Privacy-Preserving Authenticated Key Exchange
in the Standard Model

You Lyu®2?®, Shengli Liu"?*®)®, Shuai Han??®, and Dawu Gu'

! Department of Computer Science and Engineering
Shanghai Jiao Tong University, Shanghai 200240, China
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
3 School of Cyber Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China
4 Westone Cryptologic Research Center, Beijing 100070, China
{vergil,slliu,dalenl7,dwgu}@sjtu.edu.cn

Abstract. Privacy-Preserving Authenticated Key Exchange (PPAKE)
provides protection both for the session keys and the identity information
of the involved parties. In this paper, we introduce the concept of robust-
ness into PPAKE. Robustness enables each user to confirm whether itself
is the target recipient of the first round message in the protocol. With
the help of robustness, a PPAKE protocol can successfully avoid the
heavy redundant communications and computations caused by the am-
biguity of communicants in the existing PPAKE, especially in broadcast
channels.

We propose a generic construction of robust PPAKE from key encapsu-
lation mechanism (KEM), digital signature (SIG), message authentication
code (MAC), pseudo-random generator (PRG) and symmetric encryp-
tion (SE). By instantiating KEM, MAC, PRG from the DDH assumption
and SIG from the CDH assumption, we obtain a specific robust PPAKE
scheme in the standard model, which enjoys forward security for ses-
sion keys, explicit authentication and forward privacy for user identities.
Thanks to the robustness of our PPAKE, the number of broadcast mes-
sages per run and the computational complexity per user are constant,
and in particular, independent of the number of users in the system.

Keywords: Authenticated key exchange - Privacy - Robustness.

1 Introduction

Authenticated Key Exchange (AKE) enables two parties to authenticate each
other and compute a shared session key. It has been widely deployed over Inter-
net, like IPsec IKE (Internet Key Exchange), TLS, Tor, Google’s QUIC proto-
col, etc. Generally, AKE focuses on the protection of session keys between two
parties against adversaries implementing both passive and active attacks. As
a well-studied topic, a variety of AKE schemes have been proposed, but little
attention was paid to privacy of user identities in AKE. The research on Privacy-
Preserving AKE (PPAKE) was ignited by the chasing of privacy protection. For

https://orcid.org/0000-0002-8148-3643
https://orcid.org/0000-0003-1366-8256
https://orcid.org/0000-0002-8156-7089
https://orcid.org/0000-0002-0504-9538

2 Y. Lyu et al.

instance, SKEME [14], TLS 1.3 [3]|, Tor [8] and private airdrop [12] all take
user privacy as one of important design principles. Recently two proposals for
PPAKE arise [20,19], aiming to provide protection for user identity besides their

session keys. Next we overview the recent two works, namely SSL-PPAKE [20]
and RSW-PPAKE [19].

SSL-PPAKE. In [20], Schéige, Schwenk, and Lauer (SSL) isolated a generic
PPAKE construction from TLS 1.3, QUIC, IPsec IKE, SSH and certain patterns
of NOISE to achieve user identity protection. We name it SSL-PPAKE.

SSL-PPAKE |[20] has 4 rounds. In the first two rounds, P; and P; run a basic
Diffie-Hellman (DH) handshake to obtain a shared DH key K = ¢*Y. In the
last two rounds, P; and P; use the shared DH key K = g®¥ to protect protocol
messages that contain identity-related data such as identities, public keys or
digital signatures. As pointed out in [20], due to the lack of authenticity in the
first two rounds, the SSL-PPAKE suffers a weakness on preserving the privacy
of initiator’s identity. More precisely, let us consider a broadcast channel with p
users as an example. First we identify three facts about SSL-PPAKE.

Fact 1. In the 1st round, to protect the identity of its intended target recipient
P;, initiator P; has to broadcast g” in the system. As a result, every user is
able to receive g”.

Fact 2. In the 2nd round, every user P;, has to respond to P; by broadcasting
gY¥x, here ji € [p] \ {i}, since P}, is uncertain about the intended recipient.

Fact 3. In the 3rd round, P; receives all the messages {g¥ix }jke[ﬂ]\{i}, but it is
not able to identify the right message sent from the intended party P; and
has to computes all DH keys {K; j, = g*%x };, c1u\{i}- Consequently, P; has
to encrypt the message in the third round with each K; ;, individually to
obtain p — 1 ciphertext C;, = SE.Enc(Kj j,,|pki|auth;) and broadcast the
1 — 1 ciphertexts to all users. Here SE.Enc denotes a symmetric encryption
algorithm, and auth; denotes the authentication part of the protocol.

Now let us see how an adversary reveals the identity of the initiator. After
receiving g% from P;, the adversary can simply select § and send g7 to P;.
According to the facts, P; will broadcast C' = SE.Enc(K = ¢*, i|pk;|auth;) in
the 3rd round. Then the adversary can compute K = (g%)? and easily decrypt
C with K to obtain the identity information i|pk;.

RSW-PPAKE. To deal with the active attacks on the SSL-PPAKE scheme,
Ramacher, Slamanig and Weninger (RSW) [19] proposed three solutions in the
Random Oracle model.> The first one has 3 rounds and assumes pre-shared
key between every pair of users. It resorts to the pre-shared key to accomplish
authentication. The third one converts an AKE to a PPAKE by encrypting every
message of AKE with communication peer’s public key. However, it does not
achieve forward privacy for user identities. If any user’s secret key is corrupted,
the adversary can break forward privacy by decrypting the ciphertexts in the

5 No security proofs are provided for the three schemes in [19] and its full-version is
still not available.

Privacy-Preserving Authenticated Key Exchange in the Standard Model 3

previous runs to reveal the used identities. The second solution has 4 rounds
and does not possess forward privacy when the responder is corrupted. Here we
recall the second scheme and show the weakness on its forward privacy.

— In the first two rounds, similar to SSL-PPAKE, a Diffie-Hellman handshake
is implemented to share key K = g*¥ between P; and P;. Meanwhile, P; has
to handshake with every P;, and share K; j, = ¢™¥/x with P;,, jr € [p]\ {4}

— In the 3rd round, P; uses P;’s public key pk; to encrypt a random string r and
obtains C' = PKE.Enc(pk;,), where PKE.Enc denotes a public-key encryp-
tion algorithm. Then it uses K to encrypt C to obtain a ¢y = SE.Enc(K, C).
P; signs i|jlcolg®|g¥ to get the signature o; and encrypts its certificate
cert; and o; with a derived key K' = H(K,r, g%, ¢Y), resulting in ¢; =
SE.Enc(K’, cert;|o;). In the real scenario, P; cannot identify the right K from
{Ki j, }juelu\{i}> thus has to use each K j, to obtain (coj,,c1,5,). Finally,
P; broadcasts {(co j,, c1,5,) } joe[u\{i} to all users.

— In the 4th round, each user ji, decrypts every pair in {(co j,, 1,5,)}, €lul\{i}
with its Diffie-Hellman key K, ;, = ¢*¥, trying to recover cert;|o;. Only
the right responder P; can certify the validity of cert;|o; and recover r.
After that, P; knows its partner is F;. Then P; broadcasts the hash value
h:= H(r,i|j|lg"|g¥|colc1) to P;.

— Finally, P; checks if h = H(r,i|j]|g"|g¥|co|c1) holds (to authenticate P;).

The attack is similar to that on SSL-PPAKE but here on forward privacy of
RSW-PPAKE. After receiving ¢* from P;, the adversary A can simply select g
and send ¢? to P;. Then A also shares a key K= ¢*¥ with P;. In the second phase,
there must exist (co, 1) € {(co,ji»C1,j1.) }jrelu)\ i} Such that (co,¢1) is computed
with K. So A can always recover C' = SE.Dec(K, ¢). Later A corrupts P; and ob-
tains sk;. Then A decrypts C with sk; to recover » = PKE.Dec(sk;, C'). Finally A
can identify P;, P; by finding 1, j, co ;, c1,; such that h = H(r,i|j]|g%|gY|co jlc1,5)-

Our Approach to PPAKE. From the above analysis, we know that the SSL-
PPAKE provides no protection for the initiator’s identity, and the RSW-PPAKE
loses forward privacy for identities of both the initiator and the responder when
the responder is corrupted.

The reason for the attacks lies in the facts that each user replies the initiator
and the initiator cannot identify the message sent from the intended peer in the
2nd round. Thus the initiator has to reply messages to each individual user in
the third round. This leaks too much information, of which the adversary can
take advantage to break privacy of PPAKE, as shown before.

At the same time, these facts also lead to another drawback: the communi-
cation band of the protocol is as large as O(u) and each user’s computational
complexity is as high as O(u), since each user has to compute or deal with p—1
messages in the 3rd round. Here p is the number of users in the system.

In this paper, we study how to avoid the above attacking problems and
improve efficiency of PPAKE. Our idea in a nutshell is to make PPAKE robust.

4 Y. Lyu et al.

SSL/RSW-PPAKE

Yiy
S () P, P,
P; j : B j2 i
Pi .)) gx J Pi ﬁ ((('P] Pi 0)) {Cik}ike[#] ! Pi C (((. P]
H gyfu ‘ : :
N < (en, B, B,
1
@ @) ©) (C)]
Our-PPAKE
P, Py A
P, : H
) e en na)
B, B, P,
@ @) ©)

Fig.1: The upper part is the information flows of rounds (1)(2)(3)(4) in SSL-
PPAKE and RSW-PPAKE [20,19]. The lower part is the information flows of
rounds (1)(2)(3) in our robust PPAKE. Here the parties communicate over a
broadcast channel.

Robustness of PPAKE. We introduce the concept of robustness. It requires that
only one party P; is able to ascertain that the message in the 1st round is for
him /her, hence correctly reply a message in the 2nd round.

Our robust PPAKE makes use of a key encapsulation mechanism KEM, a sig-
nature scheme SIG, a message authentication code MAC, a pseudo-random gen-
erator PRG and a symmetric encryption SE. The public/secret key pair (pk, sk)
of KEM and the verification/signing key (vk, ssk) of SIG serve as the long-term
key of a user. Our PPAKE has 3 rounds and is shown below.

Round 1 (P; = P;): P, broadcasts g” and a ciphertext C' to P;, where (C, N) «
KEM.Encap(pk;) with N the key encapsulated in C.

Round 2 (P, < P;): P; decrypts C with its secret key sk; to recover N, then
it uses N as the MAC key to compute a MAC tag o1 = MAC(N, ¢*|C). P;
broadcasts (g¥,01). We require that when decrypting C, only P; succeeds
and all other parties will get a special failure symbol L, which is guaranteed
by the robustness of KEM (see more details later). Consequently, only P;
responds in this round, and all other parties (except P; and P;) will terminate
the protocol in time.

Round 3 (P, = P;): P; checks the validity of o1 and computes the Diffie-
Hellman key K = ¢g”¥. Furthermore, it derives a session key k and a sym-
metric key &’ from K via (k, k') < PRG(K). It signs the message ¢*|C|o1|g¥
to get the signature oy. Then it uses k' to encrypt its identity ¢ and o5 to
obtain ¢ < SE.Enc(k/,i|o3). P; broadcasts c.

Privacy-Preserving Authenticated Key Exchange in the Standard Model 5

Similarly, P; can obtain (k,k’) from K and decrypt ¢ to get i|os. By
checking the validity of oy with P;’s verification key vk;, P; ascertains its
partner’s identity ¢ and accepts k as the session key.

We refer to Fig. 5 in Section 4 for the details of our PPAKE construction. Below
is a high-level analysis of our PPAKE.

— Robustness. For the robustness of PPAKE, we require that the underlying
KEM is robust in such a sense: if C' is generated with pk;, then decrypting
C with any other secret key sk;, will result in a decryption failure.

— FEzplicit mutual authentication. The authenticity of P; is guaranteed by KEM
and MAC, and the authenticity of P; is guaranteed by SIG. Hence our PPAKE
has explicit mutual authentication.

— Forward security for session keys. After excluding active attacks by authen-
ticity, K = ¢”¥ is pseudo-random by the DDH assumption. Hence, the session
key k, as output of PRG, is pseudo-random as well. Thanks to the ephemeral
randomness of x and y, session keys have forward security.

— Privacy for user identities. The privacy for user identities relies on KEM and
SE. We require that C' does not leak information about pk; computationally,
and this is formalized by IK-CCA security. As a function output of C, oy
does not leak any information either. Meanwhile, g* and ¢¥ are randomly
chosen and independent of i and j. Moreover, ciphertext ¢ protects ¢ and
P;’s signature os. Therefore, identity information ¢, j is well-protected.

