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Abstract. We propose three interactive zero-knowledge arguments for
arithmetic circuit of size N in the common random string model, which
can be converted to be non-interactive by Fiat-Shamir heuristics in the
random oracle model. First argument features O(

√
logN) communica-

tion and round complexities and O(N) computational complexity for the
verifier. Second argument features O(logN) communication and O(

√
N)

computational complexity for the verifier. Third argument featuresO(logN)
communication and O(

√
N logN) computational complexity for the ver-

ifier. Contrary to first and second arguments, the third argument is free
of reliance on pairing-friendly elliptic curves. The soundness of three
arguments is proven under the standard discrete logarithm and/or the
double pairing assumption, which is at least as reliable as the decisional
Diffie-Hellman assumption.

1 Introduction

A zero-knowledge (ZK) argument is a protocol between two parties, the prover
and the verifier, such that the prover can convince the verifier that a particular
statement is true without revealing anything else about the statement itself. ZK
arguments have been used in numerous applications such as verifiable outsourced
computation, anonymous credentials, and cryptocurrencies.

Our goal is to build an efficient ZK argument for arithmetic circuit (AC)
in the common random string model that is sound under well-established stan-
dard assumptions, such as the discrete logarithm (DL) assumption: Compared
to q-type strong assumptions such as q-DLOG [38, 27], the standard assump-
tions will provide strong security guarantees as well as a good efficiency with
smaller group size due to Cheon’s attack on q-type assumptions [20]. To this
end, we propose three inner-product (IP) arguments with the same properties
(standard assumption, common random string model), where an IP argument is
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a proof system that convinces the verifier of an inner-product relation between
committed integer vectors. Then, we can apply well-established reductions from
IP argument to ZK argument for AC [13, 17, 46, 18].

The first sublinear ZK argument for AC solely based on the hardness of the
DL problem is due to Groth [29] and improved by Seo [44]. These works fea-
ture constant round complexity as well. Groth [31] gives a ZK argument with a
cubic root communication complexity using pairing-based two-tiered homomor-
phic commitment scheme whose binding property is based on the double pairing
(DPair) assumption [1]. The first logarithmic ZK argument for AC solely from
the DL assumption is due to Bootle, Cerulli, Chaidos, Groth, and Petit [13] and
improved by Bünz, Bootle, Boneh, Poelstra, Wuille, and Maxwell [17], which is
called Bulletproofs. Hoffmann, Klooß, and Rupp [34] revisited and improved Bul-
letproofs by showing that it can cover systems of quadratic equations, of which
rank-1 constraint systems is a special case. These logarithmic ZK argument sys-
tems [13, 17, 34] have linear verifiers. Other DL-based ZK argument systems with
different asymptotic performance, in particular sublinear verifier, have been pro-
posed. e.g., Hyrax [46] and Spartan [45]. Recently, Bünz, Maller, Mishra, Tyagi,
and Vesely [19] achieved a logarithmic ZK argument with a sublinear verifier
under the DPair assumption.

Focusing on specific languages, there are more researches achieving logarith-
mic communication complexity [3, 33] prior to Bulletproofs. Logarithmic com-
munication complexity in these works is attained with relatively large round
complexity, compared to [29, 44].

Relying on the non-standard but reliable assumptions, there exists a ZK
argument system with better asymptotic performance due to Bünz, Fisch, and
Szepieniec [18] that achieve logarithmic communications and logarithmic verifier
simultaneously, but it relies on a rather stronger assumption such as the strong
RSA assumption and the adaptive root assumption. A lot of important research
for succinct non-interactive argument (SNARG) [30, 37, 10, 28, 11, 40, 6, 9, 33, 32,
38, 27, 47, 21] have been proposed on the top of bilinear groups, where an argu-
ment consists of a constant number of group elements. However, the soundness
of these works relies on non-falsifiable knowledge extractor assumptions and/or
the structured reference string (SRS) that requires a trusted setup, which is not
required in the aforementioned DL-based protocols. There is another important
line of works [5, 7, 22, 48] for SNARG without using pairings, but based on in-
teractive oracle proofs [8]. These works are strong candidates for post-quantum
ZK arguments and simultaneously minimizing communication cost and verifier
computation. However, their communication cost is proportional to log2N for
the circuit size N , which is larger than that of the DL based approach [13, 17].

Our Results. We propose three IP arguments between two integer vectors of
length N in the common random string model. We refer to [13, 17, 46, 18] or
Section 6 for a constant round reduction from ZK arguments for AC of size N
with fan-in 2 gates to IP arguments. We summarize our results as follows.

1. We propose the first IP argument with sublogarithmic communication. We
prove its soundness under the DL assumption and the DPair assumption.
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Scheme Communication P’s comp. V’s comp. Assump.

Groth [29] & Seo [44] O(
√
N)G1 O(N)τ1 O(N)τ1 DL

Groth [31] O( 3
√
N)G1 O(N)τ1 O( 3

√
N)τ1 DPair

BP [13, 17] & HKR [34] O(logN)G1 O(N)τ1 O(N)τ1 DL

Hyrax [46] O(
√
w + d logN)G1 O(N logN)τ1 O(

√
w + d logN)τ1 DL

Spartan DL [45] O(
√
N)G1 O(N)τ1 O(

√
N)τ1 DL

BMMTV [19] O(logN)Gt O(N)τ1 O(
√
N)τ2 DPair

Supersonic [18] O(logN)GU O(N logN)u O(logN)u UOGroup

Spartan CL [45] O(log2N)GU O(N logN)u O(log2N)u UOGroup

Ligero [2] O(
√
N)H O(N logN)h O(N)h CR hash

STARK [5] O(log2N)H O(N log2N)h O(log2N)h CR hash

Aurora [7] O(log2N)H O(N logN)h O(N)h CR hash

Fractal [22] O(log2N)H O(N logN)h O(log2N)h CR hash

Virgo [48] O(d logN)H O(N logN)h O(d logN)h CR hash

BCGGHJ [14] O(
√
N)H O(N)m O(N)m CR hash

BCL [15] polylog(N)H O(N)m polylog(N)m CR hash

Our IP arguments + Section 6

Protocol2 (Section 3.2) O(
√

logN)Gt O(N2
√
logN )τ1 O(N)τ1 DL†&DPair

Protocol3 (Section 4.3) O(logN)Gt O(N)τ1 O(
√
N)τ2 DL†

Protocol4 (Section 5.3) O(logN)Gq O(N)τp O(
√
N logN)τq DL

Table 1. Comparison for transparent ZK arguments
N : circuit size, d: circuit depth, w: input size, (G1,G2,Gt): bilinear groups, (Gp,Gq):
elliptic curve groups of order p and q, GU : group of unknown order, H: hash function,
m, p, h, τi, u: operation of field, pairing, hash, Gi, GU ,
UOGroup: unknown-order group (strong RSA & adaptive root assumptions), CR hash:
collision-resistant hashes, DL†: DL assumption over pairing-friendly elliptic curves
All arguments in the table are public coin (Definition 1), so that they achieve non-
interactivity in the random oracle model using the Fiat-Shamir heuristic [25].

2. We present the first IP argument with O(logN) communication and O(
√
N)

verifier computation such that its soundness is based on the DL assumption.

3. We introduce a novel method to achieve the IP argument with a similar per-
formance to the second argument, especially without the reliance of pairings.

We provide a comparison for transparent ZK arguments in Table 13. Note that
there are more efficient arguments in the DL setting [9, 36, 38, 27, 21, 24] if we
rely on a trusted setup or non-standard, non-falsifiable assumptions.

3 We often use a terminology ‘transparent’ in the meaning of ’without trusted setup’.
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Protocol2Protocol1

Protocol3

Protocol4

O((log2 n)(log2nN)) O(log2nN + log2 n)

1stGBP

O(n2 log2nN)

BP[17]

O(log2N)

2ndGBP

CG[1]

MEA[19]

New CG

ProdMEA
→aAggMEA

AggMEC

O(
√
N)

O(
√
N logN)

Without Pairings

With Pairings

Each arrow links between the underlying and the advanced protocols. The big-O
notation under each protocol indicates communication complexity, except for Pro-
tocol3 and Protocol4 that indicate verifier’s computational complexity. The oval
nodes indicate known results; BP: Bulletproofs [13, 17], MEA: multi-exponentiation
argument [19], CG: Commitment to group elements [1]. The rectangle nodes indicate
the proposed protocols; New CG: Commitment to Elliptic Curve Points, 1stGBP
& 2stGBP: generalizations of Bulletproofs, aAggMEA & AggMEC: aggregations of
multi-exponentiations & multi-elliptic curve operations. Protocol1: an intermediate
protocol. Protocol2: Sublogarithmic IP argument, Protocol3 & Protocol4: Sublinear
Verifier IP arguments. N is the dimension of witness vectors. n is a positive integer
parameter for 1stGBP, where n = 1 implies the original Bulletproofs.

Fig. 1. Overview of Our Approach toward Sublogarithmic Proofs or Sublinear Verifier

Our starting point is Bünz et al.’s Bulletproofs IP argument (BP-IP) [17]
that features O(logN) communication and O(N) computation in the common
random string model and is sound under the DL assumption. For shorter proofs
or faster verification, we first generalize BP-IP in two different ways. A pictorial
overview of our approach is given in Fig. 1.

Sublogarithmic Communications. BP-IP consists of logN recursive steps such
that the prover sends two group elements per each round. The goal of each
recursive step is to halve the length of witness. Our first generalization of BP-
IP reduces the length of witness one 2n-th per each recursive round if N is
a power of 2n for any positive integer n. If need be, one can easily pad the
inputs to ensure that the requirement for the format of N holds, like in BP-IP.
Then, the recursive steps are finished in log2nN rounds and the prover sends
2n(2n − 1) group elements in each round, so that the overall communication
cost is O((log2nN) × n2), which becomes minimal when n = 1. That is, this
generalization has no advantage over BP-IP in terms of communications.

