
Anonymous Public Key Encryption under
Corruptions

Zhengan Huang1, Junzuo Lai2(�), Shuai Han3(�), Lin Lyu4(�), and
Jian Weng2

1 Peng Cheng Laboratory, Shenzhen, China
zhahuang.sjtu@gmail.com

2 College of Information Science and Technology, Jinan University,
Guangzhou, China

{laijunzuo,cryptjweng}@gmail.com
3 School of Electronic Information and Electrical Engineering,

Shanghai Jiao Tong University, Shanghai, China
dalen17@sjtu.edu.cn

4 Bergische Universität Wuppertal, Wuppertal, Germany
lin.lyu@uni-wuppertal.de

Abstract. Anonymity of public key encryption (PKE) requires that,
in a multi-user scenario, the PKE ciphertexts do not leak information
about which public keys are used to generate them. Corruptions are
common threats in the multi-user scenario but anonymity of PKE under
corruptions is less studied in the literature. In TCC 2020, Benhamouda
et al. first provide a formal characterization for anonymity of PKE under
a specific type of corruption. However, no known PKE scheme is proved
to meet their characterization.
To the best of our knowledge, all the PKE application scenarios which
require anonymity also require confidentiality. However, in the work by
Benhamouda et al., different types of corruptions for anonymity and
confidentiality are considered, which can cause security pitfalls. What’s
worse, we are not aware of any PKE scheme which can provide both
anonymity and confidentiality under the same types of corruptions.
In this work, we introduce a new security notion for PKE called ANON-
RSOk&C security, capturing anonymity under corruptions. We also in-
troduce SIM-RSOk&C security which captures confidentiality under the
same types of corruptions. We provide a generic framework of construct-
ing PKE scheme which can achieve the above two security goals simulta-
neously based on a new primitive called key and message non-committing
encryption (KM-NCE). Then we give a general construction of KM-NCE
utilizing a variant of hash proof system (HPS) called Key-Openable HPS.
We also provide Key-Openable HPS instantiations based on the matrix
decisional Diffie-Hellman assumption. Therefore, we can obtain various
concrete PKE instantiations achieving the two security goals in the stan-
dard model with compact ciphertexts. Furthermore, for some PKE in-
stantiation, its security reduction is tight.

https://orcid.org/0000-0003-3509-787X
https://orcid.org/0000-0001-5780-8463
https://orcid.org/0000-0002-8156-7089
https://orcid.org/0000-0003-4839-0995
https://orcid.org/0000-0003-4067-8230

2 Zhengan Huang, Junzuo Lai, Shuai Han, Lin Lyu, and Jian Weng

1 Introduction
Anonymity of PKE under corruptions. The (single-user) IND-CCA secu-
rity has been the de facto standard security for public-key encryption (PKE)
schemes and is the target security of NIST PKE standardization for the next
decades. It provides message confidentiality under CCA attacks. Meanwhile,
anonymity is another security requirement for PKE and is not provided by the
IND-CCA security. Roughly speaking, anonymity of PKE requires that, in a
multi-user scenario, the PKE ciphertexts do not leak information about which
public keys are used to generate them. The IK-CPA/CCA security given by
Bellare et al. [2] is the first formalization of anonymity of PKE.

In such multi-user scenarios, multiple key pairs are generated, potentially
correlated plaintexts are encrypted and sent to many receivers. Both the secret
keys and the encrypted messages could be leaked due to accidents and/or adver-
sarial attacks, which affects both the confidentiality and the anonymity of the
PKE scheme. Researchers capture such threats by formalizing different types of
corruptions in different multi-user scenarios. Many efforts have been made to
establish confidentiality under corruptions and the study to selective-opening
attacks are such examples.

However, anonymity of PKE under corruptions is much less studied. To the
best of our knowledge, it is not considered until recently by Benhamouda et al. [5]
in TCC 2020. They propose anonymity against selective-opening for PKE which
is the first (and, to the best of our knowledge, also the only) formal definition of
anonymity for PKE under corruptions. We will call this security as ANON-COR
(anonymity under corruptions) security in this work. The ANON-COR security
defined in [5] is as follows. Given n public keys of n users, an adversary submits
t messages of its choice, and then receives t challenge ciphertexts, which are
encryptions of the t messages under t distinct random public keys out of the n
user public keys. Next, the adversary can adaptively corrupt Q < n users one
at a time, obtaining their secret keys. (We will call such kind of corruption as
post-challenge user corruption.) ANON-COR security requires that no feasible
adversary can corrupt more than Q

n + ϵ (for some constant ϵ > 0) fraction of the
ciphertext-encrypting keys with non-negligible probability.

Unfortunately, no known PKE scheme is proved to have ANON-COR se-
curity. Actually, Benhamouda et al. [5] only prove that their suggested PKE
scheme achieves a simplified version of ANON-COR security (where the adver-
sary is restricted to corrupt some users at once) and conjecture that it also
achieves the ANON-COR security. They leave constructing an ANON-COR se-
cure PKE scheme as an interesting problem.

Furthermore, we think the ANON-COR security is restricted in the following
sense.

– Non-adaptive. The ANON-COR security is non-adaptive in the sense that
the adversary is not allowed to obtain any user secret key before seeing the
challenge ciphertexts. This restricts its application scenario since, in the real-
world, some users may be fully controlled by the adversary from the very
beginning and the adversary may corrupt other users at any time.

Anonymous Public Key Encryption under Corruptions 3

– Single-challenge. The ANON-COR security considers a single-challenge set-
ting where each public key is used only once to encrypt a single challenge
message. This restriction limits its application scenario since, in practice,
each public key is often used multiple times (for example, the application
scenario in [5]1).

Thus, we raise the following research question.

Q1: For PKE schemes, can we provide an achievable security formalization
which provides anonymity under more adaptive corruptions in the multi-
challenge setting?

Anonymity and confidentiality under the same types of corruptions.
We are not aware of any application scenario which only requires anonymity but
not confidentiality of PKE schemes2. To the best of our knowledge, all the PKE
application scenarios in the real world which require anonymity also require
confidentiality. As an example, Benhamouda et al. [5] consider a blockchain
application scenario which requires both of the two security guarantees. However,
Benhamouda et al. capture the two security guarantees under different types of
corruptions. More precisely, as shown in [5, Section 2.6], the scheme E1 requires
both anonymity under post-challenge user corruption (ANON-COR security)
and confidentiality under the receiver selective opening (RSO) corruption.

Although the ANON-COR security is called “anonymous against selective-
opening” in [5], we want to note that the post-challenge user corruption consid-
ered in ANON-COR security is different from the RSO corruption considered
for confidentiality. The RSO corruption [3,14] considers an adversary, after see-
ing many challenge ciphertexts for different receivers (together with their public
keys), is able to open a subset of the challenge ciphertexts (via corrupting a sub-
set of the receivers to obtain their secret keys and received messages). However,
the ANON-COR adversary is not able to specify some challenge ciphertexts and
open them.

When the two security guarantees (anonymity and confidentiality) are both
required, it is more desirable to capture them under the same types of cor-
ruptions. Taking [5] as an example, where anonymity and confidentiality are
both required for the scheme E1 in [5], it does not make sense for the adversary
to attack anonymity only using the post-challenge user corruption and attack
1 In the Committee-Selection phase of the evolving-committee proactive secret shar-

ing scheme considered in [5], some users are selected as committee members. Each
committee member will encrypt one fresh secret key using its long term public key
(ct ← E1.Encpk(esk)). Since the same user may be selected as a committee member
multiple times, the user’s public key may be used multiple times to encrypt multiple
messages.

2 Actually, it does not make sense to only consider the anonymity of some PKE without
considering its confidentiality. If confidentiality can be sacrificed, one can trivially
achieve anonymity by assigning the identity map as the encryption and decryption
algorithm, so that the ciphertext equals the message and is independent of any public
key.

4 Zhengan Huang, Junzuo Lai, Shuai Han, Lin Lyu, and Jian Weng

confidentiality only using the RSO corruption. Actually, there is no anonymity
guarantee under the RSO corruption and no confidentiality guarantee under the
post-challenge user corruption. This implies that, when the adversary is able to
use both post-challenge user corruption and RSO corruption, it is possible that
neither anonymity nor confidentiality holds for the PKE scheme. Consequently,
when the two security guarantees are required under corruptions, they should
be captured under the same types of corruptions.

Unfortunately, we are not aware of any PKE schemes which can provide the
two security guarantees under the same types of corruptions. Thus, we raise our
second research question.

Q2: Can we construct a PKE scheme which provides both anonymity and
confidentiality under the same types of corruptions?

We answer the above two research questions affirmatively in this work.
Our contributions. In this work:

– We formalize the notion of ANONymity under Receiver Selective Opening
attacks (in the k-challenge setting), adaptive user Corruptions and Chosen
Plaintext / Ciphertext Attacks, which we call ANON-RSOk&C-CPA/CCA
security for short. To capture confidentiality under the same types of cor-
ruptions, we also formalize the notion of SIM-RSOk&C-CPA/CCA security.

– We provide a generic framework of constructing PKE schemes, achieving
both ANON-RSOk&C-CCA security and SIM-RSOk&C-CCA security (we
denote them as AC-RSOk&C-CCA security for simplicity), based on a new
primitive called key and message non-committing encryption (KM-NCE).

– We give a general construction of KM-NCE utilizing a variant of hash proof
system (HPS) [9] which we call Key-Openable HPS.

– Finally, we provide Key-Openable HPS instantiations from the matrix deci-
sional Diffie-Hellman (MDDH) assumption [10].

When plugging the HPS instantiations into the general construction frame-
work, we can obtain an AC-RSOk&C-CCA secure PKE scheme in the standard
model which provides anonymity and confidentiality simultaneously under both
adaptive user corruptions and RSO corruptions. Moreover, our scheme enjoys
the properties that 1) the ciphertext is compact (i.e., ciphertext overhead3 is the
size of a constant number of group elements [15], or more generally, is indepen-
dent of the message length [12]), and 2) the security reduction is tight4. To the
best of our knowledge, our scheme is the first PKE scheme achieving anonymity
under adaptive corruptions (which is stronger than the ANON-COR security),
thus solving the problem raised by Benhamouda et al. [5] in TCC 2020. Also, our
scheme is the first PKE scheme achieving RSOk-CCA security in the standard
model with compact ciphertexts and tight security.
3 Ciphertext overhead means the ciphertext bitlength minus plaintext bitlength [15].
4 Tight reduction means that the security loss of the reduction is independent of the

number of users, the number of challenges and the number of queries raised by the
adversary.

Anonymous Public Key Encryption under Corruptions 5

AC-RSOk&C security derived from KM-NCE. We take the approach of non-
committing encryption [7,8,12] to achieve AC-RSOk&C security. We introduce
a new primitive called key and message non-committing encryption (KM-NCE),
which is some kind of “message & public key-non-committing” encryption. In-
formally, KM-NCE allows one to generate fake ciphertexts via a fake encryption
algorithm, and enables one to open k fake ciphertexts to any k messages under
any public key (by showing an appropriate secret key) via an opening algorithm.

We formalize two security properties for KM-NCE. One is a single-user and k-
challenge security notion called KMNCk-CPA/CCA security (c.f., Definition 4),
and the other is robustness (c.f., Definition 5). Intuitively, KMNCk-CPA/CCA
security requires that the real secret key together with k real ciphertexts (en-
crypting k messages chosen by the adversary) should be computationally indis-
tinguishable from the opened secret key and k fake ciphertexts.

KM-NCE serves as our core technical tool, and we show that KMNCk-
CPA/CCA secure and robust KM-NCE implies AC-RSOk&C-CPA/CCA secure
PKE. Due to the relative simplicity of KMNCk-CPA/CCA security (single-user,
no simulator) in comparison to AC-RSOk&C-CPA/CCA security (multi-user,
simulation-based), it is easier and conceptually simpler to construct KM-NCE
and prove its security first than constructing AC-RSOk&C-CPA/CCA secure
PKE directly.
Generic construction of KM-NCE. To construct KM-NCE, we propose a new
building block called Key-Openable HPS, by equipping Hash Proof System (HPS)
[9] with a hashing key opening algorithm HOpenk. Informally, given k instances,
k hash values and the random coins used to sample them, a projection key (public
key of HPS), and a corresponding hashing key (secret key of HPS) as the input,
HOpenk can output another hashing key such that 1) the outputted hashing
key corresponds to the same projection key and 2) the given k hash values are
exactly hash values of the k instances under the outputted hashing key. We also
define some new properties for the key-openable HPS, including openabilityk (c.f.,
Definition 9) and universalityk+1 (c.f., Definition 10). By using key-openable
HPS as an essential building block, we present a generic construction of KMNCk-
CCA secure KM-NCE.
Instantiations. For concrete instantiations, we provide key-openable HPS in-
stantiations based on the MDDH assumption. Due to the good versatility of the
MDDH assumption, we can obtain various concrete instantiations of KM-NCE.
Plugging the concrete instantiations into our general framework, we obtain AC-
RSOk&C-CCA secure PKE schemes with compact ciphertexts in the standard
model. For some concrete PKE instantiation, we can even tightly prove its AC-
RSOk&C-CCA security.
Related works. The anonymity of PKE is first formalized by Bellare et al.
[2] and they call it “key-privacy”. Many follow up works continue research in
this direction, such as [13,1,21]. Anonymity for PKE under corruptions is firstly
considered by Benhamouda et al. [5].

