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Abstract. This paper focuses on isogeny representations, defined as
ways to evaluate isogenies and verify membership to the language of
isogenous supersingular curves (the set of triples D,E1, E2 with a cyclic
isogeny of degree D between E1 and E2). The tasks of evaluating and
verifying isogenies are fundamental for isogeny-based cryptography.
Our main contribution is the design of the suborder representation, a new
isogeny representation targetted at the case of (big) prime degree. The
core of our new method is the revelation of endomorphisms of smooth
norm inside a well-chosen suborder of the codomain’s endomorphism
ring. This new representation appears to be opening interesting prospects
for isogeny-based cryptography under the hardness of a new computa-
tional problem: the SubOrder to Ideal Problem (SOIP). As an applica-
tion, we introduce pSIDH, a new NIKE based on the suborder represen-
tation. Studying new assumption appears to be particularly crucial in
the light of the recent attacks against isogeny-based cryptography.
In order to manipulate efficiently the suborder representation, we develop
several heuristic algorithmic tools to solve norm equations inside a new
family of quaternion orders. These new algorithms may be of independent
interest.

1 Introduction

Isogeny-based cryptography has been receiving an increasing amount of interest
over the last few years due to its presumed resistance to quantum computers. As
the variety of primitives achievable from isogenies is expanding, new problems are
arising. The problem of proving the knowledge of an isogeny between two elliptic
curves is one that appears more and more central in isogeny-based cryptography.
It has applications in validation of SIDH public keys [JDF11,GPST16,FP22,UXT+22],
digital signatures [YAJ+17,DFG19,BKV19,JS14], VDFs [DFMPS19,CSRHT22],
delay encryption [BDF21] and oblivious PRF [BKW20].

Intuitively, proving a statement requires an efficient way to represent and
manipulate the objects involved in that statement. In the case of isogenies, the
standard representation is obtained from the Vélu formulas [Vél71] that give
a way to compute and evaluate an isogeny from its kernel. The best generic



algorithm to compute these formulas requires Õ(
√
D′) operations over the field

of definition of the isogeny’s kernel where D′ is the biggest factor of the degree
(see [BdFLS20]). Thus, the computation is only efficient when the degree is
smooth and the kernel points are defined over a small field extension. In full
generality, this only happens when the degree is powersmooth but there are
ways to make it work for smooth degrees as well. All the schemes we mentioned
above are subject to these computational limitations and use smooth degrees.
However, the recent trend of works studying the Deuring correspondence and
its applications to isogeny-based cryptography has provided us the means to
represent and manipulate efficiently isogenies of arbitrary degrees.

This story begins with the KLPT algorithm from Kohel, Lauter, Petit and
Tignol [KLPT14] to solve the quaternion analog of the isogeny path problem.
In [EHL+18], Eisentrager et al. heuristically showed that quaternion ideals can
be used as an efficient representation of isogenies, with the ”effiency” stem-
ming from KLPT and other heuristic polynomial-time algorithms. Wesolowski
presented provable variants of these algorithms in his recent article [Wes22].

The original motivation behind the study of the Deuring correspondence in
[KLPT14,EHL+18] is cryptanalysis. The tools developped toward that end have
only recently started to be used constructively. The main building blocks of the
signature scheme from Galbraith, Petit and Silva [GPS17] and the later general-
ization of SQISign by De Feo, Kohel, Leroux, Petit and Wesolowski [DFKL+20]
are variants of the KLPT algorithm from Kohel et al. The key generation of the
encryption scheme Séta [DFFdSG+21] is also based on the same techniques. The
first complete implementation of all these algorithmic blocks was another contri-
bution of the authors of SQISign. Additionally, this protocol is the first example
of a scheme that is explicitly making use of isogenies of big prime degree that are
manipulated as ideals. In [DFKL+20], the authors argue that using a secret key
of prime degree provides better efficiency for the same level of security. The mo-
tivation of our paper is to provide a new way of representing isogenies of prime
degree that can open up some interesting cryptographic applications. This ap-
pears particularly interesting in light of the recent attacks [CD22,MM22,Rob22]
that break SIDH and Séta. These attacks are targetting smooth degree secret
isogenies and we will see how these attacks fail to break the assumption based
on the new representation we introduce.

A first small contribution of this work is to introduce a new terminology of
isogeny representation, hoping that it can help formalizing some results about
isogenies by providing a common framework on the different methods of isogeny
computations.

Our main contribution is a new generic isogeny representation that we call a
suborder representation. This representation is constituted of the endomorphism
ring of the domain and several endomorphisms of the isogeny’s codomain. We
present heuristic polynomial-time algorithms to compute and verify the subor-
der representation when the degree D is prime. The case of composite D is more
complicated and does not seem to be more interesting for cryptography, so it is
treated in the full version. The suborder representation is not equivalent to the
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ideal representation under the hardness of a new computational problem: the
Suborder to Ideal Problem (SOIP), or its equivalent reformulation: the Subor-
der to Endomorphism Ring Problem (SOERP). The assumed hardness of the
SOERP implies that the knowledge of a suborder of rank 4 is not always enough
to derive the full endomorphism ring of a supersingular curve. We include in
Section 4.5, a discussion about the hardness of those new problems where we
also prove that the SOIP is equivalent to some instances of the Torsion to Ideal
Problem (TIP), a new problem that can be seen as a generalization of the CSSI,
the key recovery problem of SIDH [JDF11]. Because we consider an instance of
this problem where the degree of the secret isogeny is prime, the recent attacks
on SIDH does not seem to apply directly.

Our new isogeny representation requires to solve norm equations inside a new
family of quaternion orders and ideals and we develop the necessary heuristic
tools for that task. This contribution may be of independent interest as solving
norm equations inside different types of order have proven to be useful in various
situations such as [DFKL+20,DFFdSG+21].

Finally, we illustrate the cryptographic interest of our new isogeny represen-
tation by building pSIDH, a NIKE based on a generalization of SIDH to the
prime degree setting. The key recovery problem is the SOIP and the key ex-
change is secure under the hardness of a decisional variant of the SOIP. The
efficiency of pSIDH is not likely to be competitive and it needs to be considered
as a first step toward more involved applications.

The rest of this paper is organized as follows: Section 2 is dedicated to the
background materials. In Section 3, we give the definition for Lisog, the language
of isogenous curves, and show that it is in NP using the ideal representation of
isogenies. In Section 4, we introduce our new suborder representation. We provide
some algorithms to compute and verify these representations, and analyze how
they differ from ideal representations. The algorithmic gaps left in Section 4 are
filled in Section 5 where we introduce new algorithms to solve norm equations
inside a new family of quaternion orders. Finally, in Section 6, we introduce a
new isogeny-based NIKE scheme based on the suborder representation.

2 Background material

The set of prime numbers is denoted P. For a prime ℓ ∈ P, we define ℓ• =
{ℓk| k ∈ N}.

We call negligible a function f : Z>0 → R>0 if it is asymptotically dominated
by O(x−n) for all n > 0. In the analysis of a probabilistic algorithm, we say that
an event happens with overwhelming probability if its probability of failure is a
negligible function of the length of the input.

2.1 Notations and simplifications.

Throughout this work, p > 3 is a prime number and Bp,∞ is the unique quater-
nion algebra ramified at p and ∞. For ease of exposition, we use a simplified
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terminology and conventions that we will keep during the entire paper. We in-
troduce them below.

When talking about elliptic curves and isogenies, we always consider isomor-
phism classes of curves and isogenies respectively. This means that when needed
(in an algorithm for instance) we represent curves by their j-invariant that we
write j(E) for a curve E (implicitly deriving a full equation of a canonical rep-
resentative of the isomorphism class if needed). For an isogeny φ, we implicitly
adapt whatever isogeny representation we use to this convention, so we pre and
post-compose with the relevant isomorphisms to have an isogeny defined on the
canonical representatives of the domain and codomain. For an isogeny of domain
E and kernel G, we note the codomain class as E/G.

Any four dimensional lattice Λ of Bp,∞ is given by 16 coefficients in Q cor-
responding to the decomposition over a basis of Bp,∞ of a basis of Λ. This is
what we call the representation of an order or an ideal and is what is used when
a computation is required. For an order O ∈ Bp,∞, an O-ideal of Bp,∞ will
always be a left integral O-ideal of norm coprime with p unless said otherwise.
An isogeny will always be a cyclic separable isogeny.

Quaternion notations. We list below a few notations that are used throughout
the paper. We refer the reader to the full version for more details. The left and
right orders of an ideal are written OL(·),OR(·). Two ideals are equivalent if
J = Iβ for β ̸= 0 and we say that I, J are equivalent. The norm of an ideal I is
denoted by n(I).

2.2 The Deuring correspondence

The Deuring correspondence is an equivalence of categories between isogenies of
supersingular elliptic curves and the left ideals over maximal order O of Bp,∞,
inducing a bijection between conjugacy classes of supersingular j-invariants and
maximal orders (up to equivalence) [Koh96]. This bijection is explicitly con-
structed as E → End(E). Hence, given a supersingular curve E0 with endomor-
phism ring O0, the pair (E1, φ), where E1 is another supersingular elliptic curve
and φ : E0 → E1 is an isogeny, is sent to a left integral O0-ideal (obtained by
considering kernel ideals [Wat69]) with OR(I) ∼= End(E1).

Definition 1. Let I ⊂ End(E0) be an integral ideal, we define E0[I] = {P ∈
E0(Fp2) : α(P ) = 0 for all α ∈ I} and the isogeny corresponding to I is φI :
E0 → E0/E0[I]. Conversely, given an isogeny φ with domain E0, the corre-
sponding ideal is Iφ = {α ∈ O0 : α(P ) = 0 for all P ∈ ker(φ)}.

