs and one-out-of-many proofs [GK15| E|
These proofs have applications to ring signatures, group signatures, confiden-
tial transactions, anonymous credentials, and various other privacy-enhancing
cryptographic primitives.

In this work, we improve upon existing lattice-based one-out-of-many proofs
and, based on this new building block, construct the most efficient quantum-
safe ring and group signatures. Our improvement uses the high-level idea from
the recursive algorithm of [LNS21b], but using a different and simpler recursive
step which is made possible in part by being able to prove the base case using
the recent framework for zero-knowledge proofs [LNP22]. We also give a gen-
eral improvement to the rejection sampling step present in most lattice-based
zero-knowledge proofs. Specifically, we show that when using the zero-knowledge
framework from |[LNP22], which gives the most efficient linear-size proofs for
quadratic relations, one can use the more efficient bimodal rejection sampling
procedure [DDLL13| everywhere. In some cases, this requires an extra short
commitment, but in the case of the one-out-of-many proof given in the current
work, using the more efficient rejection sampling step comes completely for free
and noticeably reduces the proof size. We additionally show how to apply this
bimodal rejection technique, together with the framework from [LNP22], to cre-
ate more efficient proofs for integer relations such as addition and multiplication.
Like one-out-of-many proofs, proving integer relations is a component of confi-
dential transaction systems, and we believe that our improved tools can be used
to make such systems (e.g. [LNS21bl [ESZ21]) more efficient.

1.1 Results and Techniques

One-out-of-many proofs. The general equation for a lattice-based one-out-
of-m proof can be written as

TV = A§mod p (1)

where ¥ is an m-dimensional unit vector (i.e. a vector consisting of one 1 and the
rest zeroes) and § is a pre-image to the column in T chosen by the unit vector.
For our end application, we would like to prove that s has a small norm, but we
will give a proof system for slightly more general statements, as the generality is
useful in the recursive nature of the protocol. Given a commitment to a vector
v and §, we would like to be able to prove that ¢ and § satisfy 7 U is a unit
vector, and § additionally satisfies some arbitrary quadratic relations f;(3) = OE|
In applications to group and ring signatures, the dimension of § is quite small,
and so it is enough to only strive for proofs that are linear in the input size.

3 The original formal definition of a one-out-of-many proof from |GK15] is more re-
stricted in that AS§ is a commitment to O rather than just an evaluation of a one-way
function on §. But we do not need to restrict to this definition in this work.

4 Being able to prove quadratic relations, of course also allows one to prove that the
{2-norm of s is smaller than some bound.



Note that to keep the size of the proof linear, we still need it to be logarithmic
in m since a unit vector of dimension m only has entropy logm.

The proof of knowledge of follows the commit-and-prove paradigm. That
is, we commit to the secrets ¥ and s'and then prove that the committed messages
satisfy the requisite relations. Keeping the proof linear in logm is the main
technical challenge in building a one-out-of-many proof since one can’t simply
commit and open the naive m-dimensional representation of v. Instead, one can
write the unit vector ¥ as a tensor product of a logarithmic number of smaller
dimensional unit vectors, commit to these unit vectors, and then proceed to
recursively prove the relation.

We begin with the base case — proving the knowledge of a unit vector
7 € {0,1}¢ (we can think of d being a constant with respect to m) and a vec-
tor § satisfying T0' = AS where f;(§) = 0 for arbitrary quadratic functions f;.
The most efficient known proof for this statement directly follows from the re-
cent framework of [LNP22| where one commits to the vector ¢ and § using the
“ABDLOP” commitment scheme defined in that work (it is a combination of
the Ajtai [Ajt96] and BDLOP [BDL718| commitments — see (11)) and Section
and then proves that the committed values satisfy

T% = A3 mod p, (2)

and f;(8) =0, and |7 = 1E|

Now suppose, by the inductive hypothesis, that having a commitment to 5
and (some representation of) ¢ € {0, 1}, we are able to prove that they satisfy
the linear relation

T'# = A's mod p (3)

as well as the quadratic relations f;(§') = 0 and that ¥ is a unit vector. We will
now show how to prove the relation in (3 for an arbitrary unit vector in {0, 1}°".
First, observe that any unit vector in {0, 1}°™ can be written as @7 € {0, 1}°>™,
where @ and 9" are unit vectors in {0, 1}° and {0, 1}™, respectively. So by writing
an arbitrary 0-m-dimensional unit vector as 7®v", we would like to prove (when
having a commitment to ¥, ", §) that

T(T®1V') = A5 mod p, (4)
that f;(8) = 0, and that ¢, 7" are unit vectors. To prove , we will prove that
(@i, T(WQV) — AF) = Gmod p (5)

where ¢; for ¢+ = 1,...,[ are randomly-chosen challenge vectors in Z;. Proving

one such equation for a randomly-chosen ¢; would result in the proof having

soundness error p~ ', and so we would like to prove I such equations in order to

achieve the desired soundness error of p—".

5 This only proves that @ is either a unit vector or a negative unit vector. But this is
fine because proving knowledge of v, § satisfying +7Tv = AS is equivalent to .



To prove for one of [ different ¢;, we decompose the matrix T as T =
[Ty ... Ty] where T; € Zy*™, and observe that by algebraic manipulation, we
can rewrite

(B, T(T®V') — AS) = (7,;) — @, A§mod p, (6)
where ,
@i T
w; = -17’622. (7
@ T

Each of the [ different ; leads to an equation of the above form and the prover
thus commits to wh, ..., w, and then using the inductive hypothesis from , he
can show that

—

w1
=T ¥ modp (8)
Wy
where the matrix 7" is defined as
G
@1 Ty
T =| - |ez;>™ 9)
¢l
| F{ T |

The inductive hypothesis also allows him to prove that f;(5) = 0 and ad-
ditionally that (the quadratic functions) (¥,;» — g} A5 = 0. To see that the
inductive hypothesis is applicable to proving these statements, we define the
vector § in as

wy
, where @ = | --- (10)

Wy

—
S =

S w §)

and the matrix A" as [ 1| 0| 0], and thus 7%’ = A’ = . Since we assumed
to have commitments to ¥ and we created commitments to all parts of 5, we
can prove and the aforementioned quadratic relations involving §’ 0, and v.
The main point is that by additionally committing to @ and ¢/, we are able to
use the inductive hypothesis to prove relations where the unit vector is ? times
longer.

The commitment scheme used in [LNP22| allows to naturally commit to poly-
nomials in the ring R, = Z,[X]/(X¢ + 1) where, for optimal efficiency, d = 64
or 128. For efficiency of the protocol, we would then like to pack the [ commit-
ments to w; € Zz into just one vector Zg, which can then be represented by one
polynomial in R,,. We can do this in the trivial way as long as 0 - [ < d. Then to
compute inner products {7, 1;), we simply put the vector ¥ € {0, 1}° into a vector
Zg that contains ¢ at the top and has the rest of its coefficients set to 0. Then



(¥, ;) is the inner product of an appropriate shift of the vector containing the ¥
and the vector containing the ;. A downward shift of a committed vector in Zg
whose bottom coefficients are all 0 is simply a multiplication of the commitment
by the polynomial X in R,, which can be performed by the verifier.