The IND-CCA security in the multi-user setting with adaptive user corrup-
tions except challenge is given in [4,20]. Lee et al. [20] propose the first PKE

6 Zhengan Huang, Junzuo Lai, Shuai Han, Lin Lyu, and Jian Weng

scheme in the random oracle model with tight IND-CCA security reduction in
the multi-user setting with adaptive user corruptions except challenge.

In the research area of receiver selective opening (RSO) corruption for PKE,
Bellare et al. [3] point out that IND-CPA security does not imply SIM-RSO-CPA
security. Hazay et al. [14] show that RSO security can be achieved from variants
of non-committing encryption. Subsequent works [18,19,12,16] consider CCA
security in the RSO setting and provide PKE schemes with RSO-CCA security.
Yang et al. [23] consider RSO-CCA security in the multi-challenge setting. SIM-
RSO-CCA secure PKE schemes with compact ciphertexts are proposed by Hara
et al. [12] and Huang et al. [16].

2 Preliminaries
We assume that the security parameter λ is an (implicit) input to all algorithms.
For any positive integer n, we use [n] to denote the set {1, · · · , n}. For a finite set
S, we use |S| to denote the size of S. For random variables X and Y over a finite
set S, their statistical distance is ∆(X ,Y) := 1

2

∑
s∈S |Pr[X = s]− Pr[Y = s]|.

We recall the formal definitions of PKE, collision-resistant hash functions
and universal hash functions together with the leftover hash lemma in the full
version [17].

3 Anonymity and Confidentiality under Corruptions
In this section, we firstly introduce the notion of Anonymity under Receiver
Selective Opening attacks (in the multi-challenge setting), adaptive user Cor-
ruptions and Chosen Plaintext / Ciphertext Attacks, which we call ANON-
RSOk&C-CPA/CCA security (k ∈ N). Then, we introduce the notion of SIM-
RSOk&C-CPA/CCA security (k ∈ N), to capture confidentiality under the same
types of corruptions. Finally, we also introduce the notion of AC-RSOk&C-
CPA/CCA security, to capture ANON-RSOk&C-CPA/CCA security and SIM-
RSOk&C-CPA/CCA security in one notion for convenience.

3.1 Anonymity under Corruptions
ANON-RSOk&C security. We formalize a simulation-based anonymity def-
inition under receiver selective opening attacks and adaptive user corruptions,
which we call ANON-RSOk&C security (k ∈ N).

Informally speaking, assume that there are n users, and that a PPT ad-
versary is allowed to (i) adaptively corrupt the users (i.e., obtaining their secret
keys) at any time, and (ii) make receiver selective opening queries (i.e., obtaining
the corresponding secret keys and the challenge messages) after seeing a chal-
lenge ciphertext vector of length t < n. ANON-RSOk&C security requires that
whatever the adversary (seeing the challenge ciphertext vector) deduces about
which public keys are used to generate the challenge ciphertext vector, can also
be deduced without seeing any challenge ciphertexts.

Formal definition is as follows.

Anonymous Public Key Encryption under Corruptions 7

Expanony-rso&c-cpa-real
PKE,A,n,t,k (λ), Expanony-rso&c-cca-real

PKE,A,n,t,k (λ) :

pp←$ Setup(1λ); ((pki, ski)←$ Gen(pp))i∈[n]

Iop := ∅; Icor := ∅; C := ∅

(Distpk, (m
∗
j,γ)j∈[t],γ∈[k], st)←$ A

Ocor,1, Odec
1 (pp, (pki)i∈[n])

(ij)j∈[t] ←$ Distpk

(c∗j,γ ←$ Enc(pp, pkij ,m∗
j,γ))j∈[t],γ∈[k]

C := {(ij , c∗j,γ) | j ∈ [t], γ ∈ [k]}

out←$ A
Ocor,2,Oop, Odec
2 ((c∗j,γ)j∈[t],γ∈[k], st)

Return ((ij , (m
∗
j,γ)γ∈[k])j∈[t],Distpk, Iop, Icor, out)

Ocor,1(i), Ocor,2(i):
If i /∈ [n]: Return ⊥
Icor := Icor ∪ {i}
Return ski

Oop(j):
If j /∈ [t]: Return ⊥
Iop := Iop ∪ {j}
Return skij

Odec(i, c) :

If (i, c) ∈ C: Return ⊥
If (i ∈ Icor) ∨ (∃ j′ ∈ Iop s.t. i = ij′): Return ⊥
m := Dec(pp, ski, c)
Return m

Expanony-rso&c-cpa-ideal
PKE,S,n,t,k (λ), Expanony-rso&c-cca-ideal

PKE,S,n,t,k (λ):
Iop := ∅; Icor := ∅

(Distpk, (m
∗
j,γ)j∈[t],γ∈[k], st)←$ S

O(s)
cor,1

1 (1λ)

(ij)j∈[t] ←$ Distpk

PKcor := {(j, ij) | ij ∈ Icor, j ∈ [t]}

out←$ S
O(s)

cor,2,O
(s)
op

2 (PKcor, st)

Return ((ij , (m
∗
j,γ)γ∈[k])j∈[t],Distpk, Iop, Icor, out)

O(s)
cor,1(i):
If i /∈ [n]: Return ⊥
Icor := Icor ∪ {i}
Return NULL

O(s)
cor,2(i):
If i /∈ [n]: Return ⊥
Icor := Icor ∪ {i}
If ∃ j′ ∈ [t] s.t. i = ij′ :

Return (j′, ij′)

Return NULL

O(s)
op (j):
If j /∈ [t]: Return ⊥
Iop := Iop ∪ {j}
Return ij

Fig. 1 Experiments for defining ANON-RSOk&C-CPA/CCA security of scheme PKE.

Definition 1. (ANON-RSOk&C-CPA/CCA). A PKE scheme PKE = (Setup,
Gen,Enc,Dec) is ANON-RSOk&C-ATK secure (where ATK ∈ {CPA,CCA} and
k ∈ N is a constant), if for any polynomially bounded n, t (where 0 < t ≤ n),
and any PPT adversary A = (A1,A2), there is a PPT simulator S = (S1,S2),
such that for any PPT distinguisher D, the advantage Advanon-rso&c-atk

PKE,A,S,D,n,t,k(λ) :=∣∣∣Pr[D(Expanon-rso&c-atk-real
PKE,A,n,t,k (λ)) = 1]− Pr[D(Expanon-rso&c-atk-ideal

PKE,S,n,t,k (λ)) = 1]
∣∣∣

is negligible, where Expanon-rso&c-atk-real
PKE,A,n,t,k (λ) and Expanon-rso&c-atk-ideal

PKE,S,n,t,k (λ) are de-
fined in Fig. 1, and atk ∈ {cpa, cca}. In both of the experiments, we require that
for all Distpk output by A1 and S1, it holds that (1) Distpk is efficiently samplable,
and (2) for all (ij)j∈[t] ←$ Distpk, ij1 ̸= ij2 for any distinct j1, j2 ∈ [t].

Remark 1. Our security notion ANON-RSOk&C-CPA/CCA grants the adver-
sary multiple, adaptive opening queries (i.e., Oop), like [6].

Remark 2. In Expanon-rso&c-atk-real
PKE,A,n,t,k (λ) where atk ∈ {cpa, cca}, there are totally

n public keys (pki)i∈[n], and only t of them (i.e., (pkij)j∈[t]) are used to generate
the challenge ciphertexts (c∗j,γ)j∈[t],γ∈[k]. Note that (i) by querying the opening
oracle Oop on j ∈ [t] directly, A can obtain skij corresponding to some specified

8 Zhengan Huang, Junzuo Lai, Shuai Han, Lin Lyu, and Jian Weng

(c∗j,γ)γ∈[k]; (ii) by querying the corruption oracle Ocor,1 or Ocor,2, A can obtain
some corresponding secret keys of the n public keys, but cannot ask for the secret
key corresponding to some specified c∗j,γ since it may not know the value of ij .

ANON-RSOk&C-CPA ⇒ ANON-COR. We show that ANON-RSOk&C-
CPA security implies the ANON-COR security [5].

Informally, the experiment for defining ANON-COR security is as follows. At
the beginning, the challenger generates n public keys (pki)i∈[n], and sends them
to an adversary A. After receiving t (t < n) messages from A, the challenger
randomly samples t distinct public keys from (pki)i∈[n], uses them to encrypt
the t messages respectively, and sends the t ciphertexts back to A. Then, A
can access to a corruption oracle adaptively, by querying it on any i ∈ [n] and
receiving ski as a response. Denote by Q the total number of corruption queries
made by A. ANON-COR security requires that for any ϵ > 0 and any λ < t,
Q < n(1− ϵ), no PPT adversary A can compromise more than Q

n + ϵ fraction of
the ciphertext-encrypting keys with non-negligible probability. Formal definition
of ANON-COR security is given in the full version [17].

Note that any ANON-COR adversary can be seen as an ANON-RSOk&C-
CPA adversary A which (i) ignores (c∗j,γ)2≤γ≤k for all j ∈ [t] if k > 1, (ii) does
not query Ocor,1 or Oop, (iii) queries Ocor,2 Q times, and (iv) the output dis-
tribution Distpk always samples t distinct indexes i1, · · · , it uniformly random
from [n]. The fraction of the ciphertext-encrypting keys that ANON-COR ad-
versary compromises over (pkij)j∈[t] can be computed directly from experiment
Expanon-rso&c-cpa-real

PKE,A,n,t,k (λ). ANON-RSOk&C-CPA security guarantees that there
is a simulator S such that Expanon-rso&c-cpa-ideal

PKE,S,n,t,k (λ) and Expanon-rso&c-cpa-real
PKE,A,n,t,k (λ)

are indistinguishable. Note that in Expanon-rso&c-cpa-ideal
PKE,S,n,t,k (λ), S has no infor-

mation about (ij)j∈[t] except for the responses obtained via querying O(s)
cor,1,

O(s)
cor,2. Hence, the fraction of the “ciphertext-encrypting” indexes that S com-

promises over (ij)j∈[t] is nearly Q
n . Therefore, the indistinguishability between

Expanon-rso&c-cpa-ideal
PKE,S,n,t,k (λ) and Expanon-rso&c-cpa-real

PKE,A,n,t,k (λ) implies the advantage of
the ANON-COR adversary is negligible.

3.2 Confidentiality under Corruptions

SIM-RSOk&C security. In order to capture confidentiality under the same
corruptions which are considered in ANON-RSOk&C security, we introduce a
new security notion, called SIM-RSOk&C security. We stress that SIM-RSOk&C
security is similar to SIM-RSOk security [23], except that the SIM-RSOk&C
adversary is allowed to corrupt the receivers at any time (i.e., even before seeing
the challenge ciphertexts).

Informally, assume that there are n users, and that a PPT adversary is al-
lowed to (i) adaptively corrupt the users (i.e., obtaining their secret keys) at
any time, and (ii) make receiver selective opening queries (i.e., obtaining the
corresponding secret keys and the challenge messages) after seeing a challenge

Anonymous Public Key Encryption under Corruptions 9

Expsim-rso&c-cpa-real
PKE,A,n,k (λ), Expsim-rso&c-cca-real

PKE,A,n,k (λ) :

pp←$ Setup(1λ); ((pki, ski)←$ Gen(pp))i∈[n]

Iop := ∅; Icor := ∅; C := ∅

(Distm, st)←$ A
Ocor,1, Odec
1 (pp, (pki)i∈[n])

(m∗
i,γ)i∈[n],γ∈[k] ←$ Distm

(c∗i,γ ←$ Enc(pp, pki,m∗
i,γ))i∈[n],γ∈[k]

C := {(i, c∗i,γ) | i ∈ [n], γ ∈ [k]}

out←$ A
Ocor,2,Oop, Odec
2 ((c∗i,γ)i∈[n],γ∈[k], st)

Return ((m∗
i,γ)i∈[n],γ∈[k],Distm, Iop, Icor, out)

Ocor,1(i), Ocor,2(i):
If i /∈ [n]: Return ⊥
Icor := Icor ∪ {i}
Return ski

Oop(i):
If i /∈ [n]: Return ⊥
Iop := Iop ∪ {i}
Return (ski, (m

∗
i,γ)γ∈[k])

Odec(i, c) :

If (i, c) ∈ C: Return ⊥
If (i ∈ Icor) ∨ (i ∈ Iop): Return ⊥
m := Dec(pp, ski, c)
Return m

Expsim-rso&c-cpa-ideal
PKE,S,n,k (λ), Expsim-rso&c-cca-ideal

PKE,S,n,k (λ):
Iop := ∅; Icor := ∅

(Distm, st)←$ S
O(s)

cor,1
1 (1λ)

(m∗
i,γ)i∈[n],γ∈[k] ←$ Distm

Mcor := {(i, (m∗
i,γ)γ∈[k]) | i ∈ Icor}

out←$ S
O(s)

cor,2,O
(s)
op

2 (Mcor, st)

Return ((m∗
i,γ)i∈[n],γ∈[k],Distm, Iop, Icor, out)

O(s)
cor,1(i):
If i /∈ [n]: Return ⊥
Icor := Icor ∪ {i}
Return NULL

O(s)
cor,2(i):
If i /∈ [n]: Return ⊥
Icor := Icor ∪ {i}
Return (m∗

i,γ)γ∈[k]

O(s)
op (i):
If i /∈ [n]: Return ⊥
Iop := Iop ∪ {i}
Return (m∗

i,γ)γ∈[k]

Fig. 2 Experiments for defining SIM-RSOk&C-CPA/CCA security of scheme PKE.

ciphertext vector of length n. SIM-RSOk&C security requires that whatever the
adversary (seeing the challenge ciphertext vector) deduces about the challenge
messages, can also be deduced without seeing any challenge ciphertexts.