Quaternion orders admit what we call a Gorenstein decomposition. Any
quaternion order O can be expressed as Z + fO′, where f is the Brandt In-
variant and O′ is the Gorenstein closure. We will try to understand the Brandt
Invariant through the Deuring correspondence in Section 4.1
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Supersingular j-invariants over Fp2 Maximal orders in Bp,∞
j(E) (up to Galois conjugacy) O ∼= End(E) (up to isomorpshim)

(E1, φ) with φ : E → E1 Iφ integral left O-ideal and right O1-ideal

θ ∈ End(E0) Principal ideal Oθ
deg(φ) n(Iφ)

φ̂ Iφ
Supersingular j-invariants over Fp2 Ideal class set of a maximal order O

Table 1. The Deuring correspondence, a summary from [DFKL+20].

3 The language of isogenous curves and the ideal
representation

Let us fix a prime p. We will study Lisog, the language of isogenous supersingular
curves in characteristic p.

We write Sp as the set of isomorphism classes of supersingular elliptic curves
in characteristic p, and IsogD the set of cyclic D-isogenies between curves of Sp.

Definition 2. The language of isogenous supersingular curves is

Lisog = {(D,E1, E2) ∈ N× S2
p | ∃ φ : E1 → E2 ∈ IsogD}.

An isogeny representation is a string sφ associated to an isogeny φ : E1 → E2

of degree D. This string can be used as input to two algorithms: one that can
verify that the element D,E1, E2 is in Lisog and one that can compute φ(P ) for
some point P ∈ E1.

We call the former a verification algorithm and the latter an evaluation al-
gorithm. We can regroup isogeny representations in families of representations
by looking at the associated verification and evaluation algorithms. Thus, to
a family XX of representations we associate two algorithms XXVerification and
XXEvaluation.

Standard isogeny representation. The default isogeny representation of φ ∈
IsogD is made of the rational maps f1, f2 ∈ Fpm(x, y) such that the image un-
der φ of any point (x, y) of the domain is (f1(x, y), f2(x, y)) and Fpm is the
field of definition of kerφ. The degree of the polynomials used in f1, f2 are
in O(poly(D)). Since any isogeny of degree D1D2 is the composition of a D1-
isogeny and a D2-isogeny, decomposing φ in smaller isogenies allows us to get a
default representation of size O(poly(log(pD))) whenD has smoothness bound in
O(poly(log(pD))). When not said otherwise, this default representation is used
for the computation of isogenies of smooth degree. It is also standard in the
literature to use a generator of kerφ as a representation, we call that the kernel
representation. This representation can be used to compute the default isogeny
representation with the Vélu Formulae [Vél71]. The computational cost is also
O(poly(log(pD))) when D has smoothness bound in O(poly(log(pD))).
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3.1 Polynomial-time algorithms of the Deuring correspondence

We give below a list of algorithms taken from the literature. Throughout this
paper, we are going to use the provable version of these algorithms, most of which
were introduced by Wesolowski in [Wes22]. For a concrete instantiation of any of
them, one will rather want to use the efficient heuristic version (see [DFKL+20]
for instance). The KLPT algorithms depend on some special extremal order O0

that we consider as a fixed parameter. We use the default representation of
isogenies.

– ConnectingIdeal: takes two maximal orders O1,O2 ⊂ Bp,∞ and outputs an
ideal I with OL(I) = O1 and OR(I) = O2.

– KLPTℓ• : takes a left O-ideal I and outputs J ∼ I of norm ℓe.
– KLPTPS: takes a left O-ideal I and outputs J ∼ I of powersmooth norm.
– IdealToIsogenyT : takes a left O-ideal I of norm T and computes φI .
– IsogenyToIdealT : takes an isogeny φ : E → E′ of degree T , a maximal order

O ∼= End(E) and computes Iφ.

We reformulate below in Proposition 1 to Proposition 5, some of the results
proven in [Wes22].

Proposition 1. ConnectingIdeal terminates in O(poly(log(p) +C))) where C is
the size of the representation of O1,O2.

Proposition 2. Assuming GRH, KLPTℓ• terminates in expected O(poly(log(pD)+
C)) where D is the norm of the input and outputs an ideal of norm e where
e = O(poly(log(p)) and the representation of O has C bits.

Proposition 3. Assuming GRH, KLPTPS terminates in expected O(poly(log(pD)+
C) where D is the norm of the input and outputs an ideal of norm in O(poly(p))
with smoothness bound in O(poly(log(p))) and the representation of O has C
bits.

Proposition 4. For any number T = O(poly(p)) with smoothness bound in
O(poly(log(p))), IsogenyToIdealT terminates in expected O(poly(log(p))) and the
output has size O(poly(log(p))).

Proposition 5. For any number T = O(poly(p)) with smoothness bound in
O(poly(log(p))), IdealToIsogenyT terminates in expected O(poly(log(p)+C)) and
the output has size O(poly(log(p))) and the representation of O has C bits.

3.2 Ideal witnesses: membership proofs to Lisog from the Deuring
correspondence

We define the ideal representation for the isogeny φ as a representation of the
associated kernel ideal Iφ. Note that this implies the knowledge of the endomor-
phism rings of both E1 and E2. With Lemma 1 below, we prove that the ideal
representation can be compact.
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Lemma 1. Any ideal I of norm D is isomorphic to an ideal J with a represen-
tation of size O(log(pD)).

Proof. It was shown in [EHL+18] that any maximal order is isomorphic to an
order with a representation of size O(log(p)). Let us write O for the maximal
order with the small representation isomorphic to OL(I). We can write J for the
image of I under the isomorphism between OL(I) and O. Since DO ⊂ J (this
is true for any cyclic O-ideal of norm D), we see that we can choose a basis of
J inside the basis of O with coefficients of size O(log(D)). Thus, there exists a
representation of J of size O(log(p) + log(D)).

For simplicity, we assume in the rest of this work, that ideals and orders are
given with a compact representation as in Lemma 1.

We now present IdealVerification as Algorithm 1. It is a verification algorithm
that takes a triple x = (D,E1, E2) and an ideal I and decides if x ∈ Lisog. The
idea is to compute the curves whose endomorphism ring are isomorphic to the
left and right order of I. If the curves obtained in this way are isomorphic to
E1, E2, the verification passes. To do that, we will use the following procedure on
ideals connecting a special order O0 with OL(I) and OR(I): use KLPT to get an
equivalent ideal of smooth norm and compute the codomain of the corresponding
isogeny with IdealToIsogeny. Since these isogenies have smooth norm, they can
be efficiently computed.

Algorithm 1 IdealVerification(x, I)

Input: x ∈ N× S2
p and I an ideal of Bp,∞.

Output: A bit indicating if x ∈ Lisog.
1: Parse x as D,E1, E2 and take ℓ a small prime.
2: Compute n(I) and OL(I),OR(I).
3: if n(I) ̸= D or I ̸⊂ OL(I) then
4: Return 0.
5: end if
6: Take a curve E0 defined over Fp with End(E0) ∼= O0 and compute I1 =

ConnectingIdeal(O0,OL(I)), I2 = I1 · I.
7: for i ∈ [1, 2] do
8: Compute Ji = KLPTℓ•(Ii) and φi : E0 → E′

i = IdealToIsogenyℓ•(E0, Ji).
9: end for
10: if (j(E′

1), j(E
′
2)) ̸∈ {(j(E1), j(E2)), (j(E1)

p, j(E2)
p)} then

11: Return 0.
12: end if
13: return 1.

Lemma 2. Let D be any integer in N coprime with p. If φ : E1 → E2 has degree
D, then IdealVerification((D,E1, E2), Iφ) = 1.

Conversely, for (D,E1, E2) ∈ N × S2
p , if there exists an ideal I such that

IdealVerification((D,E1, E2), I) = 1 then (D,E1, E2) ∈ Lisog.
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Proof. Let us take φ : E1 → E2 of degree D. By definition of Iφ, we have
n(Iφ) = D and Iφ ⊂ OL(Iφ) so the first check passes. Then, the codomain of
the two φIi have endomorphism ring isomorphic to OR(Ii) so they might be
either both Ei or both Ep

i (since I2 = I1Iφ, it cannot be E1, E
p
2 or Ep

1 , E2). In
both cases, the final output is 1.

If there exists an ideal I such that IdealVerification((D,E1, E2), I) = 1, then
n(I) = D and I is integral (this is from the first verification). Since I = I1 ·
I2/n(I1) ∼ J1·J2 is an integral ideal of degreeD, there exists an isogeny of degree
D between E′

1, E
′
2. Since the final output is 1, the two curves E′

1, E
′
2 are equal

to either E1, E2 or Ep
1 , E

p
2 . Since φ : Ep

1 → Ep
2 of degree D imply the existence

of φp : E1 → E2 of degree D, in both cases we have that (D,E1, E2) ∈ Lisog.

Proposition 6. Under GRH, IdealVerification terminates in expected O(poly(log(pD)+
C) where C is the bit size of the representation of I.

Proposition 6 follows directly from Propositions 1, 2 and 5.

Isogeny Evaluation from ideals. It is also possible to evaluate an isogeny from
its ideal representation. In the full version of the paper, we present an algo-
rithm IdealEvaluation solving that task. The main idea is to apply KLPT and
IdealToIsogeny to find an equivalent isogeny of powersmooth degree and making
use of it to perform the computation. Note that an algorithm very similar to
IdealEvaluation can be found in [FKMT22].

4 A new isogeny representation

In this section, we propose a new way to prove the existence of a D-isogeny
between two curves when D is a prime number. We call it the suborder repre-
sentation/witness. Composite degrees require more care and we will argue in the
full version that they do not appear more interesting. We will briefly explain
how to extend the suborder representation to composite degrees in the full ver-
sion as well. From now on, unless stated otherwise, D can be assumed to be
prime. The suborder representation has also another small limitation: the proof
only shows that either E1, E2 or E1, E

p
2 are D-isogenous and works only when

End(E1) ̸∼= End(E2). Thus, we consider the alternate language Lp−isog defined
as follows:

Lp−isog = {(D,E1, E2) ∈ P×S2
p |E1 ̸∼= E2, E

p
2 and (D,E1, E2) ∈ Lisog or (D,E1, E

p
2 ) ∈ Lisog}

In Section 4.1, we introduce the mathematical results underlying our new
method. The method to extract the new representation from the ideal represen-
tation is the goal of Section 4.2. Then, in Section 4.3, we explain how to perform
a heuristic polynomial-time verification of this new witness.
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4.1 Brandt Invariant and relation with isogenies

The goal of this section is to prove Proposition 7 that links the Brandt invariant
of some orders with isogenies through the Deuring correspondence.