Nevertheless, we observe that the commit-and-prove approach can reduce
transmission overhead; the prover can commit to 2n(2n − 1) group elements
instead of sending them all, and then proves that the openings satisfy what the
verifier should have checked with the openings. To this end, we use a pairing-
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based commitment scheme to group elements (e.g., AFGHO [1]). This process of
committing and proving can be achieved using a multi-exponentiation argument
(e.g., [19]). Unfortunately, this näıve commit-and-prove approach ends up with
asymptotically the same proof size as BP-IP since we must prove several multi-
exponentiation arguments for every round. We call this protocol Protocol1.

To further reduce the communication cost, we aggregate multiple multi-
exponentiation arguments. Although there are well-known aggregating tech-
niques for multiple arguments with homomorphic commitment scheme (e.g.,
aggregating range proofs [17], linear combinations of protocols [34]), these ag-
gregating techniques are not well applicable to the case including ours such that
bases and exponents are distinct for multiple arguments. We try to reduce mul-
tiple relations to a single relation by multiplying all relations and then employ
a recursive proof technique like BP-IP. However, we find that this strategy does
not work well. The detailed explanation about the difficulty we faced is given in
Section 3.2. Instead, we devise a novel aggregating technique using newly pro-
posed augmented aggregated multi-exponentiation argument aAggMEA and prod-
uct argument ProdMEA. The final protocol, called Protocol2, using aAggMEA and
ProdMEA achieves sublogarithmic communication overhead.

Sublinear Verifier. The soundness of BP-IP is based on the discrete logarithm
relation assumption (DLR), which is equivalent to the DL assumption, such
that no adversary can find non-trivial relation among uniformly chosen group
elements. We observe that the uniform condition in sampling group elements
is not necessary in the soundness proof of BP-IP, but the hardness of find-
ing non-trivial relation among the CRS is sufficient. From this observation, we
first generalize the DLR assumption by removing the uniform condition and
then propose and prove that a new assumption with non-uniform distribution
holds. More precisely, we combine this generalization with the AFGHO commit-
ments; Let e : G1 × G2 → Gt be a bilinear map, where G1 and G2 are source
groups and Gt is the target group. g1, . . . , g√N ∈ G1 and H1, . . . ,H√N ∈ G2

are uniformly chosen. We prove that no adversary can find a non-trivial vector

(a11, . . . , a√N
√
N ) ∈ ZNp satisfying

∏√N
i,j=1 e(gi, Hj)

aij if the DL assumptions in
the source groups hold. That is, e(gi, Hj)’s are not uniformly distributed but
hard to find non-trivial relation among them. Therefore, if we set e(gi, Hj)’s as

the CRS of BP-IP, then the actual CRS becomes gi’s and Hj ’s of 2
√
N size while

keeping the soundness proof under the DL assumption in the source group.

Nevertheless, a näıve approach using the above idea will keep linear verifier
computation in N since we still keep the same verification process as that of
BP-IP. We introduce a trick to track verifier’s computation with O(

√
N) com-

putation. For example, in the first recursive step of BP-IP, the verifier should
update the public parameter g1, . . . , gN to gx1g

x−1

N/2+1, . . . , g
x
N/2g

x−1

N for a chal-

lenge integer x, which requires O(N) computation. In our setting, the public

parameter e(g1, H1), . . . , e(g√N , H
√
N ) can be halved to e(gx1g

x−1
√
N/2+1

, Hi), . . . ,

e(gx√
N/2

gx
−1
√
N
, Hi) for all i = 1, . . . ,

√
N . Therefore, the verifier can track this
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computation by computing only gxi g
x−1
√
N/2+i

for i = 1, . . . ,
√
N , which require

O(
√
N) exponentiations in G1. Note that this trick does not increase the prover’s

overhead, so that we sacrifice neither the other complexities nor assumptions to
achieve sublinear verifier. The resulting protocol with sublinear verifier is called
Protocol3.

Sublinear Verifier without Pairings. The core of the above second generaliza-
tion of BP-IP is to employ two-tiered homomorphic commitment scheme: Ped-
ersen commitment scheme to integers in the 1st layer + pairing-based AFGHO
commitment scheme to group elements in the 2nd layer. We propose another
IP argument with sublinear verifier, particularly not relying on pairing-friendly
elliptic curves. To circumvent the use of AGFHO scheme, we propose a new two-
tiered commitment scheme built on a usual elliptic curve with a mild condition.
Although the proposed two-tiered commitment scheme is not homomorphic, we
emphasize that it has a similar-but-weakened property, friendly to proving homo-
morphic operations of the underlying mathematical structure, particularly the
group law of elliptic curve over finite fields. Second, we show that this weakened
property is sufficient to construct an IP argument protocol with sublinear veri-
fier. After replacing pairing-based two-tiered homomorphic commitment scheme
with the new commitment scheme, the prover performs the verifier computation,
proves the integrity of the computation, and sends the verifier the computation
along with a proof. In order to raise efficiency of this approach, we also bring in
the aggregation technique used for the protocol with sublogarithmic communi-
cations. The resulting protocol without pairings is called Protocol4.

Related Works and Organization. Additional related works that were not
mentioned before are provided in the full version [35]. After providing necessary
definitions in the next section, we present our first generalization of BP-IP and
then reduce its communication overhead by using the aggregation technique in
Section 3. We present another generalization that achieves sublinear CRS size
and verifier computation in Section 4 (with Pairings) and Section 5 (without
Pairings). In Section 6, we extend our IP arguments to ZK arguments for AC.

2 Definitions

Argument System for Relation R. Let K be the common reference string
(CRS) generator that takes the security parameter as input and outputs the CRS
σ. In this paper, the CRS consists of randomly generated group elements, so that
indeed we are in the common random string model, where an argument consists
of two interactive PPT algorithms (P,V) such that P and V are called the
prover and the verifier, respectively. The transcript produced by an interaction
between P and V on inputs x and y is denoted by tr ← 〈P(x),V(y)〉. Since we
are in the common random string model, for the sake of simplicity, we omit the
process of running K and assume the CRS is given as common input to both P
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and V. At the end of transcript, the verifier V outputs b, which is denoted by
〈P(x),V(y)〉 = b, where b = 1 if V accepts and b = 0 if V rejects.

Let R be a polynomial time verifiable ternary relation consisting of tuples of
the CRS σ, a statement x, and a witness w. We define a CRS-dependent language
Lσ as the set of statements x that have a witness w such that (σ, x, w) ∈ R.
That is, Lσ = { x | ∃ w satisfying (σ, x, w) ∈ R }. For a ternary relation R, we
use the format {(common input; witness) : R} to denote the relation R using
specific common input and witness.

Argument of Knowledge. Informally, the argument of knowledge means the
argument system satisfying the completeness and the soundness with extractabil-
ity. Due to space constraints, we provide definitions in the full version [35].

Transparent and Non-interactive Argument in the Random Oracle
Model. A protocol in the common random string model can be converted into
a protocol without a trusted setup in the random oracle model [4]; if K outputs
random group elements of an elliptic curve group G of prime order, then the
CRS can be replaced with hash values of a small random seed, where the hash
function mapping from {0, 1}∗ to G is modeled as a random oracle as in [12].

Any public coin interactive argument protocol defined in Definition 1 can be
converted into a non-interactive one by applying the Fiat-Shamir heuristic [25]
in the random oracle model; all V’s challenges can be replaced with hash values
of the transcript up to that point.

Definition 1. An argument (P,V) is called public coin if all V’s challenges are
chosen uniformly at random and independently of P’s messages.

All interactive arguments proposed in this paper can be converted to transparent
non-interactive arguments in the random oracle model.

Assumptions Let G be a group generator such that G takes 1λ as input and
outputs (p,G, g), where λ is the security parameter, G is the description of a
group of order p, and g is a generator of G, which is used to sample an element
of G with uniform distribution. Let negl(λ) be a negligible function in λ.

Definition 2 (Discrete Logarithm (DL) Assumption). We say that the
group generator G satisfies the discrete logarithm assumption if for all non-
uniform polynomial-time adversaries A, the following inequality holds.

Pr
[
ga = h

∣∣∣ (p,G, g)← G(1λ), h
$←G; a← A(p, g, h,G)

]
< negl(λ).

Definition 3 (Discrete Logarithm Relation (DLR) Assumption). We
say that the group generator G satisfies the discrete logarithm relation assumption
if for all non-uniform polynomial-time adversaries A, the following inequality
holds.

Pr
[
a 6= 0 ∧ ga = 1G

∣∣∣ (p,G, g)← G(1λ), g
$← Gn;a← A(p,G, g, g)

]
< negl(λ),
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where 1G is the identity of G.

Although the equivalence between DLR and DL assumptions is well-known, to
be self-contained, we provide the complete reductions in the full version [35].

Let Gb be an asymmetric bilinear group generator such that Gb takes 1λ as
input and outputs (p, g,H,G1,G2,Gt, e), where G1,G2,Gt are the descriptions
of distinct cyclic groups of order p of length λ, g and H are generators of G1,G2,
respectively, and e is a non-degenerate bilinear map from G1 ×G2 to Gt.

Definition 4 (Double Pairing Assumption). We say that the asymmetric
bilinear group generator Gb satisfies the double pairing assumption if for all non-
uniform polynomial-time adversaries A, the following inequality holds.