Formal definition is as follows.

Definition 2. (SIM-RSOk&C-CPA/CCA). A PKE scheme PKE = (Setup,
Gen,Enc,Dec) is SIM-RSOk&C-ATK secure (where ATK ∈ {CPA,CCA} and
k ∈ N is a constant), if for any polynomially bounded n > 0, and any PPT
adversary A = (A1,A2), there is a PPT simulator S = (S1,S2), such that for
any PPT distinguisher D, the advantage Advsim-rso&c-atk

PKE,A,S,D,n,k(λ) :=∣∣∣Pr[D(Expsim-rso&c-atk-real
PKE,A,n,k (λ)) = 1]− Pr[D(Expsim-rso&c-atk-ideal

PKE,S,n,k (λ)) = 1]
∣∣∣

is negligible, where Expsim-rso&c-atk-real
PKE,A,n,k (λ) and Expsim-rso&c-atk-ideal

PKE,S,n,k (λ) are de-
fined in Fig. 2, and atk ∈ {cpa, cca}. In both of the experiments, we require that
for all Distm output by A1 and S1, Distm is efficiently samplable.

10 Zhengan Huang, Junzuo Lai, Shuai Han, Lin Lyu, and Jian Weng

SIM-RSOk&C-ATK ⇒ SIM-RSOk-ATK. We claim that SIM-RSOk&C-
ATK security (ATK ∈ {CPA,CCA}) implies simulation-based RSO security
in the multi-challenge setting (i.e., SIM-RSOk-ATK security) [23].

Generally, SIM-RSOk-ATK security requires that for any PPT adversary A
in the real experiment of SIM-RSOk-ATK, there is a simulator S, such that
the final output of the ideal experiment and that of the real experiment are
indistinguishable. Standard SIM-RSO-ATK security [14,12,16] is a special case
of SIM-RSOk-ATK security (i.e., k = 1). For completeness, formal definition of
SIM-RSOk-ATK security is given in the full version [17].

The reason that SIM-RSOk&C-ATK security implies SIM-RSOk-ATK secu-
rity is as follows. Note that any SIM-RSOk-ATK adversary A can be seen as
a SIM-RSOk&C-ATK adversary which does not query the corruption oracles
Ocor,1,Ocor,2. SIM-RSOk&C-ATK security guarantees the existence of a simu-
lator S ′, such that the final output of the ideal experiment and that of the real
experiment are indistinguishable. Hence, for the final output of the ideal exper-
iment ((m∗i,γ)i∈[n],γ∈[k],Distm, Iop, Icor, out), it also holds that Icor = ∅ (i.e., S ′

has never queried O(s)
cor,1,O

(s)
cor,2). Hence, a SIM-RSOk-ATK simulator S can be

constructed from S ′.

3.3 Combining Anonymity and Confidentiality under Corruptions

We introduce the notion of AC-RSOk&C-CPA/CCA security, to capture ANON-
RSOk&C-CPA/CCA security and SIM-RSOk&C-CPA/CCA security in one no-
tion for convenience.

Informally, assume that there are n users, and that a PPT adversary is al-
lowed to (i) adaptively corrupt the users (i.e., obtaining their secret keys) at
any time, and (ii) make receiver selective opening queries (i.e., obtaining the
corresponding secret keys and the challenge messages) after seeing a challenge
ciphertext vector of length t < n. AC-RSOk&C security requires that whatever
the adversary (seeing the challenge ciphertext vector) deduces about which pub-
lic keys or messages are used to generate the challenge ciphertext vector, can
also be deduced without seeing any challenge ciphertexts.

Formal definition is as follows.

Definition 3. (AC-RSOk&C-CPA/CCA). A PKE scheme PKE = (Setup,
Gen,Enc,Dec) is AC-RSOk&C-ATK secure (where ATK ∈ {CPA,CCA} and
k ∈ N is a constant), if for any polynomially bounded n, t (where 0 < t ≤ n),
and any PPT adversary A = (A1,A2), there is a PPT simulator S = (S1,S2),
such that for any PPT distinguisher D, the advantage Advac-rso&c-atk

PKE,A,S,D,n,t,k(λ) :=∣∣∣Pr[D(Expac-rso&c-atk-real
PKE,A,n,t,k (λ)) = 1]− Pr[D(Expac-rso&c-atk-ideal

PKE,S,n,t,k (λ)) = 1]
∣∣∣

is negligible, where Expac-rso&c-atk-real
PKE,A,n,t,k (λ) and Expac-rso&c-atk-ideal

PKE,S,n,t,k (λ) are defined
in Fig. 3, and atk ∈ {cpa, cca}. In both of the experiments, we require that for
all Dist output by A1 and S1, it holds that (1) Dist is efficiently samplable, and
(2) for all (ij , (m∗j,γ)γ∈[k])j∈[t] ←$ Dist, ij1 ̸= ij2 for any distinct j1, j2 ∈ [t].

Anonymous Public Key Encryption under Corruptions 11

Expac-rso&c-cpa-real
PKE,A,n,t,k (λ), Expac-rso&c-cca-real

PKE,A,n,t,k (λ) :

pp←$ Setup(1λ); ((pki, ski)←$ Gen(pp))i∈[n]

Iop := ∅; Icor := ∅; C := ∅

(Dist, st)←$ A
Ocor,1, Odec
1 (pp, (pki)i∈[n])

(ij , (m
∗
j,γ)γ∈[k])j∈[t] ←$ Dist

(c∗j,γ ←$ Enc(pp, pkij ,m∗
j,γ))j∈[t],γ∈[k]

C := {(ij , c∗j,γ) | j ∈ [t], γ ∈ [k]}

out←$ A
Ocor,2,Oop, Odec
2 ((c∗j,γ)j∈[t],γ∈[k], st)

Return ((ij , (m
∗
j,γ)γ∈[k])j∈[t],Dist, Iop, Icor, out)

Ocor,1(i), Ocor,2(i):
If i /∈ [n]: Return ⊥
Icor := Icor ∪ {i}
Return ski

Oop(j):
If j /∈ [t]: Return ⊥
Iop := Iop ∪ {j}
Return (skij , (m

∗
j,γ)γ∈[k])

Odec(i, c) :

If (i, c) ∈ C: Return ⊥
If (i ∈ Icor) ∨ (∃ j′ ∈ Iop s.t. i = ij′): Return ⊥
m := Dec(pp, ski, c)
Return m

Expac-rso&c-cpa-ideal
PKE,S,n,t,k (λ), Expac-rso&c-cca-ideal

PKE,S,n,t,k (λ):
Iop := ∅; Icor := ∅

(Dist, st)←$ S
O(s)

cor,1
1 (1λ)

(ij , (m
∗
j,γ)γ∈[k])j∈[t] ←$ Dist

Mcor := {(j, ij , (m∗
j,γ)γ∈[k]) | ij ∈ Icor, j ∈ [t]}

out←$ S
O(s)

cor,2,O
(s)
op

2 (Mcor, st)

Return ((ij , (m
∗
j,γ)γ∈[k])j∈[t],Dist, Iop, Icor, out)

O(s)
cor,1(i):
If i /∈ [n]: Return ⊥
Icor := Icor ∪ {i}
Return NULL

O(s)
cor,2(i):
If i /∈ [n]: Return ⊥
Icor := Icor ∪ {i}
If ∃ j′ ∈ [t] s.t. i = ij′ :

Return (j′, ij′ , (m
∗
j′,γ)γ∈[k])

Return NULL

O(s)
op (j):
If j /∈ [t]: Return ⊥
Iop := Iop ∪ {j}
Return (ij , (m

∗
j,γ)γ∈[k])

Fig. 3 Experiments for defining AC-RSOk&C-CPA/CCA security of scheme PKE.

Note that, AC-RSOk&C security can be easily simplified to guarantee only
ANON-RSOk&C security (when the adversary chooses a distribution Dist that
has no entropy in the message part) and can also be simplified to guarantee only
SIM-RSOk&C security (by letting n = t).

4 AC-RSOk&C Secure PKE from KM-NCE

In this section, we introduce a new primitive called key and message non-
committing encryption (KM-NCE), and two security requirements, KMNCk-
CPA/CCA and robustness, for it. Then, we show that KMNCk-CPA/CCA se-
cure and robust KM-NCE implies AC-RSOk&C-CPA/CCA secure PKE.

4.1 Key and Message Non-Committing Encryption

Now we provide the definition of key and message non-committing encryption
(KM-NCE) and security properties for this primitive. Informally, a KM-NCE
scheme is a PKE scheme with the property that there is a way to generate fake

12 Zhengan Huang, Junzuo Lai, Shuai Han, Lin Lyu, and Jian Weng

ciphertexts without any public key, such that any k fake ciphertexts can be later
opened to any k messages (by showing an appropriate secret key). This primi-
tive is an extension of receiver non-committing encryption (RNCE) in [8,14,12].
Generally speaking, the main differences between KM-NCE and RNCE are that
(i) KM-NCE is defined in the k-challenge setting, for some constant k, and (ii)
the algorithm, generating fake ciphertexts, of KM-NCE does not take any public
key as input, while that of RNCE needs the public key.

For k ∈ N, a key and message non-committing encryption scheme KM-NCE in
the k-challenge setting, with a message spaceM, consists of six PPT algorithms
(Setup,Gen,Enc,Dec,Fake,Openk).

– Setup: The setup algorithm, given a security parameter 1λ, outputs a public
parameter pp.

– Gen: The key generation algorithm, given pp, outputs a public key pk, a
secret key sk and a trapdoor key tk.

– Enc: The encryption algorithm, given pp, pk and a message m ∈M, outputs
a ciphertext c.

– Dec: The (deterministic) decryption algorithm, given pp, sk and c, outputs
m ∈M∪ {⊥}.

– Fake: The fake encryption algorithm, given pp, outputs a fake ciphertext c′

and a trapdoor td.
– Openk: The opening algorithm, given (pp, tk, pk, sk), k fake ciphertexts (c′γ)γ∈[k],

k trapdoors (tdγ)γ∈[k] correponding to (c′γ)γ∈[k], and k messages (mγ)γ∈[k],
outputs a secret key sk′.

For KM-NCE, standard correctness is required. Formally, we require that
for any pp generated by Setup, any (pk, sk, tk) generated by Gen(pp) and any
m ∈M, it holds that Dec(pp, sk,Enc(pp, pk,m)) = m.

Definition 4. (KMNCk-CPA/CCA). For k ∈ N, a KM-NCE scheme KM-NCE =
(Setup,Gen,Enc,Dec,Fake,Openk), in the k-challenge setting, is KMNCk-ATK
secure (where ATK ∈ {CPA,CCA}), if for any PPT adversary A = (A1,A2,
A3), the advantage Advkmnc-atk

KM-NCE,A,k(λ) :=∣∣∣Pr[Expkmnc-atk-real
KM-NCE,A,k (λ) = 1]− Pr[Expkmnc-atk-sim

KM-NCE,A,k (λ) = 1]
∣∣∣

is negligible, where experiment Expkmnc-atk-real
KM-NCE,A,k (λ) and Expkmnc-atk-sim

KM-NCE,A,k (λ) are
defined in Fig. 4, and atk ∈ {cpa, cca}.

We also define a statistical robustness for KM-NCE.
Definition 5 (Robustness). A KM-NCE scheme KM-NCE = (Setup,Gen,Enc,
Dec,Fake,Openk), in the k-challenge setting (k ∈ N), is robust, if the probability
ϵrob
KM-NCE(λ) :=

Pr

[
pp←$ Setup(1λ), (pk, sk, tk)←$ Gen(pp),

(c, td)←$ Fake(pp)
: Dec(pp, sk, c) ̸= ⊥

]
is negligible.