Proposition 7. Let D ̸= p be a prime number and E1, E2 be two supersingu-
lar curves over Fp2 , O1 ⊂ Bp,∞ is a maximal order isomorphic to End(E1).
The order Z + DO1 is embedded inside End(E2) if and only if either j(E2) ∈
{j(E1), j(E1)

p} or (D,E1, E2) ∈ Lp−isog.

We will prove the backward direction of Proposition 7 with a simple argument
using orders and ideals, but it is worth noting that the concrete embedding can
be obtained with the map α0 7→ [d] + φ ◦ α0 ◦ φ̂ between End(E1) and End(E2)
when there exists φ : E1 → E2 of degree D. This is not the first appearance
of this map that was introduced by Waterhouse [Wat69, Section 3.1]. It is also
at the heart of the attacks [Pet17,KMP+20] on the SIDH key exchange and
underlies the decryption process of the Séta encryption scheme [DFFdSG+21].
In the proof of Proposition 7. The forward direction is more subtle and we use
the preliminary Lemma 3.

Lemma 3. Let Let D be prime number different from p and O ⊂ Bp,∞ be a
quaternion order such that O = Z+DO0 for another order O0 ⊂ Bp,∞. When
O is embedded in a maximal order O, either O contains O0 or there exists a
left-O integral primitive ideal I of norm D whose right order O0 contains O0.

Proof. Let us assume that O0 is not contained in O. We set I = {x ∈ O, xO0 ⊂
O}. First, it is easy to verify that I is an integral left O-ideal since it is contained
in O. Then, we are going to see that it has norm D. It suffices to show that
DO ⊊ I ⊊ O. To see that I ̸= O, it suffices to note that 1 ̸∈ I since O0 ̸⊂ O.
Then, with DO0 ⊂ O we have DxO0 = xDO0 ⊂ O for every x ∈ O, which
proves that DO ⊂ I. Finally, to prove that DO ≠ I, we take x0 ∈ O0 and
not contained in O. It is clear that Dx0 ∈ I, but Dx0 ̸∈ DO. Finally, from the
definition of I it is quite clear that O0 is contained in OR(I). This concludes the
proof.

Proof. (Proposition 7) For the forward direction, let us take a maximal order
O2

∼= End(E2) such that Z + DO1 ⊂ O2 (which is possible since Z + DO1 is
embedded inside End(E2)). Then, we apply Lemma 3 to O0 = O1, and O = O2,
we obtain that either O2 contains O1 (in which case O2 = O1 since O1 is
maximal) and so we have End(E1) ∼= End(E2) ⇒ j(E2) ∈ {j(E1), j(E1)

p}, or
there must be an O2-integral ideal of norm D whose right order contains O1.
Once again, since O1 is maximal, we have in fact equality and so we have an
ideal of norm D whose right order is O2 and left order is O1. By the Deuring
correspondence, this means that (D,E1, E2) ∈ Lp−isog.

For the backward direction, let us consider the ideal I corresponding to theD-
isogeny φ : E1 → E2 (w.l.o.g, we can assume that D,E1, E2 ∈ Lisog). This ideal
has norm D. Since OL(I) is maximal, the local order OL(I)⊗ ZD is a principal
ideal domain (see [Voi18, Chapter 23]) and so the ideal I is locally principal. This
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proves that we can write I = OL(I)α + OL(I)D for some element α ∈ OL(I)
and so DOL(I) ⊂ I ⊂ OR(I). Thus, we obtain that Z+DOL(I) ⊂ OR(I), and
the proof is concluded by OL(I) ∼= End(E1) and OR(I) ∼= End(E2).

4.2 Deriving the suborder representation from the ideal
representation

Proposition 7 suggests that the embedding Z + DEnd(E1) ↪→ End(E2) can be
used to prove the existence of an isogeny of degree D between E1 and E2.
The goal of this section is to introduce an algorithm IdealToSuborder that takes
a maximal order O ∼= End(E1) and an O-ideal I of norm D and outputs a
suborder representation for φmade ofO and the embedding Z+DO ↪→ End(E2).
By a representation of the embedding, we actually mean the embeddings of a
generating family for Z+DO (see Definition 3 below). We give the full definition
for a suborder representation as Definition 4.

Definition 3. A generating family θ1, · · · , θn for an order O is a set of elements
in O such that any element ρ ∈ O can be written as a linear combination of 1
and

∏
j∈I θj for all I ⊂ {1, · · · , n}. In that case, we write O = Order(θ1, . . . , θn).

Definition 4. Let φ : E1 → E2 be an isogeny of degree D. A suborder represen-
tation πφ for φ is made of an order O ∼= End(E1) and of the default representa-
tions s1, . . . , sn of n endomorphisms of E2 corresponding to a generating family
of Z+DO.

Our algorithm IdealToSuborder (Algorithm 2) is built upon a SmoothGenN
sub-algorithm that we will present in Section 5.3. This algorithm computes a
generating family θ1, . . . , θn ∈ Bp,∞ for the order Z+DO on input D,O where
each θi has norm in N . For Proposition 8 and Proposition 10, we are going to
assume several things about this SmoothGen algorithm. We summarize them in
Assumption 1.

Assumption 1 Let N ⊂ N be either ℓ• for some prime ℓ = O(poly(log(pD))),
or the set of divisors of T for some integer T > p7/2D6 of size O(poly(pD)) and
smoothness bound O(poly(log(pD))). On input O, D, the algorithm SmoothGenN
is deterministic, correct and terminates in O(poly(log(pD) + C)) where O is
represented by C bits. It outputs n = O(1) quaternion elements whose norms are
contained in N for all 1 ≤ i ≤ n.

Remark 1. We hide several heuristics and a conjecture under Assumption 1. We
discuss these heuristics in Section 5.3.

IdealToSuborder can be divided in two main parts: SmoothGen to obtain
quaternion elements θ1, . . . , θn and an IdealToIsogeny step to convert the ide-
als OR(I)θi to isogenies φi : E2 → E2. For all the algorithms of this section, we
are going to assume that a small constant prime ℓ has been fixed and we write
ℓ• for the set {ℓe, e ∈ N}.
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Algorithm 2 IdealToSuborder(I)

Input: I an integral ideal of maximal orders inside Bp,∞ of norm D.
Output: Endomorphisms φi : E2 → E2 such that ι : End(E2)

∼−→ OR(I) sends
φ1, . . . , φn to a generating family θ1, . . . , θn for Z+DOL(I).

1: Compute D = n(I) and O = OL(I),O′ = OR(I).
2: Compute θ1, . . . , θn = SmoothGenℓ•(O, D).
3: for i ∈ [1, n] do
4: Compute φi : E2 → E2 = IdealToIsogenyℓ•(O′θi).
5: Compute the default representation si of φi.
6: end for
7: Choose Oc, a maximal order isomorphic to O of small representation.
8: return π = Oc, (si)1≤i≤n.

Proposition 8. Under Assumption 1 and GRH, IdealToSuborder is correct and
terminates in O(poly(log(pD) + C)) where C is the bitsize of I and the output
has size O(poly(log(pD))).

Proof. Correctness follows from the correctness of IdealToIsogeny and Smooth-
Gen. The left and right orders of I have representation of size smaller than C,
and so termination follows from GRH, Assumption 1 and Proposition 5 (with
n = O(1)). The degree and smoothness bound of all the degφi is given by
Assumption 1 and this implies that the default isogeny representation has size
O(poly(log(pD))) as we explained in the beginning of Section 3. An Oc with
representation of size O(log(p)) can be found and this concludes the proof.

4.3 Verification of the suborder representation

This section focuses on the verification of the representation computed with Ide-
alToSuborder. From Proposition 7, we know that it suffices to convince the verifier
that Z+DEnd(E1) is embedded inside End(E2) and End(E1) ̸∼= End(E2). The
second part is easy to verify, it suffices to compute the j-invariants and verify
that neither j(E1) = j(E2) nor j(E1) = j(E2)

p. The first part of the verification
is achieved with the endomorphisms φ1, . . . φn. With Lemma 4, we show that it
suffices to check some traces and norms of endomorphisms computed from the
(φi)1≤i≤n. Due to the lack of space, the proof of Lemma 4 can be found in the
full version.

Lemma 4. Two orders O1 = Order(θ1, . . . , θn) and O2 = Order(ω1, . . . , ωn) of
rank 4 in a quaternion algebra are isomorphic if n(θi) = n(ωi) for all i ∈ [1, n]
and tr(

∏
j∈I θj) = tr(

∏
j∈I ωj) for all I ⊂ [1, n].

As Lemma 4 indicates, we need to compute some traces for the verification.
This will be done by an algorithm CheckTraceM (whose description we postpone
until Section 5.4) that will verify the validity of the traces modulo the parameter
M (see Proposition 19).

Lemma 5 below gives a bound above which equality will hold over Z if it holds
modM . In the full version of the paper, we also explore the option of choosing a
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value ofM below the bound of Lemma 5, producing a tradeoff between efficiency
and soundness.

Lemma 5. Given any θ ∈ End(E1), if tr(θ) = t mod M for M > 4
√
n(θ) and

|t| ≤M/2, then tr(θ) = t.

Proof. Over Bp,∞, the norm form is n : (x, y, z, w) 7→ x2+qy2+pz2+qpw2 where
q > 0, p > 0. Since tr : (x, y, z, w) 7→ 2x, we can easily verify that tr(θ)2 < 4n(θ).
This gives a bound of 2

√
n(θ) on the absolute value of tr(θ). The result follows.

Algorithm 3 SuborderVerificationM (x, π)

Input: M ∈ N, x ∈ P× S2
p and π a suborder representation.

