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Abstract. Ring signatures allow a user to sign messages on behalf of
an ad hoc set of users - a ring - while hiding her identity. The original
motivation for ring signatures was whistleblowing [Rivest et al. ASI-
ACRYPT’01]: a high government employee can anonymously leak sen-
sitive information while certifying that it comes from a reliable source,
namely by signing the leak. However, essentially all known ring signature
schemes require the members of the ring to publish a structured verifica-
tion key that is compatible with the scheme. This creates somewhat of a
paradox since, if a user does not want to be framed for whistleblowing,
they will stay clear of signature schemes that support ring signatures.
In this work, we formalize the concept of universal ring signatures (URS).
A URS enables a user to issue a ring signature with respect to a ring
of users, independently of the signature schemes they are using. In par-
ticular, none of the verification keys in the ring need to come from the
same scheme. Thus, in principle, URS presents an effective solution for
whistleblowing.
The main goal of this work is to study the feasibility of URS, especially in
the standard model (i.e. no random oracles or common reference strings).
We present several constructions of URS, offering different trade-offs be-
tween assumptions required, the level of security achieved, and the size
of signatures:
– Our first construction is based on superpolynomial hardness assump-

tions of standard primitives. It achieves compact signatures. That
means the size of a signature depends only logarithmically on the
size of the ring and on the number of signature schemes involved.

– We then proceed to study the feasibility of constructing URS from
standard polynomially-hard assumptions only. We construct a non-
compact URS from witness encryption and additional standard as-
sumptions.

– Finally, we show how to modify the non-compact construction into
a compact one by relying on indistinguishability obfuscation.
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1 Introduction

Ring Signatures. Ring signatures, introduced in [33], allow for a user to create a
signature σ for a message m with respect to an ad-hoc group of users R, called



a ring. A ring signature should be: i) unforgeable, meaning that, given a valid
signature σ for a ring R, it must have been created by one of the users in R; and
ii) anonymous, meaning that it should be infeasible for someone, even if they
have access to every signing key corresponding to the verification keys in the
ring R, to identify which user created the signature.

Ring signatures have recently found wide-spread application in the context of
cryptocurrencies. However in this work we revisit the original motivation of ring
signatures: whistleblowing [33]. Using a ring signature scheme, a whistleblower in
a high government office with access to some classified information can leak this
information e.g. to the media, in a way that convinces them that this information
comes from a reliable source, namely by signing the leak. At the same time, the
identity of the whistleblower remains hidden in the ring of insiders. A critical
aspect in this scenario is that the whistleblower can issue such a signature without
the consent of the other parties in the ring.

Rivest, Shamir and Tauman-Kalai [33] showed that signature schemes with
RSA verification keys can be used to issue ring signatures. If RSA signatures
were the universally agreed-upon standard for digital signatures, this would be
great for whistleblowers! Yet, currently there is a plethora of competing schemes
and standards for digital signatures.

Support for ring signatures might however even deter users from adopting
some signature scheme: Knowing that a certain signature scheme supports ring
signatures, why should loyal government officials even use such a scheme and
potentially be framed for being a whistleblower? Furthermore, wouldn’t it even
be in the interest of a government to mandate their officials to use signature
schemes which do not allow to issue ring signatures? Can the kind of whistle-
blowing envisioned by [33] be prohibited by such measures? Are there effective
countermeasures which protect users against being abused as a crowd in which a
whistleblower seeks anonymity? Concretely, can we construct signature schemes
which protect their users from being involuntarily forced into a ring?

Universal Ring Signatures. Formalizing the idea of a ring signature compatible
with all digital signature schemes, we define the notion of Universal Ring Signa-
tures (URS)4. URS allow users to create a ring signature for a ring composed of
verification keys R = (vk1, . . . , vk`) independently of the structure of each vki and
even the signature schemes which were used to create these keys. In other words,
each vki can be a verification key from a (possibly different) signature scheme.5

Most importantly, none of the verification keys is required to be compatible with
known ring signature schemes.

Thus, URS allow users to conceal their identity inside a ring in a non-
cooperative way : The user can create a signature with respect to a ring of verifica-
tion keys, even if they were specifically chosen to be incompatible with specific

4 The term universal ring signatures was also used in [36] to refer to a completely
different property of ring signatures.

5 For example, one of the verification keys can be from an SIS-based signature scheme
and another from a group-based signature scheme.
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ring signature schemes. This is in stark contrast to standard ring signatures,
where the parties cooperate by issuing verification keys that are compatible with
a ring signature scheme, thus intentionally providing anonymity to one another
(which is what happens in a cryptocurrency setting).

A URS provides a way out of the whistleblower problem described above.
Equipped with a URS scheme, a whistleblower just needs to somehow specify
(implicitly or explicitly) the verification keys of the users in the ring. However,
unlike for all known ring signature schemes, these verification keys do not need
to obey any particular structure.

Ring Signatures via Non-Interactive Zero-Knowledge Proofs. Non-interactive
zero-knowledge (NIZK) proofs [8] are a powerful and quite general tool to make
protocols secure against malicious adversaries. In the context of ring signatures,
the slightly stronger notion of non-interactive zero-knowledge proofs of knowl-
edge (NIZKPoK) provide a stronger soundness guarantee, in the sense that any
(efficient) prover providing a valid proof of some statement x must know corre-
sponding witness w of x.

NIZKPoK proofs provide a direct approach to construct ring signatures: For
a ring R, a message m and a commit c one provides a proof π which certifies
that c commits to a signature σ such that the pair (σ,m) verifies under some
verification key vk in the ring R.

This construction does not require that the verification keys in the ring R
come from one and the same signature scheme. Thus, NIZKPoK proofs in fact
imply universal ring signatures. Yet, NIZK (and thus also NIZKPoK) are known
to be impossible in the standard model [23], that is without a common reference
string and without making use of the random oracle heuristic [4]. We will later
discuss the ramifications of relying on either the random oracle model or the
random oracle heuristic in the construction of URS.

1.1 Our Results

The main problem we address in this work is the question of whether universal
ring signatures exist in the standard model, and if so under which assumptions.

Before we tackle the problem of constructing universal ring signatures, we
first provide definitions that formalize the requirements informally laid out above.

We present three standard model URS construction, offering different trade-
offs between compactness, security and primitives/assumptions needed to con-
struct them. Our schemes are fully universal, in the sense that no assumptions
on the structure of verification keys are made.

Our first construction is a URS scheme with compact signatures, i.e., the sig-
nature size depends only logarithmically on the number of users in the ring and
on the number of signature schemes. This scheme relies on superpolynomial hard-
ness of standard assumptions. Specifically, we rely on a superpolynomially secure
signature scheme, a (polynomially secure) perfectly binding commitment scheme,
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perfectly sound non-interactive witness-indistinguishability (NIWI) proof sys-
tems for NP and somewhere perfectly binding (SPB) hashing scheme [3]. All of
these primitives can be instantiated using standard hardness assumptions.

We get the following theorem.

Theorem 1 (Informal). Assuming the existence of perfectly binding commit-
ment schemes, perfectly sound NIWI proof systems for NP and SPB hashing
schemes (all three with polynomial security), there exists a universal ring signa-
ture scheme in the standard model with compact signatures under the condition
that the underlying signature schemes are superpolynomially secure.

While this construction provides the baseline for our investigation, it raises
the question whether superpolynomial hardness is necessary to construct stan-
dard model universal ring signatures. Compared with 2-move blind signatures,
we do know standard model constructions (again, no CRS or RO) from super-
polynomial hardness assumptions [20,19], yet we don’t know of any such con-
struction from polynomial hardness assumptions and in fact, it is known that no
such construction is achievable via a black-box reduction [16]. Thus, it is con-
ceivable that something similar might be the case for universal ring signatures.

Perhaps somewhat surprisingly, our second construction shows that this is
not the case for URS: We provide a construction that enjoys a security reduction
to polynomial and falsifiable hardness assumptions. Concretely, we rely on the
existence of a witness encryption (WE) scheme for NP, a perfectly sound NIWI
proof system for NP, an SPB hashing scheme, and a pseudorandom function
(PRF). In terms of compactness, the size of the signatures of this scheme depends
linearly on the number of users in the ring. Further, this scheme fulfills a slightly
relaxed notion of anonymity, which we call t-anonymity, which requires that
there need to be at least t honestly generated verification keys in the ring. The
standard notion of anonymity corresponds to 2-anonymity.

Theorem 2 (Informal). Assuming the existence of a WE for NP, a perfectly
sound NIWI proof system for NP, an SPB hashing scheme, and a PRF, there
exists a (non-compact) universal ring signature scheme in the standard model
with t-anonymity, where t is a parameter depending on the signature schemes
involved.

For all conceivable purposes, the parameter t here is a small constant. Con-
cretely, t depends on the entropy κ of the honest verification keys involved.
Asymptotically, any such key must have entropy at least κ = ω(log(λ)). Oth-
erwise, it would be trivially insecure. Our only requirement on t will be that
t ·κ ≥ λ. In terms of concrete parameters, κ would have to be at least 50 bits (or
else the underlying scheme would be trivially insecure). Setting t = 3 or t = 4
will be sufficient for this parameter choice.

