
An Analysis of the Algebraic Group Model?

Cong Zhang1,4??, Hong-Sheng Zhou2(�)? ? ?, and Jonathan Katz3

1 Zhejiang University
2 Virginia Commonwealth University

3 University of Maryland
4 ZJU-Hangzhou Global Scientific and Technological Innovation Center

Abstract. The algebraic group model (AGM), formalized by Fuchs-
bauer, Kiltz, and Loss, has recently received significant attention. One
of the appealing properties of the AGM is that it is viewed as being
(strictly) weaker than the generic group model (GGM), in the sense
that hardness results for algebraic algorithms imply hardness results for
generic algorithms, and generic reductions in the AGM (namely, between
the algebraic formulations of two problems) imply generic reductions in
the GGM. We highlight that as the GGM and AGM are currently for-
malized, this is not true: hardness in the AGM may not imply hardness in
the GGM, and a generic reduction in the AGM may not imply a similar
reduction in the GGM.

1 Introduction

Computational assumptions in groups. Since the work of Diffie and Hell-
man [DH76], there have been many elegant cryptographic schemes and protocols
whose security can be based on the conjectured hardness of certain computa-
tional problems in (cyclic) groups. To prove security in this setting, we begin
by formulating an appropriate hardness assumption relative to a group G. It is
important to stress that such assumptions are always relative to some specific
encoding of the elements of G, even though this is not always made explicit. For
example, let G denote the cyclic group of order p, for some large prime p such
that q = 2p + 1 is also prime. One way to encode elements of G is to represent
them as integers in the order-p subgroup of Z∗q , with the group operation cor-
responding to multiplication modulo q. Another way to encode elements of G
is to represent them as integers in Zp with the group operation corresponding
to addition modulo p. Even though these are both encodings of the same group
(or, put differently, these two encodings are isomorphic), it is reasonable to con-
jecture that the discrete-logarithm problem is hard in the first case even though
it is trivial to solve in the second case. Encodings matter.

? The authorship order is randomized, and all authors contributed equally.
?? Work supported in part by Zhejiang University Education Foundation Qizhen

Scholar Foundation. Portions of this work were done while at the University of
Maryland.

? ? ? Work supported in part by NSF grant CNS-1801470, a Google Faculty Research
Award, and a research gift from Ergo Platform.



2 Cong Zhang, Hong-Sheng Zhou, and Jonathan Katz

Beyond understanding the hardness of specific problems in groups, it is also
interesting to understand relations between different problems. Here, too, the
specific encoding may affect the relations that can be shown.

Unfortunately, the current state-of-the-art in complexity theory does not al-
low us to prove any unconditional hardness results relative to any concrete group
encoding; namely, we do not know how to prove lower bounds on the probability
with which arbitrary algorithms can solve some problem relative to any specific
encoding of group elements. (On the other hand, we can in some cases show un-
conditional relations between certain problems, e.g., that—for any encoding—
hardness of the decisional Diffie-Hellman assumption implies hardness of the
discrete-logarithm problem.) This has motivated researchers to investigate the
possibility of proving hardness results for specific (restricted) classes of algo-
rithms. Two examples we study in this work are the class of generic algorithms,
and the class of algebraic algorithms. We discuss these in more detail below.

Generic algorithms and the generic group model. Roughly speaking,
generic algorithms operate independently of any particular group encoding. That
is, they ignore the specific encoding of group elements but instead treat group
elements “generically.” Studying this class of algorithms is well motivated, since
several well-known algorithms such as the baby-step/giant-step algorithm [PH78]
and Pollard’s rho algorithm [Pol78] are generic in this sense. A generic algorithm
has the advantage that it works for any encoding of group elements; it cares only
about the mathematical structure of the underlying group, but not its encoding.
Researchers have proposed different variants of the so-called generic group model
(GGM) [Nec94,Sho97,Mau05,MPZ20] in an effort to formally define the notion
of a generic algorithm. We describe these in Section 2.1.

It is possible to prove unconditional hardness results in the generic group
model. While the implications of such results for hardness relative to any spe-
cific encoding are unclear, at a minimum a proof of hardness in the GGM serves
as a “sanity check” that some assumption is reasonable. Indeed, the GGM is
now a canonical tool to establish (some level of) confidence for new hardness as-
sumptions or even security of cryptographic schemes. Moreover, for some specific
group encodings (e.g., appropriately defined elliptic-curve groups) and certain
problems, the best known algorithms are indeed generic.