Pr

 e(g′, G) = e(g′′, Ga)
∧ (g′, g′′) 6= (1G1 , 1G1)

∣∣∣∣∣∣∣
(p, g,H,G1,G2,Gt, e)← Gb(1λ),

G
$←G2, a

$←Zp;
(g′, g′′)← A((G,Ga), (p, g,H,G1,G2,Gt, e))

 < negl(λ)

Abe et al. [1] proved that the double pairing assumption is as reliable as the
decisional Diffie-Hellman assumption in G2.

Groups, Vectors, and Operations. We introduce some notations for succinct
description of protocols. [m] denotes a set of continuous integers from 1 to m,
{1, . . . ,m}. For elements in groups G1 and G2 obtained by Gb, we separately use
lower case letters for G1 and upper case letters for G2. A vector is denoted by a
bold letter, e,g., g = (g1, ..., gm) ∈ Gm1 and a = (a1, ..., am) ∈ Zmp . For a vector

a ∈ Zmp , its separation to the left half vector a1 ∈ Zm/2p and the right half vector

a−1 ∈ Zm/2p is denoted by a = a1‖a−1. Equivalently, the notation ‖ is used
when sticking two vectors a1 and a−1 to a and can be sequentially used when
sticking several vectors.4 We use several vector operations denoted as follows.

Component-wise Operations. The component-wise multiplication between sev-
eral vectors is denoted by ◦ e.g., for gk = (gk,1, . . . , gk,n) ∈ Gni , i ∈ {1, 2, t}, and
k ∈ [m], ◦k∈[m]gk = (

∏
k∈[m] gk,1 . . . ,

∏
k∈[m] gk,n). If k = 2, we simply denote it

by g1 ◦ g2.

Bilinear Functions & Scalar-Vector Operations.

1. The standard inner-product in Znp is denoted by 〈 , 〉 and it satisfies the
following bilinearity. 〈

∑
k∈[m] ak,

∑
j∈[n] bj〉 =

∑
k∈[m]

∑
j∈[n]〈ak, bj〉 ∈ Zp.

2. For g = (g1, . . . , gn) ∈ Gni , i ∈ {1, 2, t} and a = (a1, . . . , an) ∈ Znp , the
multi-exponentiation is denoted by ga :=

∏
k∈[n] g

ak
k ∈ Gi and it satisfies

the following bilinearity. (◦k∈[m]gk)
∑

j∈[`] zj =
∏
k∈[m]

∏
j∈[`] g

zj

k ∈ Gi.

4 Note that we use the indices (1,−1) instead of (1, 2) since it harmonizes well with
the usage of the challenges in Bulletproofs and our generalization of Bulletproofs.
e.g., let a = a1‖a−1 be a witness and x be a challenge, and then a is updated to∑
i=±1 aix

i, a witness for the next recursive round.



Efficient Zero-Knowledge Arguments in Discrete Logarithm Setting 9

3. For g = (g1, . . . , gn) ∈ Gn1 ,H = (H1, . . . ,Hn) ∈ Gn2 , the inner-pairing prod-
uct is denoted by E(g,H) :=

∏
k∈[n] e(gk, Hk) ∈ Gt and it satisfies the fol-

lowing bilinearity. E(◦k∈[m]gk, ◦j∈[`]Hj) =
∏
k∈[m]

∏
j∈[`] E(gk,Hj) ∈ Gt.

4. For c ∈ Zp and a ∈ Zmp , the scalar multiplication is denoted by c · a :=
(c · a1, . . . , c · an) ∈ Zmp .

5. For c ∈ Zp and g ∈ Gmi , i ∈ {1, 2, t} the scalar exponentiation is denoted by
gc := (gc1, . . . , g

c
m) ∈ Gmi .

6. For c ∈ Zmp and g ∈ Gi, i ∈ {1, 2, t} the vector exponentiation is denoted by
gc := (gc1 , . . . , gcm) ∈ Gmi .

3 Sublogarithmic Proofs via Generalization of BP-IP

In this section, we present our first generalization of BP-IP for the following IP
relation RIP and then reduce its communication cost using the newly proposed
aggregation technique.

RIP =
{

(g,h ∈ GN , u, P ∈ G;a, b) : P = gahbu〈a,b〉 ∈ G
}

(1)

where G is an arbitrary cyclic group of order p satisfying the DL assumption,
and g,h, and u are uniformly selected common inputs.

The BP-IP consists of logN recursive steps that halves the size of witness
and the parameters. In each recursive round of BP-IP, each vector in the CRS
and a witness are split into two equal-length subvectors. We generalize BP-IP by
splitting a vector of length N into 2n subvectors of length N/2n in each round,
where n = 1 implies the original BP-IP. Similar to BP-IP, we assume N is a
power of 2n for the sake of simplicity. Let N̂ = N

2n and the prover begins with
parsing the witness a, b and the parameter g,h to

a = a1‖a−1‖ · · ·a2n−1‖a−2n+1, b = b1‖b−1‖ · · · b2n−1‖b−2n+1,

g = g1‖g−1‖ · · · g2n−1‖g−2n+1, and h = h1‖h−1‖ · · ·h2n−1‖h−2n+1.

Let In = {±1,±3, . . . ,±(2n−1)} be a 2n-size index set. In each recursive round
of BP-IP, the prover computes and sends two group elements L and R. In our
generalization, instead of L and R, P calculates vi,j = g

aj

i hbi
j u
〈ajbi〉 ∈ G for

all distinct i, j ∈ In, and then sends {vi,j} i,j∈In
i6=j

to V. Note that if n = 1, then

v1,−1 and v−1,1 are equal to L and R in BP-IP, respectively. V chooses x
$←Z∗p

and returns it to P. Finally, both P and V compute

ĝ = ◦i∈Ingx
−i

i ∈ GN̂ , ĥ = ◦i∈Inh
xi

i ∈ GN̂ , and P̂ = P ·
∏

i,j∈In
i6=j

vx
j−i

i,j ∈ G

and P additionally computes a witness for the next round argument

â =
∑
i∈In

aix
i ∈ ZN̂p and b̂ =

∑
i∈In

bix
−i ∈ ZN̂p .
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We can verify that this process is a reduction to a one 2n-th length IP argument
by checking (ĝ, ĥ, u, P̂ ; â, b̂) satisfies the relation RIP. The concrete descriptions
of BP-IP and the above generalized BP-IP and their proofs for the perfect com-
pleteness and the soundness are relegated to the full version [35].

Efficiency Analysis The prover repeats the (N > 1) case log2nN times and
then runs the (N = 1) case. For each (N > 1) case, P sends vi,j ’s of size
2n(2n − 1) and two integers in the (N = 1) case, so that the communication
overhead sent by P is 2n(2n − 1) log2nN group elements and 2 integers. The

verifier updates ĝ, ĥ and P̂ that cost O(N + n2 log2nN) group exponentiation.
For sufficiently small n <

√
N , it becomes O(N). The prover should compute vi,j

for all i, j for each round, so that the prover’s computation overhead is O(Nn2).
The overall complexities are minimized when n has the smallest positive integer
(that is, n = 1), which is identical to the BP-IP protocol.

3.1 Proof Size Reduction using Multi-Exponentiation Argument

We improve our generalization of BP-IP by using the pairing-based homomorphic
commitment scheme to group elements [1]. We first slightly extend our target
relation by adding the commitment key of [1] into the common random string
in our argument as follows.{

(g,h ∈ GN1 , u ∈ G1,F 1, . . . ,Fm ∈ G2n(2n−1)
2 ,H ∈ Gm2 , P ∈ G1;a, b)

: P = gahbu〈a,b〉 ∈ G1

}
(2)

where g,h,u,F k, and H are the common random string. Here, F k and H are
not necessary to define the relation P = gahbu〈a,b〉. However, our IP protocols
will use them to run a subprotocol for multi-exponentiation arguments given in
the following subsections.

The generalized BP-IP with n > 1 carries larger communication overhead
than that of BP-IP. In order to reduce the communication cost in each round,
we can use a commitment to group elements. That is, the prover sends a com-
mitment to group elements vi,j ’s instead of sending all vi,j ’s. This approach will
reduce communication cost in each round. Then, however, the verifier cannot di-
rectly compute the update P̂ of P ,

∏
i,j∈In
i6=j

vx
j−i

i,j , by himself, and thus the prover

sends it along with its proof of validity, which is exactly a multi-exponentiation
argument proving the following relation.{

(F ∈ GN2 , z ∈ ZNp , P ∈ Gt, q ∈ G1;v ∈ GN1 ) : P = E(v,F ) ∧ q = vz
}
, (3)

where F is the common random string such that their discrete logarithm relation
is unknown to both P and V and z is an arbitrary public vector.

We will omit the detailed description for the multi-exponentiation argument
for the relation in (3), but provide an intuitive idea for it. In fact, BP-IP ar-
gument can be naturally extended to this proof system due to the resemblance
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between the standard IP and the inner-pairing product. More precisely, the addi-
tive homomorphic binding commitment to an integer vector (e.g., ga) is changed
with the multiplicative homomorphic commitment to a group element vector
(e.g., E(v,F )) and the standard IP between two integer vectors (e.g., 〈a, b〉)
can be substituted with multi-exponentiation (e.g., vz).5 This type of extension
is well formalized by Bünz, Maller, Mishra, Tyagi, and Vesely [19] in terms of
two-tiered homomorphic commitment scheme [31]. The multi-exponentiation ar-
gument in [19] costs the same complexities as those of BP-IP; O(logN) commu-
nication overhead and O(N) computational costs for the prover and the verifier.

For our purpose, we can use the commitment scheme to group elements [31]
and the multi-exponentiation argument in [19] so that we can construct a proto-
col with shorter communications, denoted by Protocol1. We provide full descrip-
tion of our generalized BP-IP with Multi-Exponentiation Argument, denoted by
Protocol1 in Fig. 2. In the protocol, we add the state information for the prover
and the verifier, denoted by stP and stV , respectively. Both stP and stV are ini-
tialized as empty lists and used to stack the inputs of the multi-exponentiation
argument for each recursive round. At the final stage, the prover and the verifier
can run several multi-exponentiation argument protocols in parallel.