This leaves open the question of compactness. Is perhaps any standard model
URS necessarily non-compact?

We can also resolve this question negatively, yet under still a (potentially)
stronger assumption: We provide a construction of a compact WE scheme from
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polynomial hardness assumptions for a special type of languages that we call
(t,N) threshold conjunction languages, which together with Theorem 2 will im-
ply a compact URS scheme from polynomial hardness assumptions.

A (t,N) threshold conjunction language is the set of statements (x1, . . . , xN )
for which there are at least t valid statements xi among them. The size of
the ciphertexts we receive when encrypting under such a statement is com-
pact in the sense that it only depends logarithmically on N . Our WE construc-
tion requires indistinguishability obfuscation (iO), puncturable pseudorandom
functions (PPRF) [10], somewhere statistically binding (SSB) hashing schemes
[27,30] and (t,N)-linear secret sharing (LSS). We obtain the following theorem.

Theorem 3 (Informal). Assuming the existence of an iO for all circuits, a
(non-compact) WE for NP, a PPRF, an SSB hashing scheme, and a (t,N)-LSS,
there exists a compact WE scheme for (t,N) threshold conjunction languages,
when N − t ∈ O(logN).

Combining the two previous theorems, we obtain our final URS construction.
This URS construction achieves compact signatures.

Theorem 4 (Informal). Assuming the existence of a compact WE for (N −
1, N) threshold conjunction languages, a perfectly sound NIWI proof system for
NP, an SPB hashing scheme and a PRF, there exists a compact universal ring
signature scheme in the standard model with t-anonymity.

1.2 Discussion and Interpretation of our Results

Returning to our main motivation, a URS enables whistleblowing since a whistle-
blower can force any honest users into a ring, regardless of which signature
scheme they use. In this sense, one can view the process of signing a message
using a URS as an adversarial act : even if a set of honest users do not want to
hide the whistleblower, there are no effective measures on the level of signature
schemes which could protect users from being included in an anonymity set.

Bearing this in mind, we interpret our results, which establish the feasibility
of URS, as demonstrating the impossibility of designing signature schemes that
resist coercion into rings. Needless to say, the rather heavy components involved
in our constructions do not lead to practically useful protocols.

Above we briefly discussed that universal ring signatures can be constructed
from NIZKPoK proofs and by now there is a plethora of constructions of NIZKPoK
proofs from standard assumptions in the common reference string (CRS) model
[8,15,25,32,12,28], or alternatively in the random oracle model [4]. If the goal
was to construct a practically useful URS to provide support across different,
seemingly incompatible but common signature schemes, then a protocol relying
on succinct NIZKPoK arguments would be preferable. In such a setting, one
would expect the users of these schemes to collaborate in the sense that they are
willing to provide anonymity to one another, i.e. one could assume that all users
trust a common reference string as well as all the signature schemes involved.
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Yet, the scenario we are interested in is different, in the sense that the “users”
have no reason to trust one another, as they were potentially forced into a ring
against their will. In this sense, a universal ring signature scheme in the CRS
could give users who have been forced into a ring against their will a means of
plausible deniability, e.g. by claiming that they do not trust the CRS that was
used to generate a universal ring signature, as the party who generated such a
CRS may also forge such a signature.

On the other hand, if we consider URS in the random oracle model, then
the unsoundness of the ROM could cause issues. When protocols in the ROM
are instantiated, we replace the random oracle with a concrete hash function
H. As shown by Goldwasser and Kalai [24], this heuristic can lead to unsound
proof systems if the underlying language already depends on this (concrete) hash
function H.

This issue also comes up in the context of universal ring signatures, as one
of the signature schemes could be chosen depending on the hash function H.
Somewhat more concretely, assume we wanted to build a signature scheme Σ∗

which makes a URS relying on a random oracle unsound, in the sense that if any
verification key of Σ∗ is used in a ring R, then universal ring signatures can be
forged, while Σ∗ is still EUF-CMA secure. We could achieve this by taking any
EUF-CMA secure signature scheme Σ and modifying it to Σ∗ by additionally
including into the verification keys vk∗ of Σ∗ an obfuscated program O which lets
anyone publicly generate URS of rings involving vk∗. Note that this obfuscated
program O needs to know a succinct description of the hash function H, but this
is feasible as we assume H to be instantiated, rather than a random oracle. The
same can in fact be argued for any fixed static common reference string CRS,
i.e. CRS can be hardwired into O. Note that while for such a scheme the size
of the verification key would increase, both generation and verification would
remain essentially unchanged.

Looking ahead, if such a transformation from Σ to Σ∗ was done starting
relative to one of our standard-model secure URS, then Σ∗ would be necessarily
insecure. But for a URS whose unforgeability rests on the CRS model or the
random oracle model, we would generally expect such a Σ∗ to be unforgeable
(once the CRS or the RO has been instantiated).

The bottom line of this discussion is that it seems hard to argue that URS
constructions in the CRS model or the ROM would be robust against signature
schemes which undermine the unforgeability of the URS by depending on the
concrete CRS which is used or the concrete hash function which instantiates the
Fiat-Shamir paradigm.

1.3 Previous Works

Ring signatures have been extensively studied in the last two decades. Construc-
tions in the random oracle model (ROM) include [33,1,9,14,29]. Ring signatures
in the CRS model were studied in [35,11], where [11] solves the interesting but
orthogonal problem of how to include users in a ring whose public keys are
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not posted publicly by using a PKI structure. We can also find standard model
constructions for ring signatures in e.g. [5,3,31].

All works presented above assume some form of structure on the verification
keys. For example, the work of [33] assumes that ring verification keys are RSA
keys or the work of [5] assumes that ring verification keys are composed by a
standard verification key and a uniformly random string.

The only exceptions we are aware of are the works [1,22]. In these works,
ring signatures that support different signature schemes are presented. However,
these works are only somewhat universal in the sense that there are signature
schemes that are not compatible with their schemes.6 Moreover, these schemes
are only secure in the ROM whereas we work in the standard model. In essence,
the focus of these works is different from ours as they sacrifice universality for
efficiency. In this work, we take the opposite direction.

A construction of a universal primitive from iO has previously been given
for a notion called signature aggregators in [26]. This allows to combine signa-
tures from different users using arbitrary signature schemes into one signature
to succinctly store and verify. The application and techniques used are however
different and can not be transferred to ring signatures trivially.

2 Technical Overview

Before presenting our constructions of URS, we briefly recall the ring signature
scheme of Backes et al. [3]

In the scheme of [3] (which is itself based on [5]), verification keys are com-
posed by VKi = (vki, pki) where vki is a verification key of a standard signature
scheme Sig and pki is a public key of a public-key encryption (PKE) scheme that
has pseudorandom ciphertexts7.

To sign a message m with respect to a ring R = {VKi}i∈[`], the signer i first
generates a signature σ ← Sig.Sign(ski,m) and then encrypts σ it using pki, that
is, ct0 ← PKE.Enc(pki, σ). The signer then samples ct1←$ {0, 1}λ. One crucial
point is that, if the underlying PKE has pseudorandom ciphertexts, then we
cannot distinguish well-formed ciphertexts from uniformly random strings. In
particular, this means that ct0 contains (computationally) no information about
the public key under which it was encrypted.

The signer now proves that either ct0 or ct1 encrypts a valid signature
under one of the verification keys in the ring using a non-interactive witness-
indistinguishable (NIWI) proof system. If off-the-shelf NIWIs were used in this
construction, the size of the proof would scale linearly with the size of the ring.
This would lead to signatures of size O(|R| · poly(λ)), where λ is the security
parameter. To circumvent this problem, [3] employed a new strategy.

6 More precisely, the scheme of [1] is compatible with trapdoor-one-way and three-move
signature schemes. The scheme of [22] is compatible with certain sigma protocols.
Any scheme outside of these classes is not compatible with their ring signature
schemes.

7 Examples of such PKE schemes exist from the LWE or DDH assumption.
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Compact NIWI proofs. The main ingredient to compress the size of the NIWI
proof is a somewhere perfectly binding (SPB) hashing scheme. An SPB hashing
scheme allows one to hash a database such that the hash perfectly binds to the
database item an index i, while the hashing key hides the index i. [27,30,3].

Given ct0, ct1, the signer can now use a NIWI proof system together with a
somewhere perfectly binding (SPB) hashing scheme to create a compact proof π
that either ct0 or ct1 encrypts a valid signature under one of the keys in the ring.
The basic idea here is that instead of proving a statement over all verification
keys in the ring, it is sufficient to prove a statement about just two SPB hashes.
More concretely, to compute the proof π, the signer first generates an SPB pair of
hashing key/secret key (hkj , shkj) ← SPB.KeyGen(1λ, i) that binds to position
i, for j ∈ {0, 1}. Then, it hashes R into a digest hj ← SPB.Hash(hkj , R) for
j ∈ {0, 1}. Finally, the signer proves that there exists an index i such that one
of the two statements is true:

1. ct0 encrypts a valid signature under vki and hk0 binds to i;
2. ct1 encrypts a valid signature under vki and hk1 binds to i.