Algebraic algorithms and the algebraic group model. Other work [BV98,
PV05] has proposed a class of so-called algebraic algorithms. Roughly speaking,
algebraic algorithms are allowed to exploit the concrete encoding of group ele-
ments, but they are restricted to only being able to derive (new) group elements
via group operations involving elements they have been provided with as in-
put. Fuchsbauer, Kiltz, and Loss [FKL18] recently formalized this idea as the
algebraic group model (AGM), and showed a number of results in that model.
A number of papers have since extended those results [MTT19,KLX20,BFL20,
ABK+21, GT21], and have used the AGM to prove security of cryptographic
constructions [MBKM19,RS20,KLX22,FPS20,ABB+20,RZ21].

The utility of studying the AGM is not immediately clear, and we are not
aware of any natural group-theoretic algorithms that are algebraic but not



An Analysis of the Algebraic Group Model 3

generic.1 We are also not aware of any unconditional hardness results for prob-
lems of cryptographic interest in the AGM. (Though lower bounds for some
problems are possible in an extension of the AGM [KLX20].) Nevertheless, Fuchs-
bauer, Kiltz, and Loss argue that the AGM can be useful for studying reductions
between problems. As an example, for many group encodings the best-known al-
gorithm for solving the computational Diffie-Hellman problem is to first solve
the discrete-logarithm problem. In the AGM, one can prove that this is inherent,
in the sense that hardness of the latter implies hardness of the former. Such a
result is not known to hold in general.

To justify the usefulness of studying reductions in the AGM, Fuchsbauer
et al. [FKL18, Lemma 2.2] claim that a generic reduction between two problems
in the AGM implies a generic reduction between those problems in the GGM.
That is, if there is a generic reduction R showing that the hardness of (algebraic)
security game H implies hardness of (algebraic) security game G, and if H can
be proven unconditionally hard for generic algorithms, then G is also hard in
the GGM. Their proof of this claim uses the following natural steps:

Step 1: Assume toward a contradiction that G is not hard in the GGM, so there
is a generic algorithm AG

gen that succeeds in game G with high probability.
Step 2: Since any generic algorithm is also algebraic, the reduction R can be

applied to AG
gen to obtain an algebraic algorithm AH

alg := RAG
gen that succeeds

with high probability in H.
Step 3: Since R is generic, AH

alg is in fact a generic algorithm. But this contra-
dicts the fact that H is unconditionally hard for generic algorithms.

While the above is appealing, some steps are not entirely clear. In particu-
lar, it is not obvious that the intuitive conversion of a generic algorithm to an
algebraic algorithm (cf. step 2) is applicable in all contexts. And even if it is
possible to transform the generic algorithm AG

gen to an “equivalent” algebraic

algorithm AG
alg, it is then not clear that the resulting algebraic algorithm RAG

alg

can be meaningfully transformed back into a generic algorithm (cf. step 3).

1.1 Our Results

Seeking to better understand the algebraic group model and its relationship to
the generic group model, we provide self-contained descriptions of both and then
explore their relationship. We first observe that the formal definition of algebraic
algorithms proposed by Fuchsbauer et al. may not match the intended intuition.
Specifically, Fuchsbauer et al. define an algorithm to be algebraic if it provides a
representation of any group elements it outputs. (See more details in Section 3.)
This is supposed to ensure that “the only way for an algebraic algorithm to
output a new group element is to derive it via group multiplication from known
group elements” [FKL18]. However, we show in Section 3 an algorithm that

1 Fuchsbauer et al. claim that index-calculus algorithms are algebraic, but without
any further explanation. It is not clear to us what they mean by this.



4 Cong Zhang, Hong-Sheng Zhou, and Jonathan Katz

obtains a new group element using non-group operations but can still output a
valid representation of that element.