— Forward privacy for user identities. The forward privacy holds if the initia-
tor P; is corrupted by A, since the knowledge of the signing key ssk; does
not help A to learn user’s identity in previous runs of PPAKE (recall that
the user privacy is guaranteed by KEM and SE). On the other hand, if the
responder P; is corrupted by A, because of the robustness, the knowledge
of sk; can help A to identify j as long as decrypting C' in the previous runs
of PPAKE does not result in decryption failure. This suggests that the dis-
closure of responder’s identity j is unavoidable due to the robustness of our
PPAKE in the case of responder corruption. However, the initiator’s iden-
tity 4 is still well-protected. Therefore, our PPAKE achieves semi-forward
privacy when the responder P; is corrupted and full forward privacy when
the initiator P; is corrupted.

— Constant communication and computational complexity. Thanks to the ro-
bustness of our PPAKE, the number of broadcast messages per run and the
computational complexity per user are constant in our PPAKE, while those
in the SSL-PPAKE and RSW-PPAKE schemes are linear to the number p
of users.

Our contribution. We summarize our contribution in this paper. We intro-
duce the concept of robustness into PPAKE, and present a formalized security
model for robust PPAKE. In the security model, we consider adversary’s passive
attacks, active attacks, corruptions of users’ long-term keys, and revealing of
session keys. Based on the security model, we define user authenticity, forward
security for session keys, and forward privacy for user identities.

6 Y. Lyu et al.

We propose a generic construction of 3-round robust PPAKE from KEM, SIG,
MAC, PRG and SE. By instantiating KEM, MAC, PRG from the DDH assumption
and SIG from the CDH assumption (together with a one-time pad SE), we obtain
a specific PPAKE scheme in the standard model.

— Our PPAKE scheme enjoys explicit mutual authentication, forward security

for session keys and forward privacy for user identities, and resists those
attacks on SSL-PPAKE and RSW-PPAKE.

— Our PPAKE scheme is efficient in the sense that both the communication
complexity of the protocol and the computational complexity per user is
independent of the number of users, thanks to its robustness.

The comparison of our scheme with other PPAKE schemes is shown in Table 1.

Table 1: Comparison among the PPAKE schemes, where pu refers to the number
of users. Comm denotes the communication complexity of the protocols in terms
of the number of group elements. Comp denotes the computational complexity
per user, where O(p) means that Comp is linear to p and O(1) means that
Comp is independent of . “#” denotes the number of rounds in the protocol.
Forward Security is for session keys, where “weak” prevents adversary from
modifying the messages sent by the two parties. Privacy denotes the privacy
of user identity in case of no user corruption. Forward Privacy denotes the
forward privacy of user identity. Crpl denotes forward privacy when initiator is
corrupted. CrpR denotes forward privacy when responder is corrupted. I (R)
checks whether the privacy of initiator’s (responder’s) identity is preserved. Mu-
tual Auth denotes whether the PPAKE scheme achieves mutual authentication.
Std denotes whether the security of PPAKE is proved in the standard model.

. Forward Privacy
Egggf’s Comm|Comp|# ggzrlviig Privacy Crpl CrpR h&ulftllf 1 Std
I/R|I | R |TI|R
IY[13] 6 O(1) |2] weak |V | x |V | X [V | X X v
SKEME(14]| 16 o) |3 v VIV x| x| x| x v X
SSL[20] 5u O(p) |4 v X| vV | x| vV | x|V v v
RSWI[19] |7u—5] O(u) |4 v VIV VIV | x| x v X
Ours 12 o) |3 v VIV VIV V] X v v

On Modeling (Forward) Privacy in PPAKE. Our PPAKE works not only
for broadcast channel, but also for any public channel, as long as the identifiers
like IP or MAC addresses leak no identity information (as considered in [20] and
[19]). In these channels, after receiving a message from an initiator, every user
may give a response when not aware whether itself is the target recipient.
Some of previous works [21,15,1,2] consider the settings of pre-shared sym-
metric long-term keys (or passwords) among each pair of users. In this setting, it

Privacy-Preserving Authenticated Key Exchange in the Standard Model 7

is easy to achieve authentication, but the assumption is too strong. Most recent
work [13] considered a special client-server setting, where client has no long-term
key. In this case, the client can be perfectly anonymous but authentication for
client is lost.

Our security model, like the security models of SSL-PPAKE [20] and RSW-
PPAKE [19], considers that many parties communicate over a public channel.
However, We consider a more comprehensive scenario than [20] [19].

Recall that [20] [19] consider the scenario in which the sender and respon-
der in PPAKE are agent servers, and behind each server sits many users. The
adversary implements passive and active attacks over the channel between the
sender (agent server) and receiver (agent server) but has no access to the chan-
nel between the agent server and the end users. The privacy for user identity
in [20] [19] essentially said that the adversary cannot tell which user the agent
server is delegating during the communications. In our paper, we are consider-
ing intact end-to-end user communications rather than limited communications
between agent servers. For the sake of privacy protection, messages must not
contain user identity explicitly, hence have to be broadcasted to all end users.
Each end user may respond the message even if she/he is not the target recipi-
ent. Consequently, the initiator may have to deal with a pile of messages from
different recipients. Covering end-to-end user communications must consider ad-
versary accessing the channel connecting the end users. Hence, our security model
allows adversary’s eavesdropping, message insertion/modification/deletion over
the broadcast channel which connects end-users. Moreover, as pointed out in
[20], their security model only guarantees the privacy of user identities in ac-
cepted sessions. Our model also protects user privacy for incomplete sessions
and failed sessions.

We stress that our model protects the forward privacy of user identities as
much as possible while achieving robustness. To achieve robustness, the first
message must be tied to the responder’s long term secret key. Once the respon-
der is corrupted, the adversary can identify whether the responder has received
messages (but may still do not know the identity of the initiator). Hence, the
forward privacy for responder when itself is corrupted is mutually exclusive with
the robustness of PPAKE. Consequently, the best forward privacy for robust
PPAKE to achieve is semi-forward privacy when the responder is corrupted and
full forward privacy when the initiator is corrupted. As shown in Table 1, our
PPAKE scheme achieves the best forward privacy as a robust PPAKE, and pro-
vides 3 out of 4 kinds of forward privacy, which is the most compared with other
PPAKE schemes.

2 Preliminary

Let () denote an empty string. If x is defined by y or the value of y is assigned
to z, we write x := y. For p € N, define [p] :== {1,2,..., u}. Denote by = <—s X
the procedure of sampling = from set X uniformly at random. Let |X’| denote
the number of elements in X'. All our algorithms are probabilistic unless states

8 Y. Lyu et al.

otherwise. We use y < A(z) to define the random variable y obtained by exe-
cuting algorithm A on input z. We use y € A(z) to indicate that y lies in the
support of A(x). We also use y « A(z;7) to make explicit the random coins r
used in the probabilistic computation. If X and Y have identical distribution,
we simply denote it by X =Y.

In the full version [18], we review the definition of digital signature and its
security notion of strongly existential unforgeability (SEUF-CMA), the definition
of message authentication code (MAC) and its security notion of strongly exis-
tential unforgeability (SEUF-CMA), the definition of pseudo-random generator
(PRG) and its pseudo-randomness, and the definition of ciphertext diversity and
semantic security of symmetric encryption (SE).

2.1 Key Encapsulation Mechanism

Definition 1 (KEM). A key encapsulation mechanism (KEM) scheme KEM =
(KEM.Setup, KEM.Gen, Encap, Decap) consists of four algorithms:

— KEM.Setup : The setup algorithm outputs public parameters ppxgm, which
determines an encapsulation key space K, a public key space PIC, a secret
key space SK, and a ciphertext space CT .

- KEM.Gen : Taking ppxem as input, the key generation algorithm outputs a
pair of public key and secret key (pk, sk) € PK x SK.

— Encap(pk) : Taking pk as input, the encapsulation algorithm outputs a pair
of ciphertext C € CT and encapsulated key K € K.

— Decap(sk,C) : Taking as input sk and C, the deterministic decapsulation
algorithm outputs K € KU {L}.

The correctness of KEM requires that for all ppxgm € KEM.Setup, (pk, sk) €
KEM.Gen(ppkem), and (C, K) € Encap(pk), it holds that Decap(sk,C) = K.

We recall the IND-CPA and IND-CCA security of KEM.

Definition 2 (IND-CPA /IND-CCA Security for KEM). For a key encap-
sulation mechanism KEM, the advantage functions of an adversary A are defined

by Advigem (A) == ’Pr [ExpﬁE@,‘?A = 1} —Pr [Exp&E’ﬁﬂ'}A = 1} ‘ and Adviem (A) =
Pr [Exp&%’&'& = 1} — Pr {Exp&%ﬁ‘ﬂ’h = 1}
Exp&(E:’,\A,,'}L‘ forb € {0,1} are defined in Figure 2. The IND-CPA/IND-CCA secu-
rity for KEM requires Adviem (A) /Advim (A) = negl(\) for all PPT A.

, where the experiments Exp&Eﬁﬂ'f’A and

We recall the security notion indistinguishability of keys under chosen-ciphertext
attack (IK-CCA Security) formalized by Bellare et al. in [5].

Definition 3 (IK-CCA Security for KEM). For a key encapsulation mecha-

nism KEM, the advantage function of an adversary A is defined with AdeE',E:,,CA(A) =

Pr [Exp{&ffﬁ’o = 1} —Pr {Exp'ﬁ;’,\%ﬁ’l = 1} ‘, where the experiment Exp%ﬁ&?ﬁ'b

forbe éO, 1} is defined in Figure 3. The IK-CCA security for KEM requires that
Adviey " (A) = negl(\) for all PPT A.

Privacy-Preserving Authenticated Key Exchange in the Standard Model 9

Expiin 4 RS : Obic(C):

PPrem < KEM.Setup; (pk, sk) + KEM.Gen(ppyem) If C = C*: Return L
(C*, K§) + Encap(pk); K+ K K < Decap(sk,C)
b — A Cpae) (pk,C™, K7}) Return K

Return b’

Fig. 2: The IND-CPA security experiment Exp&E’ﬁ,}}’A and the IND-CCA security

experiment Expﬁ%f,{& of KEM, where in the latter the adversary can query the

decapsulation oracle Opge().

Excp!-CCAb. Osho (C):

“XPKEM, A * If C = C”: Return L
PPkem < KEM.Setup K <+ Decap(sko, C)
(pko, sko) < KEM.Gen(ppyem) Return K

(pk1, sk1) < KEM.Gen(ppyem) O, (O):

(C*, K*) < Encap(pks) If C =C*: Return L
b* = A%k 1Ok O (pho, py, C, K*) K « Decap(sk1,C)
Return b* Return K 7

Fig. 3: The IK-CCA security experiment Exp:bE',sfﬁ'b.

Next we introduce the robustness and encapsulated key uniformity of KEM.

Definition 4 (Robustness of KEM). A key encapsulation mechanism KEM
has robustness if for all ppxem € KEM.Setup(1?), it holds that

(pk1, sk1) < KEM.Gen(ppyew);

Pr (pk2, sk2) < KEM.Gen(ppyem); C1 < Encap(pki)

: Decap(skz2,C1) # L| = negl(N).

Definition 5 (Encapsulated Key Uniformity of KEM). A key encap-
sulation mechanism KEM has encapsulated key uniformity if for all ppxem €
KEM.Setup(1%), it holds that

- Vr € R, it holds that

{K|r' +s R/, (pk, sk) + KEM.Gen(ppyem; '), (C, K) + Encap(pk;r)} = {K|K +s K},
— Y(pk, sk) € KEM.Gen(ppkgm), it holds that
{K|r +s R, (C,K) + Encap(pk;r)} = {K|K +s K},
where R, R’ are the randomness spaces involved in Encap and Gen respectively.

Definition 6 (v-PK-Diversity of KEM). A key encapsulation mechanism
KEM has ~y-pk-diversity if for all ppxgm € Setup(1?), it holds that

r s R; (pk, sk) <—s KEM.Gen(ppkem; 7);

Priv R; (pk', sk') s KEM.Gen(ppkem; ™)

cpk =pk'| =277,

where R is the randomness space involved in KEM.Gen algorithm.

10 Y. Lyu et al.

3 Privacy-Preserving Authenticated Key Exchange

3.1 Definition of Privacy-Preserving Authenticated Key Exchange

Definition 7 (PPAKE). A privacy-preserving authenticated key exchange scheme
PPAKE = (PPAKE.Setup, PPAKE.Gen, PPAKE.Protocol) consists of two proba-

bilistic algorithms and an interactive protocol.

~ PPAKE.Setup(1*): The setup algorithm takes as input the security parameter
1%, and outputs the public parameter ppppake-

~ PPAKE.Gen(ppppaxe,%): The generation algorithm takes as input ppppake
and a party identity i, and outputs a key pair (pk;, sk;).