Thus proving T+ (¥®%') = AS, where ¥®4%’ is a 0 -m dimensional unit vector,
requires the commitments needed for proving , an additional commitment
to ¥, and one more commitment to the ;. Since the base case requires one
commitment to ¥ (and a commitment to §), the total number of commitments
to elements in R,, for proving when ¥ is an m = 0¥ - d-dimensional unit vector
is 2k + 1 (and a commitments to §), which is logarithmic in m and linear in the
dimension of §. In particular, we write the unit vector ¥'in as " Q. . QULRUL11
where @1, ..., 0% € {0,1}° and @41 € {0,1}%. Then proving (I), that ¥; are unit
vectors, and f;(8) = 0 requires creating an ABDLOP commitment to the vectors
Ui, §, and then also creating a commitment to the above-described vector w; at
each step of the proof.

Bimodal Gaussian Rejection Sampling Everywhere. The framework of
[ILNP22] uses the newly-defined ABDLOP commitment scheme to commit to a
low-norm polynomial vector s; and an arbitrary-norm polynomial vector m. To
do this, one generates a low-norm randomness sy and outputs the commitment

N Y LS

Proving knowledge of s; and m is done using the “Fiat-Shamir with Aborts”
technique [Lyu09, Lyul2] where, upon generating low-norm masking vectors y;
and yo, computing w = Ajy; + Asys, and receiving a challenge polynomial c,
the prover creates the responses z; = y1 + ¢s; and z2 = y3 + ¢se which satisfy

Az + Aszy = ct 4 + w mod q. (12)

He now needs to perform rejection sampling on the z; in order to not leak
information about the s;. The generic setup from [Lyul2] that results in the
smallest-norm z; being sent involves y; being sampled from a discrete Gaussian
distribution while standard deviation is approximately a factor of 12 larger than
|csi||. With the appropriate rejection sampling step, this results in the polynomial
vectors z; also being distributed as discrete Gaussians with standard deviation
12 HCSiH-

It was shown in [DDLL13] that if one first chooses a secret bit b € {—1,1} and
creates z; = y; + bes; (which is a bimodal distribution with two peaks at +cs;),
then one can choose the y; from a discrete Gaussian distribution with standard
deviation |cs;|/v/2 and via appropriate rejection sampling, the standard devia-
tion of z; ends up being ||cs;|/v/2 as well, which is around 17X smaller than that

5 We use modulus g here instead of p in the previous section to signify that the
commitment scheme modulus need not be (and is usually not, though they could be
related) the same as the modulus that one wants to prove relations over.



in the previous paragraph. The outputs z; having a smaller standard deviation
means that the proof size will be noticeably smaller, the modulus ¢ can be set
smaller as well, which in turn results in a smaller commitment size. The main
technical difficulty with using the bimodal distribution is that the bit b needs to
remain secret and the z; need to satisfy the verification equation irrespec-
tive of the b, which implies that we need to have A1bs; + Asbsy = ct4 mod q.
This set-up exists in the special case of the BLISS signature scheme [DDLL13]
where the modulus is set to be even, and one can also force it by modifying the
equation being proved as in [TWZ20], but these techniques would extol a high
extra cost on the output size of the zero-knowledge proofs.

In our work, we show how one can use the bimodal rejection sampling tech-
nique for masking the secret vectors s; and s, in either completely for free,
or at a small increase in the commitment size. We note that using a rejection
sampling procedure that had similar properties as bimodal rejection sampling
was already employed in [LNS21a] on the randomness vector se. The rejection
step there allowed for a smaller standard deviation at the cost of leaking one bit
of s5. This leakage is not a problem because the commitment scheme from
(and the related commitment in [LNS21a]) is used inside a commit-and-prove
approach to constructing zero-knowledge proofs. In particular, when trying to
prove some relation (e.g. (1)), the prover commits to the secret values (5 and
U in the case of ) using the commitment in and proves relations about
s1 and m, which in turn implies the initial relation he set out to prove. The
important part is that the commitment scheme is only used once — if the prover
is to perform another proof, he will create another commitment with different
randomness so. Thus leaking a small part of the randomness ss is not a problem
as long as the Module-LWE problem upon which the hiding of the commitment
scheme is based on remains hard.

Our work improves on |[LNS21a] in two ways. First, we show that directly
using the bimodal rejection sampling on z, (despite z2 not being distributed ac-
cording to a bimodal distribution) only leaks a few more (i.e. log q) bits of so but
ends up saving a factor of 2 in the rejection sampling probability. Leaking log g
bits still keeps the entropy of sy very high. This problem has been investigated
both theoretically and in practice [AP12, |ASA16, DDGR20, BJRW21|, and it
does not seem that the LWE problem is weakened if a few bits of the random-
ness are leaked. The more interesting improvement is in also being able to use
the bimodal rejection sampling on z;. Here one cannot leak anything because
s1 is where the actual secret message is storedm The new idea is to create a
commitment to bsy, for a random b € {—1,1} instead of to s;. We can show that
creating such a commitment and then outputting z; = y; + cbs; after applying

" One might be tempted to put the secret message into the m part of the commitment,
which does not leak even if there is leakage in s2, but this results in a much less effi-
cient commitment scheme because the dimension of the commitment grows linearly
with the dimension of m, whereas s; has no effect on the size of the commitment.

See Section @



the bimodal rejection sampling does not leak anything about s; or b as long as
the commitment is only used once.

There is, however, an obvious problem with committing to bs; — the relation
that one may want to prove about the message committed to in s; may not hold
true when the messages are negated. There are two cases here — the simple case is
that what we would like to prove still holds true for the negated messages. In our
one-out-of-many proof, we commit to unit vectors v7,...,Ur11 and a low-norm
vector § such that 1 ®...®v,1 = ¥ such that is satisfied. Note that if we’re
tensoring an even number of ¥;, then ) ¥; = X) —7;, and also |7;]| =1 = | — T

3 K3

and |3 = B = | — 3| | Therefore proving (1)) as well as || = 1 and ||5] = 3 can
be done regardless of whether we committed to the positive or negative of these
values.

In the case that we would like to prove some relations on some secret vector
§ which are not sign-independent, we commit to a bit b€ {—1,1} in the m part
of the ABDLOP commitment and to § = b8, and then prove knowledge of a
vector § and a bit b € {—1,1} satisfying f;(bs") = 0. Very importantly, note
that f;(b3") is still a quadratic equation because all the quadratic terms in f;
remain the same (since multiplication by b € {—1, 1} does not change them), and
it is only the linear terms that get multiplied by b, thus becoming quadratic. We
then prove that if the bit b is chosen randomly in {—1,1}, then one can use the
bimodal rejection sampling on z; = y; + cbs; without leaking anything about
the secret s;.

Applications to Ring and Group Signatures. Being able to prove (/1)
immediately gives us a construction of a ring signature scheme. In particular,
every user has a secret /public key pair , #;, where ||8;| is small and A5; = £; mod
p. Given a matrix T whose columns are the public keys of a group of users, the
signature of user ¢ of a message p is a zero-knowledge proof of knowledge (with
i being used as an input into the random oracle of the Fiat-Shamir transform)
of a unit vector ¢’ and a short vector § satisfying . The full details are given in
the full version of the paper. In Figure[l] we compare an instantiation of our ring
signature with other known potentially quantum-safe ones. Once the group size
within which one wishes to hide is larger than a few hundred members, the size
of our signature is the smallest, even including the isogeny-based construction
of [BKP20]. Additionally, the size of the public key of our ring signatures can
be as small as 128 bytes per user, which is a significant reduction over all prior
lattice-based ring SignaturesEI Having small public keys is important because the

8 If we want to prove that ||5] < 8, then we could create another commitment to a
vector 5 € Ry such that ||5] 4 ||5"|* = 8% — the existence of such an § is guaranteed
by the four squares theorem.