Efficiency Analysis Although this approach reduces communication over-
heads, compared to the generalized BP-IP, it is not quite beneficial for our
purpose. More precisely, the communication overhead O(n2 log2nN) of the gen-
eralized BP-IP is reduced to O((log n) · (log2nN)) since the communication
overhead per round O(n2) is reduced to its logarithm O(log n) by the multi-
exponentiation argument. Although the communication overhead is reduced to
O((log n)·(log2nN)) compared with the generalized BP-IP (n > 1), the resulting
complexity is equal to O(logN), which is asymptotically the same as the com-
munication overhead of BP-IP. Therefore, this protocol is no better than BP-IP,
at least in terms of communication complexity. Nevertheless, this protocol is a
good basis for our sublogarithmic protocol presented in the next subsection.

3.2 Sublogarithmic Protocol from Aggregated Multi-Exponentiation
Arguments

We build a protocol, denoted by Protocol2, for sublogarithmic transparent IP
arguments on the basis of Protocol1 described in the previous subsection. To this
end, we develop an aggregation technique to prove multiple multi-exponentiation
arguments at once, which proves the following aggregated relation.

RAggMEA =


(
F k ∈ G2n(2n−1)

2 , zk ∈ Z2n(2n−1)
p , Pk ∈ Gt, qk ∈ G1

;vk ∈ G2n(2n−1)
1 for k ∈ [m]

)
:
∧
k∈[m]

(
Pk = E(vk,F k) ∧ qk = vzk

k

)


5 The BP-IP is about two witness vectors a and b and it can be easily modified with
one witness vector a and a public b. e.g., [46]. Our multi-exponentiation argument
corresponds to this variant.
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Protocol1(g,h, u,F k for k ∈ [m], P ∈ G1, stV ;a, b, stP ), where m = log2nN

If N = 1:
Step 1: P sends V a and b.
Step 2: V proceeds the next step if P = gahbua·b holds.

Otherwise, V outputs Reject.
Step 3: If stP is empty, then V outputs Accept.

Otherwise, let (uk, vk,xk;vk) be the k-th row in stP .
Step 4: P and V run MEA(F k,xk, uk, vk;vk) for k ∈ [m].

Else (N > 1): Let N̂ = N
2n

and parse a, b, g, and h to

a = a1‖a−1‖ · · ·a2n−1‖a−2n+1, b = b1‖b−1‖ · · · b2n−1‖b−2n+1,

g = g1‖g−1‖ · · · g2n−1‖g−2n+1, and h = h1‖h−1‖ · · ·h2n−1‖h−2n+1.

Step 1: P calculates for all distinct i 6= j ∈ In = {±1,±3, . . . ,±(2n− 1)},

vi,j = g
aj

i hbi
j u
〈aj ,bi〉 ∈ G1

sets v = (vi,j) ∈ G2n(2n−1)
1 in the lexicographic order and sends V E(v,Fm).

Step 2: V chooses x
$←Z∗p and returns it to P.

Step 3: P computes v = vx =
∏

i,j∈In
i6=j

vx
j−i

i,j ∈ G1, where x is the vector

consisting of xj−i, and then sends it to V.
Step 4: Both P and V compute

ĝ = ◦i∈Ing
x−i

i ∈ GN̂1 , ĥ = ◦i∈Inh
xi

i ∈ GN̂1 and P̂ = P · v ∈ G1.

Additionally, P computes â =
∑
i∈In aix

i ∈ ZN̂p and b̂ =
∑
i∈In bix

−i ∈ ZN̂p .
Step 5: V updates stV by adding a tuple (E(v,Fm), v,x) into the bottom. P

updates stP by adding a tuple (E(v,Fm), v,x;v) into the bottom. Both P
and V run Protocol1(ĝ, ĥ, u,F k for k ∈ [m− 1], P̂ , stV ; â, b̂, stP ).

Fig. 2. Protocol1

Failed näıve approach: linear combination. One may try to employ a ran-
dom linear combination technique, which is widely used to aggregate multiple
relations using homomorphic commitment schemes. For example, it is called lin-
ear combination of protocols in [34]. To this end, one may also try to use one
F instead of distinct F k’s for every pairing equation and employ homomorphic
property of pairings and multi-exponentiations to apply a random linear com-
bination technique. Unfortunately, however, the relation RAggMEA consists of
two distinct types of equations Pk and qk containing distinct zk’s, so that such
a random linear combination technique is not directly applicable to RAggMEA

even with one F .

Why we use distinct F k’s? Our basic strategy for aggregation is to merge
multiple equations into a single equation by product. Later, we will present a
reduction for it (Theorem 2). To this end, it is necessary to use distinct F k’s
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for each equation since it prevents the prover from changing opening vectors
between committed vectors in the product.
A difficulty when we use several Fk’s. As we mentioned, we use different
F k’s for each commitment Pk. In this case, it is not easy to efficiently prove that
the equation that Pk = E(vk,F k) holds. The CRS contains all F k’s, and thus,
in order to prove Pk = E(vk,F k), we have to prove that only one F k is used
and the others are not used in the equation. Proving unusedness of the other
F j for j 6= k with high performance is rather challenging. Let us consider the
following simplified aggregation relation to clarify this difficulty.

R2agg =
{

(F k, Pk;vk,j for k ∈ [2]) : ∧k∈[2]Pk = E(vk,F k)
}

In order to merge two equations into a single equation by product, we might
construct a reduction as follows; The verifier chooses a challenge y, both the
players set F̃ 1 = F 1, F̃ 2 = F y

2, and P̃ = P1P
y
2 , and then run a product argument

convincing that the knowledge of ṽk satisfying

P̃ = E(ṽ1, F̃ 1)E(ṽ2, F̃ 2). (4)

Here, one may expect that an equality Eq. (4) guarantees two equalities in R2agg

by a random challenge y. Unfortunately, this is not true since fake P ′k passing
the protocol can be created by E(vk1,F 1)E(vk2,F 2) for k = 1, 2. That is, this
reduction failed to show the unusedness of F 2 in P1 and F 1 in P2.
Our solution: augmented aggregate multi-exponentiation argument.
Although the above approach is failed to prove the unusedness of F 2 in P1 and
F 1 in P2, it can be still used to prove that Pk’s are of the form E(v1,F 1)E(v2,F 2)
for some witness v1 and v2. Therefore, instead of devising a protocol for the un-
usedness, we keep using the above approach of reducing to a product equation
but change the target relation; we add redundant relations so that the final re-
lation contains our target relation, multiple multi-exponentiations. That is, by
adding some redundant values, we can further generalize the relation RAggMEA

and obtained the following relation RaAggMEA for augmented aggregation of
multi-exponentiations.
(
F k ∈ G2n(2n−1)

2 , zk ∈ Z2n(2n−1)
p , Hk ∈ G2, Pk ∈ Gt, qk ∈ G1

;vk,j ∈ G2n(2n−1) for k, j ∈ [m]

)
:
∧
k∈[m]

(
Pk =

∏
j∈[m] E(vk,j ,F j) ∧ qk = vzk

k,k ∧ (v
zj

k,j = 1G1
for j 6= k)

)
(5)

Here, Pk is a commitment to vk,j ’s and qk is a multi-exponentiation of the
committed value vk,k and a public vector z. In particular, Pk is defined by
using all F k’s to avoid the difficulty of proving unusedness. Although there are
redundant vk,j ’s in Pk (j 6= k), the above relation is sufficient to guarantee qk
is a multi-exponentiation of a committed value vk,k. In addition, Hk’s are not
necessary in the above relation, but we will use Hk’s in the product argument,
where we reduce from the augmented aggregation multi-exponentiation protocol.

The full description of Protocol2 using aAggMEA is given in Fig. 3.
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Protocol2(g,h, u,F k for k ∈ [m],H, P ∈ G1, stV ;a, b, stP ), where m = log2nN

If N = 1:
Step 1: P sends V a and b.
Step 2: V proceeds the next step if P = gahbua·b holds.

Otherwise, V outputs Reject.
Step 3: If stP is empty, then V outputs Accept.

Otherwise, let (uk, vk,xk;vk) be the k-th row in stP and

vk,j =

{
1G1 if j 6= k
vk if j = k

Step 4: P and V run aAggMEA(F k,xk, Hk, uk, vk;vk,j for k, j ∈ [m]).

Else (N > 1): Let N̂ = N
2n

and parse a, b, g, and h to

a = a1‖a−1‖ · · ·a2n−1‖a−2n+1, b = b1‖b−1‖ · · · b2n−1‖b−2n+1,

g = g1‖g−1‖ · · · g2n−1‖g−2n+1, and h = h1‖h−1‖ · · ·h2n−1‖h−2n+1.

Step 1: P calculates for all distinct i, j ∈ In = {±1,±3, . . . ,±(2n− 1)},

vi,j = g
aj

i hbi
j u
〈aj ,bi〉 ∈ G1

sets v = (vi,j) ∈ G2n(2n−1)
1 in the lexicographic order and sends V E(v,Fm).

Step 2: V chooses x
$←Z∗p and returns it to P.

Step 3: P computes v = vx =
∏

i,j∈In
i6=j

vx
j−i

i,j ∈ G1, where x is the vector

consisting of xj−i, and then send v to V.
Step 4: Both P and V compute

ĝ = ◦i∈Ing
x−i

i ∈ GN̂1 , ĥ = ◦i∈Inh
xi

i ∈ GN̂1 , and P̂ = P · v ∈ G1.