Anonymous Public Key Encryption under Corruptions 13

Expkmnc-cpa-real
KM-NCE,A,k (λ), Expkmnc-cca-real

KM-NCE,A,k (λ) :

pp←$ Setup(1λ)

(pk, sk, tk)←$ Gen(pp)

((m∗
γ)γ∈[k], st1)←$ A

Odec
1 (pp, pk)

(c∗γ ←$ Enc(pp, pk,m∗
γ))γ∈[k]

st2 ←$ A
Odec
2 ((c∗γ)γ∈[k], st1)

b′ ←$ A3(sk, st2)

Return b′

Odec(c) :

If c ∈ {c∗γ | γ ∈ [k]}: Return ⊥
m := Dec(pp, sk, c)
Return m

Expkmnc-cpa-sim
KM-NCE,A,k (λ), Expkmnc-cca-sim

KM-NCE,A,k (λ) :

pp←$ Setup(1λ)

(pk, sk, tk)←$ Gen(pp)

((m∗
γ)γ∈[k], st1)←$ A

Odec
1 (pp, pk)

((c∗γ , td
∗
γ)←$ Fake(pp))γ∈[k]

st2 ←$ A
Odec
2 ((c∗γ)γ∈[k], st1)

sk′ ←$ Openk(pp, tk, pk, sk, (c∗γ , td∗γ ,m∗
γ)γ∈[k])

b′ ←$ A3(sk
′, st2)

Return b′

Fig. 4 Experiments for defining KMNCk-CPA/CCA security of scheme KM-NCE.

4.2 Generic Construction of AC-RSOk&C Secure PKE from
KM-NCE

In this section, we show that for k ∈ N, a KMNCk-CPA (resp. KMNCk-CCA)
secure and robust KM-NCE scheme implies an AC-RSOk&C-CPA (resp. AC-
RSOk&C-CCA) secure PKE scheme. Specifically, we have the following theorem.

Theorem 1. If a KM-NCE scheme KM-NCE = (Setup,Gen,Enc,Dec,Fake,Openk),
in the k-challenge setting (k ∈ N), is KMNCk-CPA (resp. KMNCk-CCA) secure
and robust, then PKE = (Setup,Gen,Enc,Dec) is an AC-RSOk&C-CPA (resp.
AC-RSOk&C-CCA) secure PKE scheme.5

Proof of Theorem 1. We just prove that a KMNCk-CCA secure and robust
KM-NCE scheme implies an AC-RSOk&C-CCA secure PKE scheme. The proof
for the case of CPA is analogous and much easier, so we omit the details here.

Let n and t be arbitrary polynomials satisfying 0 < t ≤ n. Let A = (A1,A2)
be any PPT adversary attacking PKE = (Setup,Gen,Enc,Dec) in the sense of
AC-RSOk&C-CCA, and D be any PPT distinguisher. Without loss of generality,
we assume that A never repeats an oracle query. Specifically, we assume that if
A1 has queried oracle Ocor,1 on some i, then A2 will not query Ocor,2 on i.

We proceed in a series of games.
Game G−1: This is exactly the Expac-rso&c-cca-real

PKE,A,n,t,k (λ) experiment, i.e., G−1 =

Expac-rso&c-cca-real
PKE,A,n,t,k (λ).

5 For PKE = (Setup,Gen,Enc,Dec), we require that (i) the public parameter pp gen-
erated by Setup can be used for multiple users, and (ii) Gen does not output tk (i.e.,
the key generation algorithm of PKE firstly invokes the key generation algorithm of
KM-NCE to generate (pk, sk, tk), and then outputs (pk, sk), ignoring tk).

14 Zhengan Huang, Junzuo Lai, Shuai Han, Lin Lyu, and Jian Weng

More specifically, in G−1, the challenger firstly generates pp ← $ Setup(1λ)
and ((pki, ski, tki) ←$ Gen(pp))i∈[n], and sends (pp, (pki)i∈[n]) to A1. The chal-
lenger initiates Iop := ∅ and Icor := ∅, and keeps track of all A’s issued
queries to Ocor,1,Ocor,2,Oop by maintaining these two sets. Then, the challenger
answers A1’s Ocor,1,Odec oracle queries with (ski)i∈[n]. After receiving Dist,
the challenger samples (ij , (m

∗
j,γ)γ∈[k])j∈[t] ← Dist, computes (c∗j,γ ←$ Enc(pp,

pkij ,m
∗
j,γ))j∈[t],γ∈[k], sets that C := {(ij , c∗j,γ) | j ∈ [t], γ ∈ [k]}, and sends

(c∗j,γ)j∈[t],γ∈[k] to A2. Then, the challenger continues to answer A2’s Ocor,2,Oop,
Odec oracle queries with (ski)i∈[n]. Finally, when A2 returns out, the challenger
returns ((ij , (m

∗
j,γ)γ∈[k])j∈[t],Dist, Iop, Icor, out) as its final output.

Game G0: Game G0 is the same as G−1, except that two sets Iop-sk and Icor-sk
are introduced in G0. Informally, Iop-sk is introduced to ensure that if A2 submits
a query Ocor,2(i) such that the secret key corresponding to pki has already been
given to A via oracle Oop, then the challenger will directly return the secret key
previously given to A2; Icor-sk is introduced to ensure that if A2 submits a query
Oop(j) such that the secret key corresponding to pkij has already been exposed
to A in a previous corruption query, then the challenger will directly return the
secret key previously given to A2.

Specifically, the differences between G0 and G−1 are as follows. The challenger
additionally initiates Iop-sk := ∅ and Icor-sk := ∅ at the beginning, and answers
A’s Ocor,1,Ocor,2,Oop oracle queries as below:

- on a query Ocor,1(i) where i ∈ [n], the challenger sets Icor := Icor ∪ {i} and
Icor-sk := Icor-sk ∪ {(i, ski)}, and returns ski to A1;

- on a query Ocor,2(i) where i ∈ [n], the challenger firstly sets Icor := Icor∪{i}.
If there is some j′ ∈ Iop such that ij′ = i, then there must be some tuple
(j′, i, ski) ∈ Iop-sk, and in this case the challenger sets Icor-sk := Icor-sk∪{(i,
ski)}, and returns ski to A2; otherwise, it sets Icor-sk := Icor-sk ∪ {(i, ski)},
and returns ski to A2;

- on a query Oop(j) where j ∈ [t], the challenger firstly sets Iop := Iop ∪ {j}.
If ij ∈ Icor, there must be some tuple (ij , skij) ∈ Icor-sk, and in this case
the challenger sets Iop-sk := Iop-sk ∪ {(j, ij , skij)}, and returns skij to A2;
otherwise, it sets Iop-sk := Iop-sk ∪ {(j, ij , skij)}, and returns skij to A2.

Since all the secret keys (ski)i∈[n] are generated at the beginning and will
not be updated during the proceedings of G−1, the modifications introduced in
game G0 do not change A’s view. Hence, Pr[D(G0) = 1] = Pr[D(G−1) = 1].

Game Gî (̂i ∈ [n]): For all î ∈ [n], Gî is the same as Gî−1, except that

(1) when generating the challenge ciphertexts, if there is some j′ ∈ [t] such that
(ij′ /∈ Icor) ∧ (ij′ = î), the challenger generates (c∗j′,γ)γ∈[k] with algorithm
Fake instead of Enc, i.e., ((c∗j′,γ , td∗j′,γ)←$ Fake(pp))γ∈[k];

(2) for A2’s each Ocor,2 oracle query i, if there is some j′ ∈ [t] satisfying (j′ /∈
Iop) ∧ (ij′ = î), the challenger returns sk′ij′ ←$ Openk(pp, tkij′ , pkij′ , skij′ ,

(c∗j′,γ , td
∗
j′,γ ,m

∗
j′,γ)γ∈[k]) to A2; otherwise, it answers this query as in Gî−1;

Anonymous Public Key Encryption under Corruptions 15

(3) for A2’s each Oop oracle query j, if the corresponding ij satisfies (ij /∈
Icor) ∧ (ij = î), the challenger returns sk′ij ← $ Openk(pp, tkij , pkij , skij ,

(c∗j,γ , td
∗
j,γ ,m

∗
j,γ)γ∈[k]) to A2; otherwise, it answers this query as in Gî−1.

Game Gn+î (̂i ∈ [n]): For all î ∈ [n], game Gn+î is the same as Gn+î−1, except
that for A2’s each Odec oracle query (i, c), if (∃(ij , c∗j,γ) ∈ C s.t. ij = î ∧ c∗j,γ =
c) ∧ (i /∈ Icor), the challenger returns ⊥ to A2; otherwise, it answers this query
as in game Gn+î−1.

We present the following two lemmas whose proofs are given in the full version
[17].

Lemma 1. For each î ∈ [n], |Pr[D(Gî) = 1]−Pr[D(Gî−1) = 1]| ≤ Advkmnc-cca
KM-NCE,B,k(λ)

for some PPT adversary B.

Lemma 2. For each î ∈ [n], |Pr[D(Gn+î) = 1] − Pr[D(Gn+î−1) = 1]| ≤ t · k ·
ϵrob
KM-NCE(λ).

Note that in game G2n, (i) when generating the challenge ciphertexts, for each
j ∈ [t] such that ij /∈ Icor, the corresponding challenge ciphertexts (c∗j,γ)γ∈[k] are
generated with algorithm Fake; (ii) any Ocor,2 oracle query i ∈ [n] such that
i = ij′ for some j′ /∈ Iop is answered with algorithm Openk; (iii) any Oop oracle
query j ∈ [t] such that ij /∈ Icor is answered with algorithms Openk; (iv) any
Odec oracle query (i, c) is answered with ⊥ if there is some j ∈ [t] and γ ∈ [k]
such that (ij , c

∗
j,γ = c) ∈ C and c∗j,γ is generated with algorithm Fake. Now, a

PPT simulator S = (S1,S2) can be constructed, which simulates G2n perfectly
for A. Hence, we derive that

Expac-rso&c-cca-ideal
PKE,S,n,t,k (λ) = G2n.

Due to space limitations, the detailed description of S will be given in the full
version [17].

Therefore, Advac-rso&c-cca
PKE,A,S,D,n,t,k(λ) = |Pr[D(G−1) = 1]− Pr[D(G2n) = 1]|

≤ n ·Advkmnc-cca
KM-NCE,B′,k(λ) + n · t · k · ϵrob

KM-NCE(λ) (1)

for some PPT adversary B′. This completes the proof of Theorem 1. ■

5 KM-NCE from Key-Openable Hash Proof System

In this section, we present a generic construction of KM-NCE that is needed in
the AC-RSOk&C secure PKE construction in Sect. 4.2. Our main building block
is a new variant of Hash Proof System (HPS), called Key-Openable HPS. We
firstly recall the definition of HPS from [9], and then formalize our new Key-
Openable HPS. Next, we show how to construct KM-NCE from Key-Openable
HPS. Jumping ahead, we will give concrete instantiations of Key-Openable HPS
from the matrix decisional Diffie-Hellman assumption in Sect. 6.

16 Zhengan Huang, Junzuo Lai, Shuai Han, Lin Lyu, and Jian Weng

5.1 Recall: Hash Proof System

In this subsection, we recall the formal definition of HPS according to [9]. For
applications in constructing KM-NCE, we require that HPS has two parameter
generation algorithms, a master parameter generation algorithm MPar and an
(ordinary) parameter generation algorithm Par.

Definition 6 (Hash Proof System). A hash proof system HPS = (MPar,Par,
Pub,Priv) consists of a tuple of PPT algorithms:

– mpar ←$ MPar(1λ): The master parameter generation algorithm outputs a
master public parameter mpar, which implicitly defines the universe set X
and the hash value space Π.

We assume that there are PPT algorithms for sampling x←$ X uniformly
and sampling π ←$ Π uniformly. We require mpar to be an implicit input of
other algorithms.

– par←$ Par(mpar): The (ordinary) parameter generation algorithm takes mpar
as input, and outputs an (ordinary) public parameter par, which implicitly
defines (L,SK,PK, Λ(·), α), where L ⊆ X is an NP-language, SK is the
hashing key space, PK is the projection key space, Λ(·) : X −→ Π is a family
of hash functions indexed by a hashing key sk ∈ SK, and α : SK −→ PK is
the projection function.

We assume that Λ(·) and α are efficiently computable and there are PPT
algorithms for sampling x ←$ L uniformly together with a witness w, and
sampling sk←$ SK uniformly. We require par to be an implicit input of other
algorithms.

– π ← Pub(pk, x, w): The public evaluation algorithm outputs the hash value
π = Λsk(x) ∈ Π of x ∈ L, with the help of a projection key pk = α(sk) and
a witness w for x ∈ L.

– π ← Priv(sk, x): The private evaluation algorithm outputs the hash value
π = Λsk(x) ∈ Π of x ∈ X , directly using the hashing key sk.

Perfect correctness (a.k.a. projectiveness) of HPS requires that, for all possible
mpar ←$ MPar(1λ) and par ←$ Par(mpar), all hashing keys sk ∈ SK with pk :=
α(sk) the corresponding projection key, all x ∈ L with all possible witnesses w,
it holds that Pub(pk, x, w) = Λsk(x) = Priv(sk, x).

HPS is associated with a subset membership problem (SMP), which asks
whether an element is uniformly chosen from L or X . SMP can be extended to
multi-fold SMP by considering multiple elements.

Definition 7 (Multi-fold SMP). The multi-fold SMP related to HPS is hard,
if for any PPT adversaryA and any polynomial Q, it holds that AdvQ-msmp

HPS,A (λ) :=∣∣ Pr[A(mpar, par, {xγ}γ∈[Q]) = 1] − Pr[A(mpar, par, {x′γ}γ∈[Q]) = 1]
∣∣ ≤ negl(λ),

where mpar ←$ MPar(1λ), par ←$ Par(mpar), xγ ←$ L and x′γ ←$ X for each
γ ∈ [Q].