Output: A bit indicating if x ∈ Lp−isog.
1: Parse x as D,E1, E2 and π = O, (si)1≤i≤n.
2: if If disc O ̸= p then
3: Return 0.
4: end if
5: Compute θ1, . . . , θn = SmoothGenℓ•(O, D).
6: Compute J = ConnectingIdeal(O0,O) and L = KLPTℓ•(J).
7: Compute ψ : E0 → E′

1 = IdealToIsogenyℓ•(L).
8: if j(E1) ̸= j(E′

1) or j(E1) ̸= j(E′
1)

p then
9: Return 0.
10: end if
11: for i ∈ [1, n] do
12: Parse si as the default representation of an isogeny of degree n(θi) ∈ ℓ• and

compute it as φi : E2 → Fi.
13: if j(Fi) ̸= j(E2) then
14: Return 0.
15: end if
16: end for
17: return CheckTraceM (φ1, . . . , φn, θ1, . . . , θn, E2).

Proposition 9. If M > max
1≤j≤n

2
√
n(θj)n, then for x ∈ P × S2

p , there exists a

suborder representation π such that VerifSuborderlProofM (x, π) = 1 if and only
if x ∈ Lp−isog.

Proof. Assume that there exists a representation π passing the verification for
a given x = (D,E1, E2). The check in Step 2 proves that O is a maximal or-
der of Bp,∞. The second verification in Step 8 proves that End(E1) ∼= O. Fi-
nally, the verification is Step 13 proves that the φi are endomorphisms of E2.
Then, if CheckTraceM (φ1, . . . , φn, θ1, . . . , θn, E2) = 1, the correctness of Smooth-
Gen,CheckTrace, Lemmas 4 and 5 imply that Z+DO is embedded inside End(E2)
and Proposition 7 proves that x ∈ Lp−isog.
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Now let us take (D,E1, E2) ∈ Lp−isog. By definition there exists an ideal I of
norm D and OL(I) ∼= End(E1), OR(I) ∼= End(E2). We are going to show that
if π = IdealToSuborder(I), then we have SuborderVerificationM (x, π) = 1. First,
since OL(I) is a maximal order, the verification of Step 2 passes succesfully. This
is also the case for the verification of Step 8 since OL(I) ∼= End(E1). Then, by
the correctness of IdealToSuborder showed in Proposition 8, we have that si can
be parsed as isogenies φi : E2 → E2 that corresponds to the OR(I)θi through
the Deuring correspondence (since SmoothGen is deterministic). Thus, it is clear
that CheckTrace will output 1 and this concludes the proof.

With Assumption 1 and Proposition 9, we see that we can takeM = #E(Fpm)
for the smallest m ∈ N such that M is bigger than the bound in Proposition 9.
We refer to Proposition 19 for correctness and complexity of the CheckTrace
algorithm.

Proposition 10. Let m,M be as defined above. Under GRH and Assumption 1,
SuborderVerificationM terminates in probabilistic O(poly(log(p) + log(D))).

Proof. Since m = O(poly(log(pD))) by Proposition 9 and Assumption 1, the
result follows from Assumption 1, Propositions 1, 2, 5 and 19

4.4 Evaluating with the suborder representation

In this section, we show that we can evaluate an isogeny from the suborder rep-
resentation. By Proposition 7, any suborder representation π defines a unique
isogeny that we write φπ. The algorithm SuborderEvaluation that we introduce
below shows how to use π to evaluate φπ. This algorithm is going to be one of
the major building blocks behind the NIKE scheme of Section 6. For this appli-
cation of our algorithm, we only need to compute the image of cyclic subgroups
of the form E1[J ] for some ideal J . Thus, SuborderEvaluation take a suborder
representation for φ and an ideal J as input and outputs φ(E1[J ]).

The SuborderEvaluation algorithm is built on a subprotocol IdealSuborder-
NormEquation that we will introduce in Section 5.2. This algorithm is only heuris-
tic and we summarize in Assumption 2, what we expect of this algorithm.

Assumption 2 Let N ⊂ N be either ℓ• for some prime ℓ = O(poly(log(pD))),
or the set of divisors of T for some integer T > B of size O(poly(pD)) and
smoothness bound O(poly(log(pD))) and where B = p2D6n(I)3n(J)2. The algo-
rithm IdealSuborderNormEquationN takes in input an integer D, two ideals I, J
and outputs an element β ∈ (Z+DI)∩ J with n(β)/n(J) ∈ N , it terminates in
expected O(poly(log(pDn(I)n(J)))) with overwhelming probability.

The principle of SuborderEvaluation is different from the one of IdealEvaluation
we sketched in Section 3.2. Indeed, as we will argue in Section 4.5, solving the al-
ternate path problem (which is the key step in IdealEvaluation) appears hard from
the suborder representation. Instead, we propose to use the fact that the embed-
ding of Z+DEnd(E1) inside End(E2) is obtained by push-forwards through φπ.
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More precisely, this means that ker ι(β) = φπ(kerβ) for any β ∈ Z+DEnd(E1)
where ι : Z+DEnd(E1) ↪→ End(E2). Thus, to find φπ(E1[J ]), we want to find
an endomorphism β ∈ Z + DEnd(E1) such that kerβ ∩ E1[n(J)] = E1[J ]. By
definition of E1[J ], and Assumption 2, such a β is exactly found by IdealSubor-
derNormEquation. After that, it suffices to compute ker ι(β) ∩ E2[n(J)] and we
are done. The integer m is taken as in Proposition 10.

Algorithm 4 SuborderEvaluation(E1, E2, π,D, J)

Input: two curves E1, E2, a prime D, π a suborder representation for (D,E1, E2) ∈
Lp−isog and an ideal J of norm coprime with D and ℓ.

Output: ⊥ or φπ(E1[J ]).
1: Parse π as O, s1, . . . , sn.
2: if OL(J) ̸∼= O then
3: Return ⊥.
4: end if
5: if SuborderVerification#E1(Fpm )((D,E1, E2), π) = 0. then
6: Return ⊥.
7: end if
8: for i ∈ [1, n] do
9: Parse si as the default representation of an isogeny of degree n(θi) ∈ ℓ• and

compute it as φi : E2 → E2.
10: end for
11: Compute θ1, . . . , θn = SmoothGenℓ•(O, D).
12: Compute L = ConnnectingIdeal(O0,O) and I = RandomEquivalentPrimeIdeal(L)

with I = Lα.
13: Compute β = IdealSuborderNormEquationℓ•(D, I, α

−1Jα).
14: Express αβα−1 =

∑
I⊂{1,...,n} ci,I(

∏
j∈I θj).

15: Compute P,Q, a basis of E2[n(J)].
16: Compute R,S =

∑
I⊂{1,...,n} ci,I(

∏
j∈I φj)(P,Q).

17: if S = 0 then
18: return ⟨Q⟩.
19: end if
20: Compute a = DLP(R,S).
21: return ⟨P − [a]Q⟩.

Proposition 11. Under GRH and Assumptions 1 and 2, SuborderEvaluation is
correct when the output is not ⊥ and terminates in probabilistic O(poly(log(pD))+
CDLP(n(J)) operations over the n(J) torsion where CDLP(n(J)) is the complexity
of the discrete logarithms in groups of order n(J).

Proof. First, we will prove correctness. The verification at the beginning proves
that if the output is not ⊥, π is a valid suborder representation. When L =
ConnectingIdeal(O0,O) and I = RandomEquivalentPrimeIdeal(L) with I = Lα,
then if β ∈ (Z+DI)∩α−1Jα, then αβα−1 ∈ (Z+DL)∩J ⊂ (Z+DO)∩J . This
explains that we can decompose αβα−1 on the generating family θ1, . . . , θn.
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Since π gives a correct embedding of Z + DO inside End(E1) and so σ =∑
I⊂{1,...,n} ci,I

∏
j∈I φj is an endomorphism of E2 whose degree is a multi-

ple of n(J). To conclude the proof of correctness, it suffices to show that kerσ ∩
E2[n(J)] = φπ(E1[J ]). If αβα

−1 = [d] + [D]γ for some γ ∈ End(E1), we have
that σ = [d] + φπ ◦ γ ◦ φ̂π. Now let us take P0 ∈ E1[J ]. Since αβα

−1 ∈ J , we
have ([d] + [D]γ)P0 = 0 and σ(φπ(P0)) = [d]φπ(P0) + φπ(γ ◦ φ̂π ◦ φπ(P0)) =
φπ(([d] + [D]γ)P0 = 0. This proves that φπ(E[j]) ⊂ kerσ ∩ E2[n(J)]. And we
obtain equality since the two subgroups have the same order. Thus, we have
showed that our protocol is correct. In ℓ•, we can always select an element
ℓe = O(poly(log(pDn(I)n(J)))) of norm bigger than the bound B from Assump-
tion 2 so the complexity follows from Assumptions 1 and 2, Propositions 1 and 10
and the fact that n(I) = O(poly(p)) by Proposition 14.

4.5 Deducing the ideal representation from the suborder
representation

We saw with Proposition 8 that our new suborder representation can be com-
puted from the ideal representation in polynomial time. The goal of this section
is to study the reverse problem of extracting an ideal representation from a sub-
order representation. We are going to try to argue that this problem is hard in
general and describe some cases where it is easy. We also introduce several other
problems and prove that they are equivalent.

Problem 1. (SubOrder to Ideal Problem, SOIP) Let x = (D,E1, E2) ∈ Lp−isog,
and π be a suborder representation such that SuborderVerification(x, π) = 1.
Compute I, an ideal such that IdealVerification(x, I) = 1 or IdealVerification((D,E1, E

p
2 ), I) =

1.

We will show in Proposition 12 the equivalence of Problem 1 with the prob-
lem of computing the endomorphism ring of the codomain from the suborder
representation (Problem 2).

Problem 2. (SubOrder to Endormophism Ring Problem (SOERP)). Let x =
(D,E1, E2) ∈ Lp−isog, and π be a suborder representation such that SuborderVerification(x, π) =
1. Compute O2 ⊂ Bp,∞ with O2

∼= End(E2).

Proposition 12. Under Assumption 1 and GRH, The SOIP and SOERP are
equivalent.