The signature is composed by (ct0, ct1, hk0, hk1, π). Thus, by the efficiency re-
quirements of SPB, the signature has size O(log |R| · poly(λ)).

Finally, to verify that a signature is valid, one just needs to recompute hj as
the hash of R under hkj , for j ∈ {0, 1}, and check that π is a valid proof.

Security. Unforgeability and anonymity are roughly argued as follows in [3]. To
argue unforgeability, the security of the scheme is reduced to the security of the
underlying signature scheme. To do this, the reduction receives a verification key
vki∗ from the challenger, creates the remaining verification keys vki, for i 6= i∗,
and also the public keys pki for all i ∈ [`]. Importantly, the public keys pki are
created such that the reduction knows the corresponding secret keys.

Upon receiving a (ring signature) forge from the adversary, the reduction
proceeds as follows:

1. Decrypt both ct0 and ct1, to obtain σ0 and σ1, respectively;
2. Check if any of σ0, σ1 is a valid signature under vki∗ . If one of them is valid,

the reduction outputs it as the forge.

By the perfect correctness of the SPB hashing and perfect soundness of the
NIWI, the reduction outputs a valid forge with non-negligible probability.

To prove anonymity, one relies on the witness-indistinguishability of the
NIWI and the fact that the underlying PKE has pseudorandom ciphertexts.
Concretely, given two honestly generated verification keys vki0 and vki1 , build
a sequence of hybrids to prove that a signature created under vki0 is indistin-
guishable from a signature created under vki1 . The sequence of hybrids starts by
replacing ct1 with an encryption of a valid signature under vki1 , and this change
goes unnoticed since the PKE has pseudorandom ciphertexts. Next, change the
index in the witness used to create the proof π from i0 to i1 using the witness-
indistinguishability of the NIWI scheme.
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2.1 Compact Universal Ring Signatures from Signatures with
Superpolynomial Security

The construction of the Backes et al. scheme [3] serves as the starting point of
our first construction. Observe that the ring signature verification keys of the
Backes et al. scheme have a special format: each verification key VKi is composed
of a standard verification key vki and a public key pki.

The public key pki, which can be chosen by the unforgeability reduction,
is what enables this reduction to extract a valid forge. In a URS, however,
verification keys are not required to have any particular format. In particular,
they are not required to include an independently chosen public key of a PKE.
How can we facilitate the extraction of a forge by an unforgeability reduction in
the setting of URS?

Commitments instead of Ciphertexts. Our first observation is that the cipher-
texts in the scheme of Backes et al. [3] are never decrypted in the actual scheme.
So, ciphertexts in this scheme actually serve as extractable commitments. Thus,
a natural approach is to rely on commitments instead of ciphertexts in this con-
struction. The main reason for using commitments instead of ciphertexts is that
we can choose a keyless commitment scheme.

Using a commitment scheme, we can build a URS as follows: To sign a
message m under a ring of users R = {vk1, . . . , vk`} (where each vki is from
a possibly different signature scheme), a signer first creates a signature σ ←
Sig.Signi(ski,m) using its signature scheme Sigi. Then, it commits to (com0, γ0)←
CS.Commit(1λ, σ) and to (com1, γ1)← CS.Commit(1λ, 0) (where γb is the open-
ing information). Using SPB and NIWI exactly as before, the signer can create
a compact proof π that one of the commitments hides a valid signature under
one of the keys in R.

Anonymity follows by essentially the same argument as before, where the
hiding property of the underlying commitment is used instead of the ciphertext
pseudorandomness of the PKE in [3].

Unforgeability from Superpolynomial Hardness. We now show how the unforge-
ability reduction can extract a valid forge from the adversary. Assume that the
hiding property of the commitment scheme CS holds against polynomial-time
adversaries but that CS can be extracted in superpolynomial-time. We can then
use complexity leveraging to prove the unforgeability of the scheme, given that
the underlying signature schemes are unforgeable against superpolynomial-time
adversaries.

Concretely, given a PPT adversary A that breaks the unforgeability of our
URS, we can construct a superpolynomial-time reduction against the unforge-
ability of one of the Sigi. The reduction, after receiving a forgeΣ∗ = (com∗0, com

∗
1,

hk∗0, hk
∗
1, π
∗) by A, opens both com0 and com1 by brute force to recover σ∗0 and

σ∗1 respectively. Note that, since CS can be extracted in superpolynomial time,
the reduction succeeds in recovering σ∗0 and σ∗1 . Now, as before, the reduction
tests if there is a b ∈ {0, 1} such that 1← Sig.Verifyi(vki,m, σ

∗
b ) and outputs σ∗b

if it is the case.
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2.2 Non-Compact Universal Ring Signatures from Witness
Encryption

Considering both the construction of Backes et al. [3] and our construction in
the last paragraph, the question emerges of how one could possibly efficiently
extract a signature, even if we cannot shoehorn an extraction trapdoor into the
protocol utilizing a CRS or augmenting the verification keys. Somewhat more
abstractly:

Is it possible to extract a secret from a protocol when the protocol constraints
don’t allow us to embed an extraction gadget into the protocol?

Extracting via Witness Encryption. Our way out of this dilemma starts with
the observation that by relying on a sufficiently strong tool, namely standard
witness encryption (WE) [18], we can repurpose any sufficiently cryptographic
object as a public key. In our case, these objects will be the verification keys of
the honest parties.

Recall that a WE for an NP language L (with relation R) allows an encrypter
to encrypt a message m with respect to a statement x. If x ∈ L, then a party in
possession of a witness w such that R(x,w) = 1 can recover the encrypted m.
But, if x /∈ L, then indistinguishability of encryptions holds. Currently, we have
constructions of WE from indistinguishability obfuscation (iO) [17] or multilin-
ear maps [18], but WE is potentially a weaker assumption than either of these.

To use the security of WE, we need to craft a language L with distinct true
and false statements, such that witnesses of true statements allow for decryp-
tion, whereas ciphertexts under false statements hide the encrypted message.
Ideally, true and false statements should be indistinguishable. Our design-choice
of true and false statements will be informed by the following consideration:
Consider two distributions of (honest) verification keys, one where each honest
vk is generated using truly random coins, and another one where each honest
ṽk is generated using (possibly correlated) pseudorandom coins. While these
distributions are clearly computationally indistinguishable, under the right cir-
cumstances we can also make them statistically far, meaning that one of them
can serve as a distribution of true statements, while the other one will be the
distribution of false statements.

More concretely, let PRG be a pseudorandom generator (PRG). We say that
a verification key vk is malformed if it is created using random coins coming
from a PRG, instead of using truly random coins. That is, for some seed s

(vk, sk)← Sig.KeyGen(1λ;PRG(s)).

Similarly, a well-formed key vk is created using truly random coins.
Now, consider the language L parameterized by ` different verification keys

{vki}i∈[`]. The yes instances of L are the instances {vki}i∈[`] where all but one
of the verification keys are malformed. In other words, there exist {si}i∈[`]\{i∗}
with i∗ ∈ [`] such that for all i ∈ [`] \ {i∗}

(vki, ski)← Sig.KeyGeni(1
λ;PRG(si)).
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Looking ahead, the dichotomy between all but one key are malformed vs at
least two keys are well-formed is what will allow us to prove unforgeability and
anonymity respectively. In the former case, the statement under which the WE
ciphertext is created is true and, thus, we will be able to decrypt it. In the latter
case, the statement is false. Therefore, we can use the security of the WE scheme.

At first glance, this approach seems to work. However, there is a caveat: when
the reduction wants verification keys to be well-formed, it might accidentally end
up creating them malformed. As an example, consider a signature scheme Sig
whose verification keys have less min-entropy than the underlying PRG. Say
the key generation algorithm Sig.Gen(1λ, r) only uses the first λ/3 bits of r
whereas the PRG seed has λ/2 bits of entropy. In other words, the distributions
of well-formed keys and malformed keys might not be sufficiently statistically
far. Then, there is a non-negligible probability that a key chosen from the well-
formed distribution is actually malformed. We could assume that the underlying
signature schemes have exponential security (e.g., verification keys have λ bits
of min-entropy) but this would to some degree defeat the purpose of URS.

Replacing the PRG by a PRF. The solution for this problem is to use a pseudo-
random function (PRF) instead of a PRG to sample malformed keys. Instead of
generating malformed keys individually, we now generate them in a correlated
fashion: A set of keys {vki} is malformed iff a PRF key K exists such that

(vki, ski)← Sig.KeyGeni(1
λ;PRF(K, i)).

