
A Non-heuristic Approach to Time-space
Tradeoffs and Optimizations for BKW

Hanlin Liu1 ID and Yu Yu1,2 ID

1 Shanghai Jiao Tong University, Shanghai 200240, China
2 Shanghai Qi Zhi Institute, 701 Yunjin Road, Shanghai 200232, China

E-mail: hans1024@sjtu.edu.cn, yuyuathk@gmail.com

Abstract. Blum, Kalai and Wasserman (JACM 2003) gave the first
sub-exponential algorithm to solve the Learning Parity with Noise (LPN)
problem. In particular, consider the LPN problem with constant noise

and dimension n. The BKW solves it with space complexity 2
(1+ε)n
log(n) and

time/sample complexity 2
(1+ε)n
log(n) · 2Ω(n

1
1+ε) for small constant ε→ 0+.

We propose a variant of the BKW by tweaking Wagner’s generalized
birthday problem (Crypto 2002) and adapting the technique to a c-ary
tree structure. In summary, our algorithm achieves the following:

1. (Time-space tradeoff). We obtain the same time-space tradeoffs
for LPN and LWE as those given by Esser et al. (Crypto 2018), but
without resorting to any heuristics. For any 2 ≤ c ∈ N, our algorithm

solves the LPN problem with time complexity 2
log(c)(1+ε)n

log(n) · 2Ω(n
1

1+ε)

and space complexity 2
log(c)(1+ε)n
(c−1) log(n) for ε → 0+, where one can use

Grover’s quantum algorithm or Dinur et al.’s dissection technique
(Crypto 2012) to further accelerate/optimize the time complexity.

2. (Time/sample optimization). A further adjusted variant of our
algorithm solves the LPN problem with sample, time and space

complexities all kept at 2
(1+ε)n
log(n) , saving factor 2Ω(n

1
1+ε) for ε → 0+

in time/sample compared to the original BKW, and the variant of
Devadas et al. (TCC 2017).

3. (Sample reduction). Our algorithm provides an alternative to
Lyubashevsky’s BKW variant (RANDOM 2005) for LPN with a
restricted amount of samples. In particular, given Q = n1+ε (resp.,
Q = 2n

ε

) samples for any constant ε > 0, our algorithm saves
a factor of 2Ω(n)/ log(n)1−κ (resp., 2Ω(nκ)) for constant κ → 1− in
running time while consuming roughly the same space, compared
with Lyubashevsky’s algorithm.

In particular, the time/sample optimization benefits from a careful anal-
ysis of the error distribution among the correlated candidates, which
was not studied by previous rigorous approaches such as the analysis of
Minder and Sinclair (J.Cryptology 2012) or Devadas et al. (TCC 2017).

https://orcid.org/0000-0003-3843-1394
https://orcid.org/0000-0002-9278-4521

1 Introduction

1.1 The LPN problem and the BKW algorithm

The LPN problem with dimension n ∈ N and noise rate 0 < µ < 1/2 asks
to recover the s

$←− Fn2 given an oracle that for each query responds with (ai,
〈ai, s〉 + ei) for uniformly random ai

$←− Fn2 and Bernoulli distributed error ei,
i.e., Pr[ei = 1] = µ. Equivalently, LPN can be rephrased in the matrix-vector
format, i.e., to recover s given (A,A · s+e), where A is a random Q×n Boolean
matrix, e ← BQµ , ‘·’ and ‘+’ denotes matrix vector multiplication and bitwise
addition over F2. It is worth mentioning that a candidate solution can be verified
with high confidence in polynomial time and space for any non-trivial noise rate
µ ≤ 1/2 − 1/poly(n). A straightforward algorithm exhaustively searches for s
(or any n-bit substring of e whose corresponding submatrix of A is invertible),
which takes exponential time but consumes only polynomial-size space and thus
can be applied in extreme space-constrained situations.

Blum, Kalai and Wassermann [6] gave the first sub-exponential algorithm
(the BKW algorithm) that solves the LPN problem via an iterative block-wise
Gaussian elimination method. Consider the LPNn,µ problem with dimension n,
and noise rate µ = 1−γ

2 . For block size b, and number of iterations a such that
ab = n, the algorithm does the following (see Section 2.3 for more formal details):

1. Runs for a iterations and reduces the dimension by b bits in each iteration
(by XORing LPN sample pairs whose corresponding block sum to zero). This
results in samples in the form of (u1, 〈u1, s〉+ ẽj) = (u1, s1 + ẽj), where s1
is the first bit of s, and ẽj is the sum of noise from 2a original LPN samples.

2. Repeats step 1 on fresh new LPN samples for m ≈ (1/γ)2
a+1

times, obtaining
at least one candidate (u1, s1 + ẽj) each time.

3. Majority votes on the m samples obtained in step 2 and produces a candidate
for s1. Repeats the process for other bits of s (on previously used samples).

The BKW solves the LPN problem in time T , using space of size M and up to
Q samples, and succeeds with the probability P as below

T ≈ 2b · (1/γ)2
a+1

, M ≈ 2b, Q ≈ 2b · (1/γ)2
a+1

, P = 1− negl(n) ,

where throughout the paper “≈” denotes the approximate relation that omits a
multiplicative poly(n) factor. For any constant 0 < γ < 1, we set a = log(n)

1+ε and

b = (1+ε)n
log(n) such that T ≈ 2

(1+ε)n
log(n) · 2Ω(n

1
1+ε) and M ≈ 2

(1+ε)n
log(n) , where constant

ε→ 0+. Quite naturally, one may raise the following questions:

1. (Time-space tradeoff). Is it possible to achieve meaningful time-space
tradeoffs for BKW to deal with bounded space in practice?

2. (Time/sample optimization). Is it possible to optimize the time/sample
without sacrificing space, in particular, to eliminate the (1/γ)2

a+1

factor?

2

3. (Sample reduction). Is it possible to push the sample complexity to a much
lower order of magnitude than the time/space complexities?

Below we first survey related works and progress made in tackling the above
problems followed by a summary of our contributions.

1.2 Time-space Tradeoff for BKW

The huge space consumption of BKW has become an obstacle for a realistic
security evaluation of LPN/LWE-based crypto-systems. As discussed in [18],
while performing 260 or more steps is considered doable with a reasonable budget,
an algorithm consuming a space of size 260 is definitely out of reach in practice.
Likewise, in the lattice setting the enumeration method (e.g., the Kannan’s
algorithm [26] that takes time 2O(n log(n)) and space poly(n)) often beats the
lattice sieving [16,29–31] with time and space 2O(n) in practice, and there is a
renewed interest in the time-space trade-offs, e.g., lattice tuple sieving [4, 22, 23].

Esser et al. [18] discussed time-space tradeoff for BKW, but their algorithm
already needs exponential time for space requirement below 2n/ log(n). Later,
they [17] introduced another variant of the BKW with better support for time-
space trade-offs, called the c-sum BKW, where 2 ≤ c ∈ N. Initially, it starts
with a list of independent and uniformly random vectors L0 = (a0,1, · · · ,a0,N),
omitting the noisy parity bits for succinctness. It iteratively takes sums of c
samples from the previous list Li and stores those (that zero out the (i+ 1)-th
b-bit block) into the next Li+1, until at last it reaches a given target (typically
of Hamming weight 1). The rest of the steps (repeating the above process m
times, majority voting, etc.) are similar to the original BKW [6]. Note that c is
the parameter to tune the tradeoff between space and time. In particular,

(
N
c

)
increases exponentially with c, so with larger c one may use a smaller space at
the cost of increasing time.

Nevertheless, the intermediate samples during each iteration of the c-sum
BKW are somehow correlated, e.g., a1+a2, a2+a3 and a1+a3 are correlated in
that they jointly sum to 0 regardless of the values of a1,a2,a3. Note that the
original BKW [6] resolves the independence issue by using 2b reference vectors
(whose i-th block take all values over Fb2) in each i-th iteration, and XORing the
rest vectors with one of the reference vector (zeroing out the i-th block), which
produces independent vectors for the next iteration. In the generalized c-sum
setting [17], it is not clear how the independence can be guaranteed to obtain a
rigorous analysis of the running time, space consumption and success rate. Esser et
al. [17] resorted to the independence heuristic that simply assumes independence
among those vectors, and they also provided some empirical evidences that the
results (for certain parameter choices) behave close to the analysis under the
idealized heuristics. We remark that similar independence heuristics were already
used in the optimized analysis of concrete LPN instances (e.g., [7, 8, 20]).

Under the independence heuristics, Esser et al. [17] obtained various variants
of the c-sum BKW, such as the naive c-sum BKW, dissection c-sum BKW,
tailored dissection c-sum BKW, and quantum c-sum BKW, as shown in Table 1.

3

The naive c-sum BKW is the most generic one that admits time-space tradeoffs
for arbitrary 2 ≤ c ∈ N, the dissection c-sum BKW is the time-optimized version
of the naive c-sum BKW for c ∈ {(i2 + 3i + 4)/2 : 0 ≤ i ∈ N}, the tailored
dissection c-BKW is a fine-grained version of the dissection c-sum BKW (by
adjusting the value of β, see also a visual illustration in [33, Figure 4]) that
relies on additional heuristics, and the quantum c-sum BKW is the quantumly
accelerated version of the naive c-sum BKW via the Grover algorithm [9,15, 19].
They also applied the c-sum BKW to the LWE problem [36] and got similar results
(see Table 5). We refer to Section 2.4 for more details about the c-sum BKW
algorithm. Looking ahead, we provide unconditional algorithms with essentially
the same complexities (see Section 3.2 through Section 3.7).