Due to lack of space, the full proof is given in the full version of the paper
but we summarize the important elements below. One of the two reductions is
trivial since the right order of a solution to the SOIP is exactly a solution to
the SOERP. The other reduction is more complex, the idea is that with the
knowledge of the endomorphism ring of E2, the endomorphisms of the suborder
representation can be translated into principal ideals over the quaternions and
with that, it is possible to compute a generator of the desired ideal.
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Interestingly, we can show that the SOIP is also equivalent to another prob-
lem, the Torsion to Ideal Problem (TIP) that can be seen as a generalization of
the CSSI problem introduced by De Feo and Jao for SIDH [JDF11]. Due to lack
of space, the proof of Proposition 13 is given in the full version.

Problem 3. (T -Torsion to Ideal (T -TI)) Let T be an integer. Let x = (D,E1, E2) ∈
Lisog where D is coprime with T and let φ : E1 → E2 be an element of IsogD.
Let P,Q be a basis of E1[T ]. Given End(E1) and φ(P ), φ(Q) ∈ E2[T ], Compute
I, an ideal such that IdealVerification(x, I) = 1.

Proposition 13. For every D, p, there exists a value of T , such that the SOIP
is equivalent to the T -TIP.

A sub-exponential quantum attack against the SOIP. To the best of our knowl-
edge, the attack we describe below is the most efficient against the generic SOIP.
We use a result from [KMPW21] that a one-way function f : E → F can be in-
verted at f(e) by solving an instance of the hidden shift problem when there
exists a group action ⋆ : G × E → E for which there is a malleability oracle:
i.e., an efficient way to evaluate the function g 7→ f(g ⋆ e) on any g ∈ G. The
hidden shift problem can be solved in quantum sub-exponential time. In our
context, we consider the group action of (End(E1)/DEnd(E1))

∗ on the set of
cyclic subgroups of order D. This set is in correspondence with cyclic ideals of
norm D inside End(E1) and so we can invert the function I 7→ E/E[I] in sub-
exponential time if we have a malleability oracle. In [KMPW21], it was shown
that this malleability oracle could be obtained as soon as the image of a big
enough torsion-group through the secret isogeny was given. This is can done
with our algorithm SuborderEvaluation. As a consequence, we can evaluate φI

on any subgroup of powersmooth order and this is more than enough to obtain
a malleability oracle with the ideas of [KMPW21]. Thus, we can apply the re-
duction from [KMPW21] and get a sub-exponential quantum method to solve
Problem 1.

Remark 2. The existence of a sub-exponential attack is inevitable as soon as
one non-trivial endomorphism σ : E2 → E2 is revealed. The attack stems from
the existence of a group action of Cl(Z[σ]) on the set of Z[σ]-orientations (i.e
pairs E, ι where ι : Z[σ] ↪→ End(E1), see [CK19,DFFdSG+21] for more on
orientations). With the knowledge of σ, one can apply the idea (first introduced
by Biasse, Jao and Sankar [BJS14] in the special case where Z[σ] = Z[

√
−p])

that the algorithm from Childs et al. [CJS14] can be adapted to find a path
of powersmooth degree between two Z[σ]-oriented curves. When this algorithm
is applied between E2 and E1, a curve of known endomorphism ring, the path
obtained in output allows the attacker to compute the endomorphism ring of
E2. This algorithm has sub-exponential complexity in log h(Z[σ]) as it reduces
to an instance of the hidden shift problem. The attack we just outlined is similar
to the ones exposed in [Wes22,ACL+22].
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In the remaining of this section, we will describe other attacks, analyze the
cases in which they prove to be efficient and explain why they fail to solve the
generic SOIP.

Torsion point attacks. With the terminology torsion point attack, we designate
any attack that aims at recovering an isogeny representation of a secret isogeny
φ : E → F from the knowledge of φ(P ), φ(Q) where P,Q is a basis of E[T ]
for some integer T . This definition covers attacks against the T -TIP and the
CSSI problem of SIDH, including the recent attacks by Castryck and Decru
[CD22], Maino and Martindale [MM22] and Robert [Rob22]. These new attacks
against SIDH can be seen as a generalization to higher dimension of the origi-
nal torsion point attack due to Petit [Pet17]. Here is how we can explain their
common generic principle: use the torsion points φ(P ), φ(Q) to compute θ, a
T -endomorphism/isogeny of abelian varieties in dimension g (for some constant
g) whose expression depends on φ. When T is big enough with respect to degφ,
the computation of θ can be made solely from φ(P ), φ(Q). Then, θ can be evalu-
ated on the degφ-torsion to recover kerφ. The real advantage of the new attacks
against the initial idea of Petit is that they reduce the constraint to T > degφ
which mean they can be applied to SIDH. With our algorithm SuborderEvalu-
ation, it is possible to get the image of any subgroup under the isogeny φ of
degree D from a suborder representation πφ. Thus, it is always possible to apply
a torsion point attack to the setting of the SOIP. However, the complexity of
this attack will not always be polynomial. The main obstacle seems to be the
field of definition of the D-torsion. In general, for a random integer D, we can
expect the D-torsion to be defined over Fpk where k = O(D). This is true in
particular when D is prime. When the field of definition of the torsion point
is too big, there does not seem to be any way to express the kernel of φ in a
compact manner and thus the attack does not have a polynomial complexity.

On the other hand, when the degree k of the field extension is polynomial
in D, there is a quantum polynomial attack against the SOIP. Indeed, in this
case, the torsion point attacks allow us to compute the kernel of φ in polynomial
time and this kernel admits a representation of polynomial size. Then, the only
remaining task to solve the SOIP is to compute the ideal I corresponding to φ.
Since the endomorphism ring of the domain E1 is known, this can be done in
quantum polynomial time using the algorithm from Galbraith, Petit and Silva
[GPS17, Algorithm 3]. It is only quantum polynomial time because the algo-
rithm requires to solve some DLPs over the D-torsion, every other aspect of the
algorithm can be executed in classical polynomial time.

To conclude, we need that the D-torsion is not defined over a small field
extension to ensure hardness of the SOIP. Fortunately, this should happen with
overwhelming probability when D is chosen at random, and it can be verified
by computing the order of p mod D (the degree k is equal to this order up to a
factor 2).

Other attacks. We start by analyzing the complexity of the brute-force algorithm.
In full generality, for a given D, the brute force will take O(min(p,D)). The
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idea is that since End(E1) is part of the suborder representation, it suffices to
enumerate through all End(E1) ideals of norm D until IdealVerification passes.
There are O(D) such ideals, but since there are only O(p) curves, we need to
test at most O(p) of them. Thus, the generic complexity of the brute force
is O(min(D, p)). Note that when D is prime, there does not seem to be an
adaptation of the meet-in-the-middle attack which provides a quadratic speed-
up over a brute-force search, and is considered to be the most efficient method
to find an isogeny of smooth degree between two random supersingular curves.

Another way to solve the problem in a generic manner is by computing
End(E2) (see Proposition 12). Without using the proof π as a hint, the com-
plexity is believed to be Θ̃(p1/2) for classical computers and Θ̃(p1/4) for quantum
computers (see [EHL+20]).

Even after seeing the above analysis, the hardness of the SOERP may still
come as a surprise to a reader familiar with isogeny-based cryptography. In
particular, the fact that we reveal several endomorphisms of E2 might seem like
a very troublesome thing to do. This concern is legitimate: the algorithm from
[EHL+20] to compute the endomorphism ring of any supersingular curve is based
on the principle that knowing two distinct non-trivial endomorphisms is enough
to recover the full endomorphism ring in polynomial-time. The idea behind this
algorithm is that Bass orders are contained in a small number of maximal orders.
Thus, when the two non-trivial endomorphisms generate a Bass order, it suffices
to enumerate all the maximal orders containing that same Bass order to find the
solution. The authors from [EHL+20] prove their result under the conjecture
that two random cycles will form a Bass order with good probability. However,
the endomorphisms that we reveal in the suborder representation are not random
cycles. By design, the suborder they generate is not Bass and we know that it is
contained in an exponential number of maximal orders (this number is equal to
the number ofD-isogenies by Lemma 3). As such, when using the endomorphisms
of the suborder representation, the algorithm described in [EHL+20] is essentially
the brute force attack where each ideal of norm D is tested.

Readers might also be concerned with the quaternion alternate path problem.
A way to break the SOERP would be to use the embedding of Z +DEnd(E1)
inside End(E2) to compute a path from E2 to a curve E0 of known endomor-
phism ring. Following the (now standard) blueprint that underlies most of the
algorithm in this work, such an attack would be divided in two steps: first a com-
putation over the quaternions (analog to KLPT) and then a conversion through
the Deuring correspondence to obtain an isogeny connecting E2 to E0 (ana-
log to IdealToIsogeny). This supposed attack would have to work over orders of
non-trivial Brandt invariant rather than maximal orders to exploit the suborder
representation. It appears that the first part of this method can be made to
work over non-Gorenstein orders. In fact, the IdealSuborderNormEquation that
we describe in Algorithm 6 is exactly the analog of KLPT for orders of the form
Z+DO. However, the fact that the Brandt invariant is non-trivial appears like a
serious obstacle to the second part of the proposed attack. Indeed, as the number
of curves admitting an embedding of Z+DO inside their endomorphism ring is
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big, it becomes hard to tell which pair of curves are connected by any ideal of
the form (Z+DO) ∩ J (which was not the case for maximal orders because we
have almost a 1 − to − 1 correspondence between curves and maximal orders).
Thus, it seems implausible to be able to find a path between E2 and a given
curve E0 in that manner. Another way of seeing this is that since Z + DO is
a generic suborder shared by a lot of curves, we cannot compute anything that
will be specific to a given curve from the knowledge of Z+DO only.

5 Sub-algorithms over the quaternion algebra

In this section, we fill the blanks left in the Section 4. We provide precise descrip-
tions of the algorithms IdealSuborderNormEquation,SmoothGen, and CheckTraceM
in Sections 5.2 to 5.4 respectively. We recall that the first algorithm is used to
evaluate isogenies from the suborder representation in SuborderEvaluation (Al-
gorithm 4 of Section 4.4) and the last two are building blocks for SuborderVer-
ification (Algorithm 3 of Section 4.3) for the verification of our new suborder
representation. Note that IdealSuborderNormEquation and SmoothGen are only
heuristic as for the algorithms from [KLPT14,DFKL+20]. We expand on this
matter in Remark 3.