Note that now, all malformed keys are correlated via the PRF key. This implies
that the distribution of t malformed keys has λ bits of min-entropy because as
soon as we choose the PRF key, all malformed keys are fixed. On the other hand,
when sampling t well-formed keys independently, the resulting distribution will
have tκ bits of min-entropy where κ is the min-entropy of each verification key.
Setting tκ > λ we conclude that the distributions of well-formed and malformed
keys are statistically far apart.

This fact will allow us to prove t-anonymity by making the number of honest
keys in the ring just large enough.

Given this, we redefine the language L in the following way: yes instances
of L are the instances {vki}i∈[`] where all but one of the verification keys are

malformed. In other words, there exists K ∈ {0, 1}λ such that for all i ∈ [`]\{i∗}

(vki, ski)← Sig.KeyGeni(1
λ;PRF(K, i)).

The Scheme. Armed with a WE scheme WE for the language L described above,
we now outline how we can construct a URS scheme.

The scheme is essentially the same as above except that we use the WE
scheme for language L as a drop-in replacement for the commitment scheme.

To sign a message m with respect to the ring R, the signer encrypts a valid
signature σ created using its own signing key. Then, it encrypts σ using WE
under the statement x = R, that is, ct0 ← WE.Enc(1λ, x, σ). Additionally, it
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creates the ciphertext ct1 ← WE.Enc(1λ, x, 0). Finally, the signer can again use
NIWI and SPB to prove compactly that one of the ciphertexts encrypts a valid
signature.

We first analyze the size of the signature. Note that, for all known WE
schemes, the ciphertext size is proportional to the size of the verification circuit
for the language L. Since the statement is of size O(|R| · poly(λ)), then the
ciphertexts output by WE are of size O(|R| · poly(λ)). This implies that the
signature is of size O(|R| · poly(λ)).

Security. We now sketch how we prove the security of the scheme. As mentioned
before, we will set all but one key to be malformed in order to prove unforgeabil-
ity. Whereas in the t-anonymity proof, we set none of the keys to be malformed
(recall that t-anonymity requires that the challenge ring as at least t honestly
generated verification keys).

To prove unforgeability, we design a reduction that sets all verification keys,
but the challenge key vki∗ to be malformed. That is, {vki}i∈[`]\{i∗} are mal-
formedly created using a PRF key K. By the security of the PRF, the adversary
is not able to distinguish the case where the verification keys {vki}i∈[`]\{i∗} are
well-formed from the case when they are malformed.

The crucial observation now is that the reduction has a valid witness w = K
for the statement x = R under which WE ciphertexts are encrypted. This means
that, upon receiving a URS forge

Σ∗ = (ct∗0, ct
∗
1, hk

∗
0, hk

∗
1, π
∗)

by the adversary, the reduction can use w to decrypt both ct∗0 and ct∗1. An
analysis identical as for the previous scheme shows us that, if Σ∗ is a valid
URS signature, then there is a non-negligible probability that one of ct∗0 and ct∗1
decrypts to a valid signature σ∗ under vki∗ .

In the t-anonymity proof, we set none of the verification keys to be mal-
formed, from which the adversary chooses t of them, say, vki0 , . . . , vkit−1

. If the
parameters of the PRF are chosen properly, then there is a negligible probability
that x ∈ L. As explained above, since all t verification keys are sampled inde-
pendently, it is unlikely that t − 1 share correlations via a PRF key K. This is
because the distribution of t − 1 honestly generated keys has much more min-
entropy than t− 1 malformed keys. Thus, there will be at least two well formed
verification keys in the challenge ring R∗ with overwhelming probability. We
conclude that WE encryptions of σ are indistinguishable from WE encryptions
of 0 by the security of the WE.

Given this, we can easily build a sequence of hybrids in a similar fashion
as for the previous schemes. That is, given two honestly generated verification
keys vki0 , vki1 and a signature Σ∗ = (ct∗0, ct

∗
1, hk

∗
0, hk

∗
1, π
∗) for a message m∗ with

respect to the ring R∗ where vki0 , vki1 ∈ R∗:
1. We first replace ct∗1 by an encryption of a valid signature σ′ under vki1 . By the

security of the underlying WE, this change is undetected by the adversary.
2. We switch witnesses from i0 to i1, using the witness-indistinguishability of

the NIWI scheme.
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2.3 Compact Universal Ring Signatures from Indistinguishability
Obfuscation

At first glance, the techniques that we employed in the previous construction
seem hopeless in our ultimate goal of building a compact URS from falsifiable
hardness assumptions. On the one hand, for all known WE schemes that we
know of, the size of the ciphertexts grows with the size of the statement. On the
other hand, if we try to reduce the size of the statement of the language L, we
immediately run into trouble.

The reason for this is that to be able to extract a valid forge, the reduction
needs to set up all verification keys but the challenge one in a special mode.8

If the reduction sets just a few of them in this special mode, anonymity does
not hold anymore: An adversary breaking anonymity could just use the same
strategy as the unforgeability reduction to extract a signature from the challenge
URS signature since, in the anonymity game, all but two verification keys may
be adversarially chosen.

Given this state of affairs, it seems implausible (or even impossible!) that we
can achieve a compact URS scheme just from WE.

Our final contribution is to build a WE scheme for a special type of NP
languages that we call threshold conjunction languages. A threshold conjunction
language L′ is a language of the form

L′ = {(x1, . . . , xN ) : ∃(xi1 , . . . , xiN−1
) s.t. xi1 ∈ L ∧ · · · ∧ xiN−1

∈ L}.

In other words, given an instance x = (x1, . . . , xN ), x is a yes instance of L′ if
all but one of the xi are instances of L.

Compact URS from compact WE. Assume for now that we have a compact
WE scheme for threshold conjunction languages. That is ciphertexts of such a
scheme scale only logarithmically with N . Then, plugging this WE scheme into
our construction from the previous section immediately yields a compact URS.

Compact witness encryption for threshold conjunction languages. It remains to
show how we can obtain such a scheme. For simplicity, we focus on the case where
we have N instances x = (x1, . . . , xN ) and x ∈ L′ iff xi ∈ L for all i ∈ [N ]. The
case where all but one of the statements xi must be true can be easily obtained
by additionally using a secret sharing scheme.

The high-level idea of the construction is as follows: We build an obfuscated
circuit C̄ that receives an index i ∈ [N ] and outputs non-compact WE cipher-
texts WE.Enc(1λ, xi, ri) for uniform ri←$ {0, 1}.9 The ciphertext of our new WE
scheme for a message m ∈ {0, 1} is composed by C̄ and c = m+

∑
ri.

If one is in possession of witnesses for all statements xi, then by the correct-
ness of the underlying non-compact WE scheme, one can recover all ri. On the

8 In our case, the special mode is when keys are malformed.
9 To make the circuit size independent of N , we use a pseudorandom function (PRF)

to succinctly describe all the ri. This PRF has to be puncturable in order to use the
puncturing technique of [34].
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other hand, if one of the statements xi∗ is false, then we can build a sequence
of hybrids where we replace WE.Enc(1λ, xi, ri) by an encryption of 0 and then
replace c by a uniform value.

Although the idea seems to work at first glance, there is a critical issue: The
scheme is not compact. The reason for this is that we have to hardwire all the
statements in C̄, otherwise how does the circuit know under which statements it
must encrypt each ri? To circumvent this problem we use (again!) a somewhere
statistically binding (SSB) hashing scheme in a similar way as [27].10 That is, the
circuit only has a hash value h ← SSB.Hash(hk, {x1, . . . , xN}) hardwired. Now,
when it receives (i, xi, γi), it first checks if γi is a valid opening with respect to
xi, h. Since {x1, . . . , xN} is public, anyone can compute a valid opening

γi ← SSB.Open(hk, {x1, . . . , xN}, i)

for every i ∈ [N ].
Recall that the verification algorithm of an SSB hashing scheme can be im-

plemented in size O(logN · poly(λ)). Hence, the efficiency requirements are met
and the circuit is now of size O(logN · poly(λ)).

We thus obtain a WE scheme that outputs ciphertexts that depend only
logarithmically on N .

How to avoid the exponential security loss of current iO schemes. We stress
that, although the scheme presented above enjoys a polynomial reduction to the
underlying cryptographic primitives, current iO schemes incur a security loss -
compared to the underlying hardness assumptions - which is proportional to the
size of the domain of the circuit being obfuscated (e.g., [2,7,6]). This implies that
the construction presented above suffers from an exponential security loss when
we instantiate the iO scheme by any known construction since the circuit being
obfuscated has an exponentially-sized domain.11

Intending to avoid this exponential security loss, we present an alternative
construction of compact WE for threshold languages where we just obfuscate a
program with a polynomial-size domain. Note that, if the domain of the obfus-
cated program has only polynomial size, then the security reduction from iO to
the underlying hardness assumptions loses only a polynomial factor.

As explained above, the statements cannot be hardwired in the circuit, other-
wise, the size of the obfuscated circuit is not compact. To avoid this conundrum,
we utilize the iO for Turing machines (TM) scheme of [21].