In addition, P computes

â =
∑
i∈In

aix
i ∈ ZN̂p and b̂ =

∑
i∈In

bix
−i ∈ ZN̂p .

Step 5: V updates stV by adding a tuple (E(v,Fm), v,x) into the bottom. P
updates stP by adding a tuple (E(v,Fm), v,x;v) into the bottom. Both P
and V run Protocol2(ĝ, ĥ, u,F k for k ∈ [m− 1],H, P̂ , stV ; â, b̂, stP ).

Fig. 3. Protocol2: Sublogarithmic IP Argument

Theorem 1. The IP argument in Fig. 3 has perfect completeness and computa-
tional witness-extended-emulation under the discrete logarithm relation assump-
tion in G1 and the double pairing assumption.

Due to space constraints, the proof is provided in the full version [35].
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Efficiency Analysis A main difference between Protocol1 and Protocol2 is the
aggregating process for log2nN multi-exponentiation arguments; Our proposal
for aAggMEA in the next subsection has logarithmic communication overhead
in the size of witness. For each round of Protocol2, 2n(2n − 1) group elements
are committed and thus total log2nN × 2n(2n− 1) group elements are commit-
ted. Therefore, the overall communication overhead is O(log2nN) for the main
recursive rounds and O(log(log2nN × 2n(2n − 1))) = O(log n + log(log2nN))
for aAggMEA. That is, O(log n+ log2nN). If n satisfies O(log2nN) = O(log n),
then the communication complexity becomes O(log n+ log2nN) = O(

√
logN).

As for the computational overhead, compared to generalized BP-IP, only a
run of aAggMEA protocol is imposed. Our proposal for the aAggMEA protocol is
an extended variant of BP-IP, so that its computational complexity is still linear
in the length of witness vector that is O(n2 log2nN). Therefore, for sufficiently
small n <

√
N , this does not affect on the overall complexity, so that the total

prover’s computational overhead is O(Nn2) and the verifier’s computational
overhead is O(N + n2 log2nN) that are equal to those of general BP-IP.6

3.3 Aggregating Multi-Exponentiation Argument

In this section, we propose an augmented aggregation of multi-exponentiation
arguments aAggMEA for the relation in Eq. (5). Vectors in Eq. (5) are of dimen-
sion 2n(2n− 1). For the sake of simplicity, we set the dimension of vectors N
in this section and, by introducing dummy components, we can without loss of
generality assume that N is a power of 2. The proposed protocol consists of two
parts.

First, the aAggMEA is reduced to a proof system, denoted by ProdMEA, for
the following relation RPMEA for a product of multi-exponentiation.

RPMEA =

{
(F k ∈ GN2 , zk ∈ ZNp , Hk ∈ G2, P ∈ Gt;vk ∈ GN1 for k ∈ [m])
: P =

∏
k∈[m] E(vk,F k)e(vzk

k , Hk)

}
The reduction is provided in Fig. 4 and its security property is given in the

following theorem.

Theorem 2. The aAggMEA protocol in Fig. 4 has perfect completeness and
computational witness-extended-emulation if the ProdMEA protocol used in Fig. 4
has perfect completeness and computational witness-extended-emulation and the
double pairing assumption holds.

Due to space constraints, the proof is relegated to the full version [35].
Second part of aAggMEA is to run ProdMEA. The idea for the construc-

tion of ProdMEA is to use the resemblance between RPMEA and RIP ; RIP
is the relation about the inner-product between integer vectors, that is, a sum

6 Note that when the communication complexity is evaluated, we set n = 2
√

logN that

is much smaller than
√
N = 2

1
2
logN , and thus our estimation for computational cost

makes sense.
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aAggMEA(F k ∈ GN2 ,zk ∈ ZNp , Hk ∈ G2, Pk ∈ Gt, qk ∈ G1;vk,j ∈ GN1 for k, j ∈ [m])

Step 1: V chooses and sends y
$←Zp to P.

Step 2: Both P and V set

z̃k = yk−1zk, F̃ k = F yk−1

k , H̃k = Hym

k , and P̃ =
∏
k∈[m]

(
P y

k−1

k · e(qy
k−1

k , H̃k)
)
,

and P additionally sets ṽk = ◦j∈[m]v
yj−k

j,k .

Step 3: P and V run ProdMEA(F̃ k, z̃k, H̃k, P̃ ; ṽk for k ∈ [m])

Fig. 4. Reduction from aAggMEA to ProdMEA

of component-wise products. RPMEA is the relation about a product of ex-
ponentiation between a vector of group element (v1, . . . ,vm) and an integer
vector (z1, . . . ,zm). In particular, P is a product of

∏
k∈[m] E(vk,F k) a com-

mitment to (v1, . . . ,vm), and
∏
k∈[m] e(v

zk

k , Hk) a commitment to the product

of component-wise exponentiation between (v1, . . . ,vm) and (z1, . . . ,zm). The
homomorphic property of commitment to group elements enables us to construct
ProdMEA similarly to BP-IP using the homomorphic Pedersen commitment to
integers. We provide the construction and the detailed explanation of the pro-
tocol ProdMEA in the full version [35].

The computational costs of ProdMEA for the prover and the verifier are linear
and the communication cost is logarithmic in the size of witness, like BP-IP. The
reduction from aAggMEA to ProdMEA requires a constant communication cost
and linear computational costs for both prover and verifier in the size of witness.
Therefore, aAggMEA requires linear computational complexity and logarithmic
communication complexity in the size of witness.

4 Sublinear Verifier via Second Generalization

In this section, we propose an IP argument with logarithmic communication and
sublinear verifier computation, solely based on the DL assumption.

4.1 Matrices and Operations

For succinct exposition, we additionally define notations using matrices. Similar
to a vector, a matrix is denoted by a bold letter and a vector is considered a row
matrix. For a matrix a ∈ Zm×np , its separation to the upper half matrix a1 ∈
Zm/2×np and the lower half matrix a−1 ∈ Zm/2×np is denoted by a = Ja1‖a−1K.
We define three matrix operations as follows.

Inner-Product. For a, b ∈ Zm×np , the inner-product between a and b is defined
as 〈a, b〉 :=

∑
r∈[m],s∈[n] ar,sbr,s ∈ Zp.
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Multi-Exponentiation. For g ∈ Gm×ni , i ∈ {1, 2, t} and a ∈ Zm×np , the multi-

exponentiation is defined as ga :=
∏
r∈[m],s∈[n] g

ar,s
r,s ∈ Gi.

Outer-Pairing Product. For g ∈ Gm1 and H ∈ Gn2 , the outer-pairing product7 is
defined as

g ⊗H :=

 e(g1, H1) . . . e(g1, Hn)
...

. . .
...

e(gm, H1) . . . e(gm, Hn)

 ∈ Gm×nt .

Note that we set the output of the outer-pairing product to be a matrix instead
of a vector, unlike an usual vector-representation of a tensor product since the
matrix-representation is useful when separating it into two parts.

4.2 General Discrete Logarithm Relation Assumption

We restate the DLR assumption in terms of problem instance sampler to gener-
alize it. Let GDLRsp be a sampler that takes the security parameter λ as input
and outputs (p, g1, . . . , gn,G), where G is a group G of λ-bit prime-order p and
g1, . . . , gn are generators of G.

Definition 5 (General Discrete Logarithm Relation Assumption). Let
GDLRsp be a sampler. We say that GDLRsp satisfies the general discrete loga-
rithm relation (GDLR) assumption if all non-uniform polynomial-time adver-
saries A, the following inequality holds.

Pr

[
a 6= 0 ∧ ga = 1G

∣∣∣∣(p, g ∈ Gn,G)← GDLRsp(1λ)
a← A(p, g,G)

]
< negl(λ),

where 1G is the identity of G and negl(λ) is a negligible function in λ.

Definition 6. For a fixed integer N , the sampler GDLRspRand is defined as
follows.

GDLRspRand(1
λ) : Choose a group G of λ-bit prime-order p; g

$←GN ;
Output (p, g,G).

Theorem 3. GDLRspRand satisfies the GDLR assumption if the DL assumption
holds for the same underlying group G.

The soundness theorem of BP-IP holds under the GDLR assumption; it uses
only the fact that no adversary can find a non-trivial relation, regardless of the
distribution of generators g. We restate the soundness theorem of BP-IP below.

Theorem 4 ([17]). The BP-IP has perfect completeness and computational
witness-extended-emulation under the GDLR assumption.

7 Note that this operation is also called “projecting bilinear map” in the context of
converting composite-order bilinear groups to prime-order bilinear groups [26].
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We propose another sampler that satisfies the GDLR assumption.

Definition 7. For m,n ∈ N, the sampler GDLRspBM is defined as follows.

GDLRspBM (1λ) : (p, g,H,G1,G2,Gt, e)← G(1λ); g
$←Gm1 ;H

$←Gn2 , u
$←Gt;

Output (p, g ⊗H, u,Gt).

Theorem 5. GDLRspBM satisfies the GDLR assumption if the DL assumption
holds on G1 and G2.

Proof. Suppose that there exists a non-uniform polynomial-time adversary A
breaking the GDLR assumption with non-negligible probability. That is, with
non-negligible probability, A outputs a matrix a ∈ Zm×np and an integer c ∈ Zp
such that (g⊗H)auc = 1Gt and a, c are not all zeros, where 1Gt is the identity
of Gt. We separate the adversarial types according to the output distribution.
Let ai ∈ Znp be the i-th row vector of a for i ∈ [m].

– (Type 1) c 6= 0
– (Type 2) Not Type-1. ∀i ∈ [m], Hai = 1G2

.
– (Type 3) Neither Type-1 or Type-2.