We use the basis 1, i, j, k for Bp,∞ where i2 = −q, j2 = −p and k = ij = −ji
for some small integer q > 0 (see [KLPT14] for values of q for all p, when p = 3
mod 4 we can take q = 1). Following the classical approach in the literature
([KLPT14,DFKL+20]), we takeO0 ⊂ Bp,∞ as a special extremal order as defined
in [KLPT14], i.e., a maximal order containing a suborder with orthogonal basis
⟨1, ω, j, ωj⟩ where Z[ω] ⊂ Q[i] is a quadratic order of small discriminant.

5.1 Algorithms from previous works

In the next sections, we rely upon several algorithms existing in the literature.
The full version of [DFKL+20] is a good reference for all these algorithms. We
briefly recall their purpose.

– RandomEquivalentPrimeIdeal(I), given a left O0-ideal I, finds an equivalent
left O0-ideal of prime norm.

– IdealModConstraint(I, γ), given an ideal I of norm N , and γ ∈ O0 of norm n
coprime with N , finds (C0 : D0) ∈ P1(Z/NZ) such that µ0 = j(C0 + ωD0)
satisfies γµ0 ∈ I.

– EichlerModConstraint(I, γ), given an ideal I of norm N , and γ ∈ O0 of norm
n coprime with N , finds (C0 : D0) ∈ P1(Z/NZ) such that µ0 = j(C0+ωD0)
satisfies γµ0 ∈ Z+ I.

– StrongApproximationN (N,C0, D0), given a prime N and C0, D0 ∈ Z, finds
µ = λµ0 +Nµ′ ∈ O0 of norm in N , with µ0 = j(C0 + ωD0) and µ

′ ∈ O0.

The following result on the size of the output of RandomEquivalentPrimeIdeal
will prove useful.
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Proposition 14. Let I be an integral ideal of maximal orders. The output J =
RandomEquivalentPrimeIdeal(I) has norm n(J) = O(poly(p)).

Remark 3. The algorithms that we have introduced above are all expected to
terminate in polynomial-time under various plausible heuristic assumptions in-
troduced in [KLPT14,DFKL+20]. By plausible, we mean that these assumptions
were verified experimentally. These assumptions mostly concern the probability
that some integers represented by specific quadratic forms are prime and sat-
isfy some quadratic reduosity condition (as in Remark 4 for instance, see also
[Wes22] for more details). Our new algorithms are based on the sub-algorithms
from [KLPT14] and this is why our results will be subject to the same assump-
tions. However, these assumptions are only used to justify the termination and
expected running time of the sub-algorithms, and so they do not appear directly
in our proofs, and this is also why we do not state them clearly.

Remark 4. The StrongApproximationN (N, ·) algorithm was originally introduced
for a prime number N in [KLPT14]. The probability of success depends on some
quadratic reduosity condition mod N . We can easily extend StrongApproximation
to the case of composite N (and this is the version that we use in the algorithms
below) if we allow the success probability to decrease. In general, under the
heuristic assumption that the integers we consider mod N behave like random
integers of the same size, we can see that the success probability should be 1/2k

where k is the number of distinct prime divisors of N . Below, we are going to
use the algorithm with N having at most three large prime divisors.

5.2 Solving Norm Equations inside non-Gorenstein orders

In this section, we extend the range of 4-dimensional lattices Λ ⊂ Bp,∞ inside
which we know how to solve norm equations. Each of our norm equation algo-
rithm is parameterized by a set N ⊂ N that defines the possible norm of the
outputs. This set N can be either ℓ• for some prime ℓ or M(T ), the divisors of
T for some T ∈ N.

The first algorithms targetting that task were introduced in [KLPT14] where
Λ was either a special extremal maximal order like O0 or an ideal of left (and
right) maximal order. In [DFKL+20], new methods were introduced to work
inside Eichler orders and their ideals, thus covering lattices of the form Z + I
and (Z + I) ∩ J where I, J are cyclic integral ideals with gcd(n(I), n(J)) = 1.
We continue this trend of work by exploring the case of non-Gorenstein orders
with Gorenstein closure equal to Eichler orders and their ideals. Concretely, this
means lattices of the form Z+DI and (Z+DI)∩J where I, J are cyclic integral
ideals and gcd(n(I), n(J), D) = 1.

Our motivation is the resolution of norm equations inside Z + DO for any
maximal order O ⊂ Bp,∞. In the particular case where O is a maximal ex-
tremal order as O0, an algorithm to find elements of given norm inside Z+DO
was introduced in [Pet17]. Unfortunately, the generic case requires a different
treatment. We apply the idea from De Feo et al. in [DFKL+20] that consists in
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restricting the resolution to the suborder (Z+DO)∩O0. Since O ∩O0 = Z+ I
where I = ConnectingIdeal(O0,O), our main tool is an algorithm EichlerSubor-
derNormEquation to solve norm equations inside Z+DI = (Z+DO) ∩ (Z+ I).
This algorithm is going to be the main building block of SmoothGen (whose
description we give in Section 5.3). In the end of this section, we show with
IdealSuborderNormEquation how to extend EichlerSuborderNormEquation to solve
norm equations inside (Z+DI) ∩ J where gcd(n(J), n(I)) = 1.

To clarify the explanations, we try to extract a pattern in the formulations
of the algorithms from [KLPT14,DFKL+20] and ours. We will explain how the
ideas from [KLPT14,DFKL+20] fit into a common framework before introducing
our approach. We hope that it might provide some insights on these algorithms
and help the reader understand how they work and how they were designed.

Each algorithm is parameterized by two integersN1, N2. We look for elements
of norm contained in some set N ⊂ N. In practice N is going to be either ℓ• or
the divisors of some powersmooth integer T . The algorithms can be decomposed
as follows:

1. Find γ satisfying a set of conditions and having a norm dividing N1n
′ where

n′ ∈ N .
2. Find C,D ∈ Z such that γj(C +Dω) ∈ Λ.
3. Compute µ = StrongApproximationN (N2, C,D).
4. Output γµ.

The goal of these ”conditions” on γ in the first step is to ensure that the
second step will always have a solution. As we are going to see, the only real
difference between the several algorithms are the values of N1, N2 and these
conditions on γ. The second step is always solved using linear algebra mod
N2. When N2 is composite, we will decompose it in sub-operations modulo the
different factors before using a CRT to put everything together.

In the rest of this section, we may assume for simplicity that ideals have
prime norm. When not, the algorithm EquivalentRandomPrimeIdeal can be used
to reduce the computation to the prime case. The first algorithm fitting the
framework above was introduced in [KLPT14] and targetted the case where Λ
is an O0-ideal of norm N . The condition on γ is summarized by Lemma 6 that
is a reformulation of some of the results from [KLPT14]. We have N1 = N and
N2 = N .

Lemma 6. [KLPT14] Let I be an O0 ideal of norm N and γ ∈ O0. When
gcd(n(γ), N2) = N , there exists C,D ∈ Z such that γj(C + Dω) ∈ I with
overwhelming probability.

The goal of the authors of [DFKL+20] was to obtain a generalization of the
algorithm of [KLPT14] when Λ is an O-ideal K for any maximal order O (and
not just the special case O0). To do that, they proposed to solve the norm
equation inside K ∩ O0 which can be written as (Z + I) ∩ J for two O0-ideals
I, J . To achieve that goal they started by implicitly introducing a method to
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solve the norm equation inside Z+ I before combining that with the ideas from
[KLPT14] to get the full method.

For the case Λ = Z + I where I has norm N , the condition on γ can be
summarized with Lemma 7. In that case, N1 = 1 and N2 = N .

Lemma 7. [DFKL+20] Let I be an O0 ideal. When gcd(γ,N) = 1, there exists
C,D ∈ Z such that γj(C +Dω) ∈ Z+ I with overwhelming probability.

When Λ = (Z+ I)∩J with n(I) = N and n(J) = N ′, the solution presented
in [DFKL+20, Section 5] is simply obtained by combining Lemmas 6 and 7 with
N1 = N ′, N2 = NN ′.

Norm equations inside Z +DI. Next, we explain our method for the case Λ =
Z+DI. This time, we need γ to satisfy more conditions than a simple constraint
on its norm. We will introduce the necessary condition in Proposition 15. The
constraint proves to be slightly inconvenient, and will impact the size of the final
solution, but we managed to find a way to keep some control on the norm of γ
while ensuring that the linear algebra step always has a solution.

Proposition 15. Let I be an integral left O0-ideal of norm N and let D be a
prime number distinct from N . If γ ∈ O0 can be written as j(C2 + ωD2) +Dµ2

with µ2 ∈ O0 and γ has norm coprime with N , then there exists C1, D1 ∈ Z such
that γj(C1 + ωD1) ∈ Z+DI.

Proof. If γ has norm coprime with N , we know from [DFKL+20] that there
exists C0, D0 such that γj(C0 + ωD0) ∈ Z + I (this is Lemma 7). Then, if we
set C ′

2 = −D′
2C2(D2)

−1 mod D for any D′
2, it is easy to verify that γj(C ′

2 +
ωD′

2) ∈ Z+DO0. Hence, if C1, D1 satisfies C1 = C0 mod N,D1 = D0 mod N ,
C1 = C ′

2, D1 = D′
2 mod D and gcd(N,D) = 1, we have that γj(C1 + ωD1) ∈

Z+DO0 ∩ (Z+ I) = Z+DI. By the CRT, we know we can find such C1, D1.

With Proposition 15, we see that we must take N1 = 1 and N2 = ND and
that we must also apply a strong approximation mod D to compute exactly
γ. When we apply these ideas to the framework described above, we obtain
EichlerSuborderNormEquation.

We remind the reader that the heuristics in Proposition 16 are the same as
the ones from [KLPT14] (see Remark 3). This goes for Propositions 17 and 18
as well.