9 Tt is of course possible to reduce the public key size of any scheme by hashing it as
pk’ = H(pk) for some cryptographic hash function H with the resulting pk’ being as
small as 32 bytes. This technique is fine for regular signatures, where one can reveal
pk as part of the signature; but ring signatures will require a zero-knowledge proof



sig. sizes |asymptotic hardness (user) public
for N: sig. size assumption key size
96 912 921
Raptor |[LAZ19| 81 5161 - O(N) NTRU 0.9
DualRing-LB [YEL'21]| 6 106 - O(N) MSIS, MLWE [2.8,3.4]
Falafl [BKP20| 32 35 39 | O(logN) MSIS, MLWE 1.9
MatRiCT [EZST19] |31 59 148 |O(log’” N)| MSIS, MLWE | [3.4,22.7]
MatRiCT+ [ESZ21] [11 18 40(?)|0(log"” N)| MSIS, MLWE 3
SMILE |[LNS21b| 18 19 22 | O(log N) | MSIS, E-MLWE 2
Calamari [BKP20| 8 14 23 | O(log N) CSIDH-512 0.06
This Work 13 14 16 | O(log N) MSIS, E-MLWE 0.13

Fig. 1: Comparison of the different post-quantum ring signature schemes with approx-
imately 128 bits of security. Sizes from previous constructions are either taken from
the corresponding prior work or from the recent survey by Buser et al. [BDE*22]. All
the values are given in KB. Here, N is the size of the ring. The signatures sizes for
|[ESZ21} [LNS21b| only approximately correspond to the ring sizes (e.g. 18KB signature
size is for the ring of 2'° users and not 2'?). For DualRing-LB and MatRiCT (and Ma-
tRiCT+) the public key size grows in the number of users. For MatRiCT+, the public
key size for the ring of size 1024 is provided. Further, we extrapolate the signature
size for MatRiCT+ with 22! users from the smaller examples and from MatRiCT. In
our construction, we rely on the Extended-MLWE problem introduced in Definition
Note that this is a different version of the E-MLWE problem compared to the one in
[LNS21a| which is used in SMILE [LNS21b| (see Section [3.1| for more details).

public keys of all users need to be stored somewhere accessible by everyone who
wishes to use the ring signature.

The reason for the significant reduction in the public key size over the pre-
vious lattice schemes is that we were able to adapt the new framework from
[ILNP22] as the base case of our recursive one-out-of-many proof. In prior ring
signatures (e.g. [EZS™'19, [ESZ21, [LNS21b]) the signer had knowledge of ¥ and
§ satisfying , but for efficiency would only prove knowledge of an 5 and an
additional low-norm polynomial ¢ with ||| » || satisfying T¥ = cA§ mod p
(where the right-hand side operations are over a polynomial ring R,.) Being
able to prove knowledge of a vector that has the exact norm of § and not have
an additional multiplication by ¢ allows us to use a much smaller modulus p,
which in turn also allows to reduce the number of rows in A. The public key size
can, in fact, be essentially as small as the outputs in the hash function SWIFFT
[LMPROS| [

that pk’ = H(pk), which will make the signatures orders of magnitude larger and
slower.

10 If we make p too small, then the signature size will increase because a smaller p
requires more “garbage terms” in the zero-knowledge proof to increase soundness.
In our parameter settings, we chose a particular compromise between the public key



One can construct group signatures in a somewhat similar manner as ring
signatures. A technique employed in [EZST19, [ESZ21] has the public key of
each member stored in the matrix 7', as in the ring signature, and the secret
key of user i are the ¢ and § from . The keys are generated by choosing a
small-norm random §; and then putting AS; = ¢; into the public matrix 7. To
sign, the group member does the same thing as in the ring signature (with an
additional encryption and proof required by the group signature). Our group
signature works in the same fashion except that the secret key / public key
pairs are generated by first generating t; = H (1), for some cryptographic hash
function H, and then using a trapdoor for the matrix A to generate a short s;
such that A5 = t;. The main advantage of generating the keys in this manner
is that the public key size no longer needs to be linear in the number of group
members, and can just consist of the matrix A (since everyone can now generate
T themselves). The disadvantage is that using a trap-door sampler to generate
3; results in ||5;|| being larger. But because our one-out-of many proof system can
prove exact norms, the proof size does not increase by too much. Using GPV-type
trapdoor sampling |[GPVO08| [DP16] along with an optimized NTRU trapdoor
[HHGP* 03| IDLP14] and the parameters used in the Falcon signature scheme
[FHK™ 20|, we give an instantiation (in the full version of the paper) of a lattice-
based group signature scheme with the smallest public key and signature sizes
(see Figure . The only exception when one would want to use a different scheme
is in the case that the group sizes are very large — in that case [LNPS21, LNP22)
has an advantage over all others in the table due to the fact that the running
time for signature generation and verification are independent of the group size,
rather than linear.

Other Applications. In addition to ring and group signatures, lattice-based
one-out-of-many proofs have recently found applications in the constructions of
confidential transaction protocols [EZST19| [LNS21bl [ESZ21]. These construc-
tions also used other primitives, notably proofs of addition that were used to
make sure that the amounts in the transactions match up. As a side contribu-
tion, in the full version of the paper, we also show how to use the new frame-
work of [LNP22] in conjunction with the bimodal rejection sampling technique
to construct more efficient proofs of integer addition and multiplication, which
improve upon the constructions from [LNS20} [ESZ21] that are used in the afore-
mentioned instantiations. We believe that the improved one-out-of-many proof
and proof of addition from this paper should noticeably shorten the confidential
transaction proof sizes. We leave the integration of these tools as well as the full
implementation of the confidential transaction system to future work.

Acknowledgements. We would like to thank the anonymous reviewers for useful
feedback. This work was conducted when the second author was at IBM Research
Europe, and it was supported by the EU H2020 ERC Project 101002845 PLAZA.

size and signature size, but one could make the public key size even smaller at the
expense of a few extra kilobytes in the signature size.



signature sizes | asymptotic | anonymity | master public
for N: sig. size key size
96 9lo 921
[ [LNPS21,[LNP22] [90 90 90 o(1) CPA 48
[BDK™21|[Lattice] | 89 91 96 O(log N) CCA 29-(N+1)
MatRiCT [EZST19] | 34 60 148 | O(log™" N) CPA [3.8,24] - N
MatRiCT+ [ESZ21] | 12 19 45(?) | O(log™" N) CPA 3-N
[BDK ™" 21|[Isogeny] | 6.6 9.0 15.5 | O(logN) CCA 0.06- (N + 1)
| This Work 17 18 20 | O(logN) CPA 3.2

Fig. 2: Comparison of different post-quantum group signature with approximately
128 bits of security. All the values are given in KB. Here, N denotes the size of the
group. We note that the schemes from |[LNPS21} [LNP22| not only do offer constant
size signatures but also enjoy signing and verification complexity independent of the
group size N which is not the case for all the other works (including ours). Further, the
constructions in [BDK™21} [EZS™19, |[ESZ21] are dynamic which results in the linear
public key size in the number of users N. For MatRiCT+, the public key size for
the group of size 1024 is provided. Since the signature size for MatRiCT+ was not
explicitly provided for group size 22!, we set the value to be three times smaller than
for MatRiCT which seems to be the case for smaller examples. Finally, we remark
that our scheme can achieve CCA anonymity by following the Naor-Yung paradigm
INY90|, i.e. encrypting the same message under two different public keys and adding
a NIZK proof that both ciphertext encrypt the same message. We estimate that with
this modification our group signature sizes will be around 30KB.