We note that, in the scheme of [21], a TM is modeled as a sequence of
circuits. The input is written on a tape and the obfuscated TM accesses the
input via a laconic oblivious transfer (LOT) [13]. We can consider a second tape
which includes the statements (x1, . . . , xN ) and from which the TM reads from
using a LOT in a similar way as in [21]. Note that since (x1, . . . , xN ) is public
knowledge, this tape can be created by any party and does not have to be part

10 This time we use SSB in its statistically binding form.
11 Observe that the obfuscated circuit receives as input an index i, a statement xi and

an SSB proof γi.
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of the description of the obfuscated TM. Instead, only the LOT hash needs to
be hardwired in the TM. The size of the resulting obfuscated TM depends only
logarithmically on the size of this tape.

Given this, to encrypt a message m, one obfuscates a TM M that receives
an index i ∈ [N ] as input, retrieves xi from the public tape and outputs
WE.Enc(1λ, xi, ri).

12 A ciphertext is composed by M̄ (which is the result of
obfuscating M) and c = m+

∑
ri. Decryption works exactly as before.

As mentioned before, the size of M̄ depends only logarithmically on N and,
hence, the size of the ciphertext is O(logN · poly(λ)).

Furthermore, since the obfuscated TM M̄ has a polynomial-size domain, its
security proof incurs only a polynomial security loss compared to the underlying
hardness assumption.

3 Preliminaries

Throughout this work, λ denotes the security parameter and PPT stands for
“probabilistic polynomial-time”. A negligible function negl(n) in n is a function
that vanishes faster than the inverse of any polynomial in n.

For n ∈ N, [n] denotes the set {1, . . . , n}. If S is a (finite) set, we denote by
x←$S an element x ∈ S sampled according to a uniform distribution. If D is a
distribution over S, x←$D denotes an element x ∈ S sampled according to D.
If A is an algorithm, y ← A(x) denotes the output y after running A on input
x. If A and O are algorithms, AO means that A has oracle access to O.

Additionally, we assume familiarity with the following notions from standard
literature: Signature Schemes, Non-Interactive Witness-Indistinguishable Proof
Systems, Commitment Schemes, Somewhere Statistically Binding and Some-
where Perfectly Binding Hashing Schemes, Pseudorandom Generators, Witness
Encryption Schemes, Indistinguishability Obfuscation, and Puncturable Pseu-
dorandom Functions. For completeness, a full collection of definitions of these
notions and possible instantiations can be found in the full version of the paper.
We also require Linear Secret Sharing with a slightly modified definition given
below.

Linear Secret Sharing Linear secret sharing (LSS) is used to divide a secret
into shares such that if one is in possession of an authorized set of shares, then
one can reconstruct the secret. In this work, we use threshold LSS (which, for
simplicity, we simply refer to as LSS).

Definition 5 (Linear Secret Sharing) Let t ≤ N . A (t,N)-linear secret shar-
ing (LSS) LSS scheme is composed of the following algorithms:

– (s1, . . . , sN ) ← Share(m) takes as input a message m. It outputs N shares
(s1, . . . , sN ).

12 We remark that the underlying WE also has a domain of polynomial size hence it
only looses a polynomial factor in security if it is based on iO [17,21].
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– m← Reconstruct(si1 , . . . , sit) takes as input t shares (si1 , . . . , sit). It outputs
a message m.

A (t,N)-LSS scheme, which is generated by a generating matrix in the systematic
form, has the following additional algorithm:

– (siz+1 , . . . , siN )← RemainShare(m, si1 , . . . , siz ) that takes as input a message
m and uniformly chosen shares sij ←$ {0, 1}λ for j ∈ [z] with z < t, and
outputs N − z remaining shares (siz+1

, . . . , siN ).

Definition 6 (Correctness) A LSS scheme LSS is said to be correct if for all
messages m, all subsets {i1, . . . , it} ⊆ [N ] and any z < t it holds that:

Pr [m = Reconstruct(si1 , . . . , sit) : (s1, . . . , sN )← Share(m)] = 1.

and Pr

 m = Reconstruct(si1 , . . . , sit) :
sij ←$ {0, 1}λ for j ∈ [z]

(siz+1
, . . . , siN )← RemainShare(m, si1 , . . . , siz )

 = 1.

Definition 7 (Privacy) We say that a (t,N)-LSS scheme LSS is private if for
all subsets {ii1 , . . . , iiz} ⊂ [N ] where z < t, all pairs of messages (m0,m1) and
all PPT adversaries A we have that∣∣∣∣Pr [1← A(s0,i1 , . . . , s0,iz ) : (s0,1, . . . , s0,N )← Share(m0)]−

Pr [1← A(s1,i1 , . . . , s1,iz ) : (s1,1, . . . , s1,N )← Share(m1)]

∣∣∣∣ ≤ negl(λ).

4 Universal Ring Signatures

In this section we present the definition of URS. A URS is composed of a signing
and a verification algorithm.

Definition 8 (Universal Ring Signature) A universal ring signature (URS)
scheme URS is composed of the following algorithms:

– Σ ← Sign(1λ, ski,m,R, i, S) takes as input a security parameter 1λ, a sign-
ing key ski, a message m, a ring of keys R = (vk1, . . . , vk`) an index i ∈
[`] and a list of signature schemes S = {Sigi = (Sig.KeyGeni,Sig.Signi,
Sig.Verifyi)}i∈[M ], where each vkj is a public verification key under exactly
one13 of the schemes Sigi. It outputs a signature Σ.

– b← Verify(Σ,m,R, S) takes as input a signature σ, a message m, a ring of
keys R and a list of signature schemes S. It outputs a bit b ∈ {0, 1}.

We want a URS to fulfill correctness, unforgeability and anonymity.

13 In practice, keys/certificates are usually annoted with their respective schemes and
we assume such a labelling here.
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Definition 9 (Correctness) We say that a URS URS = (Sign,Verify) is cor-
rect if for all λ ∈ N, all `,M = poly(λ), all correct signature schemes Sig′, all
j ∈ [`], all messages m and all (vk, sk)← Sig′.KeyGen(1λ), we have that

Pr
[
1← Verify

(
Sign(1λ, sk,m,R, j, S),m,R, S

)]
= 1

for any R = (vk1, . . . , vk`) such that vkj = vk and any S = {Sigi}i∈[M ] such that
Sig′ ∈ S. That is, the remaining elements in R,S may be arbitrarily chosen.

We now define the unforgeability of a URS. A URS scheme should be compat-
ible with any signature scheme. Hence, we would like to let the adversary choose
signature schemes for the URS scheme. However, the adversary could choose an
insecure signature scheme and, in this case, we cannot guarantee unforgeability.
Hence, the experiment should provide a list of secure signature schemes and
verification keys at the beginning of the experiment. The forge given by the ad-
versary must be with respect to these verification keys.14 Our definition is similar
to the one of unforgeability with respect to insider corruption for standard ring
signatures [5], which is the strongest unforgeability definition.

Definition 10 (Unforgeability) Let A be an adversary. We denote by Ls a
list of challenge signature schemes

Ls = {Sigi = (Sig.KeyGeni,Sig.Signi,Sig.Verifyi)}i∈[M ].

Consider the following experiment, denoted by ExpURSUnf (Ls,A, 1λ):

1. The experiment provides Ls to A.
2. The adversary outputs a list of indices {indi}i∈[`].
3. For all i ∈ [`], the experiment computes (vki, ski) ← Sig.KeyGenindi(1

λ) and
outputs R = (vk1, . . . , vk`) to the adversary. Also it initialises a set K = ∅
and remembers the indices indi.

4. The adversary may now make three types of requests15:
– Corrupt(i), which the experiment answers with the secret key ski. Also

it adds vki to K.
– URSSign(m, R̄, i, S̄) takes as input an index i ∈ [`], a message m, a ring

of keys R̄ (not necessarily contained in R) and a list of signature schemes
S̄. If vki ∈ R̄, we denote its position as i∗. If additionally Sigindi ∈ S̄,
the experiment answers with Σ ← URS.Sign(1λ, ski,m, R̄, i

∗, S̄).
– Sign(m, i) takes as input an index i ∈ [`] and a message m. The experi-

ment answers with Σ ← Sig.Signindi(1
λ, ski,m).

14 Note that, in the unforgeability definition for standard ring signatures in [5] a similar
situation happens: The forge of the adversary must be with respect to verification
keys created honestly and not with respect to maliciously chosen verification keys.

15 Note that as the key generation algorithms are publicly available, the adversary may
honestly generate key pairs itself. The corruption oracle simply serves to corrupt the
initial honest keys. Arbitrary additional adversarially chosen keys can be included
in ring signature queries, as we do not require R̄ ⊆ R.
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5. A outputs (Σ∗,m∗, R∗, S∗).

6. If 1 ← Verify(Σ∗,m∗, R∗, S∗), R∗ ⊆ R \ K, S∗ ⊆ Ls and the message m∗

was never queried in a URSSign or Sign request, the experiment outputs 1.16

Else, it outputs 0.