Table 1. The time and space complexities of the c-sum BKW [17] (and our c-sum+

BKW) for solving the LPNn,µ problem, where Nc = 2
log(c)
c−1

· n
log(n)

·(1+ε) and constant
ε > 0.

c-sum (c-sum+) BKW Space Time for

Classic

Original BKW [6] N2 N2 c = 2
Naive Nc Nc−1

c c ≥ 2

Dissection Nc Nc−
√
2c

c c = 4, 7, 11, · · ·
Tailored Dissection Nβ

c Nc−β
√
2c

c c = 4, 7, 11, · · · β ∈ [1,
√
c√
c−1

]

Quantum Naive + Grover Nc N
c/2
c c ≥ 2

Table 2. A comparison of our time-space tradeoff and the heuristic state of the

art [11,13] for solving the LPNn,µ problem, where Nc = 2
log(c)
c−1

· n
log(n)

·(1+ε) and constant
ε > 0.

Time-space tradeoff for
Our dissection version T = Nc−

√
2c

c M = Nc c = 4, 7, 11, · · ·

Dinur [13] T log(n)/2+1 ·M log(n)/2 = N
log(n)
2

√
T < M < T

T 2 ·M3 log(n)/2−2 = N
log(n)
2 M <

√
T

Delaplace et al. [11] T = N
(1
2
+ 1
c
) log(c)

2 M = N
2
c
log(c)

2 c ≥ 2

We give the same end results as [17] while removing its underlying heuristics
(see Table 1). We mention that [11, 13] further advanced the heuristic-based
state-of-the-art with the aid of parallel collision search (PCS). PCS used the
similar independence heuristics such as HA(y) = yT ·A behaves like a random
oracle or pseudorandom function, where A is the public matrix of the LPN
problem. Note that the assumption doesn’t hold in general even for secret A,
e.g., for y1 = y2 + y3 we have HA(y1) = HA(y2) + HA(y3). As depicted in
Table 2, it is quite challenging to do a comprehensive comparison with [11,13].

4

For instance, when
√
T < M < T , Dinur [13] achieves roughly T ·M ≈ N2

2 , e.g.,
T ≈ N

4/3
2 and M ≈ N

2/3
2 . In contrast, our dissection version (see Theorem 6)

achieves the same T ≈ N
4/3
2 and M ≈ N

2/3
2 by setting c = 4. Further, for

M <
√
T our result seems better than [13] (i.e., our T 2 ·M3 log(n)/2−2 < N

log(n)
2),

but the comparison is unfair as the explicit result analyzed/stated in [13] only
considers c = 4 (generalizing to other c may yield different results). Delaplace
et al. [11] is less superior to ours for c < 11, and it outperforms ours when
M < 20.35n/ log(n) (c ≥ 11 in our case). Therefore, as far as time-space tradeoff is
concerned, we mainly focus on [17], and leave it as future work on how to remove
all the heuristics of [11,13].

1.3 Time/sample Optimization and Sample Reduction for BKW

As discussed in Section 1.1, the BKW [6] repeats step 1 for (1/γ)2
a+1

= 2Ω(n
1

1+ε)

times and thus increases the time and sample complexities by the same factor. In
fact, step 1 may have already produced sufficiently many samples (s1 + ẽj), and
intuitively one just needs a majority vote to decode out s1. However, those noise,
say ẽj and ẽj′ , are both the XOR sums of noise from the LPN samples, and they
might not be (even pairwise) independent. Levieil and Fouque [32] used the LF1
technique to replace the majority voting and recover multiple secret bits (instead
of a single one) at the same time. However, the BKW variant of [32] employs
the LF2 technique when mixing up the vectors and heuristically assumes that
the mixed up vectors behave as if they were independent, which is what we want
to avoid in this paper. Devadas et al. [12] proposed a (non-heuristic) single-list
pair-wise iterative collision search method to optimize the BKW, where they
showed that the distribution of solutions is close to a Poisson distribution and
applied the Chen-Stein method [3] of the second moment analysis to bound the
difference. As a result, their variant solves the LPN problem (with overwhelming
probability) in time T , using space of size M and sample complexity Q as below

T ≈ 2b · (1/γ)2
a

, M ≈ 2b · (1/γ)2
a

, Q ≈ 2b ,

where their sample complexity gets rid of the (1/γ)2
a+1

factor as desired, time
complexity is only mitigated (factor (1/γ)2

a+1

squared to (1/γ)2
a

), and space
complexity even deteriorates by factor (1/γ)2

a

compared to the original BKW [6].
Lyubashevsky [34] studied how to solve the LPN problem with fewer samples.

In particular, he used Q = n1+ε (for constant ε > 0) LPN samples as a basis to
generate as many samples as needed, and feed them to the original BKW [6].
Concretely, let (A, tT = (sTA + xT)) be the initial LPN samples, where A is
the n × Q matrix, and vectors with ‘T’ denote row vectors. A “re-randomized
LPN” oracle take as input (A, tT) and responds with (Ari, tTri = sTAri+ xTri)
as the i-th re-randomized LPN sample, where every ri is drawn from the set
of length-Q-weight-w strings uniformly at random. For an appropriate value of
w, (A, Ari, xTri) is statistically close to (A, Un, xTri) by the leftover hash
lemma [25] with mildly strong noise xTri. In the end, Lyubashevsky’s variant of

5

BKW solves the LPN problem (with overwhelming probability) in time T , using
space of size M and sample complexity Q as below

T ≈ 2b · (4/γ)2
a+2·n/(ε log(n)), M ≈ 2b, Q = n1+ε .

For constant 0 < γ < 1, we set a = κ · log log(n) and b = n
κ log log(n) for constant

0 < κ < 1 and thus T = 2
n

κ log log(n) · 2Ω(n)/ log(n)1−κ , which is optimized when
κ → 1−. Let us mention that Lyubashevsky’s technique [34] also implies that
LPN with Q = 2n

ε

(constant 0 < ε < 1) samples can be solved in time and space
complexity 2O(n/ log(n)). We refer to Section 4.2 for more details.

1.4 Our Contributions

In this paper, we consider a problem that can be seen as a variant of Wagner’s
generalized birthday problem [38]. We recall the generalized birthday problem
that, given k = 2a independent lists of i.i.d. uniformly random vectors, challenges
to find out k vectors, one from each list, summing to a specified target, where the
k vectors constitute a solution to the problem. The problem we consider further
generalizes and differs to the generalized birthday problem in the following ways.

– (Generalization). We consider the case of k = ca for 2 ≤ c ∈ N and a ∈ N+.
– (Pairwise-independence). Each list consists of pairwise independent (in-

stead of i.i.d. random) vectors, and all the lists are mutually independent.
– (Bias analysis). Our analysis framework extends to the case where each

random vector is labelled with a true/false flag (to fully represent the LPN
problem). We show that as long as the initial bias (the difference between
the number of true and false samples) is bounded, the resulting bias among
the solutions will be bounded (with reasonable blowup) as well, a feature not
studied by the previous algorithms for the generalized birthday problem. 3

As visualized in Fig. 1(b), our algorithm, referred to as the c-sum+ BKW,
breaks down the above problem on ca lists into (ca−1 + · · ·+ c0) subproblems on
c lists, called the c-sum+ problems. Further, we show that as long as the pairwise-
independence (for vectors within each list) and mutual independence (among the
lists) are satisfied for the ca lists at the input level, the conditions will be satisfied
by the lists at every other level (e.g., L1,1, L1,2, L1,3 in Fig. 1(b)). We give
analysis of the time, space and success probability without resorting to heuristics,
thank to the pairwise-independence condition. Under our unified framework, the
three tweaks, i.e., generalization, bias analysis and pairwise-independence, lead
to the following advantages respectively.

1. (Time-space tradeoff). Our algorithm admits various time-space tradeoffs
for solving LPN (shown in Table 1) and LWE (see Table 5), same as those
achieved by the c-sum BKW [17], but without relying on any heuristiscs.

3 The original generalized birthday problem omits LPN’s noise labels. Even if many
solutions are found, the correlations among the accumulated noise do not support
majority voting. Therefore, non-heuristic analysis typically repeats the process on
fresh new samples for 2n

1−ε
times and thus incurs the same overhead on time/sample.

6

L0

c-sum

tL1

c-sum

ct τL2

(a) c-sum BKW [17]

L0,1 L0,2 L0,3 L0,4 L0,5 L0,6 L0,7 L0,8 L0,9

c-sum+ c-sum+ c-sum+

t1L1,1 t2L1,2 t3L1,3

c-sum+

t τL2,1

(b) our c-sum+ BKW (c=3, t = t1 + t2 + t3)

Fig. 1. An illustration of the c-sum BKW [17] and our c-sum+ BKW.

2. (Time/sample optimization). We carefully analyze and bound the error
distribution of the correlated solutions in step 1 (e.g., L2,1 in Fig. 1(b)), and
therefore avoid the “repeat-m-times loop” in step 2. This saves a factor of

N2 = (1/γ)2
a+1

= 2Ω(n
1

1+ε) for small constant ε → 0+ in time and sample
complexities compared to the original BKW [6]. Our algorithm also enjoys a
sub-exponential

√
N2 advantage in time and space complexities compared to

the optimized BKW of Devadas et al. [12]. See Table 3 for more details.
3. (Sample reduction). By using pairwise independent samples for the initial

lists, we provide an alternative to Lyubashevsky’s BKW variant [34] with
improved time complexity. In particular, given Q = n1+ε (resp., Q = 2n

ε

)
samples for constant ε > 0, our algorithm saves a factor of 2Ω(n)/ log(n)1−κ

(resp., 2Ω(nκ)) for constant κ → 1− in running time compared with the
counterpart in [34]. We refer to Table 4 and Section 4.2 for details.

Table 3. The space, time and sample complexities of different variants of the BKW
for solving the LPNn,µ problem with µ = (1− γ)/2, under condition N1 ≈ N2, where
ab = n, N1 = 2b and N2 = (1/γ)2

a+1

disregarding poly(n) factors.