- PPAKE.Protocol(P;(res;) = Pj(res;)): The protocol involves two parties P;
and Pj, who have access to their own resources, res; := (ski, pPppake> {PKu fuely])
and res; := (sk;, pPppake> 1Pku fucly)), respectively. Here i is the total num-
ber of users. After execution, P; outputs a flag W; € {0, accept, reject},
and a session key k; (k; might be empty string 0), and P; outputs (¥}, k;)
similarly.

Correctness of PPAKE. For all ppppaxe € PPAKE.Setup(1%), for any distinct
and honest parties P; and P; with (pk;,sk;) < PPAKE.Gen(ppppake,?) and
(pk;, sk;) < PPAKE.Gen(ppppake, J), after the execution of PPAKE.Protocol(P;(res;)
= Pj(res;)), it holds that ¥; = ¥; = accept and k; = k; # 0.

Definition 8 (Robustness of PPAKE). A PPAKE scheme is robust if for
any party P; who initializes the protocol, then with overwhelming probability,
only P;’s intended peer P; is able to determine the validity of the first message
sent by P; when following the protocol specifications.

Remark 1. The correctness and robustness of PPAKE implies the following: in
the scenario of honest setting (i.e., all users are honest in the system), if P;
broadcasts the first message and its intended peer is P;, then only P; is able to
ascertain that the message is for him/her and hence responds to this message.

3.2 Security Model and Security Definitions for PPAKE

We will adapt the security model formalized by [11,4,16], which in turn followed
the model proposed by Bellare and Rogaway [6]. We also include replay attacks
[17]. In addition, we extend the security model so that the (forward) privacy for
user identity is taken into account.

Our security notions for PPAKE include user authenticity, forward secu-
rity for session key, and forward-privacy for user identity. These are charac-

terized by three security experiments named Expég,wa 1,0, A ExpLNP[,iKE7 po,4 and

Privacy . . .
EXPppakE, Ll A In those experiments, we will formalize oracles for adversary A.

The passive and active attacks by adversary A is formalize by its querying to
oracles and obtaining answers from oracles. Note that the adversary can copy,
delay, erase, replay, and interpolate the messages transmitted over the public
channels, obtains some session keys from the PPAKE protocol instances, corrupt
some users by obtaining their long-term secret keys, etc.

Privacy-Preserving Authenticated Key Exchange in the Standard Model 11

3.2.1 Oracles
Firstly, we define oracles and their static variables to formalize the behaviour
of users and the attacks by the adversary. Suppose there are at most u users
Py, Ps,...,P,, and each user will involve at most ¢ instances. P; is formalized
by a series of oracles, 7ril, 7Ti2,...,7rf.
Oracle 7}. Oracle 7] will take a message as input and output a new message,
simulating user P;’s execution of s-th PPAKE protocol instance. Each oracle
7} has access to P;’s resource res; := (sk;, ppppake, PKList := {pky}uepu))-
7§ also has its own variables var{ := (st?, Pid;, k3, 7).
— sti : State information that has to be stored for 7}’s next round in the
execution of the protocol.
— Pid} : The intended communication peer’s identity.
— k} € K : The session key computed by 7. Here K is the session key
space. We assume that () € K.
— ¥f € {0,accept,reject} : ¥7 indicates whether 77 has completed the
protocol execution and accepted k7.
At the beginning, (stf,Pid;, k{,¥$) are initialized to (0,0,0,0). We declare

1"V

that kf # () if and only if ¥§ = accept.
Next, we formalize the oracles that dealing with A’s queries as follows.

Oracle Send(i, s, j, MsgList). For the query (i, s, j, MsgList), it means that A in-
vokes 77 with Msglist, making 77 to play the role of initiator with j being
the intended communication peer. Oracle 7] will deal with each message in
MsgList to generate new messages MsgList’ according to the protocol spec-
ification and update its own variables var{ = (st{, Pid;, k7, ¥7). The output
messages MsgList’ is returned to A. If MsgList = (), A asks oracle 7§ to send
the first round message to j (via broadcast channel).

If Send(4, s, j, MsglList) is the 7-th query asked by A and w7 changes ¥? to
accept after that, then we say that 7} is T-accepted.

Oracle Respond(OList, MsgList). For the query (OList, MsgList), it means that
A chooses an oracle set OList = {7‘(’;} to respond messages in MsgList. For
vzt € OList, % executes the PPAKE protocol with messages in MsgList as a

potential recipient, and its variables var} = (st Pid;7 k%, W) are updated ac-
cordingly. Those responding messages generated by OList constitute message
set MsgList’. The output message set Msglist’ is returned to A.

Oracle Corrupt(z). Upon A’s query ¢, the oracle reveals to A the long-term se-
cret key sk; of party P;. After this corruption, 7, ..., ¢ will stop answering
any query from A. If Corrupt(7) is the 7-th query asked by A4, we say that P is
7-corrupted. If A has never asked Corrupt(i), we say that P; is co-corrupted.

Oracle RegisterCorrupt(i, pk). A’s query (i, pk) suggests that A registers a new
party P;(¢ > w). The oracle distributes (i, pk; := pk) to all users. In this
case, we say that P; is O-corrupted.

Oracle SessionKeyReveal(i, s). The query (4, s) means that A asks the oracle to
reveal 7}’s session key. If ¥ # accept, the oracle returns L. Otherwise,
the oracle returns the session key k7 of 7. If SessionKeyReveal(i, s) is the

12 Y. Lyu et al.

7-th query asked by A, we say that «} is 7-revealed. If A has never asked
SessionKeyReveal(i, s), we say that 7} is co-revealed.

Oracle TestKey(i, s). The query (i,s) means that A chooses the session key of
w7 for challenge (test). If ¥ # accept, the oracle returns L. Otherwise, the
oracle sets ko = k;, samples k; <—s K. The oracle returns k;, to A, where b is
the random bit chosen by the challenger.

Oracle TestPrivacy(io, jo,1,j1)- A’s query is the privacy challenge and it con-
sists of two pairs of identities (ig,jo) and (i1, j1). The oracle builds p new
oracles {7} ey Let 7 initialize the PPAKE protocol with ’/T?b being the
intended peer. After the initialization by ﬂ?b, the adversary is allowed to
interfere the protocol execution. The transcript of the protocol execution is
returned to A, where b is the random bit chosen by the challenger.

3.2.2 Security Experiments of PPAKE
Now we are ready to describe the PPAKE experiments serving for authenti-
cation, forward security for session key, and forward privacy for user identity.
Recall that p is the number of users and ¢ is maximum number of pro-
tocol executions per user. The security experiment EXP)P(PAKE, 0,4, where X €
{AUTH, IND, Privacy}, is played between challenger C and adversary A.

1. C runs PPAKE.Setup to get PPAKE public parameter ppppaxe-

2. For each party P;, C runs PPAKE.Gen(ppppake;?) to get the long-term key
pair (pk;, sk;). Next it chooses a random bit b «—s {0, 1} and provides A with
the public parameter ppppaxg and the list of public keys PKList := {pk; };c[,-

3. A has access to oracles Send, Respond, Corrupt, RegisterCorrupt, SessionKeyReveal,
TestKey, TestPrivacy by issuing queries in an adaptive way. Note that A can
issue only one query either to TestKey or to TestPrivacy, but not both. The
oracles will reply the corresponding answers to A as long as the queries lead
no trivial attacks.

4. At the end of the experiment, A terminates with an output b*.

5. If b* = b, the experiment returns 1; otherwise the experiment returns 0.

Expg\'P'%KE)M)E’A: If A ever queried oracle TestKey (only once), then ExpéPAKE’M’AA

= Exp'pNPDAKE 4,0,A> which is the experiment for forward security of session key.
Through TestKey, adversary A obtains a real session key k; of target oracle
77 or a random key. The forward security of session key requires that it is
hard for any PPT A to distinguish the two cases.

ExpE;chéu’z’A: If A ever queried oracle TestPrivacy (only once), then Exp)P(PAKE}H,Z’A

_ Privacy
= EXpppakE,ji,0,4> Which is the experiment for forward privacy of user iden-

tity. Through TestPrivacy, A obtains a protocol transcript, which is either
the interaction of mj, and 7) or the interaction of 7 and 79 . The forward
privacy requires that it is hard for any PPT A to distinguish the two cases.

Expég,—{EE,M,AA: If C checks whether event Winayy, happens (Winagh is deﬁned in
rivacy

Def. 10) at the end of the experiment (either EXplF’NPIDAKE7M7Z,A or ExpEPAKE‘M’Z)5

Privacy-Preserving Authenticated Key Exchange in the Standard Model

13

ExpPPAKE.p.[.A
PPppake + PPAKE.Setup
For i € [u]:
(pks, ski) < PPAKE.Gen(ppppake: i)
= false //Corruption variable
PKList := {pki}ic(;b <= {0,1}
For (i,s) € [pu] x [€] :
(Pids, k3, 97, st3) == (0,0,0,0)
= Whether Pid; is corrupted when 7 accepts
st Key Reveal variables
TestKey, TestPrivacy Oracle variables
ecord users queried in TestID Oracle

A9Peake() (ppppaxe, PKList) //Opeake = Send,Respond,Corrupt,RegisterCorrupt
SessionKeyReveal, TestKey or TestPrivacy
i,s) € [u] x [£] s.t.

(1) ¥ = accept
(2) Aflag? = false
(3) (3.1) V (3.2) V (3.3). Let j := Pid?
(3.1) 3t € [€] s.t. Partner(m} « %)
(32) 3t € [0, (§',t') € [u] x [] with (4, 1) # (5, 1) s.t.
Partner(r; « }) N Partner(n + /)
(33) 3t € [0, (.)€ [1] x [€] with (i,s) # (i/, ') s.t.
Partner(n} « mt) N Partner(m}, « k)
Return Winaumn
If They = true A Tig = true: Return(L)
// Query on TestKey and TestPrivacy are mutually exclusive

b* — AOPPAEC) (ppps o PKList) //Oppake = Send,Respond,Corrupt, TestKey|
Wini,g := false SessionKeyReveal RegisterCorrupt
Ifb* =b A They = true:

Winjng := true
Return Winjng

b* — A9PPAREC) (ppooy e, PKList) //Oppake = Send,Respond,Corrupt, TestPrivacy
Winprivacy = false SessionKeyReveal RegisterCorrupt
Winpyivacy := true, If

(1) b* =b A Tig = true:

(2) Let TUsers := (io, jo, i1, j1),

(crpj, = false A crp;, = false)Vjo = ji //avoid TA5

Return Winprivsey

(MsgList) :
If eject V ¥ = accept: Return L
MsgList’ := ()
If MsgList = ():
w; generates the first message msg’ for user P;
update (st;, Pid], ¥ k;)
Return {msg'}
For each msg € MsgList:
If wf pts msg:
77 generates the next message msg’ of PPAKE
MsglList’ := MsgList’ U {msg'}
update (st;, Pid{, &7 k7)
Return MsglList’

Tran(i,j): //Return the transcript
Build g oracles 7, t € (1]
MsgList := (); Transcript := 0; TfirstMsg := 0
While (% =0 A ¥ = 0) d
If MsgList = 0: The adversary can not insert messages in the first round
msg’ « 7(i,0,3,0)
MsgList’ := {msg'}; TfirstMs msg’
If MsgList # () //The adversary can insert messages in the non-first round
MsglList’ := 0);
For msg € MsglList
msg’ + (4,0, j, msg)
MsglList’ := MsgList’ U {msg'}
InsertList < A(MsgList, MsgList’)
MsgList’ := MsgList’ U InsertList
Transcript := Transcript U MsgList’
MsgList := MsgList’; MsgList’ := ()
For each j' € [u] and each msg € MsglList
msg’ < (5,0, 0, msg)
MsgList’ := MsgList’ U {msg'}
If ~(# = 0 AW = 0):Return Transcript

InsertList < A(MsgList, MsgList”)
MsgList’ := MsgList’ U InsertList
Transcript := Transcript U MsgList’
MsgList := MsgList’

Return Transcript

Partner(m} + 7)) : //Checking whether Partner(r; < %)
If W7 # accept: Return 0;

If ¥ # j: Return 0;

check wheter the outputs of 7] are the inputs of 7rj

upon the acceptance of 7, and vice verse.