2 Preliminaries

2.1 Notation

Denote Zj, to be the ring of integers modulo p. Let ¢ = ¢1 - ... - ¢, be a product
of n odd primes where ¢; < ¢2 < ... < @,. Usually, we pick n =1 orn = 2. In
this paper we pick each ¢; =5 (mod 8). We write ¢ € Zq' to denote vectors over
a ring Z,. Matrices over Z, will be written as regular capital letters. By default,
all vectors are column vectors. For simplicity, we denote @2 = @ o . We write
x «— S when z € S is sampled uniformly at random from the finite set S and
similarly x < D when z is sampled according to the distribution D. Further,
denote [n] :={1,...,n}.

2.2 Cyclotomic Rings

For a power of two d and a positive integer p, denote R and R, respectively
to be the rings Z[X]/(X¢ + 1) and Z,[X]/(X? + 1). Lower-case letters denote
elements in R or R, and bold lower-case (resp. upper-case) letters represent
column vectors (resp. matrices) with coefficients in R or R,,. For a polynomial
f eR,, denote fe Zg to be the coefficient vector of f. By default, we write its
i-th coefficient as its corresponding regular font letter subscript i, e.g. fq/2 € Z,,

10



is the coefficient corresponding to X%?2 of f e Rp. For the constant coefficient,
however, we will denote f = fo € Zy.

The ring R has a group of automorphisms Aut(R) that is isomorphic to ZJ,.
Let 0; € Aut(R,) be defined by o;(X) = X'. For readability, we denote for an
arbitrary vector m € RF:

oi(m) := (o5(m1),...,0i(my))

and similarly o;(R) for any matrix R. When we write (u,v) € Z for u,v € R¥,
we mean the inner product of their corresponding coefficient vectors.

We recall the result by Lyubashevsky et al. [LNP22] which says that for
specific primes p, if ¢ € R, satisfies 0_1(¢c) = ¢ and ¢ is non-zero then c is
invertible over R,,.

Lemma 1 ([LNP22]). Let p=5 (mod 8) be a prime. Then all non-zero c €
R, satisfying o_1(c) = ¢ are invertible.

In this paper, we will only be interested in the ¢ := o_; automorphism. The
main reason is the following observation.

Lemma 2 ([LNP22|). Letu,v € RE. Then, the constant coefficient of o(u)’v
is equal to {u,v).

Thus, one reduces inner product arguments (u,v) = a to proving that o(u)?v —

a € R, has a vanishing constant coeflicient.
We introduce the following notation:

(x)y = (z,0(x)) € Rg for x € Ry.

Similarly, for a vector x = (z1,...,2y), define (x)s = ((x1)0, . .., {Tn)s) € RZ".
We will use the following simple properties.

Lemma 3. For any x,y € Ry and any c € Ry such that o(c) =c:

& y)e =<0 [ {¥)s and (x+cy)s = (X5 + ¥)o-
Next, we recall the definition of the discrete Gaussian distribution over R.

Definition 1. The discrete Gaussian distribution on R¢ centered around v € R*
with standard deviation s > 0 is given by

o~ lz—v[? /25>

Syenr ¢ PR

When it is centered around 0 € R® we write D = Dg’g,

Dé,s (Z) =

We will use the standard tail bound result from [Ban93| Lemma 1.5(i)].

42 md
Lemma 4. Let z — D]*. Then Pr [HZH >t 'sx/md] < (telT) .
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2.3 Module-SIS and Module-LWE Problems

Security of the [BDL™18] commitment scheme used in our protocols relies on
the well-known computational lattice problems, namely Module-LWE (MLWE)
and Module-SIS (MSIS) |LS15]. Both problems are defined over R,,.

Definition 2 (MSIS, ,,, 5). Given A « Ry*™, the Module-SIS problem with
parameters k,m >0 and 0 < B < q asks to find z € Ry such that Az = 0 over

Ry and 0 < |z| < B. An algorithm A is said to have advantage € in solving
MSIS,. .5 if

Pr[0<|z|e <B A Az=0’AeRgxm;zeA(A)]>e.

Definition 3 (MLWE,, » ). The Module-LWE problem with parameters m, X >
0 and an error distribution x over R asks the adversary A to distinguish between
the following two cases: 1) (A, As + e) for A — RZ”’\, a secret vector s «— x*
and error vector e «— x™, and 2) (A,b) «— R;n”‘ x Ry'. Then, A is said to
have advantage € in solving MLWE,, »  if

Prb=1]A < RN s Y e x™ b AA As+e)] (1)
—Pr[b=1]A <R bRl b— AAb)]| >

2.4 Rejection Sampling

In lattice-based zero-knowledge proofs, the prover will want to output a vector z
whose distribution should be independent of a secret message /randomness vector
r, so that z cannot be used to gain any information on the prover’s secret. During
the protocol, the prover computes z = y + cr where r is either a secret vector
or randomness used to commit to the prover’s secret, ¢ < C is a challenge
polynomial, and y is a “masking” vector. In order to remove the dependency
of z on r, one applies rejection sampling. We summarise the two most common
techniques for rejection sampling described in [Lyul2, [DDLL13].

Lemma 5 (Rejection Sampling |[Lyul2, DDLL13]). Let V < R’ be a
set of polynomials with norm at most T and p: V. — [0,1] be a probability

distribution. Fiz the standard deviation s = vT. Then, the following statements
hold.

1. Let M = exp(14/y + 1/(2v%)). Now, sample v <« p and 'y < D, set z =
y + v, and run b — Rej,(z,v,s) as defined in Fig. @ Then, the probability
that b = 0 is at least (1—27128) /M and the distribution of (v, z), conditioned
on b = 0, is within statistical distance of 27128 of the product distribution
p x D

2. Let M = exp(1/(2v?%)). Now, sample v < p, 3 < {0,1} and y « D%, set
z =y + (—1)%v, and run b < Rej,(z,v,s) as defined in Fig. @ Then,
the probability that b = 0 is equal to 1/M and the distribution of (v,z),
conditioned on b = 0, is identical to the product distribution p x DE.

12



Rejl(gv 675) RejQ(gv 675)

01 u«[0,1) 01 u«[0,1)

02 Tfu> L -exp (%%W) 02 If u > Mexp(_%l) (D)
03 return 1 (i.e. reject) 03  return 1 (i.e.Z:’eject) ’
04 Else 04 Else

05 return 0 (i.e. accept) 05  return 0 (i.e. accept)

Fig. 3: Two rejection sampling algorithms: the one used generally in previous works
[Lyul2| (left) and the bimodal Gaussian one [DDLL13| (right).

2.5 Challenge Space

We recall the specific challenge space used in [LNP22]. Namely, we fix n > 0 and
a power-of-two k£ and set the challenge space C as:

C:= {ce Seio_1(c) =cn Rk < 77}~ (14)

Roughly speaking, the first condition, i.e. o_1(¢) = ¢, is needed to prove quadratic
equations in the committed messages which might additionally involve automor-
phisms, e.g. mims = o_1(m3) where mq,ms, m3 are the secret messages. On
the other hand, the second condition allows us to use [LNP22, Lemma 2.15] and
deduce that if ||r|| < o and ¢ € C then |cr| < na.

Further, we denote C := {c — ¢ : ¢,¢ € C and ¢ # ¢’} to be the set of differ-
ences of any two distinct elements in C. We will choose the constant 7 such that
(experimentally) the probability for ¢ < S, to satisfy X/[c2¥||; < 7 is at least
99%.