Algorithm Space Time Sample Condition
The original BKW [6] N1 N1 ·N2 N1 ·N2 N1 ≈ N2

Devadas et al.’s [12] N1 ·
√
N2 N1 ·

√
N2 N1 N1 ≈ N2

Ours N1 N1 N1 N1 ≈ N2

It might seem counter-intuitive that our results listed in Table 3 and Table 4
only depend on N1 but still needs to satisfy N1 ≈ N2 (or similar ones in Table 4)
for optimized time complexity. As we will see, the condition N1 ≥ N2 (or alike)
is translated from the condition that sufficient amount of samples are needed
to ensure the correctness of majority voting (see Theorem 9), and we thus let
N1 ≈ N2 for optimized complexity and fair comparison.

7

Table 4. The space, time and sample complexities of different variants of the BKW
for solving the LPNn,µ problem with µ = (1 − γ)/2, where ab = n, N1 = 2b, N2 =

(4/γ)2
a+2·n/(ε log(n)) and N ′2 = (4/γ)2

a+2·n1−ε
and constant ε > 0.

Sample Algorithm Space Time Condition

n1+ε Lyubashevsky’s [34] N1 N1 ·N2 N1 ≈ N2

Ours N1 N1 (N1)
log log(n) ≈ N2

2n
ε Lyubashevsky’s [34] N1 N1 ·N ′2 N1 ≈ N ′2

Ours N1 N1 (N1)
log(n) ≈ N ′2

Related work. Minder and Sinclair [35] used second-moment analysis, and
gave rigorous time/space bounds of Wagner’s generalized problem. While it looks
promising that the analysis of Minder and Sinclair [35] can be adapted to our
further generalized case of c ≥ 2 and pairwise-independent vectors (within each
list), their approach does not support bias analysis. Recall that the original
generalized birthday problem omits the noise labels, e1, · · · , eN , from the LPN.
Therefore, even many k-sum solutions are found, the correlations among the
accumulated noise may not support majority voting. Note that even the pairwise
independence condition does not hold for the noise, e.g., e1, e2, e1 + e2 are
pairwise independent only for uniformly random (not for biased) e1 and e2. This
is why previous non-heuristic algorithms have to repeat the process on fresh new
samples for N2 = 2n

1−ε
times and thus incurs the same overhead on time/sample.

Recently, Devadas et al. [12] partially mitigated the issue by bounding the voting
difference using the Chen-Stein method [3], but their bound is not as good as
ours. As shown in Table 3, our result removes this penalty factor m = N2 almost
for free (without significantly increasing the time/sample complexity).

2 Preliminary

2.1 Notation

We use log(·) to denote the binary logarithm. For a ≤ b ∈ N, [a, b] def
= {a, a +

1, · · · , b} and [a] := [1, a]. |S| is the cardinality of the set S. For any set S and
0 ≤ s ≤ |S|,

(S
s

)
denotes the set of all size-s subsets of S. A list L = (l1, · · · , lN)

is an element from set SN with length |L| = N . We denote the empty list by ∅ .
For x ∈ Fn2 and b < n we denote the last b coordinates of x by lowb(x).

ui denotes the i-th unit vector, and 0b denotes the zero vector of dimension b.
We use ‘ :=’ to denote deterministic value assignment. US denotes the uniform
distribution over set S. Bµ denotes the Bernoulli distribution with parameter
µ, i.e., for x ← Bµ we have Pr[x = 1] = µ and Pr[x = 0] = 1 − µ. We use

s
$←− S (resp., s ← S) to denote sampling s from set S uniformly at random

(resp., according to distribution S). For L = (l1, · · · , lN) with every li uniformly
distributed over Fb2, we say that L consists of pairwise independent elements if
for every 1 ≤ i < j ≤ N the corresponding (li, lj) is uniform over F2b

2 .

8

Lemma 1 (Piling-up Lemma). For 0 < µ < 1/2 and random variables e1,
e2, · · · , e` that are i.i.d. to Bµ we have Pr[

⊕`
i=1 ei = 1] = 1

2 (1− (1− 2µ)`).

Lemma 2 (Chebyshev’s Inequality). Let X be any random variable (taking
real number values) with expectation µ and standard deviation σ (i.e., V ar[X] =

σ2 = E[(X − µ)2]). Then, for any δ > 0 we have Pr
[
|X − µ| ≥ δσ

]
≤ 1

δ2 .

Lemma 3. For pairwise independent real-valued r.v.s X1, · · · , Xm it holds that

V ar
[m∑
i=1

Xi

]
=

m∑
i=1

V ar
[
Xi

]
.

We defer the proof of Lemma 3 to the full version of the paper [33].

2.2 The Learning Parity with Noise Problem

The LPN problem comes with two versions, the decisional LPN and the search
LPN, which are polynomially equivalent [2, 5, 27]. Therefore, we only state the
search version for simplicity.

Definition 1 (Learning Parity with Noise) For n ∈ N, s ∈ Fn2 and 0 <

µ < 1/2, denote by Sample an oracle that, when queried, picks a
$←− Fn2 , e← Bµ

and outputs a sample of the form (a, l = 〈a, s〉+e). The LPNn,µ problem refers to
recovering the random secret 4 s given access to Sample. We call n the dimension,
s the secret, µ the error rate, l the label of a and e the noise.

2.3 The Original BKW

The BKW algorithm [6] works in iterations, and during each i-th iteration, it
uses 2b reference vectors (whose i-th block take all values over Fb2). The rest
vectors are added with the corresponding reference vector to zero out the i-th
block, which yields new labels with doubled noise (the sum of a reference vector
and another) and losing 2b vectors in each iteration. The procedure repeats for
b iterations (i.e., zeros out ab bits) until reaching a unit vector, say u1, and let
the corresponding label be a candidate for 〈u1, s〉 = s1. One further repeats the
above on new samples and does a majority vote to recover s1 with overwhelming
probability. The procedure to recover other bits of s is likewise.

Theorem 1 (The BKW algorithm [6]) For dimension n, block size b and
number of blocks a such that ab ≥ n, there is an algorithm that succeeds (with an
overwhelming probability) in solving the LPNn,µ problem in time T ≈ 2b ·(1/γ)2a+1

and using space of size M ≈ 2b, where the noise rate µ = 1/2− γ/2.

Concretely, for constant 0 < ε < 1, we set a = log(n)
1+ε and b = (1+ε)n

log(n) such that T

and M are both on the order of 2
(1+ε)n
log(n)

+O(1)n
1

1+ε ≈ 2
(1+ε+o(1))n

log(n) .
4 The distribution of the secret is typically uniform over Fn2 , but it has no effect on the
complexity of the BKW-style algorithms and thus is irrelevant in our context.

9

2.4 The c-sum Problem and c-sum BKW

Given a list of N (typically uniformly random) vectors, the c-sum problem
challenges to find out c of them whose (XOR) sum equals a specified target
(typically 0b). Esser et al. [17] considered the variant that aims to find sufficiently
many (at least N) such solutions. Notice that N is both the number of vectors in
the input list and the amount of solutions produced as output. As we will later
see, this (together with the independence heuristics) enables the c-sum BKW
algorithm [17] to work from one iteration to another without losing samples.

Definition 2 (The c-sum Problem (c-SP) [17]) Let b, c,N ∈ N with c ≥ 2.
Let L def

= (a1, · · · ,aN) be a list where ai
$←− Fb2 independently for all i and let

t ∈ Fb2 be a target. A single-solution of the c-sum problem is a size-c set L ∈
(
[N]
c

)
such that

⊕
j∈L aj = t. A complete-solution is a set of at least N distinct

single-solutions.

Esser et al. [17] proposed a variant of the BKW, referred to as the c-sum
BKW, that admits time-space tradeoffs. This is achieved by generalizing the
original BKW [6], which zeroes out one block per iteration by taking the sum of
two vectors (i.e., 2-sum), to one that generates new samples that are the sum of
c samples from previous iterations for arbitrary 2 ≤ c ∈ N. It turns out that the
c-sum BKW algorithm significantly reduces the space needed, as

(
N
c

)
blows up

exponentially with respect to c, at the cost of increased running time.

Algorithm 1: The c-sum BKW
Input: access to the oracle LPNn,µ
Output: s ∈ Fn2

1 a := log(n)
(1+εa) log(c)

, b := n
a
, m := 8(1−µ)n

(1−2µ)2c
a , N := 2

b+c log(c)+1
c−1 ;

2 for i← 1, · · · ,m do
3 Get N fresh LPN samples and save them in L;
4 for j ← 1, · · · , a− 1 do
5 L← c-sum(L, j, 0b);

6 L← c-sum(L, a,u1);
7 if L = ∅ then
8 Return ⊥;
9 Pick (u1, bi) uniformly from L;

10 s1 ← majorityvote(b1, · · · , bm);
11 Determine s2, · · · , sn the same way;
12 Return s = s1 . . . sn;

We recall the c-sum BKW in Algorithm 1. For a block size b and j ∈ [a], let
the coordinates [n− jb+ 1, n− (j − 1)b] denote the j-th stripe. The important
component of the c-sum BKW algorithm is the c-sum algorithm (see line 5 and

10

6) that generates some refresh samples whose j-th stripe for j ∈ [a − 1] (resp.
the a-th stripe) is zeros (resp. the first unit vector). If the above steps generate
some label-u1 samples, we pick one of these (u1, bi) sample uniformly at random
(see line 9). Determining the first bit s1 with overwhelming probability needs
sufficiently many independent label-u1 samples via the for-loop (see line 2). The
process of recovering other bits si is likewise (by reusing the LPN samples).