If the transcirpts are consistent: Return 1;

Return 0;

Oppake(query) :
If query = RegisterCorrupt(u, pk):
If u € [u] : Return L
PKList := PKList U {pk..}
crpy := true
Return PKList

If query — Send(i, s, j, MsgList) :
Ifig[plVse¢[]Vj¢p: Return L
If Pid? = 0: Pid? = j
If Pid{ # j : Return L
MsgList’ := 0
If MsgList =

msg’ « 7(i, s, j, msg)

Return Msglist’ = {msg'}
For msg € MsglList

msg’ + 7(i, s, j, msg)

MsgList’ := MsgList’ U {msg'}
Return MsgList’

®

If query — Respond(OList, MsgList):
If Tiq = true A ((jo, +) € OList V (ju, #) € OList)
ATfirstMsg N MsgList # 0:
Return L //avoid TA6
If 3(j,t) € OList A (4,t) ¢ [1] x [(]: Return L
MsgList’ :=)
If erp; = false:
For each (j,t) € OList, and each msg € MsgList:
msg’ + w(j,t',0, msg)
MsglList’ := MsgList’ U {msg'}
Return MsgList’

If query = Corrupt(i) :
If i ¢ [u] : Return L
crp; = true
Return sk;

If query = SessionKeyReveal(i, s) :
Ifi ¢ [u] Vs ¢ [f]: Return L
If ¥ # accept : Return L
If T = true : Return L
Let j := Pid{
If 3t € [I] s.t. Partner(r§ <> 7)) :
If T} = true : Return L
kRev; := true;
Return k

//avoid TA2

/ /avoid TA3

If query = TestKey(i, s) :
//This oracle can be only queried once
They := true
If W} # accept:
Return L
If Aflag; = true V kRev; = true
Return L //avoid TA1, TA2
TP = truesko := ki; k1 s K;
Return ks,

If query = TestPrivacy(io, jo, 1, 1) ©

/ s oracle can be only queried once

Tiq := true

If erpiy V erpj, V erpiy V erpj,
Return L

TUsers = (io, jo, i1, j1)

If b = 0: Return Tran(io, jo)

Else: Return Tran(iy, j1)

//avoid TA4

Fig. 4:

Exp'F,NP'iKE%&A(With plain text and

The list of trivial attacks is given in Table 2.

The security experiments Expég,;rKHE%[’ a(with plain text and

, ExpErFi,ché’u’e,A(With plain text and

14 Y. Lyu et al.

this experiment is also regarded as Expég;,?a u.0,A> which is the experiment
for authenticity. Roughly speaking, the authenticity of PPAKE requires that
if an oracle 7] accepts a session key, then there must exist a unique oracle
7r§» such that the two oracles have essentially established partnership. Mean-
while, the authenticity makes sure that replay attacks are prevented in the

sense that no oracle can make two distinct oracles accepts.

Details of the three experiments are given in Figure 4.
To precisely describe the security notions for PPAKE, we have to forbid some
trivial attacks by A. To clearly describe trivial attacks, we first define partner.

Definition 9 (Partner). We say that an oracle 7 is partnered to 7r§, denoted
as Partner(7f 7r§»), if the following requirements hold:

— 7 accepts with U7 = accept and Pid; = j.
— Upon the time] accepts, the transcript of @} is consistent with that of 7r§,
i.e., the outputs of ™} are the inputs of 7r§, and vice verse.

We write Partner(m§ <> m%) if Partner(n} < 7%) and Partner(n} « 77).

S.
i

We will keep track of the following variables for each party P; and oracle «

— crp;: whether user ¢ is corrupted.

— Aflag;: whether the intended partner is corrupted when 7§ accepts.
— kRev;: whether the session key k] was revealed.

T? : whether 7] was tested.

T;q : whether oracle TestPrivacy is queried.

— They : whether oracle TestKey is queried.

For forward security for session key, we identify three trivial attacks.

TA1 Suppose that when user ¢ (formalize by 77) accepts a session key k7, its
partner j (formalize by 7r§) has already been corrupted by A4, then it is quite
possible that A impersonated j to obtain the shared session key k7. In this
case kf cannot be tested by TestKey(i, s), otherwise, it will be a trivial attack.

TA2 If a session key k? is accepted by user ¢ (formalized by 77) and is also
revealed to A, then k7 cannot be tested, otherwise, it will be a trivial attack.

TA3 If two users (formalize by oracles w7 and 7r§) are partnered with each other
and session key kf of 77 is revealed to A, then session key k% of % cannot

be tested due to kj = k?. Otherwise, it will be a trivial attack.
For the forward privacy for user identity, we identify three trivial attacks.

TA4 If user 7 is corrupted, then the adversary is able to impersonate the user
in a PPAKE protocol after the corruption. After the protocol execution, the
adversary will know the identity of its communicant peer. Hence, this is a
trivial attack on privacy of PPAKE when testing ¢ with TestPrivacy.

Privacy-Preserving Authenticated Key Exchange in the Standard Model 15

TAS5 The robustness of a PPAKE makes sure that only one target recipient j is
able to use its secret key sk; to correctly respond the first round message. If
the secret key sk; of the target recipient is corrupted by A, no privacy on j
is guaranteed. This is a trivial attack on forward privacy of robust PPAKE.

TAG6 If the adversary can observe the response of each user after the user receives
the first message, then the identity of the responding user is clear to the
adversary. Hence, this is also a trivial attack on the privacy of robust PPAKE.
This trivial attack can be extended to any core part of the first message. To
exclude this trivial attack, if the adversary sees the first round message, it
is not allowed to feed a message containing the core part of the first round
message to other users and observe their responses.

In Table 2, we list the above trivial attacks TA1-TA3 in Expg\'PDAKE%&A and
trivial attacks TA4-TA6 in EXPESEEE,M,Z,A'

Types Trivial attacks Explanation

77 is tested but 7’s partner is corrupted
when 7] accepts session key kf

TA2 T} = true A kRev] = true 7} is tested and its session key k; is revealed

7 is tested, w7 and m} are partnered to each other,

TA1 T? = true A Aflag; = true

TA3 T? = true A Partner(m} <> %) A kRm-; = true and 7’s session key k! is revealed
TA4 Tiq = true A (crp;, = true V crp;, = true ‘When TestPrivacy(io, jo, 21, j1) is queried,
Verp;, = trueV crp;, = true) one of ig, jo, %1, j1 has been corrupted
TA5 Tiqy =true A b* =b A TestPrivacy(io, jo. i1, 1) has been queried, and
(crpj, = true V crp;, = true) A jo # j1 either jo or j; has been corrupted when checking b* = b
TestPrivacy(Zo. jo. 21, j1) is queried,
. . . TfirstMsg is the first message in transcript,
TA6 Tia = true A.A queried Respond(OList, Msglist) A sees tl)egoutput W;(](MSgLngt)) or 7k (Msgl:l)_ist)

s:t. ((do,) € OList V (51, %) € OList) A TfirstMsg 1 Msglist # 0 for some ¢ € [(] via querying Respond with messages MsgList

containing essential information of TfirstMsg

Table 2: Trivial attacks TA1-TA3 for security experiment EXP:)NP%KE,H,K, A

TA4-TAG6 for security experiment Expgg‘;\e’l(qé%2 - Note that Aflag; = false is
implicitly contained in TA2, TA3 because of TA1.

3.2.3 Security Notions for PPAKE

Definition 10 (Authentication of PPAKE). Let Wina, denote the event
that A breaks authentication in the security experiment Expégﬂ:& uea (see Fig-
ure 4). Winauen happens iff 3(i, s) € [u] x [€], s.t.

(1) = is T-accepted.

(2) Pj is T-corrupted with j := Pid; and 7 > .

(8) FEither (3.1) or (5.2) or (5.8) happens. Let j := Pid;.
(8.1) There is no oracle 75 that 7} is partnered to.

3.2) There exist two distinct oracles ©t and i, , to which 75 is partnered.
J 3’ i 8P

(8.8) There exist two oracles 75, and 7§ with (i',s") # (i, s), such that both 7}

’
and 7, are partnered to 7.

16 Y. Lyu et al.

The advantage of an adversary A in Expég,;r&'E)u)&A is defined as

AUTH AUTH
AdVBpAKE 10,4 = PT | EXPppAKE 10,4 = 1} = 551;) (DA 2)A((BT)V(3.2) V(3.3))].
Remark 2. Given (1) A(2), (3.1) indicates a successful impersonation of P;, (3.2)
suggests one instance of P; has multiple partners, and (3.3) corresponds to a
successful replay attack. Def.10 captures mutual explicit authentication since 7]
is either an initiator or a responder.

Definition 11 (Forward Security for Session Key of PPAKE). In experi-
ment ExpLNP%KE%Z’A (see Figure 4), Let b* be A’s output. Then ExpLNP%KE%[’A =

1 4ff b* = b. The advantage of A in Expg\'paKE,u,@’A is defined as

IND IND
AdVPpAKE 0,4 1= ‘Pf [EXPPPAKE,#,Z,A = 1} - 1/2‘.

Forward security for session key asks AdeNP%KE,#,LA < negl(A) for all PPT A.
Definition 12 (Forward Privacy for User Identity of PPAKE). Suppose

that A queries TestPrivacy(io, jo,i1,71) and b* is A’s output in ExpEgXaKcéﬂgA

(see Figure 4). Define event Winpyiacy as b* = b and neither jo nor ji are cor-
rupted unless jo = j1 (i.e. (crpj, = false A crp;, = false) V jo # j1). Then

Expﬁgfl(céuﬁf’fl = 1 iff Winprivacy happens. Forward privacy for user identity re-

quires that for all PPT A, its advantage function Advggfl(cé plA satisfies

AV 0 = | P [EXPEIL eoa = 1] = 1/2] < negl (V).

Remark 3 (Difference with security models in [20,19]). In the security models in
[20,19], the initiator only deals with one responding message with accept or reject
and does not take into account other users’ responses. This feature excludes the
application of their PPAKE schemes in broadcast channels or similar scenarios.
In our security model, the initiator receives and processes all messages from other
users. This is especially important in the scenario where every user may give a
response when not aware whether itself is the target recipient. More precisely, in
our security model, the adversarial behaviors are reflected by the formalization
that A designates a list of messages for ©f to deal with by Send or Respond
queries. In comparison, the security models in [20,19] only consider the case that
m; deals with a single message and after that 7] will stop responding to other
messages (from other users).

Remark 4 (The best forward privacy for robust PPAKE). The best forward pri-
vacy for a robust PPAKE scheme is full forward privacy for initiator and semi-
forward privacy for responder. The reason is as follows. If the responder P; is
corrupted, the robustness of PPAKE enables the adversary to use the respon-
der’s secret key to test the first round messages in previous sessions so as to
determine whether P; is the intended recipient. Therefore, this is the optimal
forward privacy for robust PPAKE to achieve: full forward privacy for initiator
(no matter initiator or responder is corrupted) and forward privacy for responder
when initiator is corrupted.

Privacy-Preserving Authenticated Key Exchange in the Standard Model 17
4 Generic Construction of PPAKE and Its Security Proof

We propose a generic construction of PPAKE = (PPAKE.Setup, PPAKE.Gen,
PPAKE.Protocol) with session key space K; from the following building blocks.

— A signature scheme SIG = (SIG.Setup, SIG.Sign, SIG.Ver).

— A key encapsulation mechanism scheme KEM = (KEM.Setup, Encap, Decap)
with encapsulation key space K.

— A one-time key encapsulation mechanism scheme otKEM = (otKEM.Setup,
otEncap, otDecap) with the encapsulation key space K'.

— A message authentication code scheme MAC = (MAC.Tag, MAC.Ver) with
key space K.

— A symmetric encryption scheme SE = (SEnc, SDec) with key space Ks.

— A pseudo-random generator PRG : K’ — K1 x K.

Our generic construction is given in Figure 5.

PPAKE.Setup:

ppgic < SIG.Setup
pPkem < KEM.Setup
PPoikem — OtKEM.Setup

Return ppppake = (PPsigs PPkemM> PPotkem)
PPAKE.Protocol(P; = P;):

PPAKE.Gen(ppppake; ©):

(vki, sski) < SIG.Gen(ppsc)
(pki, ski) < KEM.Gen(ppyem)
Return ((vki, pki:), (sski, ski))

P;(res;) Pj(res;)
res; := (sski, ski, PPppake> res; := (sskj, skj, PPppaes
{pPputuelu) == {(vku, Pku)}) {Pp. ueru = {(vku, pku)})

U, =0, ki :=0, st; :=0

(C1, N) « Encap(ph;)

(pkotkem, Skotkem) <— otKEM.Gen(ppgikem)
sti := {pkotkem, Skotkem, N, C1}

U =0, kj =0, st; =0
If Decap(sk;,C1) = L: abort

pk‘otKgm, C1 N Decap(skj, C1)
_TrelmE T
(Ca, K) + otEncap(pkotkem)
lStl o1 + MAC.Tag(N, pkotkem|C1|C2)

stj := {pkotkem, C1,C2, N, K, 01}
If ¥; # 0: Return L

If MAC.VEI’(N,pkotKEMlcl‘CQ,0'1) 7§ 1: 0270-1 lst]
¥, := reject —
Return L -
Else: klk; < PRG(K)

(i,02) < SDec(k, c)

K < otDecap(skotkem, C2) m 1= pkotkem|C1|C2|o1
k|k; < PRG(K) If SIG.Ver(vki,m,02) # 1:
m := pkotkem|C1|C2|o1 ¢ ¥, := reject

o3 + SIG Sign(sski, m) Return JJ_

¢ < SEnc(k,i|o2) Else:

¥; := accept ¥; := accept

Return (¥, k;)

Return (%5, k;)

Fig.5: Generic construction of PPAKE

PPAKE.Setup: The setup algorithm generates the public parameter ppppake ‘=
(PPsics PPKEM: PPotkem) by running SIG.Setup, KEM.Setup and otKEM.Setup.