For security of our protocols, we need the invertibility property of the chal-
lenge space C, i.e. the difference of any two distinct elements of C is invertible
over Rq. To this end, we apply Lemma |1| and thus we only need the condition
Kk < q1/2. Secondly, to achieve negligible soundness error, we will need |C| to be
exponentially large. In Table [l we propose example parameters to instantiate
the challenge space C.

d K n €|
64 8 140 2129
128 2 59 Q47

Fig. 4: Example parameters to instantiate the challenge space C := {c € Sk : 0_1(c) =
¢~ Z/||c**]|1 < n} for a modulus g such that its smallest prime divisor ¢i is greater
than 16. In our examples we picked k£ = 32.

2.6 ABDLOP Commitment

We recall the ABDLOP commitment scheme defined in [LNP22], which is a gen-
eralisation of the Ajtai [Ajt96] and BDLOP [BDL™ 18] constructions. Concretely,
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to commit to a message vector s; € Ry" with small coefficients as well as a “full-
fledged” polynomial vector m € Rg, we sample a randomness vector sg «— ™2,
where ) is a probability distribution over R, and compute:

)< 31 (31

where Ay « Rp*™, Ay <« Ry™™M2, B « Rgme. We observe that when ¢ = 0
(resp. my = 0) then this construction ends up being the Ajtai (resp. BDLOP)
commitment scheme. In particular, the commitment size does not depend on
the length m; of s; (but it does on £). Hence, our strategy is to commit to long
vectors with small coefficients in the “Ajtai” part s; and commit to a few garbage
polynomials used for the proofs in the “BDLOP” part m.

An opening of the commitment is a triple (s, m, S2)E As usual in lattice-
based cryptography, we also consider relaxed openings of a commitment which
are defined as follows.

Definition 4. A relazed opening of the ABDLOP commitment (ta,tg) is a tuple
(s1,m,sq, c) which satisfies:

Aisy +Agso =ty

Asso +m=tp

ceC as defined in Section

lesi]| < Br  and  |csa|| < Bs.

As shown in [LNP22, Lemma 3.1], the ABDLOP commitment is binding with
respect to relaxed openings under the Module-SIS assumption.

Lemma 6 ([LNP22]). The ABDLOP commitment is computationally binding
with respect to relazed openings under the MSIS,, n, +m, B assumption where

B :=4n+/B? + B3.
The hiding property of the ABDLOP commitment scheme follows from the fact

that under the Module-LWE assumption that [AB2] so looks pseudorandom.

2.7 Framework for Proving Lattice Statements

The recently proposed framework by Lyubashevsky et al. [LNP22] can be used
to prove various relations in the committed messages. Concretely, one can prove
knowledge of the secret messages (s1, m) € R ¢ which satisfy all the following
conditions:

1. Quadratic relations over R, with automorphisms. For ¢ € [N] and public

triples (Ri2,Ti1,7i0) € Ri(mﬁe)“(mﬁe) X Rg(mﬁl)

X R4, we have:
(s1 || MR 2¢sy || m)g + 1] (s1 | M)y + 150 = 0. (15)

11 Message m does not need to be included in the opening since it can be determinis-
tically computed from tp and ss.
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2. Quadratic relations over Z, with automorphisms. For i € [M] and public

triples (R ,, 1) 1,7 ) € Rg "t FOX2mrt) s 2ltmitt o Ry

const. coeff. of (s1 || m)ER] ,{s1 || m), +1}" (s || m),+7}  equals 0. (16)

3. Shortness in the infinity norm. For public Ps € Ry *™ P, € Rgbi"Xf and
f e Ry, the following polynomial vector has binary coefficients

P.s; + P,,m + f e {0,1}™n %, (17)

4. Shortness in the Euclidean norm. For i € [Z], public bound B; < /g and
E e Rpom ER) e R and v € R, we have:
IEWs; + EOm + v | < B;.

This is equivalent to additionally proving knowledge of the binary polynomial
¥; € R such that

) . 12
{pow(B?),0;) = B} — HES)Sl +EVm + v over Z (18)

where pow(n) := ZU:%"J(QXY € R for n <2471

?

3 Shorter Proofs via Bimodal Gaussians

In order to provide zero-knowledge (or more precisely, simulatability) for proving
relations in the ABDLOP committed messages (s1, m) under the randomness sq,
one applies the rejection sampling technique. In the original protocols presented
in [LNP22|, the standard rejection sampling [Lyul2] is used for s; and the more
recent one [LNS21a] for so. In this section we describe how one can apply bimodal
Gaussian rejection sampling [DDLL13] on both the message and randomness
which significantly reduces the standard deviations, and consequently the proof
size, compared to [LNP22].

3.1 Bimodal Gaussian Rejection Sampling on the Randomness

In our constructions, we apply a rejection sampling procedure to mask a secret
vector ¥ by first sampling ¢ from a discrete Gaussian with standard deviation s,
and then computing 7 := ¥+ §. By Lemmal[f] if we additionally run Rej, (%, 7, s),
then the distribution of Z'is indistinguishable to the one where we simply sample
Z from a discrete Gaussian and output Z with certain (known) probability. Here,
it is important that one could generate 2’ without having any information on .

Now, suppose that instead of Rej;, we run Rej, which is used for bimodal
Gaussian rejection sampling [DDLL13|. It is now a natural question to ask
whether there is a way to simulate the Z' by having as little information on
U as possible. We answer this question positively and show that this distribution
is simulatable given only the inner product {(Z,¥) of Z and . We summarise our
observation with the following lemma.
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Lemma 7. Let v € Z™ be a vector of norm T. Fixz s = ~T and M = exp 2%2)

Then the distributions of the outputs of A(T) and F(¥) defined in Figure @ are
identical. Moreover, the probability that A outputs something is exactly 1/M.

A(®) F (@)
01 ¢« D" 01 ¢« D
02 Z:=¢§+7 02 (24, 2-) := (sign((y, D)) - ¥, —sign({¥, D)) - ¥)
of5) g e )
03 output (Z,¥) with prob. W p:= I LK
04 Fim Z4 with prob. p

Z_ with prob. 1 —p

05 output (Z,¥) with prob. 77

Fig. 5: Algorithms A and F for Lemma E We define sign(z) = 1 if x = 0 and —1
otherwise.

Proof. Fix €V and Z'€ Z™ and let

exp 2<5z*év>>
p = — .
exp (X52) +1

By definition of A, A(7, 2) is equal to

72 ) 9 ( 2<z“n7>>
2 m [ 2 eXp 52 m (2 2p
o =D = D2 5;

R
P e (@) T e (E0) ) T

Now, we focus on F (7). We see that by construction, (Zy, %) = 0 and {(Z_, ) <
0. Let us consider three separate cases. First, suppose Z satisfies (Z,7) > 0.
Informally, we want to compute the probability that ¢ = +z and F picks Z,.

Then,
exp (2<f2j>> 1 2p
F(U,2) =2D]"(2) - —————~*+— - — = D'(2) - —.
: exp <72<§§v>) +1 M ’ M

Further, suppose {(Z, ¢y < 0. Informally, we compute the probability that § = +2
and F picks z_. Then,

1 1 2p
exp (77225’@) +1 M

Finally, assume (Z, ¢y = 0 and thus p = 1/2. Then, F(¢, Z) is simply the proba-
bility that (§ = Z A F outputs ) or (§f = —Z A F outputs Z_). Hence,
U | 1 o1 o
F(v,7) = D; (@'m‘FDs (‘@'m:Ds (Z)'M:Ds (Z)'M'

F(0,2) = 2D"(2) -
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Therefore, we proved that for every z, A(v, 2) = F (¥, 2).
Finally, the second part of the statement follows from a simple observation
that F outputs something with probability exactly 1/M. o

Extended-MLWE Revisited. We observe that the only information about ¥
needed in order to run the simulator F in the security proof is the value of (¥, ¥).
Hence, we reduce the simulatability property of our protocols to the hardness of
the so-called Extended-MLWE. Here, as usual, an adversary needs to distinguish
between the tuples (B,Bs) and (B, u), where u is a uniformly random vector
but this time it is also given a “hint” of the form (c,y,{cs,y)) where ¢ and y
are sampled from some known distributions. For simplicity, we will describe the
problem in a “knapsack” form.