Independence Heuristic [17]. However, the output samples of the c-sum
algorithm are somehow correlated and may not feed into the next c-sum algorithm,
which requires independent samples for its input (see Definition 2). For instance,
the output of a 2-sum algorithm a1+a2, a2+a3 and a1+a3 are correlated in the
sense that they sum to 0 regardless of the values of a1,a2,a3. Esser et al. [17]
introduced the independence heuristic that assumes independence among those
vectors. Similar independence heuristics were already used in the optimized
analysis of concrete LPN instances [7, 8, 20].

3 The c-sum+ BKW and Time-space tradeoffs

In this section, we introduce the k-Generalized Birthday Problem [38], and breaks
it down into many instances of c-sum+ problems, where k = ca. By giving
solutions, optimizations, and speedups to the c-sum+ problems, we get many
variants of BKW algorithm (referred to as the c-sum+ BKW), which achieve the
same complexities (up to polynomial factors) as the counterparts of c-sum BKW
by Esser et al. [17] without relying on heuristics.

We consider the k-Generalized Birthday Problem: there are k = ca lists L0,1,
. . ., L0,ca , where each L0,i

def
= (ai,1, · · · ,ai,N) has N vectors, and satisfies

1. (Intra-list pairwise independence). Within each list L0,i, each ai,j is
uniformly random, and every pair of distinct vectors is pairwise independent,
i.e., for all j 6= k (ai,j ,ai,k) is uniformly random.

2. (Inter-list independence). L0,1, · · · , L0,ca , each seen as a random variable,
are all mutually independent.

A solution of the problem is to find k vectors, one from each list, that sum to a
specified target t, i.e., (j1, · · · , jk) ∈ [N]k such that

⊕k
i=1 ai,ji = t. The goal of

the problem is to find as many (N or more) solutions as possible.
Further, in the extended k-Generalized Birthday Problem, we associate lists

E0,1, . . ., E0,ca with L0,1, . . ., L0,ca respectively, where E0,i
def
= (ei,1, · · · , ei,N) ∈

FN2 is the list of noise labels, and define the noise label of a solution as
⊕k

i=1 ei,ji
accordingly. In addition to finding out N or more solutions, the extended problem
also requires the noise labels of the solutions are biased (i.e., more 0-labels
than 1-labels) as long as the noise of each L0,1, . . ., L0,ca is sufficiently biased.
Since this subsection serves to remove the heuristics of (and gives results fully
comparable to) [17], we defer the extended problem and contributions of optimized
time/sample optimization to Section 4.

11

3.1 The c-sum+ Problem

Before presenting our c-sum+ BKW, we first define the c-sum+ problem below.
Unlike the c-sum problem (see Definition 2) that produces c-sums from a single
list, the c-sum+ problem takes as input c lists and asks to find c vectors, one
from each list, that sum to a given target. Furthermore, we require that the c
lists are mutually independent, each consisting of pairwise independent vectors.

Definition 3 (The c-sum+ Problem (c-SP+)) Let b, c,N ∈ N with c ≥ 2.
Let L1, · · · , Lc, Li

def
= (ai,1, · · · ,ai,N) ∈ Fb·N2 , satisfy the Intra-list pairwise inde-

pendence and Inter-list independence conditions (as defined in the k-Generalized
Birthday Problem).

Further, let t ∈ Fb2 be a target. A solution of the c-sum+ problem is a size-c
list K def

= (k1, · · · , kc) ∈ [N]c such that
⊕c

i=1 ai,ki = t.

In fact, we will need the c-sum+ problem to give at least N solutions (instead
of a single one) in order to form another list for the subsequent iterations in
our BKW algorithm. As stated in the lemma below, the pairwise independence
already ensures the existence of sufficiently many (i.e., N) solutions albeit with
less strong error probability, i.e., 2/N instead of 2−Ω(N) assumed under the
independence heuristic [17]. As we will see, 2/N = negl(n) for a super-polynomial
N already suffices.

Lemma 4. For N = 2
b+1
c−1 , the c-SP+ problem (as per Definition 3) has at least

N and at most 3N solutions with the probability more than 1− 2/N .

Proof. For every K = (k1, · · · , kc) ∈ [N]c define a 0/1-valued variable XK that
takes value XK = 1 iff

⊕c
i=1 ai,ki = t. Thus, X =

∑
K XK is the number

of solutions to the c-sum+ problem, where every K ∈ [N]c has expectation
E[XK] = 2−b and all the XK are pairwise independent. Therefore,

Pr
[
|X − 2N | > N

]
≤ Pr

[
|X − E[X]| > N

]
≤ V ar[X]

N2
=

∑
S V ar[XS]

N2
≤= 2

N
,

where the first inequality is due to N c−1 = 2b+1 and E[X] = N c · 2−b = 2N , and
the second inequality is based on Chebyshev’s inequality, the first equality is
due to Lemma 3, and the last inequality is due to V ar[Xi] = E[X2

i]− E[Xi]
2 ≤

E[X2
i] = E[Xi]. ut

3.2 The c-sum+ BKW

We introduced the c-sum+ problem in Definition 3, and we show in Lemma 4
that it has at least N solutions (except with the probability 2/N). We defer the
concrete algorithms (and optimizations) for finding out the N solutions to a later
stage. Instead, we assume a solver for c-sum+ with time Tc,N,b and space Mc,N,b,
and then show how our c-sum+ BKW algorithm breaks down the LPN problem
into many instances of the c-sum+ problem.

12

Abstractly speaking, our c-sum+ BKW algorithm employs a c-ary tree of
depth a (see Fig. 2 for an illustration of a = 2, c = 3), where each node represents
a list of vectors, and each parent-node list consists of vectors each of which is the
sum of c vectors from its c child nodes respectively (one from each child node).
Further, we assume that for every parent node list

{⊕c
i=1 ai,ki

∣∣∣(k1, · · · , kc) ∈
[N]c

}
the choices (k1, · · · , kc) of the c-sums are independent of the values of

its child lists L1, . . ., Lc, where Li = (ai,1, · · · ,ai,N). While this independence
assumption may seem contradictory to the c-sum+ problem that seeks solutions
satisfying

⊕c
i=1 ai,ki = t, we stress that this is due to the simplification of the

problem. That is, our c-sum+ BKW algorithm, just like the original BKW [6],
zeros out the coordinates in iterations: at the j-the iteration, it finds the linear
combinations of the j-th stripes that sum to zero, and produces the same
combinations of the (j+1)-th stripes as the resulting list for the next iteration, i.e.,{⊕c

i=1 a
j+1
i,ki

∣∣∣(k1, · · · , kc) ∈ [N]c,
⊕c

i=1 a
j
i,ki

= t
}
, where the choice (k1, · · · , kc)

is independent of the set of (j + 1)-th stripe vectors {aj+1
i,k |i ∈ [c], k ∈ [N]} to be

combined.
Under the above simplified model, we have the following lemma that states

that the leaf-level lists satisfy the intra-list pairwise independence and inter-list
independence conditions (see Definition 3), then the conditions will preserved
and propagated to all the non-leaf list nodes, all the way down to the root.

L0,1 L0,2 L0,3 L0,4 L0,5 L0,6 L0,7 L0,8 L0,9

c-sum+ c-sum+ c-sum+

t1L1,1 t2L1,2 t3L1,3

c-sum+

t τL2,1

Fig. 2. An illustration of the c-sum+ BKW for c = 3, where t = t1 + t2 + t3

Lemma 5 (Pairwise independence preserving). If the leaf-level lists L0,1,
. . . , L0,ca are all mutually independent, and each L0,i consists of pairwise inde-
pendent vectors. Then, for every 1 ≤ j ≤ a it holds that Lj,1, . . . , Lj,ca−j are
mutually independent, and every Lj,i (for 1 ≤ i ≤ ca−j) consists of pairwise
independent vectors.

Proof. The proof follows by induction, namely, if the condition holds for level
j, then it is also true for level j + 1. The mutual independence follows from
the tree structure, i.e., if Lj,1, . . . , Lj,ca−j are all mutually independent, then

13

so are the next-level parents Lj+1,1, . . . , Lj+1,ca−j−1 since each parent only
depends on its own children nodes. Moreover, if at level j, Lj,1, . . . , Lj,ca−j are
all mutually independent and every list Lj,i (for 1 ≤ i ≤ ca−j) consists of pairwise
independent vectors, then at level j + 1 we need to show that every list Lj+1,i′

(for i′ ∈ [ca−j−1]) consists of pairwise independent vectors as well. Consider any
two vectors from Lj+1,i′ that are distinct c-sums of its child lists, say

⊕c
`=1 a`,k`

and
⊕c

`=1 a`,k′` . Then, there exists at least one ` ∈ [c] such that k` 6= k′` and
(a`,k` ,a`,k′`) ∼ UF2b

2
(as they are from the same list at level j which has pairwise

independent vectors) and they are independent from other summand vectors
in the c-sum (since the lists at level j are all mutually independent). It follows
that (

⊕c
`=1 a`,k` ,

⊕c
`=1 a`,k′`) is jointly uniform over F2b

2 and thus are pairwise
independent. ut

We can now reduce the problem of solving LPN to (many instances of)
the c-sum+ problem without relying on any heuristics (thanks to the pairwise
independence preserving property by Lemma 5). The algorithm is formally
described in Algorithm 2. For a block size b and j ∈ [a], let the coordinates
[n− jb+ 1, n− (j − 1)b] denote the j-th stripe. Our algorithm proceeds level by
level. At the 0-th level, the algorithm gets fresh LPN sample to initialize every
list L0,k for k ∈ [ca] with |L0,k| = N = 2

b+1
c−1 (see line 1). Then, at each j-th

level (1 ≤ j ≤ a− 1) our algorithm invokes c-sum+ that takes as input the lists
Lj−1,c(k−1)+1, · · ·Lj−1,ck at the (j − 1)-th level, and produces as output list Lj,k
at the j-th level (see lines 4− 6). The execution on the a-th (root) level is slightly
different, i.e., we only need to solve a single instance of the c-sum+ with target
u1 (instead of zero), and produces a single solution (instead of N solutions). In
other words, the code at line 10 is somewhat unnecessary in that it first produces
N solutions (stored in La,1) but only (randomly) picks one of them, which is
another problem we are going to tackle in the next section. Finally, we repeat
the above many times on fresh LPN samples, and majority vote to decode out
first secret bit. The recovery of other secret bits is likewise (reusing the samples).
The c-sum+ algorithm is an important building block of the c-sum+ BKW. We
state below their relations in terms of correctness and complexity.