Anonymous Public Key Encryption under Corruptions 17

Tag-based HPS. We recall a tag-based variant of HPS from [9,22], by allowing the
hash functions Λ(·) to have an additional element called label/tag as input. More
precisely, in a tag-based HPS, the public parameter par also implicitly defines a
tag space T . Meanwhile, the hash functions Λ(·), the public evaluation algorithm
Pub and the private evaluation algorithm Priv also take a tag τ ∈ T as input.
Accordingly, perfect correctness requires Pub(pk, x, w, τ) = Λsk(x, τ) = Priv(sk,
x, τ) for all tags τ ∈ T .

5.2 Key-Openable HPS
We present the formal definition of our new Key-Openable HPS.

Definition 8 (Key-Openable Hash Proof System). Let k ∈ N. A key-
openable hash proof system HPS = (MPar,Par,Pub,Priv,HOpenk) consists of a
tuple of PPT algorithms:

– (MPar,Par,Pub,Priv) is a hash proof system as per Definition 6. Recall that
the master parameter mpar output by MPar(1λ) implicitly defines (X ,Π),
and there are PPT algorithms for sampling x←$ X uniformly and sampling
π ←$ Π uniformly. We denote by RX and RΠ the randomness spaces for
sampling x←$ X and π ←$ Π respectively.

– In addition to public parameter par, Par(mpar) also outputs a trapdoor in-
formation td, which will be later used by HOpenk.

– sk′/⊥ ←$ HOpenk(td, pk, sk, (xγ , rxγ , πγ , rπγ)γ∈[k]): The hashing key opening
algorithm takes as input the trapdoor td, a projection key pk ∈ PK, a hashing
key sk ∈ SK satisfying pk = α(sk), and k tuples (xγ , rxγ

, πγ , rπγ
)γ∈[k] where

xγ ∈ X with sampling randomness rxγ
∈ RX and πγ ∈ Π with sampling

randomness rπγ
∈ RΠ for each γ ∈ [k], and outputs another hashing key

sk′ ∈ SK satisfying pk = α(sk′) and πγ = Λsk′(xγ) for each γ ∈ [k], or a
special symbol ⊥ indicating the failure of opening.

Tag-based Key-Openable HPS. A key-openable HPS = (MPar,Par,Pub,Priv,
HOpenk) is a tag-based key-openable HPS, if (MPar,Par,Pub,Priv) is a tag-based
HPS (cf. Sect. 5.1), and HOpenk also takes a set of tags (τγ)γ∈[k] as input so
that its output sk′ satisfies pk = α(sk′) and πγ = Λsk′(xγ , τγ) for each γ ∈ [k].

Below we define a new statistical property for (tag-based) key-openable HPS,
called openabilityk. It stipulates the statistical indistinguishability between (sk(0),

(π
(0)
γ)γ∈[k]) and (sk(1), (π

(1)
γ)γ∈[k]), where sk(0) is a uniformly sampled hashing

key, π(0)
γ = Λsk0(xγ) for xγ ←$ X with randomness rxγ

, π(1)
γ is uniformly sampled

from Π with randomness r
π
(1)
γ

, and sk(1) is generated by HOpenk(td, pk, sk
(0),

(xγ , rxγ
, π

(1)
γ , r

π
(1)
γ

)γ∈[k]). Here the subscript k indicates the opening of hashing
key w.r.t. k hash values. For tag-based key-openable HPS, the adversary can
additionally determine the tags (τγ)γ∈[k] w.r.t. which the hash values are com-
puted. It is not hard to see that this property implies the usual smoothness
property of HPS [9] and also implies that L is a sparse subset of X .

18 Zhengan Huang, Junzuo Lai, Shuai Han, Lin Lyu, and Jian Weng

Exp
openk
HPS,A(λ):

mpar←$ MPar(1λ), (par, td)←$ Par(mpar). sk←$ SK, pk := α(sk).
For γ ∈ [k], xγ ←$ X with sampling randomness rxγ .
(τγ)γ∈[k] ←$ A(mpar, par, td, pk, (xγ , rxγ)γ∈[k]).
For γ ∈ [k], π

(0)
γ := Λsk(xγ , τγ).

For γ ∈ [k], π
(1)
γ ←$ Π with sampling randomness r

π
(1)
γ

.
sk(0) := sk. sk(1) ←$ HOpenk(td, pk, sk, (xγ , rxγ , π

(1)
γ , r

π
(1)
γ

, τγ)γ∈[k]).
b←$ {0, 1}.
b′ ←$ A(mpar, par, td, pk, (xγ , rxγ , π

(b)
γ)γ∈[k], sk

(b)).
If b′ = b: Return 1; Else: Return 0.

Fig. 5 Experiment for defining the Openabilityk property of (tag-based) key-openable
HPS, where the framed parts only appear in the experiment for tag-based HPS.

Exp
univk+1

HPS,A (λ):
mpar←$ MPar(1λ), (par, td)←$ Par(mpar). sk←$ SK, pk := α(sk).
For γ ∈ [k], xγ ←$ X .
(τγ)γ∈[k] ←$ A(mpar, par, pk, (xγ)γ∈[k]).
For γ ∈ [k], πγ := Λsk(xγ , τγ).
(x, τ, π)←$ A(mpar, par, pk, (xγ , πγ)γ∈[k]).
If (x ∈ X \ L) ∧ (τ /∈ {τγ}γ∈[k]) ∧ (π = Λsk(x, τ)): Return 1; Else: Return 0.

Fig. 6 Experiment for the Universalk+1 property of tag-based key-openable HPS.

Definition 9 (Openabilityk). A (tag-based) key-openable HPS is openablek,
if for any (unbounded) adversary A, it holds that ϵopenk

HPS,A(λ) := |Pr[Exp
openk

HPS,A(λ)

= 1]− 1/2| ≤ negl(λ), where Exp
openk

HPS,A(λ) is defined in Fig. 5.
Next we define a statistical property for tag-based HPS, called universalk+1,

which is an extension of the universal2 property proposed in [9].
Definition 10 (Universalk+1). A tag-based key-openable HPS is universalk+1,
if for any (unbounded) adversary A, it holds that ϵunivk+1

HPS,A (λ) := Pr[Exp
univk+1

HPS,A (λ)

= 1] ≤ negl(λ), where Exp
univk+1

HPS,A (λ) is defined in Fig. 6.
Finally, we define a statistical property, called efficient randomness resam-

pling on Π, which demands that besides the (aforementioned) sampling algo-
rithm of Π which samples uniform element π ∈ Π with sampling randomness rπ,
there is a randomness resampling algorithm ReSmpΠ that takes as input π ∈ Π
and outputs a sampling randomness rπ. These two ways of sampling/resampling
are statistically indistinguishable.
Definition 11 (Efficient Randomness Resampling on Π). The hash value
space Π of HPS supports efficient randomness resampling, if there exists a PPT
algorithm ReSmpΠ , s.t. the statistical distance ϵΠ-resmp

HPS (λ) := ∆((π, rπ), (π
′,

r′π′)) ≤ negl(λ), where mpar ←$ MPar(1λ), π ←$ Π with sampling randomness
rπ, π′ ←$ Π and r′π′ ←$ ReSmpΠ(π′).

Anonymous Public Key Encryption under Corruptions 19

pp←$ Setup(1λ):
mpar←$ MPar(1λ). m̃par←$ M̃Par(1λ).
// mpar implicitly defines (X , Π).
// m̃par implicitly defines (X , Π̃).
H ←$ H.

Return pp := (mpar, m̃par, H).

(pk, sk, tk)←$ Gen(pp):
(par, td)←$ Par(mpar). (p̃ar, t̃d)←$ P̃ar(m̃par).
// par implicitly defines (L,SK,PK, Λ(·), α).
// p̃ar implicitly defines (L, S̃K, P̃K, Λ̃(·), α̃, T).
sk←$ SK, pk := α(sk).
s̃k←$ S̃K, p̃k := α̃(s̃k).

Return (pk := (par, p̃ar, pk, p̃k), sk := (sk, s̃k),

tk := (td, t̃d)).

c←$ Enc(pp, pk,m ∈ Π):
x←$ L with witness w.
d := Pub(pk, x, w) +m ∈ Π.
τ := H(x, d) ∈ T .
π̃ := P̃ub(p̃k, x, w, τ) ∈ Π̃.

Return c := (x, d, π̃).

m/⊥ ← Dec(pp, sk, c):
Parse c = (x, d, π̃).
τ := H(x, d) ∈ T .
If π̃ ̸= Λ̃s̃k(x, τ): Return ⊥.
m := d− Λsk(x) ∈ Π.

Return m.

(c, td)←$ Fake(pp):
x←$ X with sampling randomness rx.
d←$ Π.
π̃ ←$ Π̃ with sampling randomness rπ̃.

Return (c := (x, d, π̃), td := (rx, rπ̃)).

sk′ ←$ Openk(pp, tk, pk, sk, (cγ , tdγ ,mγ ∈ ERΠ)γ∈[k]):

Parse tk = (td, t̃d), cγ = (xγ , dγ , π̃γ), tdγ = (rxγ , rπ̃γ).
For γ ∈ [k], eγ := dγ −mγ ∈ Π.

reγ ←$ ReSmpΠ(eγ).
// Note that reγ is an samp. rand. for eγ ∈ Π.
sk′ ←$ HOpenk(td, pk, sk, (xγ , rxγ , eγ , reγ)γ∈[k]).
For γ ∈ [k], τγ := H(xγ , dγ) ∈ T .
s̃k

′
←$ H̃Openk(t̃d, p̃k, s̃k, (xγ , rxγ , π̃γ , rπ̃γ , τγ)γ∈[k]).

Return sk′ := (sk′, s̃k
′
).

Fig. 7 Construct. of KM-NCE = (Setup,Gen,Enc,Dec,Fake,Openk) from HPS, H̃PS,H.

5.3 Generic Construction of KM-NCE from Key-Openable HPS

The building blocks for constructing KM-NCE are as follows.

– Let HPS = (MPar,Par,Pub,Priv,HOpenk) be a key-openable HPS, whose
hash value space Π is an (additive) group and has an efficient randomness
resampling algorithm ReSmpΠ .

– Let H̃PS = (M̃Par, P̃ar, P̃ub, P̃riv, H̃Openk) be a tag-based key-openable HPS,
which shares same universe X and same language L with HPS.

– Let H = {H : X ×Π → T } be a family of collision-resistant hash functions,
where Π is the hash value space of HPS and T is the tag space of H̃PS.

We present the generic construction of KM-NCE = (Setup,Gen,Enc,Dec,Fake,

Openk) from HPS, H̃PS and H in Fig. 7. The message space is Π. Note that
our generic construction of KM-NCE from key-openable HPS is reminiscent of
[11], which constructs PKE scheme from another variant of HPS (the so-called
quasi-adaptive HPS).

The perfect correctness of KM-NCE follows from those of HPS and H̃PS di-
rectly. Next, we show its KMNCk-CCA security.

Theorem 2 (KMNCk-CCA security of KM-NCE). Assume that (1) HPS is
openablek, has a hard multi-fold SMP, supports efficient randomness resampling
on Π, (2) H̃PS is universalk+1 and openablek, (3) H is collision-resistant. Then
the KM-NCE in Fig. 7 is KMNCk-CCA secure.

Concretely, for any PPT adversary A against the KMNCk-CCA security of
KM-NCE that makes at most Qd decryption queries, there exist PPT adversaries

20 Zhengan Huang, Junzuo Lai, Shuai Han, Lin Lyu, and Jian Weng

B1, B2 and unbounded adversaries B3, B4, B5, s.t.

Advkmnc-cca
KM-NCE,A,k(λ) ≤ Advk-msmp

HPS,B1
(λ) + 2 ·Advcr

H,B2
(λ) + 2Qd · ϵ

univk+1

H̃PS,B3

(λ) (2)

+ 2ϵ
openk

HPS,B4
(λ) + 2ϵ

openk

H̃PS,B5

(λ) + 2k · ϵΠ-resmp
HPS (λ).

Proof of Theorem 2. We prove the theorem by defining a sequence of games
G0-G8, with G0 = Expkmnc-cca-real

KM-NCE,A,k (λ) and G8 = Expkmnc-cca-sim
KM-NCE,A,k (λ), and show-

ing adjacent games indistinguishable. By Pri[·] we denote the probability of a
particular event occurring in game Gi.
Game G0: This is the Expkmnc-cca-real

KM-NCE,A,k (λ) experiment. Thus, Pr[G0 = 1] =

Pr[Expkmnc-cca-real
KM-NCE,A,k (λ) = 1].