Definition 5 (Extended-MLWE). The Extended-MLWE problem with param-
eters n,m and distribution x,&., &, over R asks the adversary A to distin-
guish between the two cases: 1) (B, Bs, ¢,y,{cs,y)) and 2) (B,u,c¢,y,{cs,y)) for
B R;nx(mrm), a secret vector s < X"t uniformly random vector u € Ry

and (¢,y) <« &% 5;“”". Then, A is said to have advantage € in solving Extended-
MLWEnva(vgc:fy Zf

[Pr(b= 1B — RPX0Hmi s o s () — € x 77 b - AB,Bs, ey, (cs,y)]

_Pr [b _1 ' B Ry s I (0,y) € x €51 RZ"%” >e.

b— AB,u,c,y,{(cs,y))

We say that Extended-MIWE,, 1, v ¢. ¢, 5 hard if for all PPT adversaries A, the
advantage in solving Extended-MLWE,, . y ¢. ¢, 15 negligible.

We note that the (Module-)LWE problem with various side information has al-
ready been discussed in prior work e.g. [DGK™10,|AP12, DDGR20|. As far as we
are aware, this new variant of MLWE is the closest to the Extended Module-LWE
problems defined by Lyubashevsky et al. [LNS21a], Alperin-Sheriff and Apon
[ASA16], Alperin-Sheriff and Peikert [AP12] and Boudgoust et al. [BJRW21].

We observe that [ASA16| describes a similar problem with the two differences:
(i) there is no ¢ involved (assume that ¢ = 1) and (ii) the hint is an arbitrary
Q-linear function on the “error” part e of the secret s (in particular it could be
(e,y) € Z where y < &). Alperin-Sheriff and Apon show that their Extended-
MLWE problem can be reduced to plain MLWE if the errors come from a discrete
Gaussian with a large enough standard deviation. The proof strategy was later
extended by Boudgoust et al. [BJRW21] who define another Extended-MLWE
problem. This time, however, the hint becomes a whole polynomial {e,y) € R.
Finally, the only difference between our problem and the one in [LNS21a] is that
the adversary is given the whole inner product {cs,y) instead of its sign.

If we consider our Extended-MLWE without any polynomial ring structure,
then the problem becomes almost identical to the one introduced by Alperin-
Sheriff and Peikert [AP12] (if we again assume ¢ = 1). The authors additionally
show that it is possible to reduce such a problem to plain LWE with the reduction

loss O([{5, )|).
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Applications. As an example, we show how to use the new rejection sampling
strategy in the protocol for proving linear equations in the committed messages
|[LNP22][Section 3], however this approach can also be applied in all the protocols
from |[LNP22|. Let (t4,tp) be the ABDLOP commitment to the message pair
(s1,m) € Ry x Rf; under randomness so, i.e.

tal  [A1 A,y 0
ol =5[] o) a
Suppose the prover wants to prove knowledge of the message (s1, m) such that

Risi +R,ym=u

where R4 € Révxml,Rm € Rf]vxe and u e Rflv.

We present the commit-and-prove protocol in Figure [6] for proving linear
relations. The only difference between this protocol and [LNP22, Fig. 4] is that
for zo we apply the new rejection sampling algorithm described above.

Private information: (s1,m,s2) € Ry T2 5o that [s1] < a and [s2]e < v

Public information: A; € Ry*™ Ay € Ry*™,B € R$Xm27 R € ’Révxml,
N xt

RneRy ™,

ta| _ |As Ao 0 _

[tB] = [ 0 ] -81 + [B] -S89 + [m],ules1+Rmm
Prover Verifier
y1 < Dt y2 «— D2

w = A1y1 + Agys
v:=R1y1 — R»By2

W,V
%y
c—C
c
D
fori=1,2:
Z; = CS; +Yi

if Reji(zi,csi,si) =1
then z1,z92 := L
Z1,Z2

Accept iff:

L 21| < s1/2ma, |22 < s2v/2ms
2. A1z + Agzo —ctg =w
3. R1Z1 + R’m(CtB — BZQ) —cu=V

Fig. 6: Proof of knowledge Y ((s2,81,m), (f1, fo, ..., fn)) of (s1,82,¢) € Rt x
Ry? x C satisfying (1) Ais1 + Agse = ta, Bsa + m = tp (ii) [|si¢]| < 2s44/2md for
i=1,2 and (iii) Ris: + R,ym = u. Functions Rej, are defined in Fig.
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3.2 Bimodal Gaussian Rejection Sampling on the Message

This subsection focuses on applying bimodal Gaussian rejection sampling on
the message vector s;. First of all, we cannot apply Lemma [7] since it would
potentially leak certain information about the message s; which, unlike so, is
not freshly sampled every time a new proof is generated. Instead, we follow the
original methodology from [DDLL13].

Concretely, let us focus on the protocol in Fig. [f] If one were to naively
apply bimodal rejection sampling on cs; then the masked opening of cs; would
become:

Z1 :=y1 + besy where b «— {—1,1}.

As before, we set zo := yo + cso. Hence, if we keep w := A1y + Aoy then by
construction:
Az + Aszy = w + C(A1b81 + AQSQ) .

Note that A;bs; + Asgss is a top part of the ABDLOP commitment to (bs;, m)
under randomness so. Thus, it is a natural approach to simply commit to (bs;, m)
and prove the quadratic equation. However, this comes with a big obstacle, i.e.
we still need to prove the underlying relation in s1, m even though we committed
to bs; and m. It might cause a problem even in the simple case of linear relations.
Indeed, initially we want to prove that Ris; + R,,m = u. Since we committed
to bs; and not si, it makes sense to try and prove the equivalent statement:

Ri(bs1) + Ry (bm) = bu. (20)

This suggests that we should also commit to bm and not m. However, it does
not solve the issue completely since vector u is still multiplied by a (secret) sign
b. Hence, the intuitive solution would be to also commit to b in the ABDLOP
commitment, prove b € {—1,1} and the linear relation in bs;,bm and b.
Therefore, the cost of such an approach is at least committing to an extra poly-
nomial.

We show that for certain types of statements we can circumvent committing
to b and still apply bimodal Gaussian rejection sampling. Namely, we focus on
sign-invariant relations.

Definition 6. Let R € {0,1}* x R™*¢ be a binary relation. We say that R is
sign-invariant if for every pair (u, w) we have: R(u,w) =1 <= R(u,—w) = 1.

Suppose we want to prove knowledge of (s;,m) € RZ“M such that (u, (s1,m)) €
R where R is a sign-invariant relation. Then, we can sample a fresh sign b «—
{—1,1} and commit to (bs1,bm) using the ABDLOP commitment. Further, we
simply prove that R(u, (bsi,bm)) = 1 which implies that R(u, (s;,m)) = 1.

Concrete instantiation. We demonstrate our intuition with the following ex-
ample. Namely, we want to prove knowledge of (s1, m) which satisfies:

o(s1)Ts; + o(m)"m = 0.
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Clearly, (bs1,bm) satisfies the relation above for b € {—1,1}. As described before,
we first sample a sign b <« {—1, 1}, randomness vector sy < x and compute

- ] efa)

Then, we simply follow the multiplicative proof from |[LNP22| Section 4] to prove
that
o(bs1)T (bsy) + o(bm)” (bm) = 0.