More importantly, we show that a generic algorithm need not be algebraic,
and that it might be hard to convert a generic algorithm to an algebraic one
with the same behavior. In particular, we show a counterexample to the claim
of Fuchsbauer et al. as described above by showing a security game called the
“binary encoding game (beg)” and describing a generic reduction from the
discrete-logarithm problem to this game. (Note that the discrete-logarithm prob-
lem is unconditionally hard in the GGM, and is conjectured to be hard for certain
encodings.) But we show that beg is easy in the GGM. Thus:

Theorem 1 (Informal). A generic reduction in the AGM does not imply a
generic reduction in the GGM.

Concurrent work. In concurrent and independent work, Zhandry [Zha22] stud-
ies the GGM and the AGM and gives a new definition of the AGM. We consider
the AGM as originally defined by Fuchsbauer et al. [FKL18]. Zhandry does not
address the relationship between generic reductions in the AGM vs. the GGM,
and does not show any analogue of our theorem stated above.

Discussion. Our counterexample to [FKL18, Lemma 2.2] is admittedly con-
trived, and an important next step is to understand whether there is some sub-
class of security games for which a version of their lemma might still apply. Any
such subclass should of course be broad enough to include security games of cryp-
tographic relevance. More generally, we believe that a more-formal treatment of
the GGM and AGM, and the relationship between them, is warranted.

2 Preliminaries

In this section, we provide the required background and preliminaries.

Algorithms. We denote by s← S uniform sampling of variable s from the finite
set S. Algorithms are written using uppercase letters (e.g., A, B). To indicate
that a probabilistic algorithm A runs on some inputs (x1, . . . , xn) and returns y,
we write y ← A(x1, . . . , xn). If A has oracle access to an algorithm B during its
execution, we write y ← AB(x1, . . . , xn).

Group encodings. Throughout this work, we restrict attention to the cyclic
group G of prime order p. For concreteness, we often identify G with the additive
group Zp. As highlighted in the Introduction, however, we explicitly focus on
encodings of this group and its impact on algorithms for various problems.

Fix some ` ≥ dlog pe. An encoding σ : Zp → {0, 1}` is simply an injective map
from Zp to {0, 1}`. We let id be the “trivial” encoding in which each element
of Zp is encoded as a binary integer in the range {0, . . . , p − 1} using dlog pe
bits and then padded to the left with 0s to a string of length `, and the group
operation is addition modulo p. We often use boldface capital letters (e.g., X,Y)
for encodings of group elements.



An Analysis of the Algebraic Group Model 5

As notational shorthand, we will often use standard multiplicative notation
for group operations on (encodings of) group elements. Thus, σ(x)σ(y) refers
to computing the group operation on the group elements σ(x), σ(y); note that
σ(x)σ(y) = σ(x+y mod p). Similarly, for r an integer, σ(x)r refers to computing
the r-fold group operation on σ(x); of course, σ(x)r = σ(xr mod p).

dlogA
σ

01 z ← Zp
02 z′ ← A(σ(1), σ(z))
03 Return 1 iff z′ = z

Fig. 1. The discrete-logarithm game dlog.

Security games. We use a variant of code-based security games [BR06]. A
game Gσ, parameterized by an encoding σ, has a main procedure and (pos-
sibly zero) oracle procedures that describe how oracle queries are answered.
Figure 1 shows an example of the discrete-logarithm game. We let GA

σ be a ran-
dom variable denoting the boolean output of game Gσ played by algorithm A.
Algorithm A is said to succeed when GA

σ = 1, and the success probability of A

in Gσ is SuccAGσ

def
= Pr[GA

σ = 1]. TimeAGσ
denotes the running time of GA

σ.

Security reductions. Let Gσ,Hσ be security games. We write Hσ
(∆t,∆ε)
=====⇒ Gσ

if there is an algorithm R (a reduction) such that for all algorithms A, algorithm
B := RA satisfies

SuccBHσ
≥ 1

∆ ε
· SuccAGσ

, TimeBHσ
≤ ∆t ·TimeAGσ

.

Note that the reduction may depend on the encoding, and a reduction with
some parameters may exist for certain encodings and not others. (For examples
of reductions that depend on the encoding, see [Gal12, Section 21.4].)

2.1 Generic Algorithms

In general, an algorithm A in a game Gσ may depend on σ. A generic algorithm,
however, should be “oblivious” to the encoding used. At least two ways of for-
malizing this have been considered, one due to Shoup [Sho97] and another due
to Maurer [Mau05].