In this game, when receiving (m∗γ)γ∈[k] from A, the challenger generates c∗γ
using the real encryption algorithm Enc(pp, pk,m∗γ). More precisely, it samples
x∗γ ←$ L with witness w∗γ , computes d∗γ := Pub(pk, x∗γ , w

∗
γ) + m∗γ , τ∗γ := H(x∗γ ,

d∗γ), π̃∗γ := P̃ub(p̃k, x∗γ , w
∗
γ , τ
∗
γ), and sets c∗γ := (x∗γ , d

∗
γ , π̃
∗
γ). It returns (c∗γ)γ∈[k]

to A. When answering decryption queries Odec(c) for A with c = (x, d, π̃), the
challenger computes τ := H(x, d), and outputs ⊥ immediately if c ∈ {c∗γ}γ∈[k] ∨
π̃ ≠ Λ̃s̃k(x, τ). Otherwise, it computes m := d − Λsk(x) and returns m to A. In
the last step of this game, the challenger sends the real secret key sk = (sk, s̃k)
to A.
Game G1: It is the same as G0, except that, for each γ ∈ [k], when generating
c∗γ = (x∗γ , d

∗
γ , π̃
∗
γ), the challenger computes d∗γ and π̃∗γ using sk = (sk, s̃k) instead

of using the witness w∗γ of x∗γ . Namely, d∗γ := Λsk(x
∗
γ) + m∗γ and π̃∗γ := Λ̃s̃k(x

∗
γ ,

τ∗γ). By the perfect correctness of HPS and H̃PS, this change is conceptual. So
Pr[G1 = 1] = Pr[G0 = 1].
Game G2: It is the same as G1, except that, for each γ ∈ [k], when generating
c∗γ = (x∗γ , d

∗
γ , π̃
∗
γ), the challenger samples x∗γ ←$ X instead of x∗γ ←$ L. Note that

neither the witness w∗γ of x∗γ (if x∗γ ←$ L) nor the sampling randomness rx∗
γ

of
x∗γ (if x∗γ ←$ X) is needed in G1 and G2, thus it is straightforward to construct a
PPT adversary B1 against the multi-fold SMP, such that |Pr[G2 = 1]−Pr[G1 =

1]| ≤ Advk-msmp
HPS,B1

(λ).
Game G3: It is the same as G2, except that, when answering decryption queries
Odec(c) for A with c = (x, d, π̃), the challenger adds a new rejection rule: it
outputs ⊥ immediately if τ ∈ {τ∗γ }γ∈[k], where τ = H(x, d) and τ∗γ = H(x∗γ , d

∗
γ)

for each γ ∈ [k].
Let Bad denote the event that A ever queries Odec(c) with c = (x, d, π̃), such

that (x, d) /∈ {(x∗γ , d∗γ)}γ∈[k] but τ ∈ {τ∗γ }γ∈[k]. We first show that G2 and G3 are
identical if Bad does not occur, i.e., either (x, d) = (x∗γ0

, d∗γ0
) for some γ0 ∈ [k]

or τ /∈ {τ∗γ }γ∈[k]. In the case that (x, d) = (x∗γ0
, d∗γ0

) for some γ0 ∈ [k], Odec(c)

would be rejected both in G2 and G3 due to c = c∗γ0
∈ {c∗γ}γ∈[k]∨π̃ ̸= Λ̃s̃k(x, τ). In

the case that τ /∈ {τ∗γ }γ∈[k], the new rejection rule added in G3 does not apply, so
Odec(c) is the same in G2 and G3. Overall, G2 and G3 are identical when Bad does
not occur, thus by the difference lemma, |Pr[G3 = 1]− Pr[G2 = 1]| ≤ Pr3[Bad].

Anonymous Public Key Encryption under Corruptions 21

To bound Pr3[Bad], it is straightforward to construct a PPT adversary B2
against the collision resistance of H, so that Pr3[Bad] ≤ Advcr

H,B2
(λ). Conse-

quently, |Pr[G3 = 1]− Pr[G2 = 1]| ≤ Advcr
H,B2

(λ).
Game G4: It is the same as G3, except that, when answering decryption queries
Odec(c) for A with c = (x, d, π̃), the challenger adds a second new rejection rule:
it outputs ⊥ immediately if x ∈ X \ L. We note that this new rule may not
be PPT checkable, thus the challenger may not be PPT. This does not matter,
since the following arguments (before this rule is removed) are statistical.

Let Forge denote the event that A ever queries Odec(c) with c = (x, d, π̃), such
that τ /∈ {τ∗γ }γ∈[k], π̃ = Λ̃s̃k(x, τ) but x ∈ X \L. Clearly, G3 and G4 are identical
unless Forge occurs, thus by the difference lemma, |Pr[G4 = 1] − Pr[G3 = 1]| ≤
Pr4[Forge].

To bound Pr4[Forge], we analyze the information about s̃k that A may obtain
in game G4 before it finishes the Odec queries: A obtains p̃k = α(s̃k) in pk and
obtains {π̃∗γ = Λ̃s̃k(x

∗
γ , τ
∗
γ)}γ∈[k] in {c∗γ}γ∈[k]; for Odec queries, the challenger will

not output m unless x ∈ L (due to the new rejection rule added in G4), thus
Odec reveals nothing about s̃k beyond p̃k = α(s̃k).

Then by the universalk+1 property of tag-based H̃PS, for one Odec(c) query
made by A, it holds that τ /∈ {τ∗γ }γ∈[k], π̃ = Λ̃s̃k(x, τ) but x ∈ X \ L with
probability at most ϵ

univk+1

H̃PS,B3

(λ). By a union bound over at most Qd number of
Odec queries, we get that Pr4[Forge] ≤ Qd · ϵ

univk+1

H̃PS,B3

(λ). Thus, |Pr[G4 = 1] −

Pr[G3 = 1]| ≤ Qd · ϵ
univk+1

H̃PS,B3

(λ). For completeness, we provide a description of the
reduction algorithm B3 in the full version [17].
Game G5: It is the same as G4, except that, for each γ ∈ [k], when generating
c∗γ = (x∗γ , d

∗
γ , π̃
∗
γ), the challenger samples d∗γ ←$ Π uniformly (instead of d∗γ :=

Λsk(x
∗
γ) +m∗γ). Moreover, in the last step of this game, the challenger computes

e∗γ := d∗γ −m∗γ ∈ Π and resamples re∗γ ←$ ReSmpΠ(e∗γ) for each γ ∈ [k], then
invokes sk′ ←$ HOpenk(td, pk, sk, (x

∗
γ , rx∗

γ
, e∗γ , re∗γ)γ∈[k]), and sends (sk′, s̃k) to A.

We have the following lemma whose proof is given in the full version [17].

Lemma 3. There exists an unbounded B4 against the openablek property of
HPS, s.t. |Pr[G5 = 1]− Pr[G4 = 1]| ≤ 2 · ϵopenk

HPS,B4
(λ) + 2k · ϵΠ-resmp

HPS (λ).

Game G6: It is the same as G5, except that, for each γ ∈ [k], when generating
c∗γ = (x∗γ , d

∗
γ , π̃
∗
γ), the challenger samples π̃∗γ ←$ Π̃ uniformly with randomness

rπ̃∗
γ

(instead of π̃∗γ := Λ̃s̃k(x
∗
γ , τ
∗
γ)). Moreover, in the last step of this game,

the challenger computes s̃k
′
←$ H̃Openk(t̃d, p̃k, s̃k, (x

∗
γ , rx∗

γ
, π̃∗γ , rπ̃∗

γ
, τ∗γ)γ∈[k]), and

sends (sk′, s̃k
′
) to A. We have the following lemma. The proof of this lemma is

similar to that of Lemma 3, and is given in the full version [17].

Lemma 4. There exists an unbounded B5 against the openablek property of
tag-based H̃PS, s.t. |Pr[G6 = 1]− Pr[G5 = 1]| ≤ 2 · ϵopenk

H̃PS,B5

(λ).

22 Zhengan Huang, Junzuo Lai, Shuai Han, Lin Lyu, and Jian Weng

Game G7: It is the same as G6, except that, when answering decryption queries
Odec(c) for A with c = (x, d, π̃), the challenger removes the second new rejection
rule added in G4. In other words, it does not check whether x ∈ L or x ∈ X \ L
anymore. We note that the challenger in G7 is now PPT again.

The change from G6 to G7 is symmetric to that from G3 to G4. By a similar
argument, we get |Pr[G7 = 1]− Pr[G6 = 1]| ≤ Qd · ϵ

univk+1

H̃PS,B3

(λ).

Game G8: It is the same as G7, except that, when answering decryption queries
Odec(c) for A with c = (x, d, π̃), the challenger removes the first new rejection
rule added in G3. In other words, it does not check whether τ ∈ {τ∗γ }γ∈[k] or not
anymore.

The change from G7 to G8 is symmetric to the change from G2 to G3. Similarly,
we have that |Pr[G8 = 1]− Pr[G7 = 1]| ≤ Advcr

H,B2
(λ).

Finally, we note that G8 is exactly the Expkmnc-cca-sim
KM-NCE,A,k (λ) experiment.

– For each γ ∈ [k], c∗γ := (x∗γ , d
∗
γ , π̃
∗
γ), where x∗γ ←$ X with sampling random-

ness rx∗
γ
, d∗γ ←$ Π, and π̃∗γ ←$ Π̃ with randomness rπ̃∗

γ
, the same as the c∗γ

generated by Fake(pp).
– Odec(c) queries are answered by Dec(pp, sk, c) when c /∈ {c∗γ}γ∈[k].
– In the last step, (sk′, s̃k

′
) is generated by first computing e∗γ := d∗γ −m∗γ ∈ Π

and resampling re∗γ ←$ ReSmpΠ(e∗γ) for each γ ∈ [k], then invoking sk′ ←
$ HOpenk(td, pk, sk, (x

∗
γ , rx∗

γ
, e∗γ , re∗γ)γ∈[k]) and s̃k

′
←$ H̃Openk(t̃d, p̃k, s̃k, (x

∗
γ ,

rx∗
γ
, π̃∗γ , rπ̃∗

γ
, τ∗γ)γ∈[k]) with τ∗γ := H(x∗γ , d

∗
γ), the same as Openk(pp, tk, pk, sk,

(c∗γ , rc∗γ ,m
∗
γ)γ∈[k]) where rc∗γ = (rx∗

γ
, rπ̃∗

γ
).

Thus, Pr[G8 = 1] = Pr[Expkmnc-cca-sim
KM-NCE,A,k (λ) = 1].

Taking all things together, we obtain (2), thus Theorem 2 follows. ■
Finally, we show the robustness.

Theorem 3 (Robustness of KM-NCE). The proposed KM-NCE in Fig. 7 is
robust (cf. Definition 5) with ϵrob

KM-NCE(λ) ≤ 1/|Π̃|, where Π̃ is the hash value
space of H̃PS.

Proof of Theorem 3. For pp←$ Setup(1λ), (pk, sk, tk)←$ Gen(pp), (c, td)←
$ Fake(pp), we analyze the probability ϵrob

KM-NCE(λ) = Pr[Dec(pp, sk, c) ̸= ⊥].

– For (pk, sk, tk)←$ Gen(pp), we have sk = (sk, s̃k) where s̃k←$ S̃K.
– For (c, td) ←$ Fake(pp), we have c = (x, d, π̃) where x ←$ X , d ←$ Π and

π̃ ←$ Π̃.
– Then in Dec(pp, sk, c), it first checks whether or not π̃ = Λ̃s̃k(x, τ) holds,

where τ := H(x, d), and returns ⊥ if the check fails.

Since π̃ is uniformly chosen from Π̃ and independent of x, d and s̃k, so the check
π̃ = Λ̃s̃k(x, τ) passes with probability 1/|Π̃|. Overall, we have ϵrob

KM-NCE(λ) =

Pr[Dec(pp, sk, c) ̸= ⊥] ≤ Pr[π̃ = Λ̃s̃k(x, τ)] = 1/|Π̃|. ■

Anonymous Public Key Encryption under Corruptions 23

6 Concrete Instantiations

In this section, we show concrete instantiations of key-openable HPS based on the
matrix decisional Diffie-Hellman (MDDH) assumption [10]. As a result, we can
obtain concrete instantiations of KM-NCE, which in turn yields AC-RSOk&C-
CCA secure PKE schemes with compact ciphertexts. For certain instantiation,
the resulting PKE can even achieve tight AC-RSOk&C-CCA security.

6.1 Recall: Matrix Distribution

We recall the definition of matrix distribution defined in [10].
In this section, we use bold uppercase letters to represent matrices and bold

lowercase letters to represent (column) vectors. Let GGen be a PPT algorithm
that on input 1λ returns G = (G, q, P), a description of an (additive) cyclic
group G with a generator P of order q which is a λ-bit prime. For a ∈ Zq, define
[a] := aP ∈ G as the implicit representation of a in G. More generally, for a
matrix A = (aij) ∈ Zn×m

q , we define [A] as the implicit representation of A
in G, i.e., [A] := (aijP) ∈ Gn×m. Note that from [a] ∈ G it is generally hard
to compute the value a (discrete logarithm problem is hard in G). Obviously,
given [a], [b] ∈ G and a scalar x ∈ Z, one can efficiently compute [ax] ∈ G and
[a + b] ∈ G. Similarly, for A ∈ Zm×n

q ,B ∈ Zn×t
q ,AB ∈ Zm×t

q , given [A],B
one can efficiently compute [A]B := [AB] ∈ Gm×t and given A, [B], one can
efficiently compute A[B] := [AB] ∈ Gm×t.

Definition 12 (Matrix Distribution). Let d, k ∈ N+. Dd+k,d is called a ma-
trix distribution if it outputs matrices in Z(d+k)×d

q of full rank d in polynomial
time.