Concretly, consider the masked opening z, := y1 + besy of s;. Note that

o(z1) 21 = Po(bs1)" (bs1) + ¢ (o(y1)" (bs) + yi o(bs)) + o(y1) y1
and hence the coefficient corresponding to the quadratic term c? is what we are
interested in. Here, we used the property of the challenge space C that ¢ = o(c)
for ¢ € C. We cannot do the same argument with bm since no masked opening
of bm was sent. However, we observe that the verifier can compute tg — Bzy =
—By3 + ¢(bm) which is of the similar form as the masked opening of bs;. Then

U(tB—BZQ)T(tB — BZQ)

= CQ(bm)T(bm) —c (U(Byg)T(bm) + (Byg)TU(bm)) + O'(BYQ)TBYQ.
Therefore, we want to prove that the term in front of ¢? in the following expres-
sion disappears, i.e

U(Zl)Tzl + O'(tB — BZQ)T(tB — BZ2) =cg1 + go

where

1= olv2)" () + yT o) — o (By)” (m) — (Byo)Tolom)
90 := o(y1)"y1 + 0(By2)" Bya.

The idea is then to additionally send a commitment ¢ = b”sy + g1 to g1 and
send
vi=go+ b ys =0o(y1)"y1 + 0(By2)"By: + by, (23)

in the clear. Then, the verifier can check that:
v < 0(21) 21 + o(ts — Bzo)T (ts — Bz) + (bT20 — ct). (24)

We present the protocol for proving this relation in Fig. [7] and summarise its
security properties in the full version of the paper.

Dealing with relations which are not sign-invariant. Typically, relations
do not have the property that they are sign-invariant. In this case, to apply
bimodal Gaussian rejection sampling on the message s; one needs to be more
careful. As hinted in the discussion above, one solution would be to commit to
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Private information: (s1,m) € Ry ™ so that [s1] < @, s2 « x™2,b « {—1,1}
Public information: A; € Rg*™', Az e Ry*™2, B € Rf;”’”, be Ry

(] =[] oo [ 3] oo+ 12

Prover Verifier

y1 < Dty < Dgy?
w = A1y1 + Azys
g1,V as in ,
t:=blsy + g1
w,t,v

c—C

z1 :=bcs1 + y1
Zo 1= Sy +y2
fori=1,2:
if Rejz(z,-,csi,si) =1
then z1,z92 := L
Z1,Z22
Accept iff

|z1] < s14/2m1d and

|22 < s24/2m2d and

Ai1z1 + Aszy = w + ct4 and

Fig. 7: Commit-and-prove proEocol Hquad (2,81, m) for messages (si1,m) € R;”“’e,
randomness sz € Ry'? and ¢ € C which satisfy: Aisi + Aassy = ta, Bso + m = tp (ii)
Isi€| < 2si4/2mud for i = 1,2 and (iii) o(s1)”s1 + o(m)"m = 0.

the sign b (in the BDLOP part of the ABDLOP commitment) and prove that
be{-1, I}E Then, for example, to prove an arbitrary quadratic equation with
automorphisms 7 we commit to (bsy, bm || b) and equivalently prove:

(bsy || bm)IR; obsy || bm), + br (bsy || bm), + 739 = 0

which is a quadratic equation in bs;, bm and b. Then, in the soundness argument
of [LNP22| we would extract §;,m and b€ {—1,1} which satisfy

<§1 || ITI>ZR7;,2<§1 || ﬁl>0’ + EI‘;T,:1<§1 || ﬁl>a‘ + Ti0 = 0.

Finally, since we proved that b is a sign, we define (s*, m*) := (bs;,bm) and
deduce that

(87 | m*)gRio(sT || m*)e + 17y (sf | m*)o +rig =0
which is what we wanted to extract at the very beginning.

2 Proving that b is a sign has already been covered in [LNP22| Section 5.1].
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Similarly, to prove , we want to prove instead
P, (bs;) + P,,(bm) + bf € {0, b},

We observe that z € {0,b} = {451, 251} if and only if z — 251 € {0,1}. Hence,

the statement above is equivalent to:
P (bs;) + P, (bm) + b(f =271 -1) + 271 . 1€ {0, 1}

where 1 € Ry is the polynomial vector with the coefficient vector I. Hence, we
reduced our problem to proving that a linear combination of bs;,bm and b has
binary coefficients. We conclude that using similar techniques, one can transform
all the relations in sy, m described in Section to equivalent ones in bsq, bm
and be {—1,1}.

4 Efficient One-out-of-Many Proofs

In this section we construct an efficient logarithmic-size one-out-of-many proof
|GK15|] with applications to lattice-based ring and group signatures using tech-
niques from [LNP22] as the building block. In the full version of the paper we
show how to further reduce the proof size using the techniques developed in
Section [3] and eventually describe our ring signature construction.

The one-out-of-many proof considers the following problem. Informally, we
want to prove knowledge of an opening to some commitment contained in a
public set S without revealing any information about the commitment itself. In
the lattice setting, we we would like to prove knowledge of a short vector such
that As € S, where S is a public set S = {t1,...,tx} S R} of size N = d - o*.
In this section we assume that s € {0,1}™ has binary coefficients and d = [ -0
for [ € N. For simplicity, we can already instantiate some of these parameters as
(d,0,1) = (64,8,16).

We now use the observation from [ESST19, |GK15, [BCC*15| that As e S if
and only if there exists a binary vector # € {0, 1} with exactly one 1, i.e. a unit
vector, such that

[tito - tn] T = AF (25)

where A = rot(A) € Z)**™ is the the rotation matrix of A. One could then
directly prove knowledge of § and ¢ which satisfy conditions above using the
protocol from Section However, the proof size grows linearly in N since we
would commit to the whole vector .

In order to circumvent this limitation, [GK15, [ BCC*15] observe that vector

¥ can be uniquely decomposed into unit vectors ¥, ..., 0 € {0,1}° and ¥k, €
{0,1}¢ such that
T=01Q0Q  ®Ut1 =1 @ (2 ® (- @ (Th @ Ury1))) - (26)

For notational convenience, let us define the set of polynomials X in R, with
their coefficient vectors being a unit vector. Concretely, X is defined as follows:

X={1,X,X%..., X,
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In the end, we want to commit to s and polynomials w1, ..., ug, vg+1 € X such
that ii; = @ || 09~ € ZJ| for i € [k] and prove

T(h ®: - QVky1) = AT (27)

where T € ngXN is the matrix on the left-hand side of . We formally define
the corresponding relation:

R o {((Ta A),(s,u1,..., Uk, Vpy1)) 1S E {Ovl}md AT( ®';l'®77k+1) = Ag‘}
oom - —0 .

l»—ll

AU, ..., Uk, Vky1 € X where 4; :=T; || 0

We now describe a commit-and-prove system for relation Room using the ABDLOP
commitment. Suppose that k > 1, otherwise one can prove this relation directly
using the framework from [LNP22].

First, note that proving u,...,ur, vp41 € X and s € {0,1}™? can be done
directly using the techniques from Section hence we focus first on . Our
strategy to prove this equation with k£ — 1 tensor products would be somehow
to reduce it to proving an equation of the same form with only & — 2 tensor
products. Then, by recursion, we will end up with a system of linear equations
with no tensor products involved and thus we can apply the methods presented
in Section

The key idea to reduce the number of tensor products is to ask the verifier
for [ challenges @1,..., 8 € ng and then prove that:

(T ® - @Tjs1) — A5, G =0 fori=1,2,...,L.