18 Y. Lyu et al.

PPAKE.Gen: The key generation algorithm takes as input ppppake and a user
identity 4, and generates a key pair (vk;, ssk;) for SIG and a key pair (pk;, sk;)
for KEM. The public key of user i is (pk;, vk;) and the secret key is (ssk;, sk;).

PPAKE.Protocol(P; = P;): The protocol between two parties P; and P; is as fol-
lows. Each party has access to their own resources res; = (ssk;, sk, PPppaKE>
{PPu}uely)) and res; = (sskj, skj, pPppake; {PPy fueln)) Which contain the
corresponding secret key, the public parameter and a list PKList consist-
ing of the public keys of all users. Each party initializes its local variables
U, k; and st; with the empty string. The protocol consists of three rounds
of communications.

The First Round: When party FP; initiates a session with party P; in
PPAKE, P; computes (C1, N) < Encap(pk;) and generates an ephemeral
key pair (pkotkem, Skotkem) <— otKEM.Gen(ppoikem)- It then sends (pkotkem,
C1) to P; and stores (pkotkem, Skotkem, N, C1) as its state st;.

The Second Round: After receiving message (pkotkem, C1), Pj computes
N < Decap(sk;,Cy). If N = L, then P; aborts, indicating that it
is not the intended recipient of this message. Otherwise, P; invokes
(Co, K) + otEncap(pkotkem)- It uses N as the MAC key to compute
a tag o1 < MAC(N, pkotkem|C1|C2). Then it sends (Cy,01) to P; and
stores (pkotkem, C1, Ca,01, N, K) as its state st;.

The Third Round: After receiving message (Co,01), P; retrieves its state

st; = (pkotkem, Skotkem, N, C1). It verifies the validity of o1 by check-
ing whether MAC.Tag(N, pkotkem|C1]|C2,01) = 1 with the help of N. If
invalid, it rejects this message. Otherwise, it continues the protocol by
computing K < Decap(skotkem, C2). It then generates k|k; + PRG(K),
where k is used as the secret key for SE and k; as its session key. P; uses
its signing key ssk; to sign pkoikem|C1]|C2]o1 and obtain the signature
oo + SIG.Sign(ssk;, pkotkem|C1|Calo1). Then it encrypts the identity ¢
and the signature oo with k and obtains ¢ < SEnc(k, i|o2). It broadcasts
the ciphertext ¢, and sets ¥; = accept and outputs (¥;, k;), indicating
its acceptance of k; as its session key.
After receiving ¢, P; retrieves its state st; = (pkotkem, C1, Ca,01, N, K)
and generates (k, k;) + PRG(K). It then uses k to decrypt the cipher-
text ¢ and obtains (i,09) ¢+ SDec(k, c¢). Next it checks that the validity
of (i,092) by checking SIG.Ver(vk;, pkotkem|C1|Calo1,02) = 1. P; rejects
in case of invalid. Otherwise, it sets ¥; = accept and outputs (¥;, k;),
indicating its acceptance of k; as its session key with P;.

Correctness. Correctness of PPAKE follows directly from the correctness of
SIG, KEM, otKEM, MAC and SE.

Robustness. Robustness of PPAKE follows directly from the robustness of KEM,
which guarantees that only P; has Decap(sk;,C1) # L.

Theorem 1. For the PPAKE construction in Figure 5, suppose that the under-
lying SIG is sEUF-CMA secure, MAC is sEUF-CMA secure, KEM is IND-CCA

Privacy-Preserving Authenticated Key Exchange in the Standard Model 19

secure and IK-CCA secure, otKEM is IND-CPA secure and has the properties
of key uniformity and public key diversity, and PRG is a pseudo-random genera-
tor, and SE is semantic secure and has the property of ciphertext diversity, then
the PPAKE construction has explicit mutual authenticity, forward security and
forward privacy.

(Pkotkem, skotkem) <~ otKEM.Gen(ppoen)
st; = {pkotkem, skotkem, N, C1}
J

Pid? =
PPsic < SIG.Setup Sent; := {pkoem, C1}
PPkem < KEM.Setup Retu.rn {pkotkem, C1}
PPokem < OtKEM.Setup If MsglList = {(pkotkem, C1)}:
PPepake = (PPsics PPKeM: PPotkin) //Receive the first message and generate the second message
For i € [u]: If stf # (: Return L
(pki, ski) + KEM.Gen(ppyen) N + KEM.Decap(ski, C1)
(vhiyski) - SIG.Gen(ppaic) T Sent: 20 1 Pid:
PKList := {(pki, vk:) biciu: Find CF € Sent’
b s {0,1} If Oy = Oy
(@, 8%) < [x [0 = ——))
S:=0 If N = L: Return 1; //This message is not sent to user ¢
5 . Else:
For (i,s) € [u] x [0 : .
var] = (Pid{, ki, W7, st3) := (0,0,0,0); RSVCV« = {pkokem, C1}
Aflag; := false (C2, K) « otEncap(pkotem)
(Sent?, Reev?) := (0, 0) 1 < MAC.Tag(N, pkosken|C1|Cz)
T .= false; kRev; = false st§ := {pkokem, C1, Ca2, N, K, 01}
AOPPAKEC) (pppoaice, PKLIsE) //Oppaxe = Send,Respond,Corrupt, RegisterCorrupt ie‘r:t‘ = ?F“‘z U{C, o}
Winun := false / /SessionKeyReveal, TestKey or TestPrivacy eturn {Cs, o1}

For enth (i.9) & [4] x () For cach {(Cs,01)} € MsgList:

It (i, 8) s.t //Receive the second message and generate the third message

) g,g _ accept If st; is not the form of {pkotkem, skotkem, N, C1}:
(2) Aflag; = false R'e“;f“j{ " o, V. C1}
(3) (3.1) v (3.2) V (3.3). Let j := Pid] parse st; = {PRotkeM; SRotkem, IV, (1

)((3.1))£t el s.L(Pal')tner(nf o) If MAC.Ver(N, phoem|C1|C2, 01) # 11

N : . - ¥? .= reject
3.2) 3teld), (7,1 0] with (j,¢ 1) st g J
(3:2) Ft e [0, (0) € [u] x 6] with (.0) £ (',1) s g el

Partner(r} «) N Partner(w} « 7},) Recv® = Reev! U {Cy. o
(3.3) 3t € [0, (', s") € [u] x 0] with (Ls),% (i',8) s.t. P H‘otDecap(pkchE;’_ F‘Z})
Partn‘er(w: <« m5) N Partner(w}, < 75) F|k! + PRG(K)
then 5= SU {(i,5)} m := phoen|C1|Calon
02 < SIG.Sign(ssks, m)

If S # 0: Winauh := true ¢+ SEnc(k, ijo2)
If (i*,s%) ¢ S: Return L W; := accept
Return Winaup If erppias = true: Aflag := true
Sent; := Sent; U {c}
Partner(n{ « 7!): //Checking whether Partner(r} «) Return {c} . .
T} 7 accept V Pid; # j: Return 0; For each {c} € MsglList: //Receive the last message

If st5 is not the form of {pkowen, C1, Ca, N, K, 01 }:
Return L
parse st; = {pkowem, C1,C2, N, K, 01}
k|k{ < PRG(K)
(j, 02) « SDec(k,)
m := pkotkem|C1|Calo
If SIG.Ver(vk;, m, 02) # 1:
¥ = reject
Return L
Recv; := Recvi U {c}
¥; = accept; Pid; = j
If erp; = true: Aflag] = true
Return ()

If 77 sent the first message:
If Sent; = Recv! = {(pkowem, C1)} A Recvi = Sent, = {(C2,01)}:
Return 1
If 7 sent the first message:
If Sent; = Recv) = {(C2,01)} A Recv; = Sent! = {(pkotkem, C1), c}:
Return 1
Return 0

7} (j, MsgList) :

If ¥ = reject V¥ = accept: Return L

If MsgList = §): //Generate the first message
(C1,N) < Encap(pk;)

[G =6"s): NK]

Fig. 6: Games Go-Gz for authenticity of PPAKE. Queries to Oppake €
{Send, Respond, Corrupt, RegisterCorrupt, SessionKeyReveal, TestPrivacy, TestKey}
are defined as in the original game in Figure 4 and omitted here.

Before the proof, we will first define two sets Sent; and Recv; for oracle 7.
Set Sent; will store outgoing messages of the oracle and Recv; will store valid
incoming messages, respectively. We stress that valid messages in Recv; are those
incoming messages that pass the verification of MAC or SIG.

We know that Partner(7} < 7%) holds if the following conditions are satisfied.

20 Y. Lyu et al.

- Pid] = j and ¥ = accept.

— If w7 is the initiator, i.e., 7§ has sent the first message, then Sent] = Recv§ =
{(pkotkem, C1)} and Recv; = Sentz- ={(Cs,01)}.

— If 7§ is the responder, i.e., 7§ has received the first message, then Sent] =
Recv’; = {(C3,01)}, and Recv] = Sentﬁ- = {(pkotkem, C1), c}.

Besides, we define a set S recording all the pairs (7, s) such that Winau = true.

Proof of explicit mutual authenticity. To prove authenticity for PPAKE, we
now describe a sequence of games Go-G3 and show that the advantage of A in
adjacent games. The full codes of Gp-G3 are also given in Figure 6. Define Win;
as the event of Winayh = true in G; A (i*,s*) € S, where (i*,s*) s [u] x [(].
Game Gy: G is the original experiment ExpégATEE_ 0,4+ In addition, challenger C
uses Sent; and Recv; recording valid incoming valid messages and outgoing mes-
sages for 7. This is only a conceptual change. So, Pr[(i*,s*) € S | Winaun = true]
= Pr [Wino]/Pr [Winauh = true] > -. Then

1
nl
Pr [Winayth = true] < pf - Pr[Wing]. (1)

Game Gi: In Gy, challenger C first chooses (i*,s*) s [p] x [{]. At the end of
Gy, if (i*,s*) ¢ S, Gy aborts by returning L. Then for the specific pair (i*, s*),

Pr[Winy] = Pr[Wing] = Pr [(1) A (2) A (3)]. (2)

(i*,8*)

Game Gs: In Gy, if wf: is a responder, Gy is the same as G;. If 7rf* is an initiator
and PidS. = j*, SentS. #), C changes the behavior of wt. for t € [(].

Note Sentf: # () implies that 3(pklcem, CT) € Sentf:, where (pkZxems Skskem)
+ otKEM.Gen(ppykem) and (Ci, N*) < Encap(pk;-). Meanwhile, 7%. also has
state st = {pkluems Skiwem N5 Ct). Then for V¢ € [€], if (pkowem, C1) €
Recvz»*7 oracle ﬂﬁ*(pkotKEM, C1) will compute N by N < Decap(sk;-,C4) in G;.
But in Go, 7r§* (pkotkem, C1) computes N’ in the following way.

~ C1 = Cf: 7l borrows N* from sts. and sets N := N*.

— C1 # Cf: b computes N < Decap(sk;-,C1) (as in Gy).
Due to the correctness of KEM, we have
Pr [Wing] = Pr [Win4]. (3)

Game G3: In Gg, if wf* is a responder, Gy is the same as Gp. If 7rf is an initiator,
then the encapsulation key N* is randomly chosen with N* <—s IC, instead of
N* < Encap(pk;-) as in Gg.

Lemma 1. |Pr[Winy] — Pr[Wing]| < - Advien (Bkem)-

The formal proof of Lemma 1 is given in the full version [18]. Here we sketch the
proof. We construct adversary Bkem against IND-CCA security of KEM scheme.

Privacy-Preserving Authenticated Key Exchange in the Standard Model 21

Bkem will simulates Go/Gs for A. Bkem gets its challenge (C*, K*) w.r.t. pk*,
it sets pkj« = pk* with j* < [u], and embeds C* into 73 s output message
(Pkkems CF = C*) and embeds K* into its state sts = (Pkkems Skiems N* =
K*,Ct = C*). Bkem also asks its own DECAP oracle Opecap to simulate decap-
sulation of C; # C* for oracle w;?*(pkotKEM, C1). Finally, Bgem outputs 1 iff Win
occurs and j* = Pidf:. If K* is an encapsulated key for C*, Bxgm simulates Go;
if K* is random, Bkgm simulates Gs. Since j* = Pidf: with probability 1/u, we
have |Pr [Winy] — Pr [Wing]| < 1 - Advigem (Bkem)-

Next, we analyze (1), (2), (3.1), (3.2), (3.3) in G3 so as to determine Pr [Winaytn].