Theorem 2 (The c-sum+ BKW) The LPNn,µ problem with µ = 1/2 − γ/2
can be solved in time T and space M with the probability P as below

T ≈ Tc,N,b · ca · (
1

γ
)2·c

a

, M ≈Mc,N,b · ca, P ≥ 1− 1

N
· ca · (1

γ
)2·c

a

· poly(n)− n

2n
,

where Tc,N,b and Mc,N,b are respectively the time and space complexities of the
c-sum+ algorithm that aims for N distinct solutions to the c-sum+ problem with
block (target) size b, ab ≥ n, and N = 2

b+1
c−1 for 2 ≤ c ∈ N.

Notice: for now we omit the sample complexity since Q ≈ T under the sce-
nario of unlimited samples, as opposed to the setting considered in Section 4.2.

Proof. The c-sum+ algorithm is used to instantiate the c-sum+ subroutine in
Algorithm 2. As discussed in Lemma 4, the c-sum+ problem (implicitly defined

14

Algorithm 2: The c-sum+ BKW
Input: access to the oracle LPNn,µ
Output: s ∈ Fn2

1 a := log(n)
(1+εa) log(c)

, b := n
a
, m := 8(1−µ)n

(1−2µ)2c
a , N := 2

b+1
c−1 ;

2 for i← 1, · · · ,m do
3 Save fresh LPN samples in L0,1, . . ., L0,ca , each of size N ;
4 for j ← 1, · · · , a− 1 do
5 for k ← 1, · · · , ca−j do
6 Lj,k ← c-sum+(Lj−1,c(k−1)+1, · · · , Lj−1,ck, j, 0

b);

7 La,1 ← c-sum+(La−1,1, · · · , La−1,c, a,u1);
8 if La,1 = ∅ then
9 Return ⊥;

10 Pick (u1, bi) uniformly from La,1;

11 s1 ← majorityvote(b1, · · · , bm);
12 Determine s2, · · · , sn the same way;
13 Return s = s1 . . . sn;

in the j-th stripe of samples and the target vector 0b or ui for i ∈ [b] and
j ∈ [a]) has at least N distinct solutions with the probability at least 1− 2/N .
Therefore, the corresponding BKW algorithm aborts with the probability at most
1
N · c

a · (1γ)
2·ca · poly(n) via the union bound.

We now analyze the probability of the event that a single bit of the secret (e.g.,
s1) can be recovered correctly. Let the labels b1, · · · , bm (generated in line 10)
have the corresponding noise e1, · · · , em, i.e., bi = s1⊕ ei for i ∈ [m]. The c-sum+

subroutines are invoked m·ca
c−1 times, and each final resulting vector (that are a sum

of ca initial vectors) bears a noise of rate 1
2 −

1
2γ

ca via the Piling-up Lemma (see
Lemma 1). Moreover, e1, · · · , em are all independent. Then, a single secret bit can
be recovered with error rate 1

2n (by a Chernoff Bound). Therefore, the probability
of recovering secret key is P ≥ 1− 1/N · ca · (1/γ)2·ca · poly(n)− n

2n . Since it runs
the c-sum+ subroutine ca · (1γ)

2·ca · poly(n) times, we have M ≈Mc,N,b · ca and
T ≈ Tc,N,b · ca · (1γ)

2·ca . ut

Next, we show different variants of the c-sum+ BKW via instantiating the
corresponding c-sum+ algorithm.

3.3 Naive c-sum+ BKW Algorithm

Our naive c-sum+ algorithm is showed in [33, Algorithm 3]. Similar to the
naive approach [17], it first enumerates all possible p =

⊕c−1
j=1 aj,ij ∈ Fb2 for all

aj,ij ∈ Lj and j ∈ [c − 1], and checks whether p ⊕ t appears in the sorted list
Lc or not, where the target vector t ∈ Fb2. We obtain Theorem 3 by combining
Lemma 6 with Theorem 2.

15

Lemma 6. The naive c-sum+ algorithm solves the c-sum+ problem with target
length b and list size N ≥ 2

b+1
c−1 (2 ≤ c ∈ N) in time N c−1 · poly(b, c) and space

N · poly(b, c), and it returns N distinct solutions with the probability 1− 2/N .

Proof. Sorting out the list Lc is a one-time effort that takes time Õ(N), and
enumerating all possible combinations of the c−1 lists takes time N c−1 ·poly(b, c)·
log(N) = N c−1 · poly(b, c) where O(b log(N)) accounts for the time complexity
of the binary search for p⊕ t in the sorted Lc. The algorithm consumes space of
size N · poly(b, c) since it only stores up to N solutions. ut

Theorem 3 (Naive c-sum+ BKW) The LPNn,µ problem with µ = 1/2− γ/2
can be solved in time T ≈ N c−1 · ca · (1γ)

2·ca and space M ≈ N · ca with the

probability P ≥ 1− 1
N · c

a · (1γ)
2·ca · poly(n)− n

2n , where ab ≥ n, and N = 2
b+1
c−1 .

Concretely, for noise rate µ = 1/4, we set a = log(n)
log(c)(1+ε) and b = log(c)(1+ε)n

log(n) to

get log(M) = log(c)
c−1 ·

n(1+ε)
log(n) , log(T) = log(c) · n(1+ε+o(1))log(n) and P ≥ 1− negl(n).

3.4 Quantum c-sum+ BKW Algorithm

Following the steps in [17], we adopt the Grover’s algorithm [19] (see Theorem 4)
to quantumly speed up the crucial (and time-consuming) first step in the naive
c-sum+ (see [33, Algorithm 4]). To this end, we define

ft : [N]c−1 → {0, 1}, ft : (i1, · · · , ic−1) 7→

{
1, ∃ac,ic ∈ Lc :

∑c
j=1 aj,ij = t

0 otherwise
.

Once given (i1, · · · , ic−1) ∈ f−1(1) we can recover all ic such that (i1, · · · , ic)
constitutes a solution to c-sum+ in time Õ(log(|L|)) from a sorted list Lc. Lemma 7
follows from Theorem 4 and Lemma 4.

Theorem 4 (Grover Algorithm [9,15,19]) Let f : D → {0, 1} be a function
with non-empty support. Then, Grover outputs with overwhelming probability a
uniformly random preimage of 1, making q queries to f , where q = Õ

(√
|D|

|f−1(1)|

)
.

Lemma 7. The quantum c-sum+ algorithm solves the c-sum+ problem with
target length b and list size N ≥ 2

b+1
c−1 (2 ≤ c ∈ N) in time N

c
2 · poly(b, c) and

space N ·poly(b, c), and it returns N distinct solutions with the probability 1−2/N .

Combining Lemma 7 and Theorem 2, we obtain Theorem 5.

Theorem 5 (Quantum c-sum+ BKW) The LPNn,µ problem with µ = 1/2−
γ/2 can be quantumly solved in time T ≈ N c

2 · ca · (1γ)
2·ca and space M ≈ Nca

with the probability P ≥ 1− 1
N c

a(1γ)
2capoly(n)− n

2n , where ab ≥ n, and N = 2
b+1
c−1 .

16

Again, with noise rate µ = 1/4 we set a = log(n)
log(c)(1+ε) and b = log(c)(1+ε)n

log(n) to

get log(M) = log(c)
c−1 ·

n(1+ε)
log(n) , log(T) =

c·log(c)
2(c−1) ·

n(1+ε+o(1))
log(n) , P ≥ 1−negl(n), where

factor c
2(c−1) represents the quantum speedup over the classic algorithm.

3.5 Dissection c-sum+ BKW Algorithm

Esser et al. [17] borrowed the dissection technique from [14, 37] to optimize
the running time of their c-sum algorithm, referred to as dissection c-sum. The
dissection c-sum perfectly fits into our c-sum+ problem even better with only
minor adaptions. Below we briefly introduce the dissection c-sum, and analyze its
running time and space consumption in solving the c-sum+ problem. We defer
the redundancy to the appendix and reproduced the (slightly adapted) proofs
for completeness.

Following [17] we introduce the join operation (see Definition 4) to facilitate
the description of the dissection c-sum algorithm. We slightly abuse the notation
in Fig. 3 by extending the operation to multiple lists, e.g., ./τ3 operates on
L8, L9, L10, L11 with target τ3. This operation can be implemented in a space
friendly way without storing the intermediate lists. We simply adapt the naive
(i+ 1)-sum+ algorithm on lists Lci−1+1, · · · , Lci whose target vector τi may not
be of full length b, in which case the algorithm returns all the combinations whose
lowest |τi|-bit sum is τi.

2-Dissection
4-Dissection

7-Dissection
11-Dissection

L11 L10 L9 L8 L7 L6 L5 L4 L3 L2 L1

./τ0./τ1./τ2./τ3

L(11,8) L(7,5) L(4,3) L(2,1)

Fig. 3. An illustration of the dissection 11-sum on input lists L11, · · · , L1 that recursively
invokes dissection 7- and 4-sum (in dashed boxes), where ./τ is the join operator (as per
Definition 4) and implemented by Naive c-sum+ (as per [33, Algorithm 4]), the blank
box stores the intermediate results of ./τj operation, combine results from previous
invocations on-the-fly, and returns the found match through the red dotted arrows.