We say that a URS URS = (Sign,Verify) is unforgeable, if for all λ ∈ N,
M = poly(λ), all lists of EUF-CMA secure signature schemes Ls = {Sigi}i∈[M ]

and all PPT adversaries A we have that

Pr
[
1← ExpURSUnf (Ls,A, 1λ)

]
= negl(λ).

In the anonymity experiment, the goal of the adversary is to guess which user
created a given signature. We give a general definition called t-anonymity, which
mandates that at least t honest keys in the anonymity set must be honestly
chosen for anonymity to hold. The adversary may include at least t honest
and additional maliciously chosen verification keys (potentially from insecure
signature schemes) in a challenge ring. It should still be unable to determine
which of the honest parties signed a given URS under that ring.

The case of 2-anonymity coincides with the definition of anonymity against
full key exposure of [5]. This is the strongest anonymity definition for ring signa-
tures and is even known to imply unrepudiability, meaning that a member in the
ring cannot prove that they did not sign the message [31]. As it is the standard
case, we will refer to 2-anonymity as anonymity throughout this work.

Definition 11 (t-Anonymity) Let A = (A1,A2,A3) be an adversary. We de-
note a list of challenge signature schemes by Ls = {Sigi = (Sig.KeyGeni,Sig.Signi,
Sig.Verifyi)}i∈[M ]. We define the t-anonymity experiment ExpURSAnont(Ls,A, 1

λ) as
follows:

1. ({indi}i∈[`], aux1)← A1(1λ, Ls).

2. For all i ∈ [`], the experiment computes (vki, ski) ← Sig.KeyGenindi(1
λ; ri)

with random coins ri and sets K = (vk1, . . . , vk`).

3. (m∗, R∗ = (vk′1, . . . , vk
′
p), S

∗ = (Sig′1, . . . ,Sig
′
q), (jk)k∈[t], aux2) ← A2(K,

(r1, . . . , r`), aux1) where vk′jk ∈ K for k ∈ [t] with indices lk in K (i.e.

vk′jk = vklk). Additionally, the signature schemes corresponding to these pub-
lic keys, Sigindlk

, must be in the set S∗. If these conditions are violated, the

experiment aborts.

4. Σ∗ ← URS.Sign(1λ, sklk ,m
∗, R∗, jk, S

∗) where k←$ [t].

5. k′ ← A3(Σ∗, aux2).

6. If k = k′, then output 1. Else, output 0.

16 We can consider the stronger notion, where a forge is valid, if no query of the
form URSSign(m∗, R∗, ·, ·) or Sign(m∗||R∗, i) for vki ∈ R∗ was made. This can be
achieved by the standard trick of signing the message (m∗||R∗) instead of m∗ or a
hash H(m∗||R∗) thereof for compactness.
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We say that a URS URS = (Sign,Verify) is t-anonymous, if for all λ ∈ N , all
sizes M = poly(λ), all lists of signature schemes Ls = {Sigi}i∈[M ] and all PPT
adversaries A = (A1,A2,A3) we have that∣∣∣∣Pr

[
1← ExpURSAnont(Ls,A, 1

λ)
]
− 1

t

∣∣∣∣ = negl(λ).

Efficiency of URS. We remark that URS inherits the efficiency of the most
inefficient signature scheme in the ring. For this reason, it is unlikely that we
can construct a URS with good and practical parameters and efficiency.

5 Universal Ring Signature from Signature Schemes with
Superpolynomial Security

In this section, we present a construction of URS that is based on signature
schemes that are superpolynomially hard to forge. From this hardness, we can
prove security of the URS scheme using complexity leveraging.

5.1 Construction

We start by presenting the construction of this URS scheme.
For simplicity, we assume, that there is an upper bound on the size of

all descriptions of signature verification circuits. Also, for public keys vk ←
Sig.KeyGen(1λ), we assume that they are labeled with their respective schemes.
That is, there is a function tag(., .) which takes vk and a signature scheme Sig
and outputs 1, iff the key vk was made under Sig, but 0 for any other signa-
ture verification scheme as input. Sig.Verify should only accept keys vk with the
corresponding tag to Sig, that is tag(vk,Sig) = 1.

In the scheme below, we assume that all used signature schemes are unforge-
able against superpolynomial adversaries running in O(T ′(λ) ·poly(λ)). We then
use a commitment scheme whose hiding property holds against PPT adversaries
but can be broken in time T ′(λ) ∈ ω(poly(λ)). A signature of our URS for a
message m includes a commitment to a signature of m in one of the underlying
signature schemes. This will give our reduction, which runs in superpolynomial
time, an advantage in the unforgeability experiment, where it may extract the
commitments and provide a forge against the underlying signature scheme. How-
ever, this opening strategy cannot be used by an adversary against anonymity,
as they are running in polynomial time.

Construction 1 Let:

– CS be a commitment scheme such that the hiding property holds against
polynomial-time adversaries but can be broken in time T ′(λ) ∈ ω(poly(λ)),
which is super-polynomial.

– SPB be a SPB hashing scheme;
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– L be a language such that

L =


(m, com, hk, h, rhk, rh) : ∃(vk, i,Sig.Verify, ind, τ, ρ, σ, γ) s.t.

1← SPB.Verify(hk, h, i, vk, τ)
1← SPB.Verify(rhk, rh, ind,Sig.Verify, ρ)

1← CS.Verify(com, σ, γ)
1← Sig.Verify(vk,m, σ)

 ;

where Sig.Verify is a description of the verification algorithm of a signature
scheme Sig.17

– NIWI be a NIWI scheme for the language

LOR =

{
(m, com0, com1, hk0, hk1, h0, h1, rhk0, rhk1, rh0, rh1) :
∃b ∈ {0, 1} s.t. (m, comb, hkb, hb, rhkb, rhb) ∈ L

}
.

We now describe our scheme in full detail.

Sign(1λ, ski,m,R = (vk1, . . . , vk`), i, S = {Sigi}i∈[M ])

– Determine an index ind such that tag(vki,Sigind). Parse Sigind = (Sig.KeyGen,
Sig.Sign,Sig.Verify). Set S′ = {Sig.Verifyi}i∈[M ] to be the list of verification
algorithms in S.

– Compute σ ← Sig.Sign(ski,m).
– Compute (hkj , shkj) ← SPB.Gen(1λ, `, i) and hj ← SPB.Hash(hkj , R) for
j ∈ {0, 1}. Also, compute the proof τ ← SPB.Open(hk0, shk0, R, i).

– Compute (rhkj , rshkj)← SPB.Gen(1λ,M, ind) and rhj ← SPB.Hash(rhkj , S
′)

for j ∈ {0, 1}. Also, compute the proof ρ← SPB.Open(rhk0, rshk0, S
′, ind).

– Compute (com0, γ0)← CS.Commit(1λ, σ) and (com1, γ1)← CS.Commit(1λ, 0).
– Set x = (m, com0, com1, hk0, hk1, h0, h1, rhk0, rhk1, rh0, rh1).
– Set w = (vk, i,Sig.Verifyind, ind, τ, ρ, σ, γ0).
– Compute the proof π ← NIWI.Prove(x,w).
– Output Σ = (com0, com1, hk0, hk1, rhk0, rhk1, π).

Verify(Σ,m,R, S = {Sigi}i∈[M ]) :

– Parse Σ as (com0, com1, hk0, hk1, rhk0, rhk1, π). Set S′ = {Sig.Verifyi}i∈[M ]

to be the list of verification algorithms in S.
– Compute hj ← SPB.Hash(hkj , R) for j ∈ {0, 1}.
– Compute rhj ← SPB.Hash(rhkj , S

′) for j ∈ {0, 1}.
– Set x = (m, com0, com1, hk0, hk1, h0, h1, rhk0, rhk1, rh0, rh1).
– If 1← NIWI.Verify(x, π), output 1. Else, output 0.

We remark, that we only require the verification algorithms of the underlying
signature schemes to verify a URS signature. Therefore, we only include these
algorithms in S′, which is hashed down by SPB and provided to NIWI. This is
to reduce size. Essentially, our verification algorithm URS.Verify could only take
the list of signature verification algorithms S′ as an input, but we state the full
list of signature schemes to fit our more general definition.

17 We assume that for all schemes, |Sig.Verify| is bounded by a polynomial β(λ).
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Signature size. A signature for a message m with respect to a ring R (of size
`) and a list of schemes S (of size M) is composed of Σ = (com0, com1, hk0,
hk1, rhk0, rhk1, π). Both com0, com1 are of size O(poly(λ)) and independent of
` and M . The size of the hashing keys hk0, hk1, the proof τ and the circuit
SPB.Verify(hk, h, i, vk, τ) can be bounded by O(log(`) · poly(λ)). Analogously,
rhk0, rhk1, ρ and the runtime of SPB.Verify(rhk, rh, ind,Sig.Verify, ρ) are bounded
by O(log(M) · poly(λ)).18

Given that, we conclude that the circuit that verifies the relation of language
L has size at most O((log(M) + log(`)) · poly(λ)). Hence, the proof π has size
O((log(M) + log(`)) · poly(λ)). We conclude that the total size of the signature
is O((log(M) + log(`)) · poly(λ)). Thus, it grows only logarithmic in the number
of users in the ring and logarithmic in the number of signature schemes.