We define the event NoPartner(i,s) as (1) A (2) A (3.1) happens for (i,s).
Equivalently, 7¢ accepts, the intended partner j := Pid} is uncorrupted when 7§
accepts, and there does not exist ¢ € [¢] such that Partner(r} < 7%).

Lemma 2. In G3, we have (lPr : (1) A(2) A (3.1)]
,8

= Pr[NoPartner(i*, s*)] < Advifhe ™A (Buac) + 1 - AdvadFMA (Bgie).

This proof of Lemma 2 relies on the sEUF-CMA security of SIG and MAC.

We consider the probability of event NoPartner(i*,s*) in two cases: 75 is
an initiator and 7% is a responder. In the first case, w5, must have received
a message (C5,07) such that of is a valid MAC tag for some non-consistent
message pkem|CT|C5, yielding a fresh and valid forgery for MAC. In the sec-
ond case, 75. must have received non-consistent messages (pkkem: CF) and c¢*
whose decryption results in (5%, 03), and o5 must be a valid signature for mes-
sage pkiem|CT1C5 |0t Due to the ciphertext diversity of SE, ¢ # ¢* implies that
(4*,03) # (4',05). If NoPartner(i*,s*) happens, then (pklxemlCT|C5|07,03)
must be a fresh and valid message-signature pair, yielding a successful forgery
for SIG. The formal proof is given in the full version [18].

Furthermore, considering the random selection of (i*,s*), in Gz we have

E(PI") [(1) A (2) A (3.1)] < ul - (Advigae M (Buac) + 1 - Advgidm M4 (Bsic)). (4)

By Lemma 1 and Eq. (1)(2)(3) and (4), we have the following corollary.

i,

Corollary 1. In EXpppake. o4, it holds that Pr) [(1) A (2) A (3.1)]

< (pl) - (- Advigem (Bem) + Advigac M (Buac) + - Advgig™ M (Bsig)).
Lemma 3. In G3, we have

UP{) (WA 2) A B2)] < (1) - (Advirg (Brre) + ﬁ).

If (1) A (2) A (3.2) happens for (i*,s*) in Gg, then 73 will accept with session
key ki. and there exist two oracles 7! and 7T§/, subject to Partner(wf. < mt)

and Partner(7}. «+ 7T§/,) Then 7, must share the same session key with both

i*

22 Y. Lyu et al.

7T§ and 71';/,, which happens with negligible probability, due to the independent

randomness in wf: , 7T§» and 77;5-;, the key uniformity of otKEM, and the pseudo-
randomness of PRG. The formal proof is shown in the full version [18].

By Lemma 3 and Eq. (1)(2)(3), we have the following corollary.

Corollary 2. In ExpégIEEﬁuﬁe_A,we have

Pr [(1) A (2) A (32)] < (u0)® - (AdvEx(Brro)

3(4,8) + @) + (1€) - Adviggm (Brem)-

Lemma 4. In Expégﬂ& .0, A, we have

s [(MAR)AEB3)] < o [(1) A (2) A (3.2)] + (u)? - 277

Proof. 1f 3(i*, s*) satisfies (1) A (2) A (3.3), then WS = accept, Aflag]. = false,
Partner(mf. <) and Partner(r$, 7%). We consider the following two cases.

— Inmitiator 7f. . According to the definition, we know that Partner(rs. +)
and Partner(rs %) implies (pkZem, CF) € Sent?. = Recv?7 (kL ikem, C1) €
Sent?, = Recv!, (C3,07) € Recvi. = Sent!, (C4,01) € Recv!, = Sent;. Then
it holds that (pkl«em: Ci,C3) = (PkLikem, C1, C5). According to the v -pk-
diversity of otKEM, we know that Pr [pk.,«gm = Pkotkem] = 277, Therefore,
(1) A(2) A(3.3) happens for (i*,s*) and (¢/, s’) with probability at most 277.
As there are at most (uf)? choices of (i*,s*) and (i, s'), we can upper bound
the probability of event (1) A (2) A (3.3) by (uf)? - 277 in this case.

— Responder 75 . In this case, Partner(mf, < %) implies Partner(r} <«
75) and Partner(rS, < %) implies Partner(r} < 75). This further implies
that (1) A (2) A (3.2) happens for (j,¢). Therefore, we can upper bound the
probability of event (1) A (2) A (3.3) by (1) A (2) A (3.2) in this case.

Combining the above two cases yields Lemma 4. O
Finally, the authenticity of PPAKE follows from Corollary 1,2 and Lemma 4 and

Pr [Winaun] <3420 - Advien (Brem) + 1l - Advisae “MA (Buac) + (ul)? - 277
1
+2(ul)? - (AdvBrg(Bera) + @) + u20 - AdvETFMA (Bsio).
(5)

Proof of forward security for session key. We now consider another sequence
of games Go-Gj5 and analyze A’s advantages in these games. Let Win; denote
the event that G; outputs 1, i.e. A’s output bit satisfies b* = b in G;. Let
adv; = |Pr[Win;] — 1/2|. Then |adv; — adv; 1| < |Pr [Win;] — Pr[Win;41]|. The
full codes of Gy — G4 are presented in Figure 7.

Game Gg: Gy is the original experiment Exp:;NP?\KE_MLA. We add the sets Sent;]
and Recv] which is only a conceptual change. So, '

AdV:DNPIDAKE,M,é7A = |P1“ [Wlno] — 1/2| = adUO. (6)

Privacy-Preserving Authenticated Key Exchange in the Standard Model 23

Game Gi: Challenger C will check whether event Winay, occurs in Gp. If
Winayth occurs, C will abort the game by returning 0. Otherwise, G is the same
as Go. Then |Pr[Wing] — Pr [Win]| < Pr[Winauw]. By (5), we have

ladvg — advy| < 320 - AdviEm (Brem) + 1l - Advishe ™A (Buac) + (p)? - 277
+2(ul)* - (Advig (Bera) + 1) + 12 - AdvEE™ M (Bsig). (7)

Game Gs: In Go, if event Hit does not occur, C will return a random bit
0 <s {0,1}. Otherwise, G is the same as G1. Event Hit is defined as follows.
Randomly choose (i*,s*,j*,t*) <s ([u] x [f])%. If A queried TestKey(i,s) and
TestKey(i,s) did not reply L, then n7 must accept and Aflag; = false. Ac-
cordingly, 7{ must have a unique partner 7r§ such that Partner(mf « 71';) So
TestKey(4, s) uniquely determines a tuple (i, s, j, t). Event Hit occurs if and only if
(i*,s8*,j*,t*) = (i, s, 5/, t'). Obviously, Pr[Hit] = 1/(uf)?. We have Pr[Winy] =
Pr [Hit]-Pr [Win;]+Pr [Hit] - 2 = Pr[Hit]- (£adv,)+Pr [Hit] -1 = %iﬁoadvl.
Hence,

advy = (ul)? - advs. (8)
Game Gg3: In Gg, the encapsulation key K shared ﬂf: and 7T§ is generated by
K <s K. Recall that in G, 7% computes K with (C, K) <« otEncap(pkotkem)

?

while 7r§-i computes K with K <+ otDecap(skotkem, C)-
Lemma 5. |advs — advs| < [Pr[Winy] — Pr [Wing]| < Advem (Botkem)-

Recall that in G, if 7T‘Z’* accepts session key k:f* and Aﬂagf: = false, then there
must exist 7r§ such that Partner(rs 7T§*) To prove this lemma, we construct
an adversary Bokem against the CPA security of otKEM. Given the challenge
(C*, K*) w.r.t pk*, Borkem embeds C* as C5 and pk* as pkl, gy in the transcript
between 7rf and 7r§i and sets K* in the state stf or stg-i. Finally, A outputs a
guessing bit b*. If b* = b, Boikem outputs 1; otherwise, Bokem outputs 0.

If K* is the encapsulated key for C*, then Bokem perfectly simulates Go for
A; it K* is random, then Bokem perfectly simulates Gg for A. Then, we have
ladvy — advs| < |Pr[Wing] — Pr [Wins]| < Adviem (Botkem)-

The detailed proof is shown in the full version [18] .
Game Gy: In Gy, the symmetric key and session key of Wf: and 7T§* are uni-
formly sampled by (k, kf = k;f*) +s K1 X Ks. Recall that in Gg, they are gen-

erated by k|kf. < PRG(K). Due to the pseudo-randomness of PRG, we have
ladvs — advy| < [Pr [Wing] — Pr [Winy]| < Advprc(Bpra)- 9)
Now that the session key of 75 is randomly chosen with k. s K, we have
advy = |Pr [Wing] — 1/2| = 0. (10)

Finally, the forward security of PPAKE follows from Lemma 5 and Eq. (6)-(10).

Proof of forward privacy for user identity. To this end, we now consider
another sequence of games G(-G. Let Win; denote the event that Winprivacy =

24 Y. Lyu et al.

Else:
Recv; := {pkowem, C1}
(Cy, K) + otEncap(pkotkem)

H If (4, (i*,5%) i K s K‘
PPerc Setup If (i,8) = (", 1") : K s K|
PPyem ¢ KEM.Setup o1 MAC.Tag(N, pkowem|C1|C2)
PPotkem ¢ OtKEM.Setup st5 = {pkoken, C1,Ca, N, K, 01}
PPpeake = (PPsic: PPkem: PPotkem) Sent; := Sent} U {C2, 01}

57,510 s (1] % [4)? Return {C2,01}

¢ U< For each {(C2,01)} € MsgList:

//Receive the second message and generate the third message
If st; is not the form of {pkotkem, skowkem, N, C1 }:

For i € [p]:
(pk:, ski) + KEM.Gen(ppgen)

(7_ ki, sski) < SIG.Gen(ppsic) Return L
bPKLlst 1{(pk‘. vki) }iepu)s parse st; = {pkoem. skowem, N, C1}
< {0,1} If MAC.Ver(N, pkowem|C1|Ca, 01) # 1:
For (i,s) € [u] x [{] : V$ = reject
var; := (Pid}, ki, ¥, st}) == (0,0,0,0); Return L
P
Aflag; := false Recv§ := Recvi U {Ca,01}

(Sent;, Recv)

Ty := false; kR
0" ACPPAReC) (ppo o PKList) //Oppake = Send,Respond,Corrupt, TestKey
Winng := false //SessionKeyReveal RegisterCorrupt
b =b:

K « otDecap(pkotem, C2)

If (i,8) = (i",5):
Find K* in st}. = {pkiwen, Cf, C3, N*, K*, 07}
K:=K"

8) =0t
Find K* in st{. = {pkixems Ci,C3, N*, K*, 07}
K:=K"

Else: K < otDecap(pkoem, C2)
k|ki < PRG(K)

Tf (i, 5) = (i*,5") V (i,5) = (j*,t°):
(k,k3) +s K x K

1 (1) ¥ = accept |
(2) Aflag; = false |
(3) (3.1) V (3.2) V (3.3). Let j := Pid !
(3.1) Pt € [(] s.t. Partner(m} < 7}) !
(3.2) 3t € [0, (5. 1) € [1] x [] with (5, r,)' # (1) st Else:

K|k « PRG(K)

m := phowem|C1|C2|o1

2« SIG.Sign(ssk;, m)

¢ « SEnc(k, i|o2)

¥; := accept

If crppia; = true: Aflag := true

Ei

(3.3) 3t € [0), (i, 8') € [u] x [with (i, 5) # (i',8') s.t.
Partner(w{ + %) N Partner(r, « %)

I
I
I
I
I
!
I
! Partner(r; «) N Partner(r} « 7},)
I
I
I
I
I
i
I

Sent; := Sent U {c}
Return {c}
Wit = true For each {c} € MsglList: //Receive the last message
it f If st is not the form of {pkaken, Cr, Ca, N, K, o1 1+
If Hit = false: et L
;;;115’2761 ! parse st; = {pkowem, C1,C2, N, K, 01}
K|k} « PRG(K)

If (i,s) = (i*,s"):

(k, k3) is the same with (k, k') used in /-
Else if (i,s) = (j*,t*):

(K, k) is the same with (k, ki) used in 7.