17

Definition 4 (Join Operator [17]) Let d ∈ N and L1, · · · , Lk ∈ (Fd2)∗ be lists.
The joins of two and multiple lists are respectively defined as

L1 ./ L2
def
= (a1 ⊕ a2 : a1 ∈ L1,a2 ∈ L2) ,

L1 ./ L2 ./ · · · ./ Lk
def
=
((

(L1 ./ L2) ./ L3

)
· · · ./ Lk

)
.

For t ∈ Fd′2 with d′ ≤ d, the join of L1 and L2 on target t is defined as

L1 ./t L2
def
= (a1 ⊕ a2 : a1 ∈ L1,a2 ∈ L2 ∧ low|t|(a1 ⊕ a2) = t) .

Definition 5 (The Magic Sequence [14]) Let c−1
def
= 1 and define the magic

sequence via the recurrence ∀i ∈ N+ ∪ {0} : ci
def
= ci−1 + i+ 1, which leads to the

general formula for the magic sequence: magic
def
=
{
ci

def
=
(

1
2 · (i

2 + 3i+ 4)
)}

i∈N+
.

The parameter c of the dissection c-sum can no longer be an arbitrary integer
but belongs to the “magic sequence” (Definition 5), i.e., ci

def
= (i2 + 3i + 4)/2.

Fix a certain i (and ci), we recall the list size ∀j ∈ [cj] : |Lj | = N = 2
b+1
ci−1 . For

convenience, let λ def
= b+1

ci−1 so that block size b = (ci − 1)λ − 1. The algorithm
employs the meet-in-the-middle strategy with (intermediate) targets of smaller
sizes τj ∈ Fjλ2 (for j ∈ [i]), and τ0 ∈ Fλ2 in its iterations.

We now give a high-level recursive description about the Dissection ci-sum
algorithm that aims to find out N solutions to the ci-sum+ problem for a target
t ∈ Fb2, which recursively invokes the dissection cj-sum algorithm (j < i) to get
all the combinations whose lowest jλ-bit sum is τj . The base case (i = 0, c0 = 2),
i.e., the Dissection 2-sum degenerates into the naive 2-sum+ algorithm with a
minor exception that the target τ0 may be not of full length b. We illustrate the
general case with a concrete example (i = 3, c3 = 11) in Fig. 3. Taking as input
lists L1, · · · , Lci and a target t, the algorithm divides the lists into two groups
L1, · · · , Lci−1

and Lci−1+1, · · · , Lci , where ci = ci−1 + i + 1 due to the magic
sequence. For each intermediate target τi ∈ Fi·λ2 , do the following:

1. Invoke the (adapted) naive (i+ 1)-sum+ algorithm on lists Lci−1+1, · · · , Lci
with the target vector τi to get all the combinations whose lowest (i · λ)-bit
sum is τi. Store all the solutions in list L(ci,ci−1+1).

2. Invoke the dissection c(i−1)-sum algorithm on lists L1, · · · , Lci−1
with target

low(i−1)·λ(τi)⊕ low(i−1)·λ(t). The results are passed to the parent call on-the-
fly (see the red dotted line in Fig. 3), and combined with those in L(ci,ci−1+1),
producing only those summing to t as output.

3. Repeat the above for all possible values of τi ∈ Fi·λ2 .

On space consumption. We stress that the above provides only an oversimpli-
fied description, and the actual algorithm (see [33, Algorithm 6 & 7]) is slightly

18

more complicated to keep the space consumption within O(iN). First, for each
0 ≤ j ≤ i we use L(cj ,cj−1+1) to store the results of the naive (j+1)-sum+ on
lists Lcj−1+1, . . ., Lcj (see the ./τj operation and the blank boxes in Fig. 3).
Second, every single result from L(2,1) is passed to L(4,3), and so on, all the
way to L(ci,ci−1+1) on-the-fly to form the final output (or be discarded if it fails
the checking). In other words, no additional space will be allocated for merging
L(2,1) with L(4,3), and then L(7,5), etc., to avoid a blowup in space consumption.
Finally, one can observe that the intermediate target size τj (0 ≤ j ≤ i) are
chosen such that the expected size of L(cj ,cj−1+1) is N . That is, (j + 1)-sum+

on (j + 1) lists, each of size N = 2λ, yields N j+1 combinations, each having a
chance of 2−|τj | to hit target τj . Thus, we have N j+1/2|τj | = N (more formally
in the full version [33]), and the overall space consumption is O(iN).

The dissection ci-sum+ [33, Algorithm 6] invokes the interative procedure
cj-Dissect [33, Algorithm 7] for j ≤ i to solve the ci-sum+ problem for ci ∈ magic.
We already show in Lemma 4 that for any 2 ≤ c ∈ N the problem has at least
N solutions (except with the probability 2/N). Esser et al. [17] showed that the
dissection ci-sum+ does an exhaustive search over all solutions.

Compared with the naive c-sum+ algorithm that also exhausts all solutions,
dissection ci-sum+ enjoys optimized time complexity as stated in [33, Lemma 17].
Esser et al. [17] analyzed the ci-Dissect [33, Algorithm 7] subroutine (essentially
the ./τj operation in Fig. 3) in terms of expected time and space, and we
further give their upper bounds in [33, Lemma 14 & 16] to reach a more formal
statement in [33, Lemma 17]. Combining [33, Lemma 17] and Theorem 2, we
obtain Theorem 6.

Theorem 6 (Dissection c-sum+ BKW Algorithm) For any ci ∈ magic, the
LPNn,µ problem with µ = 1/2− γ/2 can be solved in time T ≈ N ci−1 · cai · (1γ)

2·cai

and space M ≈ N · cai with the probability P ≥ 1− 1
N · c

a
i · (1γ)

2·cai · poly(n)− n
2n ,

where ab ≥ n, and N = 2
b+1
ci−1 .

Concretely, for µ = 1/4, we can set a = log(n)
log(ci)(1+ε)

and b = log(ci)(1+ε)n
log(n) so that

log(M) = log(ci)
ci−1 ·

n(1+ε)
log(n) , log(T) = (1− i

ci−1) · log(ci) ·
n(1+ε+o(1))

log(n) , P ≥ 1−negl(n),
where the optimization over the naive c-sum+ BKW is highlighted.

3.6 Tailored Dissection c-sum+ BKW

The dissection c-sum+ trades time for space of smaller size Mi ≈ 2

(
log(ci)

ci−1

)
n(1+ε)
log(n)

where ci = (i2 + 3i+ 4)/2. In practice, it may turn out that the size of actual
usable space M ∈(Mi, Mi−1), leaving an unused space of size (Mi−1 −M). To
address this issue, Esser et al. [17] introduced the tailored dissection ci-sum
technique to enable more fine-grained time-space tradeoffs. That is, still use
N = 2

b+1
ci−1 , but increase the list size 2λ from N to Nβ ≈ M (β > 1) to

fully utilize the available space. However, the optimized running time of their
algorithm needs not only the independence heuristic but also relies on the

19

tailoring heuristic [17] (see [33, Appendix B], which postulates that one needs
only to go through the first 2y (for y = b − ci−1 · λ + 1) constraints τi ∈ Fi·λ2
(in the outmost for-loop of [33, Algorithm 7]) to recover at least Nβ distinct
solutions (with high probability). In a similar vein, we present an unconditional
version called tailored dissection ci-sum+ that aims for the first Nβ (instead
of all) distinct solutions and halts as soon as 2λ = Nβ solutions are found
(see line 9 of [33, Algorithm 7]). Instead of relying on any heuristics, we prove
in [33, Lemma 18] unconditionally that the outmost for-loop needs only 2y

iterations for y = b− ci−1λ+ 1. Combining [33, Lemma 19] and Theorem 2, we
obtain Theorem 7.

Theorem 7 (Tailored Dissection c-sum+ BKW) For any ci ∈ magic, the
LPNn,µ problem with µ = 1/2 − γ/2 can be solved in time T ≈ N ci−1+(1−β)·i ·
cai · (1γ)

2·cai and space M ≈ Nβ · cai with the probability P ≥ 1− 1
Nβ
· cai · (1γ)

2·cai ·

poly(n)− n
2n , where ab ≥ n, N = 2

b+1
ci−1 and β ∈ [1, ci−1ci−1

].

Concretely, for µ = 1/4 we can set a = log(n)
log(ci)(1+ε)

and b = log(ci)(1+ε)n
log(n)

so that log(M) = β·log(ci)
ci−1 · n(1+ε)log(n) , log(T) = (1 − β·i

ci−1) · log(ci) ·
n(1+ε+o(1))

log(n)

and P = 1 − negl(n) where the difference to the dissection c-sum+ BKW was
highlighted.

3.7 Time-space Trade-offs for solving LWE

Regev [36] introduced the Learning With Errors (LWE) problem, generalizing
LPN over arbitrarily large moduli in presence of Gaussian-like noise.

Definition 6 (Learning With Errors) Let Dσ be a discrete Gaussian distri-
bution with mean zero and variance σ2. For n ∈ N, prime p ∈ N, s ∈ Fnp , denote

by Sample an oracle that, when queried, samples a
$←− Fnp , e← Dσ and outputs

a sample of the form (a, l) := (a, 〈a, s〉 + e). The LWEn,σ,p problem refers to
recovering the random secret s given access to Sample.