Shoup’s approach can be summarized as requiring a generic algorithm A to
work for all encodings. Since A cannot depend on the encoding, however, it must
be provided with some way to perform group operations. We can provide such
capabilities (both to A and possibly the game itself) by giving access to two
oracles that we collectively call encoding oracles:



6 Cong Zhang, Hong-Sheng Zhou, and Jonathan Katz

– a labeling oracle that takes as input x ∈ Zp and returns σ(x), and
– a group-operation oracle that takes as input strings s1, s2 and does the follow-

ing: if s1 = σ(x) and s2 = σ(y), return σ(x+ y mod p); otherwise, return ⊥.

Calls to these oracles take unit time by definition. We denote by Ĝσ the mod-
ification of a game Gσ to include the above oracles. We define2 SuccAG =
minσ{SuccAĜσ

} and TimeAG = maxσ{TimeA
Ĝσ
}.

Maurer’s approach to defining the generic group model is similar in spirit,
but technically different. Here, roughly speaking, a generic algorithm does not
have access to any encodings of group elements at all; instead, the algorithm is
able to access group elements only via abstract “handles.” One way to formalize
this is by initializing a counter ctr to 1, and a table T to empty, at the beginning
of an algorithm’s execution. The algorithm now has access to three encoding
oracles that take the following form:

– the labeling oracle takes as input x ∈ Zp. It stores (ctr, x) in T and incre-
ments ctr. (It does not return anything.)

– the group-operation oracle takes as input positive integers i, j < ctr. It finds
(i, x) and (j, y) in T , stores (ctr, x + y mod p) in T , and increments ctr. (It
does not return anything.)

– an equality oracle takes as input positive integers i, j < ctr. It finds (i, x)
and (j, y) in T and returns 1 if x = y and 0 otherwise.

Note that ctr can also be incremented, and T populated, by actions that occur as
part of the game itself rather than due to actions of the algorithm. For example,
the discrete-logarithm game of Figure 1 would be modified to store (1, x) in T
and increment ctr as part of step 1; it would also provide no input to A in step 2.
Moreover, if A is supposed to output a group element in some game, then it
should instead output a positive integer i < ctr; this will correspond to an output
of σ(x), where (i, x) is the record stored in T . If we let G̃ denote the appropriate
modification of a game G, then we again define SuccAG = minσ{SuccAG̃σ

} and

TimeAG = maxσ{TimeA
G̃σ
}.

We refer to Shoup-generic and Maurer-generic algorithms depending on the
model under consideration. With respect to either model, we say a game G is
(t, ε)-hard in the generic group model if for every generic algorithm A it holds
that TimeAG ≤ t⇒ SuccAG ≤ ε.

A generic algorithm A (in either model) with success probability ε = SuccAG
may fail to run in a “standard” game Gσ where the encoding oracles are not
present. However, for any σ it is possible to modify a generic algorithm A (of
either type) in a black-box way (by simulating the encoding oracles) to obtain
an algorithm Aσ where SuccAσGσ

= ε and the time complexity of Aσ relative to A
reflects only the time required to perform group operations for the encoding σ.

For completeness, we remark that there can be games where the optimal
success probabilities for generic algorithms differ depending on which generic

2 While one might expect SuccA
Ĝσ

and TimeA
Ĝσ

to be independent of σ (and that is

the case for “natural” generic algorithms), that may not be the case in general.



An Analysis of the Algebraic Group Model 7

SA
σ

01 b1 · · · b` := σ(1)
02 b← A
03 Return 1 iff b = b1

Fig. 2. Game S.

group model is used. Consider, for example, game S in Figure 2. With respect
to Shoup’s notion of generic algorithms, there exists a trivial algorithm A that
has success probability 1 for any encoding. (A simply asks its encoding oracle
for σ(1) and outputs the first bit.) On the other hand, with respect to Maurer’s
notion of generic algorithms it is not possible to have an algorithm that achieves
success probability better than 1/2 for all encodings.