Proposition 16. (Heuristic) When N,D are distinct primes, Algorithm 5 ter-
minates in expected O(poly(log(DN))) and outputs an element of Z+DI of norm
in N when N contains an elements bigger than p7/2D6. The expected norm is
in O(poly(p,D,N)).

Proof. As mentioned in Remark 4, because D is prime, under plausible heuris-
tics, the algorithm StrongApproximationN (D, ·) finds a solution of norm in N
with probability at least 1/2 in polynomial time when N contain a big enough
element (we will look at the required size at the end of the proof). As a result
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Algorithm 5 EichlerSuborderNormEquationN (D, I)

Input: I a left O0-ideal of norm N coprime with D.
Output: β ∈ Z+DI of norm dividing F .
1: Select a random class (C2 : D2) ∈ P1(Z/DZ).
2: Compute µ2 = StrongApproximationN (D,C2, D2)). If the computation fails, go back

to Step 1.
3: Compute (C0 : D0) = EichlerModConstraint(µ2, I).
4: Sample a random D′

2 in Z/DZ, compute C′
2 = −D′

2C2(D2)
−1 mod D.

5: Compute C1 = CRTN,D(C0, C
′
2), D1 = CRTN,D(D0, D

′
2).

6: Compute µ1 = StrongApproximationN (ND,C1, D1). If it fails, go back to step 1.
7: return β = µ2µ1.

of Proposition 15, EichlerModConstraint always succeeds in finding a solution
(C0 : D0). Then, the second StrongApproximation has a 1/4 success probability
when N,D are prime. Assuming that a new choice of (C2 : D2) randomizes
(C1 : D1) sufficiently we can show that a solution can be found with over-
whelming probability after a constant number of repetitions. This proves the
algorithm’s termination.

For correctness, we can verify easily that j(C2+D2ω)j(C
′
2+ωD

′
2) ∈ Z+DO0.

Since β − j(C2 +D2ω)j(C
′
2 + ωD′

2) ∈ DO0 this proves that β ∈ Z +DO0. By
the correctness of EichlerModConstraint and the fact that NO0 is contained in I
we can also show that β ∈ Z+ I. Hence, β ∈ (Z+DO0) ∩ (Z+ I) = Z+DI.

The estimates provided in [DFKL+20] allow us to predict that we can find a
solution β of norm in N if N contains elements of size ≈ 2 logℓ(p) + 6 logℓ(D) +
3 logℓ(N). This comes from the fact that a strong approximation mod N ′ can
find solutions of norm approximately equal to pN ′3. Other estimates provided
in [DFKL+20] prove that we will have N ≈ √

p and this yields the final bound

p7/2D6.

Norm equations inside (Z+DI)∩ J . We set N = n(I) and N ′ = n(J). For this
final case, it suffices to combine Lemmas 6 and 7 and Proposition 15 and take
N1 = N ′, N2 = NN ′D. This yields Algorithm 6.

Proposition 17. (Heuristic) Assumption 2 holds.

Proof. Due to Lemmas 6 and 7 and Proposition 15, we know that we can find
(C0 : D0), (C3 : D3) and (C ′

2 : D′
2) with overwhelming probability and that

the result will be correct. The computation takes O(poly(log(DNN ′))) since
it consists of linear algebra mod D,N,N ′. The executions of Strong Approx-
imations terminates in probabilistic polynomial time and output a value with
constant probability. So the global computations terminates in probabilistic
O(poly(log(DNN ′))). It is correct because StrongApproximation is correct. The
computation succeeds as soon as the target set N contains elements that have
size bigger than 2 logℓ(p)+6 logℓ(D)+3 logℓ(N)+2 logℓ(N

′) and this is the value
we can take for the bound B ( the first execution of StrongApproximation gives
an element of size ∼ pD3/N ′ and the second p(DNN ′)3).
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Algorithm 6 IdealSuborderNormEquationN (D, I, J)

Input: An integer D, and I, J two left O0-ideals of norm N,N ′ with gcd(N,N ′, D) =
1.

Output: β ∈ (Z+DI) ∩ J of norm N ′N ′′ where N ′′ ∈ N .
1: Select a random class (C2 : D2) ∈ P1(Z/DZ).
2: Compute µ2 = StrongApproximationN (D,C2, D2)). If the computation fails or if

gcd(n(µ2), N
′) = 1, go back to Step 1.

3: Compute (C0 : D0) = EichlerModConstraint(µ2, I).
4: Compute (C3 : D3) = IdealModConstraint(µ2, J).
5: Sample a random D′

2 in Z/DZ, compute C′
2 = −D′

2C2(D2)
−1 mod D.

6: Compute C1 = CRTN,D,N′(C0, C
′
2, C3), D1 = CRTN,D,N′(D0, D

′
2, D3).

7: Compute µ1 = StrongApproximationN (NDN ′, C1, D1). If it fails, go back to step 1.

8: return β = µ2µ1.

5.3 Computing a smooth generating family

In this section, we describe the SmoothGen algorithm that takes in input a max-
imal order O and a prime D, outputs a generating family of Z+DO of elements
whose norms are in N . The idea behind this algorithm is quite straightforward:
apply EichlerSuborderNormEquation on I, for various ideals I connecting O0 and
orders isomorphic to O. This gives a way to sample elements in Z + DO, and
we iterate this method until we obtain a generating family from this set. Ex-
perimental results show that after taking a few elements in that manner (for
instance, no more than ten for parameters of cryptographic sizes, i.e, of a few
hundred bits), we can extract a generating family of size three. We formulate
this more precisely as Conjecture 1.

Conjecture 1. Let O1 be a maximal order in Bp,∞. Let I1, I2, I3 be random O0-
ideals of prime norms with αiOR(Ii)α

−1
i = O for some αi ∈ B∗

p,∞. If θ1, θ2, θ3
are random outputs of EichlerSuborderNormEquation(D, Ii) for i = 1, 2, 3, then
Z + DO = Order(α1θ1α

−1
1 , α2θ2α

−1
2 , α3θ3α

−1
3 ) with probability 1/c where c =

O(poly(log(pD))).

Proposition 18. (Heuristic) Assuming Conjecture 1, Assumption 1 holds.

Proof. Proposition 1 proves the desired running time for ConnectingIdeal. The
same holds for RandomEquivalentPrimeIdeal and the outputs of this algorithm
have norms in O(poly(p)) by Proposition 14. By Conjecture 1, n = 3 and we need
only to repeat a polynomial number of times the algorithm EichlerSuborderNormEquation
which terminates in polynomial time by Proposition 16 and the outputs have
norm in O(poly(pD)). By the termination condition, the output is a generating
family of Z+DO.
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Algorithm 7 SmoothGenN (O, D)

Input: A maximal order O and a prime D.
Output: A generating family θ1, θ2, θ3 for Z+DO where each θj has norm in N .
1: Set L = ∅ and I0 = ConnectingIdeal(O0,O).
2: while There does not exist θ1, θ2, θ3 ∈ L s.t Z+DO = Order(θ1, θ2, θ3) do
3: I = RandomEquivalentPrimeIdeal(I0) and I = I0α.
4: Compute θ = EichlerSuborderNormEquationN (D, J).
5: L = L ∪ {αθα−1}.
6: end while
7: return θ1, θ2, θ3.

5.4 Checking traces

In this section, we present an algorithm CheckTraceM to perform the verification
of the suborder representation.

Computing the trace of an endomorphism is a well-studied problem, as it is
the primary tool of the point counting algorithms such as SEA [Sch95]. For our
application the task is even simpler as we merely have to verify the correctness
of the alleged trace value and not compute it. With the formula tr(θ) = θ + θ̂,

it suffices to evaluate θ and θ̂ on a basis of the M -torsion, and then verify the
relation. In particular, we do not need M to be smooth since we just want to
check equality.

Algorithm 8 CheckTraceM (E,φ1, . . . , φn, θ1, . . . , θn)

Input: θ1, . . . , θn, n endomorphisms of E and n elements of Bp,∞ ω1, . . . , ωn.
Output: A bit b equal to 1 if and only if tr(θi) = tr(ωi) mod M for all i ∈ [1, n].
1: Compute P,Q a basis of E[M ] over the appropriate field extension. Set b = 1.
2: for All I ⊂ [1, n] do
3: Set θI =

∏
j∈I θj and φI =

∏
j∈I φj .

4: Verify φI(R) + φ̂I(R) = [tr(θI)]R for R ∈ {P,Q}. If not, set b = 0.
5: end for
6: return b.

Proposition 19. When M = #E(Fpm), n = O(1) and degφi = O(poly(p))
and have smoothness bound in O(poly(log(p))) for all 1 ≤ i ≤ n, CheckTraceM
terminates in O(poly(m log(p))

Proof. By choice ofM , P,Q are defined over Fpm and so operations over theM -
torsions have O(poly(m log(p)) complexity. By the assumption on the degree of
the φi, computing all the φI(P,Q) can be done in O(poly(log(p))) since n = O(1)
and this concludes the proof.
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6 A new NIKE based on a generalization of SIDH for big
prime degrees.

We present here pSIDH (prime-SIDH) a new NIKE scheme. It is based on a
SIDH-style isogeny diagram (see Fig. 1) but with prime degrees. For secret keys
we propose to use ideal representations and then take suborder representations
as public keys. The key exchange will be made possible with SuborderEvaluation
(Algorithm 4 of Section 4.4). The full description can be found in In terms of
security, the pSIDH key recovery problem is exactly the SOIP and our NIKE
is secure under the hardness of a decisional variant of the SOIP (Problem 1) in
a similar manner to SIDH with the CSSI and SSDDH problems introduced in
[JDF11].

As pSIDH is a NIKE and the best attack is quantum-subexponential (see
Section 4.5), pSIDH has an application profile similar to CSIDH (there is even a
group action involved). The SOIP in itself is closer to the key recovery problem
of CSIDH than it is to the one of SIDH (in the sense that they can be both
seen as isogeny problems with partial endomorphism ring information which is
not really the case for SIDH). However, despite some similarities, the protocols
relies on different assumptions. Moreover, the underlying structure in pSIDH is
not the same as in CSIDH so it might open new possibilities.