It is straightforward that A should be at least one of the above 3 types. For each
adversary, we show how to break one of the DL assumption on G1, G2, and Gt.8

Type-1 adversary. Given a DL instance ht ∈ Gt, we construct a simulator finding

Dloge(g,H)ht. First, choose x and z
$←Znp and set g = gx, H = Hz, and u = ht.

Then, the distribution of (g,H, u) is identical to the real GDLR instance. The
type-1 adversary outputs a and c such that c 6= 0 and a 6= 0. From the necessary
condition for a and c, we know the following equality holds.

〈x⊗ z,a〉+ c ·Dloge(g,H)ht = 0 (mod p)

Since we know all components except for Dloge(g,H)ht and c 6= 0, we can find
Dloge(g,H)ht by solving the above modular equation.

Type-2 adversary. This type of adversary can be used as an attacker breaking
the GDLR assumption on G2 with a sampler GDLRspRand. Theorem 3 guar-
antees that there is no type-2 adversary breaking the GDLR assumption with
GDLRspBM under the DL assumption on G2.

Type-3 adversary. Given a DL instance ĝ ∈ G1, we construct a simulator finding

DLg ĝ. First, choose an index k
$←[m], integer vectors x = (x1, . . . , xm)

$←Zmp ,

z
$←Znp , and w

$←Zp, and set g = (gx1 , . . . , gxk−1 , ĝ, gxk+1 , . . . , gxm), H = Hz,
and u = e(g,H)w. Then, the distribution of (g,H, u) is identical to the real
GDLR instance. Let x̂ = (x1, . . . , xk−1, Dlogg ĝ, xk+1, . . . , xm). Then, g = gx̂.

8 Note that the DL assumption on G1 implies the DL assumption on Gt by the MOV
attack [39].
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The type-3 adversary outputs a and c such that c = 0 and Hai 6= 1G2 for
some i ∈ [n]. From the necessary condition for a and c, we know the following
equality holds.

〈x̂⊗ z,a〉+ c · w = x1〈z,a1〉+ · · ·+ (Dlogg ĝ)〈z,ak〉+ · · ·+ xm〈z,am〉+ c · w
= 0 (mod p)

Since the index k is completely hidden from the viewpoint of A, i = k with
non-negligible 1/m probability. If i = k, then 〈z,ak〉 6= 0, so that we can recover
(Dlogg ĝ) by solving the above modular equation, since we know all components
except for Dlogg ĝ. ut

4.3 Another Generalization of BP-IP with Sublinear Verifier

In BP-IP, most of the common input for P and V are uniformly selected group
elements, which is the common random string. What we expect from these group
elements is that their discrete logarithms are unknown, so that the DLR assump-
tion holds. The DL assumption implies the GDLR assumption with uniform
sampler and this assumption is the root of the soundness of BP-IP. We can gen-
eralize BP-IP while keeping the soundness proof by using an arbitrary sampler
satisfying the GDLR assumption, instead of GDLRspRand to create the CRS.

Sublinear Common Inputs. We uniformly generate g,h ∈ Gm1 and H ∈ Gn2 and
use g⊗H and h⊗H ∈ Gm×nt instead of the CRS in BP-IP. That is, we construct
a proof system for the following relation.{

(g,h ∈ Gm1 ,H ∈ Gn2 , u, P ∈ Gt; a, b ∈ Zm×np )

: P = (g ⊗H)a(h⊗H)bu〈a,b〉 ∈ Gt

}
(6)

Note that this modification does not require the structured reference string since
g ⊗H and h⊗H are publicly computable from the common random string g,
h and H. Furthermore, the proof system is still sound since, like the CRS in
BP-IP, g⊗H and h⊗H hold the GDLR assumption under the DL assumption
on G1 and G2 by Theorem 5.

Sublinear Verification. If we set m = n =
√
N , the above modification can

reduce the CRS size to be a square root of BP-IP. Nevertheless, computing
g ⊗ H requires linear computation in N so that the verification cost is still
linear in N . We arrange the order of witness a and b in each round, and thus we
can go through the process without exactly computing g ⊗H and h ⊗H. We
explain how to avoid a full computation of g ⊗H and h ⊗H. Without loss of
generality, we assume that m and n are powers of 2.9 If m > 1, then let m̂ = m

2
and parse a, b ∈ Zm×np , g,h ∈ Gm1 to

9 If needed, we can appropriately pad zeros in the vectors since zeros do not affect the
result of inner-product.



20 Kim et al.

a = Ja1‖a−1K b = Jb1‖b−1K, g = g1‖g−1, and h = h1‖h−1.

Then, the bases g ⊗H ∈ Gm×nt and h ⊗H ∈ Gm×nt are able to be implicitly
parsed to Jg1 ⊗H‖g−1 ⊗HK and Jh1 ⊗H‖h−1 ⊗HK, respectively. Let g̃i =

gi ⊗H ∈ Gm̂×nt and h̃i = hi ⊗H ∈ Gm̂×nt for i ∈ {1,−1}. Next, P calculates

L = g̃a1
−1 h̃

b−1

1 u〈a1,b−1〉 and R = g̃
a−1

1 h̃
b1

−1 u〈a−1,b1〉 ∈ Gt
and sends them to V. This computation of P is equivalent to BP-IP with CRS

g ⊗H and h ⊗H. V returns a random challenge x
$←Z∗p to P. Finally, both P

and V compute

ĝ = gx
−1

1 ◦ gx−1 ∈ Gm̂1 , ĥ = hx1 ◦ h
x−1

−1 ∈ Gm̂1 , and P̂ = Lx
2

P Rx
−2

∈ Gt

and P additionally computes â = a1x+a−1x
−1 and b̂ = b1x

−1 +b−1x ∈ Zm̂×np .

Then, P̂ is well computed since L and R are equivalent to those in BP-IP. In

BP-IP, however, g̃x
−1

1 ◦ g̃x−1 and h̃
x

1 ◦ h̃
x−1

−1 should be computed as the new bases

for the next round argument with witness â and b̂. Instead, in Protocol3, we use

the equality ĝ⊗H = g̃x
−1

1 ◦ g̃x−1 and ĥ⊗H = h̃
x

1 ◦ h̃
x−1

−1 such that ĝ and ĥ are

the bases for the next argument with â and b̂. Therefore, both P and V can run
the protocol with (ĝ, ĥ,H, u, P̂ ; â, b̂). If m = 1, the CRS is of the form e(g,H)
and e(h,H), which is uniform in Gt, so that we can directly run BP-IP over Gt.
We present the full description of our protocol, denoted by Protocol3, in Fig. 5.
The number of rounds and the communication cost in Protocol3 are the same
as those of BP-IP over Gt. The verification cost is O(

√
N) when setting m = n.

Note that a näıve verification in the (m = 1) case requires O(
√
N) expensive

pairing computation for calculating e(g,H) and e(h,H), but using a similar
trick in the case (m > 1), the verifier can update H only instead of e(g,H) and
e(h,H) and then perform constant pairing operations only at the final stage.

Linear Prover and Logarithmic Communication. In terms of the prover’s com-
putation and communication overheads, Protocol3 is asymptotically the same as
BP-IP since we can consider Protocol3 as BP-IP with CRS g ⊗H and h ⊗H.
That is, O(N) and O(log2N) for computation and communication, respectively.

Theorem 6. The argument presented in Fig. 5 for the relation (6) has perfect
completeness and computational witness-extended-emulation under the GDLR
assumption with the sampler GDLRspBM .

Proof. Although the verification cost in Protocol3 is reduced compared with BP-
IP, both players’ computation in Protocol3 is equivalent to that of BP-IP with
the CRS g ⊗ H and h ⊗ H. Therefore, the proof of this theorem should be
exactly the same as the proof of BP-IP [35], except that the GDLR assumption
is guaranteed by Theorem 5 instead of Theorem 3. ut
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Protocol3(g,h ∈ Gm1 ,H ∈ Gn2 , u, P ;a, b)

If m = 1: P and V run BPIP(e(g,H), e(h,H), u, P ;a, b).
Else (m > 1): Let m̂ = m

2
. Parse a, b, g, and h to

a = Ja1‖a−1K b = Jb1‖b−1K, g = g1‖g−1, and h = h1‖h−1.

Step 1: P calculates

L = (g−1 ⊗H)a1 (h1 ⊗H)b−1u〈a1,b−1〉 ∈ Gt

and R = (g1 ⊗H)a−1(h−1 ⊗H)b1 u〈a−1,b1〉 ∈ Gt
and sends them to V.

Step 2: V chooses x
$←Z∗p and returns it to P.

Step 3: Both P and V compute

ĝ = gx
−1

1 ◦ gx−1 ∈ Gm̂1 , ĥ = hx1 ◦ hx
−1

−1 ∈ Gm̂1 , and P̂ = Lx
2

P Rx
−2

∈ Gt.

Additionally, P computes â = a1x+ a−1x
−1 and b̂ = b1x

−1 + b−1x ∈ Zm̂p .
Step 4: Both P and V run the protocol with (ĝ, ĥ,H, u, P̂ ; â, b̂).

Fig. 5. Protocol3: Another Generalization of BP-IP

4.4 Practical verification of Protocol 3

When it comes to asymptotic complexity, Protocol3 is definitely better than
BP-IP. However, for practical performance, we need to consider the computa-
tion time of group operations which depends on the choice of elliptic curves.
Actually, BP-IP and Protocol3 are built on different elliptic curves. Current im-
plementations of BP-IP use two curves, i.e., secp256k1 and ed25519 curves. The
dalek project has reported that the use of ed25519 provides approximately 2x
speepup [23]. However, Protocol3 cannot use ed25519 because it requires pairing
operations. Therefore, we take ed25519 for BP-IP and BLS12-381 for Protocol3
in the below estimation.