Generic reductions. For games G, H, we write H
(∆t,∆ε)
=====⇒S-GGM G if there is

a generic reduction R (where generic is defined relative to Shoup’s model) such
that for all generic algorithms A, algorithm B := RA (which is generic) satisfies

SuccBH ≥
1

∆ ε
· SuccAG, TimeBH ≤ ∆t ·TimeAG.

We define H
(∆ε,∆t)
=====⇒M-GGM G analogously with respect to Maurer’s model.

3 Algebraic Algorithms

Algebraic algorithms are another example of a class of algorithms that has been
considered in the context of group-theoretic problems. The main idea, which
seems to have originated in work of Paillier and Vergnaud [PV05], is to try
to capture the notion of an algorithm that, on the one hand, only performs
group operations on group elements (as in the generic group model) but, on the
other hand, can depend on a specific encoding σ rather than being “encoding-
agnostic.” As one might expect, formalizing this intuition is not straightforward.
The main difficulty is that, with an encoding σ fixed, it is no longer clear how
to differentiate between arbitrary computations on group elements done by an
algorithm and group operations on group elements (that may depend on σ).

Fuchsbauer et al. [FKL18] suggest one way to resolve the above dilemma.
Roughly speaking, they do not attempt to place any restrictions on intermediate
computations done by an algorithm, but instead require that any group elements
output by an algorithm must3 be accompanied by a representation relative to
the ordered set S of group elements (the base set) provided to that algorithm

3 Formally, if an algorithm violates these requirements in some game, then by definition
it does not succeed.



8 Cong Zhang, Hong-Sheng Zhou, and Jonathan Katz

as input. (A representation of a group element σ(y) relative to an ordered set of
group elements S = (σ(x1), . . . , σ(xk)) is a vector r = (r1, . . . , rk) ∈ Zkp such that
σ(y) =

∏
i σ(xi)

ri . Note this implies y =
∑
i rixi mod p.) To ensure nontriviality,

we assume the set S always includes σ(1) (i.e., σ(1) is always provided to the
algorithm as input). To be clear: (1) group elements received by the algorithm
as a result of an oracle call are added to the base set (in particular, the base set
can expand during the course of executing the algorithm; a valid representation
must always be relative to the current set), and (2) an algebraic algorithm must
also provide a representation for any group elements it provides as input to some
oracle call. This is intended to capture the intuitive idea that the only way for
an algebraic algorithm to generate a new group element is to derive it via group
operations from known group elements.

We note a number of unsatisfactory aspects of this definition:

1. The definition does not constrain algorithms that do not output group ele-
ments. In particular, for the discrete-logarithm game the class of algebraic
algorithms is the class of all algorithms. Thus, the AGM is useless for ana-
lyzing games where the algorithm’s output is not a group element.

A(1)
01 r1, r2 ← Zp
02 s← r1 · r2 mod p
03 Output (s, s)

Fig. 3. Algorithm A with respect to the identity encoding id.

2. The formalization considers some algorithms to be algebraic even though
they may not match one’s intuition regarding what operations an algebraic
algorithm should be allowed to perform. For example, consider algorithm A
in Figure 3 with respect to the identity encoding σ = id. This algorithm
samples two group elements r1, r2 and then multiplies them modulo p. The
group operation here, however, is addition modulo p. Nevertheless, A is able
to output a representation of the resulting group element s with respect
to its base set {1}. More generally, whenever the encoding is such that the
discrete-logarithm problem can be solved efficiently relative to that encoding,
any algorithm can be made algebraic by simply computing a representation
of any group elements it outputs.

3. Perhaps more problematic is that, once a particular encoding σ is fixed, it is
not immediately well-defined what it means for an algorithm to “be provided
with a group element as input” or to “output a group element.” To get a sense
of the problem, consider a game involving an oracle that, on input i, returns
the ith bit of σ(x). At no point in time does an algorithm in that game ever
receive a group element from an oracle; nevertheless, it is clearly trivial to
construct an algorithm that outputs the group element σ(x). Fuchsbauer et



An Analysis of the Algebraic Group Model 9

al. attempt to address this issue by requiring that “other elements” (i.e.,
non-group elements) “must not depend on any group elements,” but it is
not clear how such a requirement can be formalized.