Note that if was not true, then these [ equations above would hold with
probability at most ¢; '. Now, if we write

T:= [To,1 Too -+ To,a] where each T ; € ngx‘mki1
then by simple algebraic manipulation we obtain

T Q ®@Tps1) — A5, Giy = (51 @+ @ V41, F; T) — (5, AT i)
= (0, T1i(Ta ® @ Ups1)) — (5, ATE)

where .
©; Ty 1

Tli:: : EZZXd

=T
&; To

akfl

Now, let us define @; := T1 ;(02 ® - - - ® Ur4+1) and w € R, such that
W= || w[eZg.

13 Alternatively, u; € {1, X, X2,..., X°"'}.
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Next, we commit to w and show that for all 4,

(1,0 — (5, AT@;) =0 and ;== T1 (e @+ ® Tys1).
We observe that the first statement is equivalent to proving that the constant
coefficient of _

X0 0(w) — o(a;)"'s

is equal to zero where the coefficient vector of a; € Ry’ is exactly a; := AT G;.
Lemma 8. Let i € [I]. Then, the constant coefficient of X ~uja(w) € R, is
equal to {Uy, ;).
Proof. First, we note that (ty,w;) = (X%, w). Here, we used the fact

that_ the coefficient vector of w; is of the form_ | 09=°. Then, by Lemma
(X =D ) is the constant coefficient of X =120 (w).

On the other hand, the second statement can be combined for all ¢ and

written as:
T11

G=| | (®m® - ®@6.). (28)
T,

Thus, we reduce the one-out-of-many problem to proving knowledge of a tuple
(s,u1,...,ux, i1, w) which satisfies the following conditions: (i) s € {0,1}™¢,
(ii) Th (U2 ® -+ ® Ugy1) = w0, (iii) for all 4 € [I], the constant coefficient of
X =12 0(w) — o(a;)T's is zero, and (iv) u1, ..., ug, vpr1 € X where

T4
@ =0; |07 % forie[k] and Ty:=| : |e€ ZZXde?l.
T,

Note that the second statement only involves k — 2 tensor products.
We can define the correspond relation as:

((Tl, (ai),-e[[]), (S, Uty 7’U/]€,Uk+1,w)) ‘I S € {07 1}md A Tl(ﬁg & ®77k+1) =
R:= AVi € [I], const coeff. of X1y 0(w) — o(a;)Ts is zero
AUL, ... Ug, Vhr1 € X where @; := @ || 097

Intermediate relations. We construct a commit-and-prove system for relation
R using recursion. Namely, take 1 < j < k and consider the following generalised
relation

((Tj € Z P (@y)ieq, (Pui)ieli—1]ieln)s (85Ut - -+ Uk Vg1, W1, - - -ij)) :
s€ {0, 3™ A Tj(0j41 ® - @ Tpy1) = W
Rj = AVi € [1], const coeff. of X (=D 0(w;) — o(a;)’s is zero
AVie [j—1],4 € [[], const coeff. of X1, 10(w,11) — o(p,:)w, is zero
AUL, ..., Uk, Vhyp1 € X where i; := ¥; || 097°
(29)

We highlight that in R; elements ¢, ; are polynomials in R,. Also, it is easy to
see that Ry = R.
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Base case. We first show how to prove Rj only using the methods described
in Section 2.7} In the following, we say that a statement is of Type-n if it corre-
sponds to the Statement n in Section [2.7]

To begin with, using the ABDLOP commitment we commit to

S1 =S8 || (751 || || Ul || Vk+1 € R:]n+k+17 m = (wl,...,wk) € R'I;

Then, proving s € {0,1}™ and wy, ..., us, vi41 € {0,1}% is of Type-3. Next, by
Lemma [2| proving Ty 0,1 = Wy and (1,7, =1 for i e [k + 1] is of Type-2. Fur-
ther, it is easy to see that proving the constant coefficients of X =Dy, (w,) —
o(a;)Ts and X(i*1)°uL+1a(wb+1) — o(¢,,i)w, vanish is of Type-2. Finally, prov-
ing that @; = @; || 097 for i € [k] is equivalent to proving that the constant
coefficient of X ~Ju; is zero for 0 < j < d, which is of Type-2.

From now on, we will call the commit-and-prove protocol for relation Ry
described above as II},.

Recursive step. Let us assume we have a commit-and-prove system II; 1 for
relation R;;; where 2 < j +1 < k. Now we want to use it to prove relation R;.
We observe that the only statement which is included in R; but not in R;;, is

Tj(5j+1®"'®ﬂk+1) = 'U_}'j. (30)

We prove this equation as before. Namely, we ask the verifier for I challenges

Gjty.-, PLE Zg and then prove that:
<Tj(17j+1 & - -@UkJrl) - U_]'j,(ﬁj’i> =0 fori= 1,27. cey [

Note that if was not true, then these [ equations above would hold with
probability at most ¢, '. Now, if we write

k—j—1

T := [Tj,l Tjo--- Tj@] where each T ; € ngda

then we have
(Tj(T41 @ ® V1) — Wy, Bty = (i1 ® - ® U1, 85 1) — (W, B
= ({Tj11 Q- @ Ups1, B, 1) — (W, Bjiy

= Wjt1, Tjr1,i(Tj2 ® - @ Ury1)) — Wy, Bja)

where
#5:Tja |
Tj+1,i = € ngaki]il
I RS
Now, let us define W;41,; := Tj11,i(Vj42 ® - - @ Up41) and wj1 € Ry so that
Wipr = Wig1 || -+ || Wjgr, € ZE.
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Then, we need to show that for all 4,
(U1, Wjy1,6) — Wy, Gy =0 and  Wjr1; = Tj1,i(Tjr2 @ @ Tpy1)-
The first statement is equivalent to proving that the constant coefficient of
XU 10 (wj) — o(wji)w;

is equal to zero. The second statement, however, can be combined for all ¢ and
written as:

Tj1n
— — — . k—j—1
Wi4+1 = Tj+1(1)j+2 X ® Uk+1) where Tj+1 = : € nga ! . (31)

Ty,
Therefore, we reduced proving to proving that

_ X(ifl)Duj_’_lo—(wj_‘rl) — o(pj.i)w; is equal to zero
= Wjs1 = Tj+1(Tj12® - @ V1)

which in combination with other relations in R;, it directly reduces to proving
relations in [Z;1.

In Fig. |S| we give a commit-and-prove protocol for relation R; which uses
II; as a black-box. One observes by discussion above that the correctness error
for IT; is the same as for IT;, (which can be calculated directly from [LNP22]).
Simulatability follows from the fact that running II;, and thus II;1 up to Il as
subroutines, involves only sending intermediate commitments ¢; to w; which can
be simulated by the Extended-MLWE assumption. Finally, one can prove by in-
duction that the knowledge soundness error for the protocol IT; is (k—j)-q; ‘ep
where gy, is the knowledge soundness error for IT;, and is computed as in [LNP22].
The expected runtime of the extractor, that has black-box access to a (poten-
tially malicious) prover which runs in time 7', is 2¥=7 - poly(T'). Consequently, we
can only consider values k which are logarithmic in the security parameter. Due
to space constraints, we refer to the full version of the paper for more details.

Back to Room. At the very beginning of this section we showed how to reduce
proving relation Room to proving R;. Later on, we described a commit-and-prove
protocol for R;. Hence, we combine these two results to obtain a commit-and-
prove protocol IIoem in Fig. [9 for the one-out-of-many relation Room. Arguing
similarly as above, the correctness error for Il,on is the same as for IT; and the
soundness error is at most kq; " + .
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