Albrecht et al. [1] adapted the BKW algorithm to solve the LWE problem,
with subsequent improvement by [10, 21, 24]. Similarly, the BKW reduces the
dimension of LWE by summing up samples and cancelling out the corresponding
blocks in iterations. The number of samples needed for the majority vote is

m = e
4π2σ22a

p2 after a BKW steps [28]. Herold et al. [24] showed that setting
a = (1− εa) log(n) + 2 log(p)− 2 log(σ) for constant εa > 0 yields m = e4π

2n1−εa

and results in time, space and sample complexities Õ
(
pb · e4π2n1−εa)

= pb·(1+ε) =

2
n·log(p)·(1+ε)

log(n)+2 log(p)−2 log(σ) .
Following the steps of Esser et al. [17], we also generalize the c-sum+ problem

to arbitrary moduli p and employed (slightly tweaked versions of) the afore-
mentioned algorithms to solve the c-sum+ problem with arbitrary moduli p
whose elementary operations (e.g., addition, sorting and binary search) are

20

now over Fp. Compared with [24], we adjust a by a factor of log(c) and set
a = (1−εa) log(n)+2 log(p)−2 log(σ)

log(c) for constant εa > 0. We summarize the results in
Table 5, which are essentially the same as that of the c-sum BKW for LWE [17]
but without using heuristics.

Table 5. The time and space complexities of the c-sum (c-sum+) BKW algorithms

for solving the LWEn,σ,p problem, where Nc = 2
log(c)
c−1

· n·log(p)·(1+ε)
log(n)+2 log(p)−2 log(σ) , n is the

dimension, and constant ε > 0.

c-sum (c-sum+) BKW Space Time for

Classic

Original BKW [6] N2 N2 c = 2
Naive Nc Nc−1

c c ≥ 2

Dissection Nc Nc−
√
2c

c c ∈ magic

Tailored Dissection Nβ
c Nc−β

√
2c

c c ∈ magic, β ∈ [1,
√
c√
c−1

]

Quantum Naive + Grover Nc N
c/2
c c ≥ 2

4 The c-sum# BKW with Time/Sample Optimizations

In this section, we consider the extended k-Generalized Birthday Problem (see
Section 3), and give the full-fledged variant, called c-sum# BKW, to optimize the
time, space and sample complexities of the original BKW algorithm [6]. Moreover,
it further pushes the sample complexity to 2n

ε

or even n1+ε, which also optimize
the complexities over Lyubashevsky’s BKW variant [34].

4.1 Time, Space, and Sample Optimizations

As shown in Table 6, we compare the results of the original BKW [6], Devadas et
al.’s optimized version [12] and our c-sum# BKW (for c = 2 as in Theorem 8).

Table 6. The space, time and sample complexities of different variants of the BKW
algorithms for solving the LPNn,µ problem with µ = (1− γ)/2, γ ≥ 2−n

σ

and constant
0 < σ < 1 under condition N1 ≈ N2, where ab = n, N1 = 2b and N2 = (1/γ)2

a+1

disregarding poly(n) factors for convenience.

Algorithm Space Time Sample Condition
The original BKW [6] N1 N1 ·N2 N1 ·N2 N1 ≈ N2

Devadas et al.’s [12] N1 ·
√
N2 N1 ·

√
N2 N1 N1 ≈ N2

Our 2-sum# BKW N1 N1 N1 N1 ≈ N2

We know that the last step of the BKW involves balancing the two factors
N1 = 2b and N2 = (1/γ)2

a+1

to roughly the same magnitude given ab = n. As

21

specified in 2-sum# BKW (see Theorem 8 for c = 2), it requires essentially the
same condition, i.e., b = 2a+1 log(1/γ) +O(log(n)). Asymptotically, for constant
0 < γ < 1, we typically set a = log(n)

1+ε and b = (1+ε)n
log(n) , and thus our algorithm

speeds up the running time of the original BKW [6] by a factor of 2n
1

1+ε while
using roughly the same amount of space, where constant ε is arbitrarily close to 0
for optimized time complexity. Recently, Devadas et al. [12] optimized the running
time of the orginal BKW from N1 · N2 to N1 ·

√
N2 at the cost of increasing

the space complexity from N1 to N1 ·
√
N2. Thus, the 2-sum# BKW enjoys

a sub-exponential factor advantage both in time/space complexities compared
to [12].

Algorithm 3: The c-sum# BKW
Input: access to the oracle LPNn,µ
Output: s ∈ Fn2

1 b := n
a
, N := 2

b
c−1 ;

2 Save fresh LPN samples in L0,1, . . ., L0,ca , each of size N ;
3 for j ← 1, · · · , a− 1 do
4 for k ← 1, · · · , ca−j do
5 Lj,k ← c-sum+(Lj−1,c(k−1)+1, · · · , Lj−1,ck, j, 0

b);

6 La,1 ← c-sum+(La−1,1, · · · , La−1,c, a,u1);
7 s1 ← majorityvote(b1, · · · b|La,1|);
8 Determine s2, · · · , sn the same way over the same LPN samples;
9 Return s = s1 . . . sn;

Majority voting on correlated samples. The c-sum BKW [17] and
our c-sum+ BKW (Algorithm 2) pick a single sample from La,1 and repeat
the process for m ≈ (1/γ)2

a+1

times on fresh LPN samples (see line 2-10 in
Algorithm 2). We argue that this step can be removed with a careful adaption,

and therefore reduces the time/sample complexities by factor 2Ω(n
1

1+ε). This
is the motivation of introducing the extended k-generalized birthday problem
(see Section 3). Hopefully, we recover the single bit of secret via a majority
voting on the elements in La,1 (line 7 in Algorithm 3). This is non-trivial since
the noise bits in La,1 are linear combinations of individual noises of the LPN
samples, and thus they are not even pairwise independent 5. We observe that in
order to majority-vote for the correct result it suffices that the resulting noise
remains biased-to-zero. For every sample list Lj,k we define the corresponding
noise-indicator list Ej,k, whose every i-th element (−1)ei corresponds to the
i-th element of Lj,k, i.e., (ai,ai · s⊕ ei). bias(Ej,k) =

∑|Ej,k|
i=1 (−1)ei refers to the

5 Unlike uniformly random vectors, the linear combinations of i.i.d. biased bits are not
pairwise independent, e.g., e1 + e2 and e2 for e1, e2 ← Bµ with 0 < µ < 0.5.

22

difference between the numbers of 0’s and 1’s in the noise of Lj,k. Therefore, the
majority voting is successful if and only if the final bias(Ea,1) > 0.

The c-sum# BKW. We now describe how to adapt the c-sum+ BKW (Al-
gorithm 3) to avoid the outmost repeat-m-times loop. The c-sum+ BKW is
sample-preserving, i.e., it invokes subroutines such as the naive c-sum+ [33, Algo-
rithm 4] that halt as soon as N solutions are found. In contrast, we let the c-sum#

BKW be exhaustive, i.e., the underlying c-sum+ solver (e.g., [33, Algorithm 9])
must output all solutions. We start with the initial leaf-level lists E0,1, · · · , E0,ca

with |E0,k| = N and sufficiently large bias(E0,k) for every k ∈ [ca]. Then, as shown
in Lemma 9, for every j ∈ [a] and k ∈ [ca−j] the |Ej,k| will be bounded within
N(1± o(1)) and bias(Ej,k) stays positive. To achieve this, we set N = 2b/(c−1)

(instead of N = 2(b+1)/(c−1)). Consider the c-sum+ problem instance whose input
noise-indicator lists are Ej−1,1, · · · , Ej−1,c and output noise-indicator list Ej,1,
whose elements are chosen from JEj,1

def
= Ej−1,1 ./ · · · ./ Ej−1,c (all possible

c-sums). In particular, each element from list JEj,1 is included into Ej,1 iff the
corresponding c-sum+ hits the target, which occurs with the probability 2−b.
Further, whether an element in JEj,1 hits the specified target or not is a pairwise
independent event (see Lemma 5). With |Ej−1,k| ≈ N for every k ∈ [c], we have
that |Ej,1| has expected value roughly N c/2b = N and thus remains around N
by Chebyshev’s inequality. We also lower bound the corresponding bias(Ej,1) for
every j ∈ [a]. We state the results in Lemma 9, and prior to that we introduce
Lemma 8 as an analogue of the piling-up lemma that characterizes how the bias
is amplified through the c-sum+ operations.

Lemma 8. For JEj+1
def
= Ej,k+1 ./ Ej,k+2 · · · ./ Ej,k+c, we have bias(JEj+1) =∏c

i=1 bias(Ej,k+i).

Proof. It follows from the definitions of bias and ./ by rearranging the terms:

bias(JEj+1) =
∑

l1∈[n1],··· ,lc∈[nc]

(−1)e
1
l1 × · · · × (−1)e

c
lc

=
(∑
l1∈[n1]

(−1)e
1
l1

)
× · · · ×

(∑
lc∈[nc]

(−1)e
c
lc

)
=

c∏
i=1

bias(Ej,k+i) ,

where we use shorthand ni
def
= |Ej,k+i| for 1 ≤ i ≤ c for notational convenience.

ut

Lemma 9. For N = 2
b
c−1 , any 2 ≤ c ∈ N, 0 < ε < 1 and 0 < δ < 1 such

that δc
a√

Nε ≥ 2ac2a, if the level-0 lists E0,1, . . ., E0,ca satisfy |E0,k| = N ,
bias(E0,k) ≥ δN for 1 ≤ k ≤ ca. Then, at every level j ∈ [a], for every k-th list
Ej,k (1 ≤ k ≤ ca−j) we have

Pr
[
bias(Ej,k) ≤

(
δc
j

N − 2j
√
Nc2j

ε

)]
≤ c4j · ε ,

Pr
[∣∣|Ej,k| −N ∣∣ ≥ 2j

√
Nc2j

ε

]
≤ c4j · ε .