It seems intuitive, and one would like to claim, that algebraic algorithms
are at least as strong as generic algorithms, in the sense that for any game G,
any generic algorithm A with ε = SuccAG, and any encoding σ, it is possible to
construct an algebraic algorithm Aσ achieving the same success probability by
simply simulating the encoding oracles for A and keeping track of the represen-
tations of any group elements generated during the execution of A. As already
noted by Fuchsbauer et al., however, thus is not necessarily true (at least for
Shoup’s version of the GGM). Specifically, in Shoup’s GGM it may be possible
to obliviously sample group elements (i.e., without knowledge of their discrete
logarithm), something that is ruled out by definition in the AGM.

We show in Section 4, in the context of reductions, that it is also not the
case that all generic algorithms can be made algebraic.

Although Fuchsbauer et al. conjecture that any Maurer-generic algorithm
can be made algebraic, we are not aware of a proof of that conjecture.

Generic reductions for algebraic adversaries. Fuchsbauer et al. [FKL18]
consider generic reductions for algebraic adversaries; we map their definition to

our syntax. For games G, H, write H
(∆t,∆ε)
=====⇒alg G if there is a generic reduction

R such that for all algebraic algorithms A and encodings σ, algorithm B := RA

satisfies

SuccBHσ
≥ 1

∆ ε
· SuccAGσ

, TimeBHσ
≤ ∆t ·TimeAGσ

. (1)

The reduction is deliberately restricted to be generic (rather than algebraic) so
that, as explained by Fuchsbauer et al., if A is algebraic then B will be algebraic,
and if A is generic then B will be generic. We remark that the above notion seems
to be useful only for Shoup-generic reductions; it is not clear how a Maurer-
generic reduction would be able to provide A with encodings of group elements
that A expects.

We observe several technical issues with the above definition:

– It is not true that when R is generic and A is algebraic, the composed al-
gorithm B = RA is algebraic. Indeed, a simple counterexample is a generic
algorithm R that obliviously samples a group element and outputs it.

– Even if (1) holds for all algebraic algorithms A, it is not clear whether it holds
for all generic algorithms A. Again, this is because a generic algorithm is not
necessarily algebraic (nor is it necessarily possible to construct an algebraic
algorithm with the same behavior).

4 A Counterexample

In this section, we give an example showing that a generic reduction in the AGM
does not imply a reduction in the GGM. Concretely, we show two games G and



10 Cong Zhang, Hong-Sheng Zhou, and Jonathan Katz

H such that: (1) there is a Shoup-generic reduction from H to G; (2) H is hard
for Shoup-generic algorithms; but (3) G is easy for Shoup-generic algorithms.
Formally,

Theorem 2. There are security games G and H such that

– H
(2,1)
===⇒alg G;

– H is (t, O(t2/p))-hard with respect to Shoup-generic algorithms;
– There is a Shoup-generic algorithm A running in time O(`) with SuccAG = 1.

begA
σ

01 z ← Zp
02 parse Z = σ(z) as the bitstring z1 · · · z`
03 (X,U1, . . . ,U`) := (σ(1), σ(z1), . . . , σ(z`))
04 Z′ ← A(X,U1, . . . ,U`)
05 Return 1 iff (Z′ = Z)

Fig. 4. The binary encoding game.

Proof. Take H as the discrete-logarithm game from Figure 1. Security game G is
one we introduce called the binary encoding game (beg); see Figure 4. Hardness
of H for Shoup-generic algorithms was shown in [Sho97]. It is easy to see that
there is a Shoup-generic algorithm A with SuccAbeg = 1: for each i, the algorithm
sets z′i := 1 iff Ui = X and then outputs Z′ := z′1 · · · z′`. Thus, it only remains

to prove that dlog
(2,1)
===⇒alg beg.

Fix an encoding σ. Generic reduction R is given (X,Z) := (σ(1), σ(z)) as
input along with oracle access to an algebraic algorithm A; it proceeds as follows:

1. Parse Z as the bitstring z1 · · · z`. Set z0 := 1.
2. Request I = σ(0) from the labeling oracle.
3. For i = 1, . . . , ` do: if zi = 0 then set Ui := I; else set Ui := X.
4. Run A(X,U1, . . . ,U`) to obtain output Z′ along with a representation (x0, x1,
. . . , x`) such that Z′ = Xx0 ·Ux1

1 · · ·U
x`
` .