5.2 Proofs

We now show that the construction presented above fulfills the required proper-
ties for a URS. We start by showing correctness. Then we proceed to prove un-
forgeability and anonymity. Our proof of unforgeability uses a superpolynomial-
time reduction.

Theorem 12 (Correctness). The scheme presented in Construction 1 is cor-
rect, given that NIWI is perfectly complete and SPB and CS are correct.

Theorem 13 (Unforgeability). We assume the challenge signature schemes
LS = {Sigi}i∈[M ] to be unforgeable against adversaries running in superpolyno-
mial time T ′(λ) · poly(λ) for T ′(λ) ∈ ω(poly(λ)). We assume, that our commit-
ment scheme allows extraction in time T ′(λ), but is secure against PPT adver-
saries. Then the scheme presented in Construction 1 is unforgeable against PPT
adversaries, given that NIWI is perfectly sound and SPB is somewhere perfectly
binding.

At a high level, we will build a superpolynomial-time reduction that breaks
unforgeability for the underlying signature scheme. The reduction, upon receiv-
ing the challenge URS signature Σ∗ = (com∗0, com

∗
1, hk

∗
0, hk

∗
1, rhk

∗
0, rhk

∗
1, π
∗) from

the adversary, opens the commitments com∗0 and com∗1 using brute force. Note
that, since we allow the reduction to run in superpolynomial time, it will succeed
in breaking the hiding property of the commitment scheme. Then, by the per-
fect soundness of the NIWI scheme, the reduction can extract a valid signature
from either com0 or com1 with non-negligible probability and, thus, break the
unforgeability of the signature scheme.

Theorem 14 (Anonymity). Assume that SPB is index hiding, NIWI is witness-
indistinguishable and CS is hiding. Then the scheme presented in Construction
1 is anonymous.

18 This holds, as we assumed, that we can bound |Sig.Verify| by a polynomial β(λ) for
all signature schemes Sig.
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To prove the theorem above, we build a sequence of hybrids starting from the
2-anonymity game where k = 1 and ending at a hybrid describing the game for
k = 2. Let vk′j1 and vk′j2 be the challenge verification keys in the anonymity game
and let Σ = (m∗, com0, com1, hk0, hk1, rhk0, rhk1, π) be the challenge signature
build using vk′j1 . First note that the length of π does not reveal information

even if the keys vk′j1 , vk
′
j2 or signature verification circuits are of different length.

This is due to the Or-statement in LOR. In the first hybrid, we change hk1 and
rhk1 to be SPB hashing keys binding to index j1. Next, we replace com1 by a
commitment of a valid signature under vk′j2 . In the next hybrid, we can replace

the proof π by a new one computed using the new signature under vk′j2 (this
change goes unnoticed by the witness indistinguishability of the NIWI). We can
now replace com0 by a commitment of a valid signature under vk′j2 . In the next
step, we replace hk0 and rhk0 to be SPB hashing keys binding to index j2 and,
finally, compute π as the proof that com0 is a commitment to a valid signature
under vk′j2 for which hk0 and rhk0 bind to.

6 Non-compact Universal Ring Signature from Witness
Encryption

In this section we present a URS scheme from falsifiable assumptions. The re-
sulting URS has a signature size that scales with the size of the ring. We first
present the construction. Then, we proceed to the analysis of the scheme.

6.1 Construction

We now present our construction for URS from WE.

Construction 2 Let

– PRF : K × [`]→ {0, 1}λ be a PRF.
– L′ be a language such that

L′ =


({vki}i∈[`] : ∃

(
{Sigij}j∈[`−1],K

)
s.t.

rij ← PRF(K, ij)
(vkij , skij )← Sig.KeyGenij (1λ; rij )

 .

– WE be a witness encryption scheme for language L′.
– SPB be a SPB hashing scheme;
– L be a language such that

L =


(m, ct, hk, h, rhk, rh, x) : ∃(vk, i,Sig.Verify, ind, τ, ρ, σ, rct) s.t.

1← SPB.Verify(hk, h, i, vk, τ)
1← SPB.Verify(rhk, rh, ind,Sig.Verify, ρ)

ct←WE.Enc(1λ, x, σ; rct)
1← Sig.Verify(vk,m, σ)

 ;

where Sig.Verify is a description of the verification algorithm of a signature
scheme Sig.19

19 We assume again, that for all schemes, |Sig.Verify| is bounded by a polynomial b(λ).
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– NIWI be a NIWI scheme for the language

LOR =

{
(m, ct0, ct1, hk0, hk1, h0, h1, rhk0, rhk1, rh0, rh1, x) :
∃b ∈ {0, 1} s.t. (m, ctb, hkb, hb, rhkb, rhb, x) ∈ L

}
.

We now describe the scheme in full detail.

Sign(1λ, ski,m,R = (vk1, . . . , vk`), i, S = {Sigi}i∈[M ]}):

– Determine an index ind with tag(vki,Sigind). Parse Sigind = (Sig.KeyGen,
Sig.Sign,Sig.Verify). Set S′ = {Sig.Verifyi}i∈[M ] to be the list of verification
algorithms in S.

– Compute σ ← Sig.Sign(ski,m).

– Compute (hkj , shkj) ← SPB.Gen(1λ, `, i) and hj ← SPB.Hash(hkj , R) for
j ∈ {0, 1}. Also, compute the proof τ ← SPB.Open(hk0, shk0, R, i).

– Compute (rhkj , rshkj)← SPB.Gen(1λ,M, ind) and rhj ← SPB.Hash(rhkj , S
′)

for j ∈ {0, 1}. Also, compute the proof ρ← SPB.Open(rhk0, rshk0, S
′, ind).

– Encrypt ct0 ← WE.Enc(1λ, x′, σ; rct) and ct1 ← WE.Enc(1λ, x′, 0), where
x′ = R.

– Set x = (m, ct0, ct1, hk0, hk1, h0, h1, rhk0, rhk1, rh0, rh1, x
′).

– Set w = (vk, i,Sig.Verifyind, ind, τ, ρ, σ, rct).

– Compute the proof π ← NIWI.Prove(x,w).

– Output Σ ← (ct0, ct1, hk0, hk1, rhk0, rhk1, π).

Verify(Σ,m,R, S):

– Parse Σ = (ct0, ct1, hk0, hk1, rhk0, rhk1, π). Set S′ = {Sig.Verifyi}i∈[M ] to be
the list of verification algorithms in S.

– Compute hj ← SPB.Hash(hkj , R) for j ∈ {0, 1}.
– Compute rhj ← SPB.Hash(rhkj , S

′) for j ∈ {0, 1}.
– Set x = (m, ct0, ct1, hk0, hk1, h0, h1, rhk0, rhk1, rh0, rh1, R).

– If 1← NIWI.Verify(x, π), output 1. Else, output 0.

Signature size. A signature for a message m under a ring R (of size `) and a
list of schemes S (of size M) is of the form Σ = (ct0, ct1, hk0, hk1, rhk0, rhk1, π).
We first analyze the size of the ciphertexts ct0, ct1. The circuit that verifies the
relationR′ of language L′ needs to have size at least O(`·poly(λ)) since witnesses
for this language are of that size. It is clear that the conditions can be checked
in a circuit of this size.

Moreover, a similar analysis as the one made for Construction 1 shows that
the total size of (hk0, hk1, rhk0, rhk1, π) is O((log ` + logM) · poly(λ)). We may
assume, that M ≤ ` because signature schemes that no corresponding key exists
for in R may be omitted without altering functionality.

We conclude that the signatures in this scheme have size O(` · poly(λ)).
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6.2 Proofs

We now give the proofs of the security of the proposed scheme.

Theorem 15 (Correctness). The scheme presented in Construction 2 is cor-
rect, given that NIWI is perfectly complete.

Theorem 16 (Unforgeability).

Assume that Sigi is EUF-CMA, PRF is a pseudorandom function, NIWI is
perfectly sound and WE is correct. Then, the scheme presented in Construction
2 is unforgeable.

To prove unforgeability, we first build a hybrid where the experiment com-
putes all verification keys, except for vki∗ , using randomness from a PRF (instead
of using truly random coins). Note that this change goes unnoticed given that
PRF is a PRF. Next, we build a reduction to the unforgeability of the underlying
signature scheme. The idea is similar to the proof of Theorem 13. Namely, the
goal of the reduction is to extract a valid signature from either ct0 or ct1. To
do this, note that the reduction is in possession of the key K such that vki is
created using random coins PRF(K, i), for all i 6= i∗ where vki∗ is the challenge
verification key. Then, by the correctness of the WE and the perfect soundness of
the NIWI, the reduction can use K to decrypt both ct0 and ct1. In the end, there
is a non-negligible probability that the reduction can extract a valid signature
under vki∗ , thus breaking the unforgeability of the signature scheme.