We consider a typical parameter setting N = 220 in 128-bits security which
both secp256k1 and ed25519 curves provide. BP-IP requires 2× 220 group oper-
ations for verification. Protocol3 requires 2 × 210 G1 operations and 2 × 210 G2

operations for verification. According to the implementation results from [43],
the execution times of operations in G1 and G2 of BLS12-381 are roughly 5× and
10× slower than that of ed25519, respectively. Thus, we expect that Protocol3’s
verifier is significantly faster (approximately 70×) than that of BP-IP.

5 Sublinear Verifier without Pairing

We propose another IP argument with sublinear verifier, particularly without
pairings. The crucial ingredient for Protocol3 is pairing-based homomorphic com-
mitments to group elements [1], which is employed as the second layer scheme
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of the two-tiered commitment scheme. For example, L in Step 1 of Protocol3
contains a factor (g−1 ⊗H)a1 , which can be considered as a vector of homo-
morphic commitments to ga1

−1 ∈ Gn1 , where ga1
−1 is a vector of the first layer

commitments to columns of a1 and g−1 ∈ Gm1 and H ∈ Gn2 are the com-
mitment keys of first and second layer schemes, respectively. When the verifier
checks P̂ = Lx

2

P Rx
−2 ∈ Gt in Step 3 of Protocol3, the homomorphic prop-

erty of the second layer scheme guarantees a vector of linear group equations

(ga1
−1)x

2 · (gahb) · (hb−1

1 )x
−2 ∈ Gn1 holds, where (ga1

−1), (gahb), and (h
b−1

1 ) are
second layer openings of L,R, and P . Since the first layer scheme is homomor-
phic, these n equations in Gn1 similarly guarantee that mn linear equations hold.

In order to circumvent the necessity of using the pairing-based primitive, we
propose a new two-tiered commitment scheme such that the first layer scheme
is still Pedersen commitment scheme mapping from integers to group elements
and the second layer scheme for committing to group elements is replaced with
the new one. We show that although the new second layer scheme is not homo-
morphic in group operations, it facilitates efficient proving group operations.

Indeed the integrity of homomorphic operation is sufficient to build an ar-
gument system. For example, if the prover computes L and R in Step 1 by
using the new two-tiered commitments, the verifier cannot compute P̂ by herself
in Step 3, so that the prover should send P̂ along with its integrity proof. As
mentioned above, the relation for the integrity proof is exactly a vector of linear
group equations between the second layer openings. Since the new commitment
scheme facilitates proving this type of relation, the new argument system still
has the benefit of sublinear verifier.

Unfortunately, this approach increases the proof size due to additional in-
tegrity proofs for each round. Finally, we bring in the aggregation technique
used for the sublogarithmic proofs in Section 3, so that we can simultaneously
attain both logarithmic proof size and sublinear verifier.

Notation. We use a pair of elliptic curve groups, denoted by (Gp,Gq), of distinct
prime order p and q such that Gp := E(Zq). In order to avoid confusion, we
use lower case letters to denote elements in Gp and upper case letters to denote
elements in Gq. For example, g ∈ Gp and G ∈ Gq. In our protocol, we repeatedly
use parallel multi-exponentiations with the same base g ∈ Gmp . For example,
given an integer matrix a ∈ Zm×np , we often compute gai for i ∈ [n], that are
n multi-exponentiations, where ai is the i-th column of a. This computation is

compactly denoted by
−→
ga := (ga1 , . . . , gan).

5.1 Projective Presentation for Elliptic Curve Group

Affine coordinates are the conventional way of expressing elliptic curve points.
However, there is no complete addition formula in affine coordinates, i.e., affine
coordinates require special addition formulas for exceptional cases such as dou-
bling and operations with the point at infinity or the inverse point. In our con-
struction, it is desirable to have an arithmetic circuit which correctly computes
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the operation between any two points in the elliptic curve group. Thus, we make
use of complete addition formulas for prime order elliptic curves in projective
coordinates, which have been proposed by Renes et al. [41] based on the work
of Bosma and Lenstra [16].

Let E(Zq) with q ≥ 5 be a prime order elliptic curve group given by the short
Weierstrass equation in two-dimensional projective space P2(Zq), i.e.,

{(X,Y, Z) ∈ Z3
q|Y 2Z = X3 + aXZ2 + bZ3}.

Two points (X1, Y1, Z1) and (X2, Y2, Z2) are equal in P2(Zq) if and only if
(X2, Y2, Z2) = (λX1, λY1, λZ1) for some λ ∈ Z∗q . The point at infinity is equal
to (0, 1, 0). Because E(Zq) has prime order, there is no Zq-rational point of or-
der 2. In this setting, for any two pair of points (X1, Y1, Z1) and (X2, Y2, Z2),
Bosma and Lenstra gave the complete formulas to compute (X3, Y3, Z3) =
(X1, Y1, Z1) + (X2, Y2, Z2) where X3, Y3, and Z3 are expressed as polynomials
in X1, Y1, Z1, X2, Y2, and Z2. Later, Renes et al. presented the algorithm [41,
Algorithm 1] for the optimized version of Bosma and Lenstra’ addition formula.
The algorithm covers both doubling and addition operations without exceptional
cases using 12 multiplications, 5 multiplications by constant, and 23 additions
over Zq. Thus, we consider the arithmetic circuit from this formula for group op-
erations of E(Zq) in our construction. For the convenience of readers, we provide
the algorithm given by Renes et al. in the full version [35].

5.2 Two-Tiered Commitment Scheme and Proof for Second Layer

We introduce a two-tiered commitment scheme for handing columns of a matrix
a ∈ Zm×np . The first layer commitment is for committing to a vector in Zmp .
The second layer commitment is for committing to the multiple, say n, first
layer commitments. Therefore, the final two-tiered commitment scheme is for
committing to a matrix a ∈ Zm×np .

We begin with a pair of elliptic curve groups (Gp = E(Zq),Gq) of respective
order p and q such that the discrete logarithm assumption holds in both Gp
and Gq. Note that there are efficient methods to generate such a pair of prime
order elliptic curves (Gp = E(Zq),Gq) of given primes p and q whose sizes are
both 2λ for the security parameter λ [42]. In the first layer, we use the Pedersen
commitment scheme with commitment key g ∈ Gmp to commit to columns of

a.10 That is, the commitment is
−→
ga ∈ Gnp , which is an n-tuple of Pedersen

commitments to columns of a. Since it consists of elliptic curve group elements,
it can be represented by n sequences of 3-element tuples (Xi, Yi, Zi)

n
i=1 ∈ Z3n

q ,

where (Xi, Yi, Zi) is the projective representation of the i-th component of
−→
ga.

For the second layer, we again use the Pedersen commitment with a different

10 More precisely, we use a slightly modified Pedersen commitment scheme in the sense
that (1) opening is not an integer but a vector and (2) the random element is always
set to be zero since the hiding property is not required.
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commitment key G = (G1, . . . , G3n) ∈ G3n
q so that the commitment to

−→
ga =

(Xi, Yi, Zi)
n
i=1 is defined as

∏n
i=1G

Xi
3i−2G

Yi
3i−1G

Zi
3i , denoted by Com(

−→
ga; G).

Note that we often consider
−→
ga as an element in Z3n

q since we always use the
projective representation for Gp = E(Zq) throughout the paper. The binding
property of the proposed commitment scheme holds under the discrete logarithm
assumption in Gp and Gq.

Proving for Relation between Second Layer Opening. The second layer

opening is
−→
ga ∈ Gnp , a vector of group elements, which can be considered as

a vector of Z3n
q . As aforementioned in the first part of this section, we should

prove a relation among the second layer openings that consist of a vector of
group operations. As shown in Section 5.1, the group law of E(Zq) can be repre-
sented by an arithmetic circuit over Zq of constant size. Therefore, we eventually
need a proof system for arithmetic circuits over Zq such that the input of the
circuit is given as commitments. In fact, the bulletproofs for arithmetic circuit
(BP-AC) [17] allows to take Pedersen commitments as input. However, BP-AC
uses the ordinary Pedersen commitment to an integer, so that it is not directly
applicable with the generalized Pedersen commitment to a vector of integers. We
generalize BP-AC for handling the general Pedersen commitments and provide
the protocol, denoted by Comp.BPAC , and the security and efficiency analysis
in the full version [35]. If we prove O(`) group operations, then the circuit size
is O(` · n), so that both the computational cost for the prover and the verifier
are O(` · n) and the cost for round and communication is O(log n+ log `).

In fact, the new commitment scheme can take any sequence of 3-integer
tuples (Xi, Yi, Zi) ∈ Z3

q as input. Although we normally take (Xi, Yi, Zi) from
Gp = E(Zq), to prevent abnormal usages, we need a proof that (Xi, Yi, Zi) ∈ Z3

q

is on the elliptic curve, equivalently, it satisfies Y 2Z = Z3 + aXZ2 + bZ3 for
some a, b ∈ Zq. Since the relation for the membership proof consists of low degree
polynomials, it can be performed by Comp.BPAC whose cost is cheaper than that
for elliptic curve operations.

5.3 Sublinear Verifier from New Two-tiered Commitment Scheme

We propose a new IP argument with the sublinear verifier, denoted by Protocol4,
that proves the following IP relation.