5. Output
∑`
i=0 zi · xi mod p.

We now analyze the behavior of R. Let A be an algebraic adversary with
ε = SuccAbegσ

. Observe that when A is run as a subroutine by R in game dlogσ,
the input provided to A is distributed identically as in begσ. Moreover, whenever
A succeeds it holds that (1) Z′ = Z and (2) z =

∑
zi · xi mod p. It follows that

SuccR
A

dlogσ
= ε. This completes the proof.



An Analysis of the Algebraic Group Model 11

In light of our counterexample, we highlight where the proof of the result by
Fuchsbauer et al. [FKL18, Lemma 2.2] fails. Note that the generic algorithm A
with SuccAbeg = 1 that we construct as part of the proof cannot be converted
to an algebraic algorithm. (More formally: the “trivial” attempt to convert A to
an algebraic algorithm by monitoring its encoding oracles does not work, nor do
we see another way to convert A to an algebraic algorithm. Moreover, as long as
the discrete-logarithm problem is hard for some particular encoding σ, there is
no efficient way to convert A into an algebraic algorithm with similar behavior
relative to that encoding.)

5 Concluding Thoughts

Our work raises several issues related to the AGM. For starters, it is unclear
whether the AGM is a meaningful class of algorithms to study; on the one
hand because we are not aware of any (natural) algebraic algorithms that are
not generic, and on the other hand because it is not clear whether the class
of algebraic algorithms contains the class of generic algorithms. This may be
related to the issue of whether the current formalization of the AGM adequately
captures one’s intuition about what “algebraic” algorithms can do, as well as
whether it is possible to formally define what it means for certain objects not to
“depend on” encodings of group elements. One argument in favor of the AGM
is that it provides a meaningful way to analyze reductions; our work shows,
however, that the main justification for studying reductions in the AGM does
not hold in certain settings.

Our work raises several interesting directions for future work, including the
question of developing other formalism for the algebraic group model, as well as
formally resolving the question as to whether the class of algebraic algorithms
strictly includes the class of Maurer-generic algorithms.

Acknowledgments

We thank Steven Galbraith for interesting discussions about the AGM and help-
ful comments on an earlier draft of this work.

References

ABB+20. Michel Abdalla, Manuel Barbosa, Tatiana Bradley, Stanislaw Jarecki,
Jonathan Katz, and Jiayu Xu. Universally composable relaxed password
authenticated key exchange. In Daniele Micciancio and Thomas Risten-
part, editors, Crypto 2020, Part I, volume 12170 of LNCS, pages 278–307.
Springer, Heidelberg, August 2020.

ABK+21. Michel Abdalla, Manuel Barbosa, Jonathan Katz, Julian Loss, and Jiayu
Xu. Algebraic adversaries in the universal composability framework. In
Mehdi Tibouchi and Huaxiong Wang, editors, Asiacrypt 2021, Part III,
volume 13092 of LNCS, pages 311–341. Springer, Heidelberg, December
2021.



12 Cong Zhang, Hong-Sheng Zhou, and Jonathan Katz

BFL20. Balthazar Bauer, Georg Fuchsbauer, and Julian Loss. A classification
of computational assumptions in the algebraic group model. In Daniele
Micciancio and Thomas Ristenpart, editors, Crypto 2020, Part II, volume
12171 of LNCS, pages 121–151. Springer, Heidelberg, August 2020.

BR06. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Serge Vaudenay, editor,
Eurocrypt 2006, volume 4004 of LNCS, pages 409–426. Springer, Heidel-
berg, May / June 2006.

BV98. Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be
equivalent to factoring. In Kaisa Nyberg, editor, Eurocrypt ’98, volume
1403 of LNCS, pages 59–71. Springer, Heidelberg, May / June 1998.

DH76. Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Trans. Inf. Theory, 22(6):644–654, 1976.

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Hovav Shacham and Alexandra Boldyreva, edi-
tors, Crypto 2018, Part II, volume 10992 of LNCS, pages 33–62. Springer,
Heidelberg, August 2018.