As in [10], let Ud+k,d be the uniform distribution over Z(d+k)×d
q . Without loss

of generality, for A←$ Dd+k,d, we assume that A (the upper square submatrix
of A) is invertible.

Definition 13 (The Dd+k,d-Matrix Decision Diffie-Hellman Assumption,
Dd+k,d-MDDH). Let Dd+k,d be a matrix distribution. The Dd+k,d-Matrix Deci-
sion Diffie-Hellman (Dd+k,d-MDDH) Assumption holds relative to GGen if for
each PPT adversary A, the advantage

Advmddh
Dd+k,d,GGen,A(λ) := |Pr[A(G, [A], [Aw]) = 1]− Pr[A(G, [A], [u]) = 1]|

is negligible, where the probability is taken over G ←$ GGen(1λ),A ←$ Dd+k,d,
w←$ Zd

q and u←$ Zd+k
q .

As shown in [10], Dd+k,d-MDDH assumption is a generalization of a large
range of assumptions. By setting the matrix distribution Dℓ,k to specific dis-
tributions, Dd+k,d-MDDH assumption can capture DDH assumption, k-Linear
assumption, k-Cascade assumption and many other assumptions.

The MDDH assumption can be generalized into a multi-instance version. We
recall the Q-fold MDDH assumption as defined in [10].

24 Zhengan Huang, Junzuo Lai, Shuai Han, Lin Lyu, and Jian Weng

Definition 14 (Q-fold Dd+k,d-Matrix Decision Diffie-Hellman Assump-
tion). Let Q be a positive integer and Dd+k,d be a matrix distribution. The Q-fold
Dd+k,d-Matrix Decision Diffie-Hellman Assumption holds relative to GGen if for
each PPT adversary A, the advantage

AdvQ-mddh
Dd+k,d,GGen,A(λ) := |Pr[A(G, [A], [AW]) = 1]− Pr[A(G, [A], [U]) = 1]|

is negligible, where the probability is taken over G ←$ GGen(1λ),A ←$ Dd+k,d,

W←$ Zd×Q
q and U←$ Z(d+k)×Q

q .

6.2 Openablek HPS Instantiation

In this subsection, we provide a key-openable HPS instantiation with openablek
and efficient randomness resampling properties based on the MDDH assumption.
This HPS can be seen as a generalization of the DDH-based HPS in [9]. Inspired
by the technique in [12,15], we are able to make the hash value space of our HPS
to be compact and efficient randomness resamplable. Meanwhile, this does not
affect the openability of our HPS.

More precisely, fixing some group generation algorithm GGen, some positive
integers d, k, some matrix distribution Dd+k,d and some polynomial l = l(λ)
(which can be set as the desired message length of the PKE scheme), consider
HPS = (MPar,Par,Pub,Priv,HOpenk) in the following.

– MPar(1λ). The master parameter generation algorithm runs G = (G, q,
P) ← $ GGen(1λ). Let Hu = {Hu : G → {0, 1}} be a family of universal
hash functions based on group G. The algorithm selects Hu ← $ Hu and
returns mpar := (G, d, k, l,Dd+k,d,Hu) which implicitly defines the instance
space X := Gd+k with randomness space RX := Zd+k

q and the hash value
space Π := {0, 1}l with randomness space RΠ := Zl

q. Given mpar, one can ef-
ficiently sample a uniform element x from X by selecting rx = x←$ RX and
setting x := [rx] = [x]. For simplicity, we define an efficiently computable
function Hu,l : Gl → {0, 1}l where Hu,l([a]) := (Hu([a1]), · · · ,Hu([al])) for all
[a] = [a1, · · · , al] ∈ Gl. Then, one can also efficiently sample a uniform ele-
ment π from Π by selecting rπ = π ←$ RΠ and setting π := Hu,l([π]) ∈ Π.6

– Par(mpar). The (ordinary) parameter generation algorithm selects matrix
A ∈ Z(d+k)×d

q ←$ Dd+k,d, then it returns par := [A] and td := A.
The public parameter par (together with mpar) implicitly defines the lan-
guage as L := [span(A)] = {[Aw] | w ∈ Zd

q}. The hashing key space
SK := Z(d+k)×l

q and the projection key space PK := Gd×l. The projec-
tion function α maps sk = S ∈ SK to pk = [P] ∈ PK where [P] = [A⊤]S
and α is efficiently computable given par and sk. For sk = S ∈ SK, the hash

6 Actually, π is only statistical close to uniform. According to the leftover hash lemma
together with the union bound, the statistically distance between π and uniform dis-
tribution over Π is bounded by l

2

√
2
q
, which is exponentially small for polynomially

bounded l. Therefore, we omit this statistical distance here.

Anonymous Public Key Encryption under Corruptions 25

ReSmpΠ(b = (b1, · · · , bl) ∈ {0, 1}l):
//Implicit input: Hu ∈ mpar

For i ∈ {1, · · · , l}:
ri ←$ OnebitReSmp(Hu, bi)

Return r := (r1, · · · , rl)

OnebitReSmp(Hu, bi ∈ {0, 1}):
For j ∈ {1, · · · , λ}:

rj ←$ Zq

If Hu([rj]) = bi: Return rj
Return ⊥

Fig. 8 Randomness resample algorithm ReSmpΠ for hash value space Π = {0, 1}l of
the hash proof system HPS. The algorithm OnebitReSmp will return ⊥ and terminate
after λ iterations, which makes it a polynomial-time algorithm.

function Λsk(·) maps an element x = [x] ∈ X to Hu,l(S
⊤[x]) ∈ Π and it is

efficiently computable given sk and x.
Given par, one can efficiently sample a uniform element x from language
L together with a witness w by choosing w = w ← $ Zd

q and computing
x = [x] = [A]w.

– Pub(pk, x, w). Given public key pk = [P] ∈ PK, an instance x = [x] =
[Aw] ∈ L, and its witness w = w, the public evaluation algorithm outputs
π = Hu,l([P

⊤]w) ∈ Π.
– Priv(sk, x). Given secret key sk = S ∈ SK and x = [x] ∈ X , the private

evaluation algorithm outputs π = Hu,l(S
⊤[x]) ∈ Π.

– HOpenk(td, pk, sk, (xγ , rxγ , πγ , rπγ)γ∈{1,··· ,k}). Given td = A, pk = [P], sk =

S, xγ = [xγ], rxγ = xγ , πγ = Hu,l([πγ]) and rπγ = πγ ∈ Zl
q for all γ ∈ {1,

· · · , k}, the open algorithm computes sk′ = S′ ∈ Z(d+k)×l
q by solving the

following system of linear equations,

S′⊤ (A | x1 | · · · | xk) = (S⊤A | π1 | · · · | πk) mod q. (3)

Note that, given td = A and the randomnesses (rxγ
= xγ)γ∈{1,··· ,k}, one can

easily compute the square matrix M = (A | x1 | · · · | xk) ∈ Z(d+k)×(d+k)
q . If

M is invertible, one can easily compute and output S′⊤ = (S⊤A | π1 | · · · | πk)·
M−1 mod q. If M is not invertible, algorithm HOpenk outputs ⊥.

Note that the hash value space Π = {0, 1}l is an additive group with group
operation ⊕ (string xor). We define its randomness resample algorithm ReSmpΠ
in Fig. 8.

Theorem 4. The above instantiation HPS (1) is a key-openable HPS; (2) has
a hard multi-fold SMP under the multi-fold Dd+k,d-MDDH assumption (i.e., for
any PPT adversaryA, there exists a PPT adversary B such that Advk-msmp

HPS,A (λ) ≤
Advk-mddh

Dd+k,d,GGen,B(λ)); (3) is openablek and (4) supports efficient randomness re-
sampling on Π with algorithm ReSmpΠ .

We put the proof of Theorem 4 in the full version [17].

6.3 Openablek and Universalk+1 Tag-based HPS Instantiation

In this subsection, we provide a tag-based key-openable HPS instantiation with
both openablek and universalk+1 properties based on the MDDH assumption.

26 Zhengan Huang, Junzuo Lai, Shuai Han, Lin Lyu, and Jian Weng

This tag-based HPS can be seen as a generalization of the tag-based HPS from
the DDH assumption in [9]. More precisely, fixing some group generation algo-
rithm GGen, some positive integers d, k and some matrix distribution Dd+k,d,
consider instantiation H̃PS = (M̃Par, P̃ar, P̃ub, P̃riv, H̃Openk) in the following.

– M̃Par(1λ). The master parameter generation algorithm runs G = (G, q, P)←
$ GGen(1λ) and returns m̃par := (G, d, k,Dd+k,d) which implicitly defines the
instance space X := Gd+k with randomness space RX := Zd+k

q and the hash
value space Π̃ := G with randomness space RΠ̃ := Zq.7 Given mpar, one can
efficiently sample a uniform element x from X by selecting rx = x ←$ RX
and set x = [rx] = [x]. One can also efficiently sample a uniform element π̃

from Π̃ by selecting rπ̃ ←$ RΠ̃ and set π̃ = [rπ̃].
– P̃ar(m̃par). The (ordinary) parameter generation algorithm selects matrix

A ∈ Z(d+k)×d
q ←$ Dd+k,d, then it returns p̃ar := [A] and t̃d := A.

The public parameter p̃ar (together with m̃par) implicitly defines the lan-
guage as L := [span(A)] = {[Aw] | w ∈ Zd

q}.8 The hashing key space
S̃K := Z2d+2k

q and the projection key space P̃K := G2d. The projection

function α̃ maps s̃k = s =

(
s1
s2

)
∈ S̃K (where s1, s2 ∈ Zd+k

q) to p̃k = [p] =[
p1

p2

]
=

[
A⊤

A⊤

]
s ∈ P̃K (where [pi] =

[
A⊤si

]
∈ Gd for i ∈ {1, 2}) and

α̃ is efficiently computable given p̃ar and s̃k. The tag space is T := Zq. For
s̃k = s ∈ S̃K, the hash function Λ̃s̃k(·, ·) maps an element x = [x] ∈ X

together with a tag τ ∈ T to π̃ = s⊤
[
x
τx

]
=

[
s⊤1 x+ τs⊤2 x

]
∈ Π̃ and it is

efficiently computable given s̃k, x and τ .
Given p̃ar, one can efficiently sample a uniform element x from language
L together with a witness w by choosing w = w ← $ Zd

q and computing
x = [x] = [Aw].

– P̃ub(p̃k, x, w, τ). Given public key p̃k = [p], witness w = w of instance
x = [Aw] and tag τ , the public evaluation algorithm outputs the hash value

π̃ =
[
p⊤

](w
τw

)
.

– P̃riv(s̃k, x, τ). Given secret key s̃k = s, x = [x] and tag τ , the private evalua-

tion algorithm outputs π̃ = s⊤
[
x
τx

]
.

– H̃Openk(t̃d, p̃k, s̃k, (xγ , rxγ , π̃γ , rπ̃γ
, τγ)γ∈{1,··· ,k}). Given trapdoor t̃d = A,

public key p̃k = [p], secret key s̃k = s, instance xγ = [xγ] with random-
7 To get an instantiation H̃PS which satisfies the conditions of Theorem 2, H̃PS needs

to share the same universe set X with HPS. In that way, we can set (G, d, k,Dd+k,d)
in m̃par to be exactly the same with the ones in mpar.

8 Similarly, we set p̃ar := par and t̃d := td to make sure H̃PS shares the same language
L with HPS.

Anonymous Public Key Encryption under Corruptions 27

ness rxγ = xγ , hash value π̃γ = [rπ̃γ
] with randomness rπ̃γ

and tag τγ for all
γ ∈ {1, · · · , k}, the open algorithm computes s̃k

′
= s′ ∈ Z2d+2k

q by solving
the following system of linear equations.

s′⊤E = (s⊤1 A, s⊤2 A, rπ̃1
, · · · , rπ̃k

) mod q, E =

(
A x1 · · · xk

A τ1x1 · · · τkxk

)
.

(4)
Matrix E has 2d+ 2k rows and 2d+ k columns.
• If matrix (A | x1 | · · · | xk) has full column rank d + k, then matrix
E has full column rank 2d + k and there are qk possible solutions for
s′ to make Equation (4) hold. Algorithm H̃Openk selects and outputs a
uniformly random solution.

• Otherwise, algorithm H̃Openk outputs ⊥.
Note that given t̃d = A, tags (τγ)γ∈{1,··· ,k} and the randomnesses (rxγ =
xγ)γ∈{1,··· ,k}, one can easily compute the matrix E. The right hand side of

Equation (4) is also efficiently computable given s̃k =

(
s1
s2

)
and random-

nesses (rπ̃γ
)γ∈{1,··· ,k}.

Theorem 5. The above instantiation H̃PS (1) is a tag-based key-openable HPS;
(2) is universalk+1 and (3) is openablek.

We put the proof of Theorem 5 in the full version [17].