Rm,nIP =

{
(g,h ∈ Gmp ,F ∈ G6n

q , P ∈ Gq, c ∈ Zp;a, b ∈ Zm×np ) :

P = Com(
−→
ga ‖

−→
hb;F ) ∧ c = 〈a, b〉,

}
(7)

where 〈a, b〉 is the Frobenius inner product between matrices a and b. Simi-
larly to Protocol3, Protocol4 consists of two parts, the row-reduction and the
column-reduction. The row-reduction part is denoted by Protocol4.Row and re-
duces from the relation Rm,nIP to R1,n

IP . The column-reduction part is denoted by

Protocol4.Col and reduces from the relation R1,n
IP to R1,1

IP .
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Let ` = logm. For each (`+1−k)-th row-reduction11 round in Protocol4.Row
the prover sends the verifier a commitment Sk by using the new commitment
scheme in Section 5.2. However, contrary to Protocol3, the verifier cannot com-
pute a valid instance Pk for the next round by himself, due to lack of homomor-
phic property. Instead, the prover sends a new instance for the next round along
with a proof for its integrity. For the column-relation R1,n

IP , both the prover and
the verifier can similarly perform a column-reduction protocol Protocol4.Col and
the corresponding integrity proof at the final step of the protocol. In a nutshell,
Protocol4 resembles Protocol3 except that Protocol4 uses a different commit-
ment scheme and additionally requires the integrity proof. The full description
of Protocol4.Row is provided in the full version [35].

In general, this commit-first-and-prove-later approach indeed ends up with
low efficiency if the relation is not algebraic (e.g., non-polynomial relations) or
we do not use homomorphic commitment scheme (e.g., collision-resistant hash
functions). Our new two-tiered commitment scheme helps to circumvent such
efficiency degradation since it is friendly to proving homomorphic operations and
the prover’s computation in Protocol4 exactly consists of elliptic curve operations
that can be represented by polynomials as we already investigated in Section 5.1.

Although the new two-tiered commitment scheme contributes for the sub-
linear verifier, the näıve approach for the integrity proof increases the proof
size O(log(N)2), which is larger than O(logN) of Protocol3, where N = mn.
Therefore, we bring in another technique to make the proof size compact. We
apply the aggregation techniques as in Section 3.3 such that the integrity of
the prover’s computation in all reduction rounds is relegated to the final round
and then proven in aggregate. More concretely, the integrity proof should guar-
antee that the openings pk+1 ∈ G2n

p , lk‖rk ∈ G4n, and pk ∈ G2n
p of Pk+1,

Sk, and Pk satisfies pk = lx
2

k ◦ pk+1 ◦ rx
−2

k , which is essentially equivalent

to the relation between openings of P̂ = Lx
2

PRx
−2

in Step 3 of Protocol3.
The formal relation for the aggregated integrity proof is given in Eq. (8) (for
Protocol4.row) and Eq. (9) (for Protocol4.col), where xk is a challenge chosen by
the verifier and the others are the common random strings. Using the protocol for
RAggMEC.Row (RAggMEC.Col, resp.), denoted by AggMEC.Row (AggMEC.Col, resp.),

Protocol4.Row (Protocol4.Col, resp.) reduces from the relationRm,nIP (R1,n
IP , resp.)

to the relation R1,n
IP (R1,1

IP , resp.).

RAggMEC.Row =



([
(Sk,F k, Sk, Pk, xk)
( · ,F `+1, · , P`+1, · )

]
;

[
(lk, rk,pk)
( ·, ·,p`+1)

]
for k ∈ [`]

)
:

∧`+1
j=1

(
Pj = Com(pj ;F j)

)
∧`k=1

(
Sk = Com(lk ‖ rk;Sk) ∧ pk = l

x2
k

k ◦ pk+1 ◦ r
x−2
k

k

)
∧`k=1lk, rk ∈ G2n

p ∧ p`+1 ∈ G2n
p


(8)

11 Notice that we use a subscript k in reverse order from k = ` to k = 1. That is,
Protocol4.Row reduces an instance from Pk+1 to Pk.
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where
(
(Sk,F k, Sk, Pk, xk); (lk, rk,pk)

)
∈
(
(G12n

q ×G6n
q ×Gq×Gq×Zp)×(Z6n

q ×
Z6n
q × Z6n

q )
)
.

RAggMEC.Col =



([
(Dk, Pk, xk)
(D`+1, P`+1, · )

]
;

[
(pk) for k ∈ [`]
(p`+1)

])
:

∧`+1
j=1

(
Pj = Com(pj ;Dj)

)
∧ p`+1 ∈ G2`+1

p

∧`k=1

(
pk = (p1,k+1 ‖ p4,k+1)xk ◦ (p2,k+1 ‖ p3,k+1)x

−1
k

)
where pk+1 = p1,k+1 ‖ p2,k+1 ‖ p3,k+1 ‖ p4,k+1


(9)

where
(
(Dk, Pk, xk); (pk)

)
∈
(
(G3·2k

q ×Gq × Zp)× (Z3·2k
q )

)
.

The concrete descriptions of the four protocols Protocol4.Row, Protocol4.Col,
AggMEC.Row, and AggMEC.Col and the proofs for proving argument systems
are given in the full version [35].

We remark that RAggMEC.Row and RAggMEC.Col contain the group membership
relations of the openings, which are marked with the block boxes. As for the
group membership proof, it is sufficient to prove only memberships of lk, rk for
k ∈ [`] and p`+1 since pk for k ∈ [`] are defined as a result of the group operations
among lk, rk for k ∈ [`] and p`+1.

Efficiency Analysis We analyze the efficiency of Protocol4 at a high level.
The detailed analysis is given in the full version [35]. Below, we denote group
operations in a group G by G-operations. The efficiency of Protocol4 is basi-
cally equivalent to that of Protocol3 except for using a different commitment
scheme and the most computational cost of V shifts to the column reduction
part (Protocol4.Col). In the row-reduction part (Protocol4.Row), the computation
cost for P is dominated by O(mn log p) Gp-operations for computing two-tiered
commitments with N = mn integers, the computation cost for V is O(m log p)
Gp-operations, and P and V communicate with O(logm) Gq-elements. The com-
plexity of the column-reduction part is dominated by proving the following re-
lations, which can be represented by small-degree polynomials, by running the
arithmetic circuit argument Comp.BPAC given in Section 5.2:

lk
x2
k ◦ pk+1 ◦ rkx

−2
k − pk = 0 for k ∈ [`] (10)

(p1,k+1 ‖ p4,k+1)xk ◦ (p2,k+1 ‖ p3,k+1)x
−1
k − pk = 0 ∈ G2k

p for k ∈ [`]. (11)

Arithmetic circuits for computing Eq.(10) and Eq.(11) consist of O(n` log p) and
O(2` log p) Gp-operations, respectively. Finally, Comp.BPAC for the above arith-
metic circuits cost O((n` + 2`) log p log q) Gq-operations for each P and V and
transmissions of O(log n+`+log log p) Gq-elements. Setting `← logm, P’s com-
putation complexity is O(mn log p) Gp-operations, V’s computation complexity
is O(m log p) Gp-operations and O(n logm log p log q) Gq-operations, and the
communication complexity is O(log n+ logm+ log log p) Gq-elements.
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6 Extensions

6.1 Transparent Polynomial Commitment Scheme

Informally, using the polynomial commitment scheme (PCS), a committer first
commits to a polynomial f(X), and then later opens f(x) at some point x
(mostly chosen by a verifier) and convinces a verifier of correctness of f(x).
Due to space constraint, we provide the definition of the PCS, a way to use the
proposed IP arguments as PCS, and a comparison table in the full version [35].

6.2 Zero-Knowledge Argument for Arithmetic Circuits

There is a well-established approach toward the argument for arithmetic cir-
cuits via polynomial commitment scheme; an IP argument is firstly reduced to
polynomial commitment schemes as in 6.1 and then combined with polynomial
IOPs [18]. This reduction increases constant times the complexity, where linear
preprocessing is required for the verifier. Therefore, the final argument for the
arithmetic circuit of size N has the same complexity as those of our IP arguments
between vectors of length N , where the online verifier’s complexity is unchanged,
but the offline verifier’s complexity is linear in N .

The perfect special honest verifier zero-knowledge (SHVZK) means that given
the challenge values, it is possible to simulate the whole transcript even without
knowing the witness. If the polynomial commitment scheme is hiding and the
proof of evaluation is SHVZK, then the resulting argument for arithmetic circuit
is SHVZK as well. Although the proposed IP protocols do not have these prop-
erties yet, there is a simple method to add ZK into IP arguments [46, 18]. For
example, we can extend commitment schemes used in the paper to have hiding
factors like the original Pedersen commitment scheme.

There is another approach for converting from an IP argument without
SHVZK to the SHVZK argument for arithmetic circuit [13, 17]. We can apply
this reduction to our IP arguments. We provide the details in the full version [35].

7 Discussion on Best of Two Generalizations

It would be interesting to devise a technique for combining two generalizations.
First, we find that näıve combining Protocol2 and Protocol3 is difficult be-

cause each of them uses a bilinear map for a different purpose. In Protocol2, the
bilinear map is used in the first step for compressing multiple group elements by
sending a commitment instead of multiple group elements. In the first step of
Protocol3, the P sends L and R to the verifier, where L and R are elements in
Gt. We can generalize Protocol3 like Protocol1, but we cannot put L and R into
a homomorphic commitment scheme directly since L and R are already in the
target group of the bilinear map.

Although Protocol4 does not use the bilinear map, combining Protocol2 and
Protocol4 will be challenging as well. Since both protocols use two-tier commit-
ment schemes, we may need three-tier commitment scheme such as C3 ◦C2 ◦C1,
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where C3 is pairing-based AFGHO scheme, C2 is a commitment to elliptic curve
point, and C1 is Pedersen commitment scheme. Protocol4 requires to prove small-
degree polynomial relations over C1 and C2 supports an efficient protocol for it.
C3 may support to prove a small-degree polynomial relation over C2. However,
since C1 is an opening of an opening of C3, the small-degree polynomial relation
over C1 might be represented as a complicated relation over C2 of higher-degree.
We leave achieving the best of both generalizations as an open problem.
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