We discuss a concrete instantiation and the efficiency of pSIDH in Section 6.2,
where we also compare with the efficiency of CSIDH.

6.1 The description of pSIDH

The idea of SIDH is the following: the two participants Alice and Bob generate
isogenies φA, φB of degree gcd(NA, NB) = 1. Their public keys are the curves
EA, EB , together with additional pieces of information to make possible the
computation of the two push-forward isogenies [φA]∗φB and [φB ]∗φA depicted
in Fig. 1. It is possible to show that the codomains of these push-forward isogenies
are isomorphic (thus providing a way to derive the common key from j(E)). We
have ker[φA]∗φB = φA(kerφB) and this is why Alice’s SIDH-public key is the
curve EA together with φA(PB), φA(QB) where ⟨PB , QB⟩ = E0[NB ] (and the
reverse for Bob’s). For efficiency, the degrees NA, NB need to be smooth.

To do the same thing for two prime degrees DA, DB , we need a new method
to compute the codomain of the push-forward isogenies. We propose to use the
ideal representations as secret keys and the suborder representations as public
keys. The computation of the common key j(E) can be done as follows. Given
an ideal I of norm DA and the suborder Z + DBO0, it is possible to find an
element θ ∈ (Z + DBO0) ∩ I of norm DAS where S is a powersmooth integer
with the algorithm IdealSuborderNormEquation (Algorithm 6 in Section 5.2). The
embedding ιB : Z + DBO0 ↪→ End(EB), is obtained by pushing forward the
embedding of Z + DBO0 inside End(E0) through φB and so we have ιB(θ) =
ψA◦[φB ]∗φA where ψA has degree S. Thus, using πB , the suborder representation

of φB , we can use SuborderEvaluation to compute ker ψ̂A and ψ̂A. The codomain
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of ψ̂A is isomorphic to E and so the common secret j(E) can be derived from
that.

These ideas are summarized in Fig. 1 and the full description of the key
exchange mechanism is given as Algorithm 10. The key generation algorithm is
also described in Algorithm 9. To be able to run this algorithm in polynomial-
time, we need to be able to compute efficiently isogenies of degree ψA and to be
able to manipulate the full degψA torsion. This is why we take the degree of ψA

as a divisor of a powersmooth integer T . To be able to apply SuborderEvaluation,
we also need that T is coprime with the degree of the endomorphisms of the
suborder representation (so we take T coprime with ℓ). We write M(T ) for the
set of divisors of T . The integer m is taken to be as in Proposition 10.

The public parameters of pSIDH should include a prime p and a starting
curve E0 together with a description of End(E0). For simplicity, we may assume
that End(E0) ∼= O0, where O0 is the special extremal order introduced in the
beginning of Section 5.

E0

EA

E

EB

φA

φB

[φA]∗φB

[φB ]∗φA

ψ̂B

ψ̂A

Fig. 1. SIDH/pSIDH-isogeny diagram.

Algorithm 9 KeyGeneration(D)

Input: A prime number D ̸= p.
Output: The pSIDH public key pk = E, π and the pSIDH secret key sk = I where π

is a suborder representation and I an ideal representation for (D,E0, E) ∈ Lp−isog.

1: Sample I as a random O0-ideal of norm D.
2: Compute π = IdealToSuborder(I) and set E as the domain of the endomorphisms

in π.
3: return pk, sk = (E, π), I.

Proposition 20. Under GRH, Assumption 1, Assumption 2, KeyExchange ter-
minates in expected poly(log(pD′D).
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Algorithm 10 KeyExchange(I,D′, E′, π)

Input: I an ideal of degree D and a prime D′ ̸= D, p. A curve E′ and a suborder
representation π.

Output: A j-invariant or ⊥.
1: Parse π = (O0, φ1, . . . , φn).
2: Compute θ1, · · · , θn = SmoothGenℓ•(O0, D

′).
3: if !SuborderVerification#E′(Fpm )((D

′, E0, E
′), π) then

4: Return ⊥.
5: end if
6: Take a powersmooth integer T coprime with ℓ with B < T < 2B where B is the

bound in Assumption 2 and T has the smallest possible smoothness bound.
7: Set J = O01.
8: Compute θ = IdealSuborderNormEquationM(T )(D

′, J, I).
9: Factorize T =

∏r
i=1 ℓ

ei
i .

10: Set G = ⟨0E′⟩.
11: for i ∈ [1, r] do
12: Compute Ji = O0α−1θα+O0ℓ

ei
i .

13: G = G+ SuborderEvaluation(E0, E
′, π,D′, Ji).

14: end for
15: Compute ψ : E′ → E′/G.
16: return j(E′/G).

Proof. SinceB = O(poly(log(pDD′))), we can choose a value of T with a smooth-
ness bound equal in O(poly(log(pDD′))). Thus, all operations over the T -torsion
and the final computation of ψ can be done in O(poly(log(pD′D))). The remain-
ing computations terminate in expected O(poly(log(pD′D))) due to Assump-
tions 1 and 2 and Propositions 1, 10, 11 and 14.

Proposition 21. Let DA, DB ̸= p be two distinct prime numbers. If EA, πA, IA =
KeyGen(DA) and EB , πB , IB = KeyGen(DB), then

KeyExchange(IA, DB , EB , πB) = KeyExchange(IB , DA, EA, πA).

Proof. Let us write φA, φB the isogenies corresponding to the two ideals IA, IB .
Let us write θA the quaternion element defined in Step 8 of KeyExchange(IA, DB , EB , πB).

Then, the quaternion element α−1
A θAαA ∈ (Z +DBO0) ∩ IA corresponds to an

endomorphism ψA,0 ◦ φA ∈ End(E0) for some isogeny ψA,0 : EA → E0. Since
it is contained in (Z +DBO0) ∩ IA, we can embed it inside the endomorphism
ring of EB by Proposition 7 and we obtain in that manner the endomorphism
ψA◦[φB ]∗φA where ψ̂A = [φB ]∗ψ̂A,0. In particular, the codomain of ψ̂A is isomor-
phic to the codomain of [φB ]∗φA. We can make the same reasoning by swapping
A and B and by definition of push-forward isogenies and Proposition 11, the two
j-invariants obtained at the end of the two executions of KeyExchange are equal.

Remark 5. The purpose of Algorithm 10 is to present a simple version of the
protocol for the key exchange. However, as it is written, our solution is not very
optimized. For instance, a lot of redundant computations are made through the
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call to SuborderEvaluation. In an optimized implementation of this key exchange,
one would want to skip all the first steps which are already executed in KeyEx-
change to focus on the important steps.

We analyze the security of pSIDH in the full version of the paper, it is very
similar to the security proof of SIDH.

6.2 About efficiency and concrete instantiations

Efficiency. We have proven (at least heuristically) that all our new algorithms
can be executed in polynomial time. However, this does not prove anything on
the concrete efficiency. We did not make a full implementation but we can ob-
tain a good idea of the efficiency by comparison with the SQISign signature
[DFKL+20]. This comparison is relevant for two reasons: we can take the same
size of prime p (and measure relative efficiency by counting the number of oper-
ations over Fp2) and the bottlenecks should be the same. We elaborate on that
below.

Our analysis in Section 4.5 indicates that the only security constraint on the
prime p is that it needs to be big enough to prevent the exponential attacks
against the endomorphism ring problem (which is the SQISign key recovery
problem). Once p has been fixed, the hardness of our new SOIP depends on the
value of D. The main attack against the SOIP that we introduce in Section 4.5
has quantum sub-exponential complexity in D. It is unclear what should be
the size of D but we can expect it to be bigger than p. This gap between p
and D will also induce a gap between the performances of SQISign and the
performances of pSIDH. Based on empirical observations, we can predict that
the bottleneck in our algorithms is going to be the same as the bottleneck in
SQISign’s signature: executions of the IdealToIsogeny sub-algorithm. The method
introduced in [DFKL+20] and the improvement in [DFLW22] for IdealToIsogeny
both requires to perform a number of arithmetic operations over Fp2 that is
linear in the length of the isogeny to be translated. For SQISign the degree 2e

where e is linear in the security parameter. For pSIDH, the size estimates from
Section 5.2 show that we may expect element of degree whose logarithm is in
6 log(D) (and some linear dependency on log(p)).

On a concrete instantiation. We believe that finding a parameter D to reach a
NIST-1 level of security for pSIDH is a problem on its own. However, we can
easily find parameters that reaches the same security level as CSIDH-512. For
that, we can take p of at least 256-bits (one of the SQISign primes should be
good) and we can take E0 to be any starting curve of known endomorphism ring.
For instance, if p = 3 mod 4, we can take the curve of j-invariant 1728 with
endomorphism ring isomorphic to ⟨1, i, 1+k

2 , i+j
2 ⟩ where 1, i, j, k is the canonical

basis of the quaternion algebra ramified at p and ∞.
We need D of at least 256-bits as well (so that the set of subgroups of order

D has the same size as the class number inf CSIDH-512). We remind the reader
that, for the hardness of the SOIP, the D-torsion of supersingular curves in
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characteristic p needs to be defined over an extension of big degree (roughly
equal to 2256 to have the best possible security). This condition can be checked
by computing the order of p mod D. If (D−1)/2 is prime, then the computation
of the order will have polynomial time (because D − 1 is easy to factor) and
the order of p mod D is going to be bigger than (D − 1)/2 with overwhelming
probability. Such a prime D can be found after trying roughly logD primes.
Apart from that, there is no constraint on the choice of D.

Even though we did not make an implementation, it is clear, looking at the
latest performances of SQISign [DFLW22], that an implementation of pSIDH
with the parameters we propose, is going to be a lot slower than CSIDH-512.

However, we want to stress that the asymptotic behaviour is rather on the
side of pSIDH. Indeed, as we said, the complexity of pSIDH is linear in log(D)
whereas the complexity of CSIDH is worst than linear in log(p) (and the quantum
attack is sub-exponential in log(p) for CSIDH).
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Sch95. René Schoof. Counting points on elliptic curves over finite fields. Journal
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