6.4 Concrete AC-RSOk&C-CCA secure PKE Instantiation

We instantiate our PKE scheme by plugging the instantiations, HPS in Section
6.2 and H̃PS in Section 6.3, into the generic KM-NCE construction in Fig. 7.
By Theorem 1, we immediately get a PKE instantiation that can achieve AC-
RSOk&C-CCA security in the standard model with compact ciphertexts. If we
set the matrix distribution Dd+k,d (i.e., the matrix distribution used to sample
matrix A by the key generation algorithm Gen) to be uniform matrix distribution
Ud+k,d, the resulting PKE can achieve tight AC-RSOk&C-CCA security.

Fixing some group generation algorithm GGen, some positive integers d, k,
some matrix distribution Dd+k,d and some polynomial l = l(λ), the instantiation
PKE = (Setup,Gen,Enc,Dec) with message space {0, 1}l is shown in Fig. 9. This
scheme can be viewed as a generalization of the DDH-based scheme in [12, Fig.
3] and both schemes are variants of the Cramer-Shoup encryption scheme [9].

We can see that, for the PKE scheme in Fig. 9, the ciphertext length is
(d + k + 1) × |G| + l for messages of length l and the ciphertext overhead is
the size of a constant number of group elements (since d and k are both fixed
constants), which is also independent of the message length. This suggests that
the PKE instantiation in Fig. 9 has compact ciphertexts [15,12].

We note that our PKE can achieve tight AC-RSOk&C-CCA security for cer-
tain instantiation. Taking a closer look at the AC-RSOk&C-CCA security of our

28 Zhengan Huang, Junzuo Lai, Shuai Han, Lin Lyu, and Jian Weng

Setup(1λ) :

G := (G, q, P)←$ GGen(1λ)
Hu ←$ {Hu : G→ {0, 1}}
H ←$ {H : Gd+k × {0, 1}l → Zq}

Return pp := (G, d, k, l,Dd+k,d,Hu, H)

Gen(pp) :

A ∈ Z(d+k)×d
q ←$ Dd+k,d

S←$ Z(d+k)×l
q ,P := A⊤S

s1, s2 ←$ Zd+k
q

p1 := A⊤s1,p2 := A⊤s2
pk := ([A], [P], [p1], [p2])

sk := (S, s1, s2)

Return (pk, sk)

Enc(pp, pk,m) :

w ←$ Zd
q , x := [A]w ∈ Gd+k

d := Hu,l([P
⊤]w)⊕m ∈ {0, 1}l

τ := H(x, d) ∈ Zq

π̃ := [p⊤
1]w + τ [p⊤

2]w ∈ G
Return c := (x, d, π̃)

Dec(pp, sk, c) :

Parse c = (x = [x], d, π̃)

τ := H(x, d) ∈ Zq

If π̃ ̸= s⊤1 [x] + τs⊤2 [x]: Return ⊥
Return m := d⊕ Hu,l(S

⊤[x])

Fig. 9 Concrete AC-RSOk&C-CCA secure PKE instantiation.

MDDH-based PKE instantiation, we obtain the following inequality by combin-
ing Eq. (1) in Theorem 1, Eq. (2) in Theorem 2 and Theorem 4 together.

Advac-rso&c-cca
PKE,A,S,D,n,t,k(λ) ≤ n ·Advkmnc-cca

KM-NCE,B′,k(λ) + n · t · k · ϵrob
KM-NCE(λ)

≤ n ·Advk-mddh
Dd+k,d,GGen,B1

(λ) + 2n ·Advcr
H,B2

(λ) + 2Qdn · ϵ
univk+1

H̃PS,B3

(λ) + 2n · ϵopenk

HPS,B4
(λ)

+ 2n · ϵopenk

H̃PS,B5

(λ) + 2kn · ϵΠ-resmp
HPS (λ) + n · t · k · ϵrob

KM-NCE(λ). (5)

The 2Qdn ·ϵ
univk+1

H̃PS,B3

(λ)+ 2n ·ϵopenk

HPS,B4
(λ)+2n ·ϵopenk

H̃PS,B5

(λ)+2kn ·ϵΠ-resmp
HPS (λ)+

n · t · k · ϵrob
KM-NCE(λ) part in equation (5) does not affect tightness of the reduc-

tion since it is statistically small. Only reductions to computational properties
matter to tightness of the reduction, i.e., the term n ·Advk-mddh

Dd+k,d,GGen,B1
(λ)+2n ·

Advcr
H,B2

(λ). This security loss n and 2n are introduced because 1) in the proof
of Theorem 1 (KMNCk-CCA + robustness ⇒ AC-RSOk&C-CCA), we handle
one user at a time with n game transitions (cf. Lemma 1), and in each transi-
tion, a term Advkmnc-cca

KM-NCE,B′
1,k

(λ) is incurred; 2) according to Theorem 2, the term
Advkmnc-cca

KM-NCE,B′
1,k

(λ) contains Advk-msmp
HPS,B′′

1
(λ) + 2 ·Advcr

H,B2
(λ); and 3) according

to Theorem 4, Advk-msmp
HPS,B′′

1
(λ) ≤ Advk-mddh

Dd+k,d,GGen,B1
(λ).

Alternatively, if we set the matrix distribution to be uniform matrix distribu-
tion (i.e., Dd+k,d := Ud+k,d), we can avoid such security loss by integrating the
proofs of Theorem 1, Theorem 2 and Theorem 4. We can handle the n reductions
to the k-fold Ud+k,d-MDDH assumption (i.e., n ·Advk-mddh

Ud+k,d,GGen,B1
(λ)) and the

2n reductions to the collision-resistance of H (i.e., 2n · Advcr
H,B2

(λ)) for all n
users at one time (while keeping the reductions to other statistical properties
unchanged, namely one user at a time). Specifically,

– we can change all the kn ciphertexts (of all n users) at one time, corre-
sponding to the game transition G1 to G2 in the proof of Theorem 2, and the
indistinguishability can be reduced to the Ud+k,d-MDDH assumption using
Lemma 5 in below;

Anonymous Public Key Encryption under Corruptions 29

– we can handle collisions of all users at one time, corresponding to the game
transitions G2 to G3 and G7 to G8 in the proof of Theorem 2.

With this strategy, we obtain a tight reduction with Advmddh
Ud+k,d,GGen,B1

(λ) +

2 · Advcr
H,B2

(λ), instead of n · Advk-mddh
Ud+k,d,GGen,B1

(λ) + 2n · Advcr
H,B2

(λ), to the
computational properties. Thus, the PKE scheme enjoys tight security reduction.

Lemma 5. For any adversary A, any positive integer d, k, n, any matrix dis-
tribution Dd+k,d and any group generation algorithm GGen, we define the ad-
vantage Adv

(n,k)-mddh
Dd+k,d,GGen,A(λ) := |Pr[A(G, ([Ai], [Xi])

n
i=1) = 1] − Pr[A(G, ([Ai],

[X′i])
n
i=1) = 1]| where G ←$ GGen(1λ),Ai ←$ Dd+k,d,Wi ←$ Zd×k

q ,Xi := AiWi

and X′i ←$ Z(d+k)×k
q for all i ∈ {1, · · · , n}. Then, for any PPT adversary A and

uniform matrix distribution Ud+k,d, there exists a PPT adversary B such that

Adv
(n,k)-mddh
Ud+k,d,GGen,A(λ) ≤ Advmddh

Ud+k,d,GGen,B(λ) +
k + 1

q − 1
.

We put the proof of Lemma 5 in the full version [17].

Acknowledgment. We appreciate the anonymous reviewers for their valuable
comments. This work was supported by National Natural Science Foundation of
China (Grant Nos. 61922036, U2001205, 62002223, 61825203), Major Program of
Guangdong Basic and Applied Research Project (Grant No. 2019B030302008),
National Joint Engineering Research Center of Network Security Detection and
Protection Technology, Guangdong Key Laboratory of Data Security and Pri-
vacy Preserving, Guangdong Provincial Science and Technology Project (Grant
No. 2021A0505030033), Shanghai Sailing Program (20YF1421100), Young Elite
Scientists Sponsorship Program by China Association for Science and Technol-
ogy (YESS20200185), and the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation programme (Grant agree-
ment 802823).

References

1. Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption. In TCC
2010, pages 480–497. Springer, 2010.

2. Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-
privacy in public-key encryption. In ASIACRYPT 2001, pages 566–582. Springer,
2001.

3. Mihir Bellare, Rafael Dowsley, Brent Waters, and Scott Yilek. Standard security
does not imply security against selective-opening. In EUROCRYPT 2012, pages
645–662. Springer, 2012.

4. Mihir Bellare and Igors Stepanovs. Security under message-derived keys: Signcryp-
tion in imessage. In EUROCRYPT 2020, pages 507–537, Cham, 2020. Springer.

5. Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo
Krawczyk, Chengyu Lin, Tal Rabin, and Leonid Reyzin. Can a public blockchain
keep a secret? In TCC 2020, pages 260–290. Springer, 2020.

30 Zhengan Huang, Junzuo Lai, Shuai Han, Lin Lyu, and Jian Weng

6. Florian Böhl, Dennis Hofheinz, and Daniel Kraschewski. On definitions of selective
opening security. In PKC 2012, pages 522–539. Springer, 2012.

7. Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-
party computation. In STOC 1996, pages 639–648, 1996.

8. Ran Canetti, Shai Halevi, and Jonathan Katz. Adaptively-secure, non-interactive
public-key encryption. In TCC 2005, pages 150–168. Springer, 2005.

9. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for
adaptive chosen ciphertext secure public-key encryption. In EUROCRYPT 2002,
pages 45–64, 2002.

10. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An
algebraic framework for Diffie-Hellman assumptions. In CRYPTO 2013, pages
129–147. Springer, 2013.

11. Shuai Han, Shengli Liu, Lin Lyu, and Dawu Gu. Tight leakage-resilient CCA-
security from quasi-adaptive hash proof system. In CRYPTO 2019, pages 417–447.
Springer, 2019.

12. Keisuke Hara, Fuyuki Kitagawa, Takahiro Matsuda, Goichiro Hanaoka, and
Keisuke Tanaka. Simulation-based receiver selective opening CCA secure PKE
from standard computational assumptions. In SCN 2018, pages 140–159. Springer,
2018.

13. Ryotaro Hayashi and Keisuke Tanaka. The sampling twice technique for the RSA-
based cryptosystems with anonymity. In PKC 2005, pages 216–233. Springer, 2005.

14. Carmit Hazay, Arpita Patra, and Bogdan Warinschi. Selective opening security
for receivers. In ASIACRYPT 2015, pages 443–469. Springer, 2015.

15. Dennis Hofheinz, Tibor Jager, and Andy Rupp. Public-key encryption with
simulation-based selective-opening security and compact ciphertexts. In TCC 2016,
pages 146–168. Springer, 2016.

16. Zhengan Huang, Junzuo Lai, Wenbin Chen, Man Ho Au, Zhen Peng, and Jin Li.
Simulation-based selective opening security for receivers under chosen-ciphertext
attacks. Designs, Codes and Cryptography, 87(6):1345–1371, 2019.

17. Zhengan Huang, Junzuo Lai, Shuai Han, Lin Lyu, and Jian Weng. Anonymous pub-
lic key encryption under corruptions. Cryptology ePrint Archive, Paper 2022/1176.

18. Dingding Jia, Xianhui Lu, and Bao Li. Receiver selective opening security from
indistinguishability obfuscation. In INDOCRYPT 2016, pages 393–410. Springer,
2016.

19. Dingding Jia, Xianhui Lu, and Bao Li. Constructions secure against receiver se-
lective opening and chosen ciphertext attacks. In CT-RSA 2017, pages 417–431.
Springer, 2017.

20. Youngkyung Lee, Dong Hoon Lee, and Jong Hwan Park. Tightly CCA-secure
encryption scheme in a multi-user setting with corruptions. Designs, Codes and
Cryptography, 88(11):2433–2452, 2020.

21. Payman Mohassel. A closer look at anonymity and robustness in encryption
schemes. In ASIACRYPT 2010, pages 501–518. Springer, 2010.

22. Baodong Qin, Shengli Liu, and Kefei Chen. Efficient chosen-ciphertext secure
public-key encryption scheme with high leakage-resilience. IET Information Secu-
rity, 9(1):32–42, 2015.

23. Rupeng Yang, Junzuo Lai, Zhengan Huang, Man Ho Au, Qiuliang Xu, and Willy
Susilo. Possibility and impossibility results for receiver selective opening se-
cure PKE in the multi-challenge setting. In ASIACRYPT 2020, pages 191–220.
Springer, 2020.

	Anonymous Public Key Encryption under Corruptions
	Introduction
	Preliminaries
	Anonymity and Confidentiality under Corruptions
	Anonymity under Corruptions
	Confidentiality under Corruptions
	Combining Anonymity and Confidentiality under Corruptions

	AC-RSOk&C Secure PKE from KM-NCE
	Key and Message Non-Committing Encryption
	Generic Construction of AC-RSOk&C Secure PKE from KM-NCE

	KM-NCE from Key-Openable Hash Proof System
	Recall: Hash Proof System
	Key-Openable HPS
	Generic Construction of KM-NCE from Key-Openable HPS

	Concrete Instantiations
	Recall: Matrix Distribution
	Openablek HPS Instantiation
	Openablek and Universalk+1 Tag-based HPS Instantiation
	Concrete AC-RSOk&C-CCA secure PKE Instantiation