Return Winjg

Partner(n{ ¢ 7!): //Checking whether Partner(r{ + %)
T W # accept V Pid{ # j: Return 0;

Else:
If w7 sent the first message: 1.8
TF Sent; = Rec!, = { (phowem, C1)} A Recvi = Sent! = {(Cz,01)}: _HIki PRG(K)
Return 1 (j,02) < SDec(k, c)
If 7¢ sent the first message: m = pkoem|C1|Cz o1
If Sent; = Recv) = {(C2,01)} A Recv; = Sent} = {(pkawem, C1), c}: 1f SIG. Ver(vk;, m, o2) # 1:
Return 1 ¥ .= reject
Return 0 Return L
Recv§ := Recvi U {c}
75 (j, MsgList) : 4/; = accept; Pid} =
If U7 = reject V ¥; = accept: Return L If erp; = true: Aflag] = true
=0: Generate the first message Return 0
\N) Encap(pk;)
(Pkotkem, skotkem) < OtKEM.Gen (pPoyem) Opare(query) :
st3 = {pkotkem, shorken. N, C1} If query — TestKey(i,s): //This oracle can be only queried once
Pid; := j If W} # accept:
Sent} := {pkotkem, C1} Return L
Return {pkokem, C1} If Aflag] = true V kRev; = trge
If MsgList = {(pkokem, C1)}: //Receive the first message and Return L //avoid TA1, TA2
If st; # 0: Return L generate the second message
N < KEM.Decap(ski, C1)
If N = L: Return 1; //This message is not sent to user i Return &y

Fig. 7: Games Go-G4 for forward security of PPAKE. Queries to Oppake where query
€ {Send, Respond, Corrupt, RegisterCorrupt, SessionKeyReveal} are defined as in the orig-
inal game in Figure 4.

true in G.. Let adv; := |Pr[Win;] — 1/2|. Then |adv; — adv; 1
Pr [Win;;1]]. The full codes of G(-G~, are presented in Figure 8.

:= |Pr [Win;] —

Privacy-Preserving Authenticated Key Exchange in the Standard Model 25

Game G{: G is the original experiment Expbhac .4+ We also add the sets
Sent; and Recv; which is only a conceptual change. So,

AdvEReE o 4 = [Pr [Winprivaey] — 1/2] = advy (11)

Game G: At the end of G/, challenger C will check whether event Winayth
occurs. If Winau, occurs, C will abort the game by returning 0. Otherwise, G}
is the same as Gy,. Due to the difference lemma and (5), we have

ladvy — advy| < 3u?l - AdvgEm (Bkem) + pl - Advisae ™A (Bmac) + (uf)?277
+p? - AdVEETMA(Bsig) + 2(1l)? - (Advhre(Bpra) + 1i57)- (12)

Game G5: In G5, upon A’s query to oracle Tran(i, j), 7 and 7T;) will not respond
to any message in InsertlList sent by A. Note that each oracle responds to only
one valid message. If this valid message is not sent by A, then G} is the same as
G/ . If this valid message is sent by A (the message can only be inserted in the
second round or third round of our protocol), then this will lead to occurrence
of event NoPartner(i,0), which is impossible. Hence, G5 is identical to G/, and

adv, = advs. (13)

Now we define an event named Hit. When A queries TestPrivacy(s, j,4', j'),
a unique tuple (4,7,7,7’) is determined. Even Hit happens iff (i, j5, 5, j7) =
(i,7,i',7"), where (iy,j3,i7,57) <=s [u]* is sample at the beginning the game.
Note that (ig, 73,45, 77) follows a uniform distribution, so we have Pr [Hit] = #—14

Game Gj: At the end of Gj, if event Hit does not occur, C will return a random
bit § «s {0, 1} instead of detecting event Win. Otherwise, G is the same as G).
We have Pr[Wing] = Pr[Hit] - Pr [Wins] + Pr [Hit] - 3 = Pr[Hit] - (3 + advs) +
Pr [W . % = % + % -advs. As a result,

advy = p? - advs. (14)

Game G/: In G/, the encapsulation key K shared by 7'('% and 77?; is generated

by K s K, instead of (C, K) < otEncap(pk) and K < otDecap(C) as in Gj.
Similar to the proof of Lemma 5, we have

ladvs — advy] < Adviem (Botkem)- (15)

Game Gj: In G}, the symmetric key and session key of W?Z and w?; are generated
by (k, k%) = (k, k?;) +s K1 x Ky instead of PRG(K) as in Gj. Hence,

ladvs — advs| < Advpre(Bera)- (16)

Game Gg: In Gg, If jo = j1, then Gy is the same as Gf. Otherwise, W?;: generates
Ci by (Cf,N) « Encap(pk;;), instead of (C}, N) < Encap(pk;:) as in Gg. By
IK-CCA security of KEM, we know that (C7, N) w.r.t pk;s is indistinguishable
to that w.r.t pk;:. So we have Lemma 6 with proof shown in the full version [18].

R 7 I Msglist = - //Generate the first message
| = S|) ¢ Encap(pk;)
! I (B If (i, s)
G(,‘EG’]‘ Gb,| G, Giyn G ! i (C,
|
| | (Pkorken, skorkem) < otKEM.Gen(ppoen)
I —— U sti = {pkotkem, skowem, N, C1}
PPsic + SIG.Setup Pid; = j

PPyew ¢ KEM.Setup Sent; := {pkotem, C1}
PPoiken < otKEM.Setup Return {pkowen, C1 }
PPepare = (PPsic: PPxey PPockem) If MsgList = {(pkokem,C1)}: //Receive the first message and

[t If stj # 0: Return L generate the second message

6+01,7) 4
N < KEM.Decap(ski, C1)

(i

If (i, 5) = (5, 0. '
ski) < SIG.Gen(ppg;c) Find N* € sti; = {Pkgiem: skawem, N*, C1 }
= {(ps, vki) biegas N=N

b s {0,1} Tf N — L: Return 1; //This message is not sent to user i
For (i,s) € [u] x [:

5= (Pid;, ki, W7, st

Aflag;

If (i,8) = (ji,0) : K K

T¢ := false; kRe (i,8) = (45, 0) s

b* ¢ AOPPakeC) (pps o PKList) //Oppake = Send,Respond,Corrupt, TestPrivacy
i Ise

fals //SessionKeyReveal RegisterCorrupt 1 4= MAC.Tag(N, pkowe| C1]C2)

sti := {phowem, C1,Ca, N, K, 01}
Sent} := Sent] U{C2,01}
Return {Cs, 01}
For each {(C2,01)} € Msglist:
//Receive the second message and generate the third message
If st} is not the form of {pkotkem, skokem, N, C1 }:
Return |
parse st] = {pkouem, skowem, N, C1}
If MAC.Ver (N, pkotem|C1|Ca, 1) # 1:
7§ = reject
Return L

(2) Let TUsers = (io, jo, i1, j1),
crpj, = false A crp;, = false

Winaue = true, 1f 3,) € [n] x [st
1(1) @7 = accept
1(2) Aflag; = false
(3) (3.1) v (3.2) V (3.3). Let j := Pid{

(3.1) #t € (] s.t. Partner(r] <)

Partner(r} < =f) N Partner({ « /)
(3.3) 3t € [0, (&) € [u] [€] with (i,s) # (',) s.t.
Partner(r} « %) N Partner(r, + 7!)

K < otDecap(pkotkem, C2)
If (i, 8) = (33,0) :
Find K™ in st5; = {pkfucem, C1,C5, N, K"}

(3.2) 3t € [0, G, #') € [u] % [€] with G0 # () st Recv: 1= Reev? U {Cay o1}

Else: Hit := false
If Hit = false :
0« {0,1}; Return ¢

o3 4 SIG.Sign(sski, m)

Return Winprivacy ¢ + SEnc(k,i|o2)

Partner(r; < 7t): //Checking whether Partner(r} « 7t) I (i, 5) = (i3, 0):
T 7 7 accept v Pid; # j: Return 0; 2 + SIG.Sign(sskiy, m)
If 7§ sent the first message: ¢ 4 SEnc(k, if|o2)
If Sent; = Recv!, = {(pkaken, C1)} A Recvi = Sent! = {(C2,01)}: W; == accept
Return 1 If crppias = true: Aflag := true
If 7 sent the first message:
If Sent; = Recv! = {(C2,01)} A Recvi = Sent} = {(pkowkem, C1), c}: Return {c}
Return 1 For each {c} € Msglist: //Receive the last message
Return 0 If st; s not the form of {pkaem, C1,Ca, N, K.
Return L
Tran(i,j): //Return the transcript parse st{ = {pkowem, C1, C2, N, K, 01}
Build 42 new oracles 7t € [u] . k|k; < PRG(K)
MsglList := 0 T - - |
Transerint i I Gy s) = (i I
Wi (ﬁ» #:gccepw%o # accept) do: i;L (k. k?) is the same with (k. k%) used in W:"‘Ji
U =i

RecvList « Send(i, 0, j, MsgList \ InsertList) (. 02) « SDec(k, c); m
Tf Msglist # 0 //The adversary can not insert messages in the first round 1T SIG.Ver(vk . (,;) A1
InsertList < A(RecvList) v = rcjéct '

Recv; := Recv; U {c}

RecvList :— RecvList U InsertList .
Transcript := Transcript U RecvList Wi = accept; Pid} =
If (& = accept A 7! — accept): If erp; = true: Aflag; = true
Return Transcript Return 0
MsgList < Respond({7?} (. RecvList)
InsertList « A(RecvList) Opeaxe(query) :
= T query — TestPrivacy(io. jo,i1,51) : //This oracle can be only queried once
It crpe Verp Y vy e
MsgList := MsgList U InsertList Return L
Transcript := Transcript U MsgList TUsers = (i, jo, i1, 1)
Return Transcript If b=0:
Return Tran(io, jo)
3 (j, MsgList) : Else:
Tt ¥} = reject V ¥ = accept: Return | Return Tran(ii, j1)

Fig. 8: Games G{-G~ for forward privacy of PPAKE. Queries to Oppake where query
€ {Send, Respond, Corrupt, RegisterCorrupt, SessionKeyReveal} are defined as in the orig-
inal game in Figure 4.

Privacy-Preserving Authenticated Key Exchange in the Standard Model 27

Lemma 6. |advs — advg| < | Pr[Wins] — Pr[Wing]| < Adviteg™ (Bkem)-

Game G7: G’ is almost the same as Gg, except for the answer generation
of oracle TestPrivacy(i, j,4', j') (which is TestPrivacy(iy, jg, i7,47)). In G5, ¢* is
an encryption of (if,o0}) where o3 is computed using the signing key ssks .
However, in Gg, ¢* is an encryption of (i}, 03) with o} a signature generated by
the signing key ssk;;. The semantic security of SE makes sure that this change
is indistinguishable, as shown in Lemma 7.

Lemma 7. |advs — advr| < | Pr[Wing] — Pr[Wing]| < Adv2e™ (Bsg).

The formal proof is given in the full version [18].
Finally, in G, all the messages in Transcript = {(pklem C1), (C5,07),¢*}
are independent of b, so we have

advy = |Pr [Win7] — 1/2| = 0. (17)

Finally, the forward privacy of PPAKE follows from Lemma 6,7 and (11)-(17).

5 Instantiations of PPAKE

In this section, we present concrete instantiations for the building blocks of our
PPAKE including KEM, otKEM, SIG, MAC, PRG and SE. This yields a specific
PPAKE scheme based on the DDH assumption over a cyclic group G and the
CDH assumption over a bilinear group in the standard model. The details of the
instantiations are shown in the full version [18].

KEM. We employ the Cramer-Shoup KEM (CS-KEM) scheme over a cyclic
group G of order ¢. It is well known that CS-KEM is IND-CCA secure.
Its public parameter is (G, q, g1, g2). Now we show its robustness. Given a

Ttz g

ciphertext C' = (uy,uz,v) € G* under public key pk = (¢ = 91952,

gV g¥? h = g g3?) € G, we know that u; = g",uy = ¢g" and v = ¢"d*" =
u TV 52 TY2 Cwhere o is the hash value of (up,ug). When decrypting C

with another indeperlldenF ar}d ral,ndom secret key (x, 25, y}, y5, 21, 25), we
have that Pr {v = ufﬁaylugﬁa%] with probability 2/q. Therefore, C' will

be rejected except with probability 2/g.

otKEM. We employ the Elgamal-KEM scheme over a cyclic group G of order q. It
is well known that Elgamal-KEM is IND-CPA secure. The public key is given
by pk = ¢g® € G and the ciphertext is C' = ¢g¥ € G and the encapsulated
key is K = ¢”¥. The encapsulated key K = ¢g*¥ is uniformly distributed,
when either the secret key sk = x or the randomness y used in otKEM.Encap
is independently and randomly chosen over Z,. Hence, ElGamal-KEM has
encapsulated key uniformity. Meanwhile, when z, 2" s Z,, two public keys
pk = g = ¢* = pk’ collide, i.e., pk = g° = ¢* = pk/ with probability 1/q.
Hence it has log ¢-pk-diversity.

28 Y. Lyu et al.

SIG. We employ the BSW signature scheme [7] over a bilinear group with bilin-
ear map e : G’ x G’ = G;. Its sEUF-CMA security is based on the CDH
assumption over G’. Its signature space is X = G x ZLy.