FPS20. Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. Blind Schnorr
signatures and signed ElGamal encryption in the algebraic group model. In
Anne Canteaut and Yuval Ishai, editors, Eurocrypt 2020, Part II, volume
12106 of LNCS, pages 63–95. Springer, Heidelberg, May 2020.

Gal12. Steven D Galbraith. Mathematics of public key cryptography. Cambridge
University Press, 2012.

GT21. Ashrujit Ghoshal and Stefano Tessaro. Tight state-restoration soundness
in the algebraic group model. In Tal Malkin and Chris Peikert, editors,
Crypto 2021, Part III, volume 12827 of LNCS, pages 64–93, Virtual Event,
August 2021. Springer, Heidelberg.

KLX20. Jonathan Katz, Julian Loss, and Jiayu Xu. On the security of time-lock
puzzles and timed commitments. In Rafael Pass and Krzysztof Pietrzak, ed-
itors, TCC 2020, Part III, volume 12552 of LNCS, pages 390–413. Springer,
Heidelberg, November 2020.

KLX22. Julia Kastner, Julian Loss, and Jiayu Xu. On pairing-free blind signature
schemes in the algebraic group model. In Goichiro Hanaoka, Junji Shikata,
and Yohei Watanabe, editors, PKC 2022, Part II, volume 13178 of Lecture
Notes in Computer Science, pages 468–497. Springer, 2022.

Mau05. Ueli M. Maurer. Abstract models of computation in cryptography (invited
paper). In Nigel P. Smart, editor, 10th IMA International Conference on
Cryptography and Coding, volume 3796 of LNCS, pages 1–12. Springer,
Heidelberg, December 2005.

MBKM19. Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic:
Zero-knowledge SNARKs from linear-size universal and updatable struc-
tured reference strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2111–2128.
ACM Press, November 2019.

MPZ20. Ueli Maurer, Christopher Portmann, and Jiamin Zhu. Unifying generic
group models. Cryptology ePrint Archive, Report 2020/996, 2020. https:
//eprint.iacr.org/2020/996.

MTT19. Taiga Mizuide, Atsushi Takayasu, and Tsuyoshi Takagi. Tight reductions
for Diffie-Hellman variants in the algebraic group model. In Mitsuru Mat-
sui, editor, CT-RSA 2019, volume 11405 of LNCS, pages 169–188. Springer,
Heidelberg, March 2019.

https://eprint.iacr.org/2020/996
https://eprint.iacr.org/2020/996


An Analysis of the Algebraic Group Model 13

Nec94. Vassiliy Ilyich Nechaev. Complexity of a determinate algorithm for the
discrete logarithm. Mathematical Notes, 55(2):165–172, 1994.

PH78. Stephen Pohlig and Martin Hellman. An improved algorithm for computing
logarithms over GF(p) and its cryptographic significance (Corresp.). IEEE
Transactions on Information Theory, 24(1):106–110, 1978.

Pol78. John M Pollard. Monte Carlo methods for index computation (mod p).
Mathematics of Computation, 32(143):918–924, 1978.

PV05. Pascal Paillier and Damien Vergnaud. Discrete-log-based signatures may
not be equivalent to discrete log. In Bimal K. Roy, editor, Asiacrypt 2005,
volume 3788 of LNCS, pages 1–20. Springer, Heidelberg, December 2005.

RS20. Lior Rotem and Gil Segev. Algebraic distinguishers: From discrete log-
arithms to decisional uber assumptions. In Rafael Pass and Krzysztof
Pietrzak, editors, TCC 2020, Part III, volume 12552 of LNCS, pages 366–
389. Springer, Heidelberg, November 2020.

RZ21. Carla Ràfols and Arantxa Zapico. An algebraic framework for universal and
updatable SNARKs. In Tal Malkin and Chris Peikert, editors, Crypto 2021,
Part I, volume 12825 of LNCS, pages 774–804, Virtual Event, August 2021.
Springer, Heidelberg.

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, Eurocrypt ’97, volume 1233 of LNCS, pages 256–
266. Springer, Heidelberg, May 1997.

Zha22. Mark Zhandry. To label, or not to label (in generic groups). 2022. To appear
at Crypto 2022. Full version available at https://eprint.iacr.org/2022/226.

https://eprint.iacr.org/2022/226

	 An Analysis of the Algebraic Group Model 