Theorem 17 (t-Anonymity). Assume that NIWI is witness-indistinguishable,
SPB is index hiding and WE is soundness secure. Then the scheme presented
in Construction 2 is t-anonymous where t = (λ − ω(log λ))/q and q is a lower
bound of the min-entropy of verification keys in the ring.

The proof of the theorem is similar to the proof of Theorem 14. However,
now we would like to use the security of the WE to replace ct1 by an encryption
of a valid signature under one key (and then replace back by an encryption of
0). To do this, we note that (unlike the unforgeability security proof described
above) all verification keys in K are computed using truly random coins. The
challenge ring given by the adversary must include at least t of these keys.
A simple information-theoretical argument states that there is only a negligible
probability that there is a PRF key K such that t−1 of these honestly generated
verification keys are malformed. This is because they are sampled independently
and thus it is unlikely that they are correlated via a PRF key. Hence, we can
conclude that `−1 verification keys in the adversary’s ring are not created using
random coins PRF(K, i), except with negligible probability. In other words, there
is a negligible probability that x′ ∈ L′. We can thus use the security of the WE
to safely replace encryptions of signatures and encryptions of 0. That is, we
switch out the encrypted signature in ct0 from one under one challenge key to a
signature under another one.
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7 Compact Witness Encryption for Threshold
Conjunction Languages

In this section we present a WE scheme that is compact for threshold conjunction
languages. We first define the notion of threshold conjunction languages.

Definition 18 (Threshold Conjunction Languages) Let L be an NP lan-
guage with relation R. We define a (t,N)-threshold conjunction language L′ as:

L′ =
{

(x1, . . . , xN ) : ∃{ij}j∈[t] ∈ [N ] s.t. xij ∈ L
}
.

In other words, an accepting instance (x1, . . . , xN ) of L′ is one such that
there are at least t accepting instances xij .

7.1 Construction from Indistinguishability Obfuscation

We now describe our WE scheme for any (t,N)-threshold conjunction language
L′. The protocol achieves compact ciphertexts, i.e., of size O(logN), when N −
t ∈ O(logN).

Construction 3 Let N ∈ poly(λ) and t be such that N − t ∈ O(logN) and L
be an NP language. Let

– LSS be a (t,N)-LSS scheme. In the following, we assume that shares can be
written as strings in {0, 1}λ.

– WE be a (non-compact) WE scheme for language L.
– iO be an obfuscator for all circuits.
– PPRF be a puncturable PRF.
– SSB be an SSB hashing scheme.

Additionally, consider the following circuit C[λ, hk, h, k0, k1, t, N ] which has the
values λ, hk, h, k0, k1, t and N hardwired.

C[λ, hk, h, k0, k1, t, N ](i, τi, xi) :

– If 0← SSB.Verify(hk, h, i, xi, τi) or i ≥ t, return ⊥.
– Compute si ← PPRF.Eval(k0, i) and random coins ri ← PPRF.Eval(k1, i).
– Compute cti ←WE.Enc(1λ, xi, si; ri). Output cti.

We now define the WE scheme for the (t,N)-conjunction language L′.

Enc(1λ, x,m) :

– Parse x = (x1, . . . , xN ).
– Create PPRF keys k0 ← PPRF.KeyGen(1λ) and k1 ← PPRF.KeyGen(1λ).
– For i ∈ [t − 1], compute pseudorandom shares si ← PPRF(k0, i). Compute

the remaining shares (st, . . . , sN )← LSS.RemainShare(m, s1, . . . , st−1).
– Compute hk ← SSB.Gen(1λ, t − 1, j) for j←$ [t − 1]. Moreover, compute
h← SSB.Hash(hk, {x1, . . . , xt−1}).

– Consider the circuit C = C[λ, hk, h, k0, k1, t, N ]. Compute C̄ ← iO(1λ, C).
– For i ∈ {t, . . . , N}, compute encryptions cti ←WE.Enc(1λ, xi, si).
– Output ct = ({cti}i∈{t,...,N}, C̄, hk).
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Dec(w, ct) :

– Parse w = (wi1 , . . . , wit) and ct as ({cti}i∈{t,...,N}, C̄, hk)
– For i ∈ [t− 1], compute τi ← SSB.Open(hk, {x1, . . . , xt−1}, i) and run cti ←
C̄(i, τi, xi).

– For j ∈ [t], decrypt sij ←WE.Dec(wij , ctij ).
– Reconstruct m← LSS.Reconstruct(si1 , . . . , sit). Output m.

Ciphertext size. The ciphertext is of the form ({cti}i∈{t,...,N}, C̄, hk). Assume that
the language L has a verification circuit CL. The ciphertexts cti for i ∈ {t, . . . , N}
have size O(|CL| · poly(λ)). Since N − t ∈ O(log(N)), the size of {cti}i∈{t,...,N}
is O(log(N) · |CL| · poly(λ)). The obfuscated circuit C implements the SSB.Verify
algorithm which is of size O(log(N)). Moreover, all other operations in C are
independent of N and depend only on |CL|. Hence, |C| ∈ O(log(N)·|CL|·poly(λ)).
Finally, the hashing key hk is of size O(log(N)) by the efficiency requirements
of SSB.

We conclude that the scheme presented above outputs ciphertexts of size
O(log(N) · |CL| · poly(λ)).

7.2 Proofs

We now prove that the scheme is correct and soundness secure.

Theorem 19 (Correctness). The scheme presented in Construction 3 is cor-
rect, given that LSS, SSB and WE are correct.

Theorem 20 (Soundness security). The scheme presented in Construction
3 is soundness secure given that SSB is index hiding and somewhere statistically
binding, iO is a secure iO obfuscator, PPRF is pseudorandom at punctured points,
WE is soundness secure and LSS is private.

Before presenting the formal proof, we give a brief outline. The proof follows a
sequence of hybrids, where the last one can be reduced to the privacy of the LSS.
First, note that if x /∈ L′, then there do not exist t instances xi ∈ L. Assume,
for simplicity that t = N , then there exists an index i∗ such that xi∗ /∈ L. We
start with a hybrid that is identical to the real soundness security game.

Then, we use the index hiding of the SSB hashing scheme to replace hk by a
hashing key that is binding to index i∗. We then use the puncturing technique of
[34]. That is, we create punctured PRF keys k′0 and k′1 (by puncturing the PPRF
keys k0 and k1 respectively) at the point i∗. At the same time, we embed into
the obfuscated circuit the ciphertext cti∗ ←WE.Enc(1λ, xi∗ , si∗ ; ri∗) where si∗ ←
PPRF.Eval(k0, i

∗) and ri∗ ← PPRF.Eval(k1, i
∗). Given that the SSB is somewhere

statistically binding at the point i∗, the circuits are functionally equivalent and
we can use the security of the iO obfuscator to argue indistinguishability. We can
now replace the values si∗ , ri∗ by uniform ones since the PPRF is pseudorandom
at punctured points. Finally, we replace cti∗ by an encryption of 0. To conclude
the proof, we can easily build a reduction to the security of the LSS.
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In the more general case, some WE encryptions with respect to false state-
ments are computed using the obfuscated program and some are given in the
plain. For the former ones, we simply repeat the process above. For the latter
ones, we use security of WE to replace these encryptions by encryptions of 0.

In the full version of the paper we present a variant of this protocol that does
not incur in exponential loss of security in the reduction.

7.3 Compact Universal Ring Signature from Compact WE for
Threshold Conjunction Languages

Consider again the URS construction of Section 6. One of the requirements of
this URS scheme is a (non-compact) WE for a language L′ which is itself a
(N − 1, N) -threshold conjunction language. When we plug the WE scheme for
(t,N)-threshold conjunction languages as a drop-in replacement for non-compact
WE, we obtain a compact URS scheme.

Specifically, the following theorem is a direct consequence of plugging the
compact WE scheme for (t,N)-threshold conjunction languages described above
with the URS signature from Section 6.

Theorem 21. Let

– PRG : {0, 1}λ/2 → {0, 1}λ be a PRG.

– L′ be the (`−1, `) threshold conjunction language defined in Construction 2.

– WE be a compact witness encryption scheme for the (`− 1, `) threshold con-
junction language L′. As we have just established, this primitive can be built
from secure iO, (`− 1, `)-LSS, (non-compact) WE for NP, PPRF and SSB.

– SPB be a SPB hashing scheme;

– L and LOR be the languages defined in Construction 2.

– NIWI be a NIWI scheme for LOR.

Then there exists a URS scheme that satisfies correctness, anonymity and un-
forgeability. Moreover, a signature Σ with respect to a ring of users R and a ring
of signature schemes S has size |Σ| ∈ O((log ` + logM)poly(λ)) where ` = |R|
and M = |S|.
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