MAC. We use the MAC scheme [9] over a cyclic group G of order ¢. Its sEUF-
CMA security is based on the DDH assumption over G. The MAC key is
(w,z,2') € Zg and the tag for message m is given by ¢ = (u,v1,v2) € G,
where u is uniformly chosen, v; = v and vy = u " with ¢ the hash value
of (u,v1, m). Its tag space is G®.

PRG. We use the PRG scheme [10], where PRG : Z; — Zg. The PRG scheme is
based on the DDH assumption over a cyclic group of order q.

SE. We can use one time pad over Z, as our SE scheme, which has information-
theoretical semantic security. The secret key space, the plain text space and
the cipher text space is K = M = C = Z, with ¢ a prime.

Assembling the above schemes according to our generic construction, we have
a specific PPAKE scheme, with communication complexity (G+3G)+(G+3G)+
(2G' + 2Z,) = 8G + 2G’ + 2Z,. The security of the PPAKE scheme is based on
the DDH assumption over G and the CDH assumption over the bilinear group
G'. The detail of the scheme is shown in the full version [18].

Acknowledgements. We would like to thank the anonymous reviewers for their
helpful comments. Shengli Liu and You Lyu were partially supported by National
Natural Science Foundation of China (NSFC No. 61925207) and Guangdong Ma-
jor Project of Basic and Applied Basic Research (2019B030302008). Shuai Han
was partially supported by National Natural Science Foundation of China (Grant
No. 62002223), Shanghai Sailing Program (20YF1421100), and Young Elite Sci-
entists Sponsorship Program by China Association for Science and Technology
(YESS20200185).

References

1. Abdalla, M., Izabachéne, M., Pointcheval, D.: Anonymous and transparent
gateway-based password-authenticated key exchange. In: Franklin, M.K., Hui,
L.C.K., Wong, D.S. (eds.) Cryptology and Network Security, 7th International
Conference, CANS 2008, Hong-Kong, China, December 2-4, 2008. Proceedings.
Lecture Notes in Computer Science, vol. 5339, pp. 133-148. Springer (2008).
https://doi.org/10.1007/978-3-540-89641-8_10

2. Alwen, J., Hirt, M., Maurer, U., Patra, A., Raykov, P.: Anonymous authentication
with shared secrets. In: Aranha, D.F., Menezes, A. (eds.) Progress in Cryptology
- LATINCRYPT 2014 - Third International Conference on Cryptology and Infor-
mation Security in Latin America, Florianépolis, Brazil, September 17-19, 2014,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 8895, pp. 219—
236. Springer (2014). https://doi.org/10.1007/978-3-319-16295-9_12

3. Arfaoui, G., Bultel, X., Fouque, P., Nedelcu, A., Onete, C.: The privacy of the
TLS 1.3 protocol. Proc. Priv. Enhancing Technol. 2019(4), 190-210 (2019). https:
//doi.org/10.2478/popets-2019-0065

https://doi.org/10.1007/978-3-540-89641-8_10
https://doi.org/10.1007/978-3-540-89641-8_10
https://doi.org/10.1007/978-3-319-16295-9_12
https://doi.org/10.1007/978-3-319-16295-9_12
https://doi.org/10.2478/popets-2019-0065
https://doi.org/10.2478/popets-2019-0065
https://doi.org/10.2478/popets-2019-0065
https://doi.org/10.2478/popets-2019-0065

10.

11.

12.

Privacy-Preserving Authenticated Key Exchange in the Standard Model 29

Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) Theory of Cryptography - 12th
Theory of Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25,
2015, Proceedings, Part 1. Lecture Notes in Computer Science, vol. 9014, pp. 629—
658. Springer (2015). https://doi.org/10.1007/978-3-662-46494-6_26
Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) Advances in Cryptology - ASTACRYPT 2001, 7th
International Conference on the Theory and Application of Cryptology and In-
formation Security, Gold Coast, Australia, December 9-13, 2001, Proceedings.
Lecture Notes in Computer Science, vol. 2248, pp. 566-582. Springer (2001).
https://doi.org/10.1007/3-540-45682-1_33

Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) Advances in Cryptology - CRYPTO ’93, 13th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 22-26, 1993, Pro-
ceedings. Lecture Notes in Computer Science, vol. 773, pp. 232-249. Springer
(1993). https://doi.org/10.1007/3-540-48329-2_21

Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based on com-
putational diffie-hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.)
Public Key Cryptography - PKC 2006, 9th International Conference on Theory
and Practice of Public-Key Cryptography, New York, NY, USA, April 24-26, 2006,
Proceedings. Lecture Notes in Computer Science, vol. 3958, pp. 229-240. Springer
(2006). https://doi.org/10.1007/11745853_15

Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The second-generation
onion router. In: Blaze, M. (ed.) Proceedings of the 13th USENIX Secu-
rity Symposium, August 9-13, 2004, San Diego, CA, USA. pp. 303-320.
USENIX (2004), http://www.usenix.org/publications/library/proceedings/
sec04/tech/dingledine.html

Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited.
In: Pointcheval, D., Johansson, T. (eds.) Advances in Cryptology - EUROCRYPT
2012 - 31st Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings.
Lecture Notes in Computer Science, vol. 7237, pp. 355-374. Springer (2012).
https://doi.org/10.1007/978-3-642-29011-4_22

Farashahi, R.R., Schoenmakers, B., Sidorenko, A.: Efficient pseudorandom gener-
ators based on the DDH assumption. In: Okamoto, T., Wang, X. (eds.) Public
Key Cryptography - PKC 2007, 10th International Conference on Practice and
Theory in Public-Key Cryptography, Beijing, China, April 16-20, 2007, Proceed-
ings. Lecture Notes in Computer Science, vol. 4450, pp. 426-441. Springer (2007).
https://doi.org/10.1007/978-3-540-71677-8_28

Gjosteen, K., Jager, T.: Practical and tightly-secure digital signatures and au-
thenticated key exchange. In: Shacham, H., Boldyreva, A. (eds.) Advances in
Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part II. Lec-
ture Notes in Computer Science, vol. 10992, pp. 95-125. Springer (2018). https:
//doi.org/10.1007/978-3-319-96881-0_4

Heinrich, A., Hollick, M., Schneider, T., Stute, M., Weinert, C.: Privatedrop: Prac-
tical privacy-preserving authentication for apple airdrop. In: Bailey, M., Green-
stadt, R. (eds.) 30th USENIX Security Symposium, USENIX Security 2021, August
11-13, 2021. pp. 3577-3594. USENIX Association (2021), https://www.usenix.

org/conference/usenixsecurity21/presentation/heinrich

https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/11745853_15
https://doi.org/10.1007/11745853_15
http://www.usenix.org/publications/library/proceedings/sec04/tech/dingledine.html
http://www.usenix.org/publications/library/proceedings/sec04/tech/dingledine.html
https://doi.org/10.1007/978-3-642-29011-4_22
https://doi.org/10.1007/978-3-642-29011-4_22
https://doi.org/10.1007/978-3-540-71677-8_28
https://doi.org/10.1007/978-3-540-71677-8_28
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://doi.org/10.1007/978-3-319-96881-0_4
https://www.usenix.org/conference/usenixsecurity21/presentation/heinrich
https://www.usenix.org/conference/usenixsecurity21/presentation/heinrich

30

13.

14.

15.

16.

17.

18.

19.

20.

21.

Y. Lyu et al.

Ishibashi, R., Yoneyama, K.: Post-quantum anonymous one-sided authenticated
key exchange without random oracles. In: Hanaoka, G., Shikata, J., Watanabe, Y.
(eds.) Public-Key Cryptography - PKC 2022 - 25th TACR International Conference
on Practice and Theory of Public-Key Cryptography, Virtual Event, March 8-11,
2022, Proceedings, Part II. Lecture Notes in Computer Science, vol. 13178, pp.
35-65. Springer (2022). https://doi.org/10.1007/978-3-030-97131-1_2
Krawczyk, H.: SKEME: a versatile secure key exchange mechanism for internet.
In: Ellis, J.T., Neuman, B.C., Balenson, D.M. (eds.) 1996 Symposium on Network
and Distributed System Security, (S)NDSS 96, San Diego, CA, USA, February
22-23, 1996. pp. 114-127. IEEE Computer Society (1996). https://doi.org/10.
1109/NDSS.1996.492418

Lee, M., Smart, N.P., Warinschi, B., Watson, G.J.: Anonymity guarantees of the
UMTS/LTE authentication and connection protocol. Int. J. Inf. Sec. 13(6), 513—
527 (2014). https://doi.org/10.1007/s10207-014-0231-3

Li, Y., Schige, S.: No-match attacks and robust partnering definitions: Defining
trivial attacks for security protocols is not trivial. In: Thuraisingham, B., Evans,
D., Malkin, T., Xu, D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017. pp. 1343-1360. ACM (2017). https://doi.org/10.1145/
3133956.3134006

Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with
explicit authentication and tight security. In: Moriai, S., Wang, H. (eds.) Ad-
vances in Cryptology - ASTACRYPT 2020 - 26th International Conference on
the Theory and Application of Cryptology and Information Security, Daejeon,
South Korea, December 7-11, 2020, Proceedings, Part II. Lecture Notes in Com-
puter Science, vol. 12492, pp. 785-814. Springer (2020). https://doi.org/10.
1007/978-3-030-64834-3_27

Lyu, Y., Liu, S., Han, S., Gu, D.: Privacy-preserving authenticated key exchange in
the standard model. Cryptology ePrint Archive, Paper 2022/1217 (2022), https:
//eprint.iacr.org/2022/1217

Ramacher, S., Slamanig, D., Weninger, A.: Privacy-preserving authenticated key
exchange: Stronger privacy and generic constructions. In: Bertino, E., Shulman, H.,
Waidner, M. (eds.) Computer Security - ESORICS 2021 - 26th European Sympo-
sium on Research in Computer Security, Darmstadt, Germany, October 4-8, 2021,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 12973, pp. 676-696.
Springer (2021). https://doi.org/10.1007/978-3-030-88428-4_33

Schége, S., Schwenk, J., Lauer, S.: Privacy-preserving authenticated key exchange
and the case of ikev2. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.)
Public-Key Cryptography - PKC 2020 - 23rd IACR International Conference on
Practice and Theory of Public-Key Cryptography, Edinburgh, UK, May 4-7, 2020,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 12111, pp. 567-596.
Springer (2020). https://doi.org/10.1007/978-3-030-45388-6_20

Yang, X., Jiang, H., Hou, M., Zheng, Z., Xu, Q., Choo, K.R.: A provably-
secure two-factor authenticated key exchange protocol with stronger anonymity.
In: Au, M.H., Yiu, S., Li, J., Luo, X., Wang, C., Castiglione, A., Kluczniak, K.
(eds.) Network and System Security - 12th International Conference, NSS 2018,
Hong Kong, China, August 27-29, 2018, Proceedings. Lecture Notes in Computer
Science, vol. 11058, pp. 111-124. Springer (2018). https://doi.org/10.1007/
978-3-030-02744-5_8

https://doi.org/10.1007/978-3-030-97131-1_2
https://doi.org/10.1007/978-3-030-97131-1_2
https://doi.org/10.1109/NDSS.1996.492418
https://doi.org/10.1109/NDSS.1996.492418
https://doi.org/10.1109/NDSS.1996.492418
https://doi.org/10.1109/NDSS.1996.492418
https://doi.org/10.1007/s10207-014-0231-3
https://doi.org/10.1007/s10207-014-0231-3
https://doi.org/10.1145/3133956.3134006
https://doi.org/10.1145/3133956.3134006
https://doi.org/10.1145/3133956.3134006
https://doi.org/10.1145/3133956.3134006
https://doi.org/10.1007/978-3-030-64834-3_27
https://doi.org/10.1007/978-3-030-64834-3_27
https://doi.org/10.1007/978-3-030-64834-3_27
https://doi.org/10.1007/978-3-030-64834-3_27
https://eprint.iacr.org/2022/1217
https://eprint.iacr.org/2022/1217
https://doi.org/10.1007/978-3-030-88428-4_33
https://doi.org/10.1007/978-3-030-88428-4_33
https://doi.org/10.1007/978-3-030-45388-6_20
https://doi.org/10.1007/978-3-030-45388-6_20
https://doi.org/10.1007/978-3-030-02744-5_8
https://doi.org/10.1007/978-3-030-02744-5_8
https://doi.org/10.1007/978-3-030-02744-5_8
https://doi.org/10.1007/978-3-030-02744-5_8

	 Privacy-Preserving Authenticated Key Exchange in the Standard Model
	Introduction
	Preliminary
	Key Encapsulation Mechanism

	Privacy-Preserving Authenticated Key Exchange
	Definition of Privacy-Preserving Authenticated Key Exchange
	Security Model and Security Definitions for PPAKE

	Generic Construction of PPAKE and Its Security Proof
	Instantiations of PPAKE