23

Proof. The base case j = 0 holds by assumption, i.e., bias(E0,k) ≥ δN and
|E0,k| = N for every 1 ≤ k ≤ ca. We prove the rest by induction, i.e., if it holds
for level j, then it also true for level j + 1. It suffices to consider the first list
Ej+1,1 on level j+1 whose elements are selected from the set of all c-sum+ of the
c lists, i.e., JEj+1,1=Ej,1 ./ · · · ./ Ej,c. with the probability at least 1− c4j+1ε,
we have (by the definition of ./) N c(1− 2jc2j+1

√
Nε

) ≤ N c(1− 2jc2j√
Nε

)c < |JEj+1,1| <
N c(1 + 2jc2j√

Nε
)c ≤ N c(1 + 2j+1c2j+1

√
Nε

), where by [33, Lemma 21] (1 + d)c ≤ 1 + 2cd

and (1− d)c ≥ 1− cd for 0 < cd < 1, c ≥ 2. Every element from list JEj+1,1 has
a chance of 2−b to be selected into Ej+1,1 in a pair-wise independent manner
among the elements of JEj+1,1 (see Lemma 5). Thus, the above implies (recall
N c−1 = 2b) Pr

[∣∣E[|Ej+1,1|
]
−N

∣∣ < 2j+1
√
Nc2j+1

ε

]
≥ 1 − c4j+1ε. Similar to the

proof of Lemma 4 (except for a different value of N), we have

Pr
[∣∣|Ej+1,1| −N

∣∣ ≥ 2j+1
√
Nc2j+2

ε

]
≤Pr

[∣∣∣|Ej+1,1| − E
[
|Ej+1,1|

]∣∣∣ ≥ 2j+1
√
Nc2j+1(c− 1)

ε

]
+ Pr

[∣∣∣E[|Ej+1,1|
]
−N

∣∣∣ ≥ 2j+1
√
Nc2j+1

ε

]
≤
V ar

[
|Ej+1,1|

]
N/ε2

+ c4j+1 · ε ≤
E
[
|Ej+1,k|

]
N/ε2

+ c4j+1 · ε ≤ c4j+3 · ε .

(1)

By Lemma 8 the following holds with the probability at least 1− c4j+1ε

bias(JEj+1,1) > δc
j+1

N c
(
1− 2jc2j

δcj
√
Nε

)c ≥ δcj+1

N c
(
1− 2jc2j+1

δcj
√
Nε

)
,

where the Bernoulli’s inequality (1− d)c ≥ 1− cd is applicable since c ≥ 2 and
d = 2jc2j

δc
j√

Nε
< 2ac2a

δca
√
Nε
≤ 1. We recall bias(Ej+1,1)

def
=
∑|JEj+1,1|
l=1 vl · (−1)el , where

random variable vl is 1 if the corresponding c-sum+ hits the specified target
(so that the corresponding (−1)el is included in Ej+1,1) or is 0 otherwise. By
Lemma 5 all the vl’s are pairwise independent, each with expectation 2−b, and
therefore E[bias(Ej+1,1)] = 2−b · bias(JEj+1,1). We have Pr

[
E
[
bias(Ej+1,1)

]
>

δc
j+1

N − 2j
√
Nc2j+1

ε

]
≥ 1− c4j+1ε, and thus

Pr
[
bias(Ej+1,1) ≤ δc

j+1

N − 2j+1
√
Nc2j+2

ε

]
≤Pr

[
bias(Ej+1,1)− E

[
bias(Ej+1,1)

]
≤ 2j

√
Nc2j+1(2c− 1)

ε

]
+ Pr

[
E
[
bias(Ej+1,1)

]
< δc

j+1

N − 2j
√
Nc2j+1

ε

]
≤
V ar

[
bias(Ej+1,1)

]
N/ε2

+ c4j+1 · ε ≤
E
[
|Ej+1,k|

]
N/ε2

+ c4j+1 · ε ≤ c4j+3 · ε ,

(2)

24

where the analysis is essential the same as that for bounding |Ej+1,1| excep-
t that V ar

[
bias(Ej+1,1)

]
=
∑|JEj+1,1|
l=1 V ar

[
vl · (−1)el

]
≤
∑|JEj+1,1|
l=1 E

[
vl
]
=

E
[∑|JEj+1,1|

l=1 vl

]
. ut

Now we state the fully optimized algorithm in Theorem 8, and compare the
case c = 2 (no time-space tradeoff) with the original BKW [6] and the one by
Devadas et al. [12] in Table 6.

Theorem 8 (The c-sum# BKW) The LPNn,µ problem with µ = 1/2 − γ/2
can be solved in time T and space M with the probability P as below

T ≈ Tc,N,b · ca, M ≈Mc,N,b · ca, P ≥ 1− 2c5a · n · ε,

where Tc,N,b and Mc,N,b are respectively the time and space complexities of
the c-sum+ algorithm that aims for all distinct solutions to the c-sum+ prob-
lem with block (target) size b, ab ≥ n, b > n0.6, γ > 2−b/3, b

/(
2(c − 1)

)
≥

ca log(1/γ) + 3a log(c) + 2 log(1/ε) + negl(n) and N = 2
b
c−1 for 2 ≤ c ∈ N.

Notice: for now we omit the sample complexity since Q ≈ M under the sce-
nario of unlimited samples.

Proof. Set the δ in Lemma 9 to γ − 2−
b
2

√
log(1/ε), and we have by Chernoff

bound

Pr
[
bias(E0

0,k) ≤ N ·δ
]
≤ Pr

[
bias(E0

0,k)/N −γ ≤ (δ−γ)
]
≤ 2−2

−b log(1/ε)N = ε ,

where N = 2
b
c−1 . The condition δc

a√
Nε ≥ 2ac2a in Lemma 9 is now

b

2(c− 1)
≥ ca log(1/δ) + a+ 2a log(c) + log(1/ε)

= ca log(1/γ) + a+ 2a log(c) + log(1/ε) + ca log
(
1 +

2−b/2O(
√
log(1/ε)

γ

)
≥ ca log(1/γ) + a+ 2a log(c) + log(1/ε) + ca2−b/6 ·O

(√
(1/ε)

)
.

By Lemma 9 the size of every list Ej,k is at most N +N0.5 · c3a/ε = O(N) with
the probability at least 1 − c4a · ε, and thus all lists have size O(N) with the
probability at least 1− c5a · n · ε. As for the correctness, the bias of the final list
Ea,1 is positive with the probability at least 1− c4a · ε in order to successfully
recover a single bit of the secret. Overall, it recovers the whole secret correctly
with the probability more than 1− c4a · n · ε by the union bound. ut

4.2 Sample Reduction for BKW

Lyubashevsky [34] introduced the “sample amplification” technique to further
push the sample complexity to Q = n1+ε. Let (A, tT = (sTA+ xT)) be all the

25

LPN samples one can have, where A is the n×Q matrix, and vectors with ‘T’
denote row vectors. A “sample amplification” oracle takes as input (A, tT) and
responds with (Ari, tTri = sTAri+ xTri) as the i-th re-randomized LPN sample,
and generates as many LPN sample as needed, where every ri

$←− RQ,w is drawn
from the set of length-Q-weight-w strings uniformly at random. Finally, invoke
the original BKW [6] on the generated samples. In order to make the approach
work provably, (A, Ari, xTri) should be statistically close to (A, Un, xTri) by
the leftover hash lemma [25], which requires min-entropy H∞(ri) = log

(
Q
w

)
> n.

Therefore, Lyubashevsky [34] chose w = 2n
ε log(n) for Q = n1+ε.

Our c-sum# BKW supports sample amplification in a different and slightly
more efficient way. The c-sum# BKW (Algorithm 3) initializes the lists L0,1, . . .,
L0,ca , with independent fresh LPN samples. However, the pairwise independence
preserving lemma (Lemma 5) only requires each L0,k (for k ∈ [2a]) has pairwise
independent vectors. Our sample amplification simply divides A into n × Q

2a

sub-matrices A1, · · · , A2a accordingly, and loads each L0,k with distinct w-linear
combinations of the (Ak, sTAk + xT

k), i.e.,

∀k ∈ [2a] : L0,k :=
(
(Akr1, s

TAkr1 + xT
kr1), · · · , (AkrN , s

TAkrN + xT
krN)

)
where r1, · · · , rN are distinct vectors of weight w, and N = 2b ≤

(
Q/2a

w

)
. So far

we essentially override the LPN sample oracle of the c-sum# BKW (line 2 of
Algorithm 3), which takes time and space 2a+b. The rest of the steps are the
same as those in Algorithm 3.

Lemma 10. For k = o(m) we have log
(
m
k

)
= (1 + o(1))k log

(
m
k

)
.

Lemma 11 ([34]). If a bucket contains m balls, (12 + p)m of which are colored
white, and the rest colored black, and we select k balls at random without replace-
ment, then the probability that we selected an even number of black balls is at

least 1
2 + 1

2

(
2mp−k+1
m−k+1

)k
.

Theorem 9 (The 2-sum# BKW with fewer samples) The LPNn,µ problem
with µ = 1/2− γ/2 and given up to Q samples can be solved in time T , space M
with the probability P as below

T ≈ 2a+b , M ≈ 2a+b , P ≥ 1− 26a · n · ε− 2a · 2−Ω(Qγ
2

2a) ,

where a, b, w ∈ N and 0 < ε < 1 satisfy ab = n, Qγ ≥ 2a+2w, and log
(
Q/2a

w

)
≥

b ≥ 2a+1w log(4/γ) + 6a+ 2 log(1/ε).

Proof. Let Q′ def= Q/2a, and define E0,k
def
=
(
(−1)xT

kr1 , · · · , (−1)xT
krN
)
. We have

by the Chernoff bound that Pr[|xT
k | > (1/2 − γ/4)Q′] ≤ 2−Ω(Q′γ2). Then, by

Lemma 11 with the probability at least 1− 2−Ω(Q′γ2) and for γ ≥ 4w/Q′

bias(E0,k) ≥ N ·
(2Q′(γ/4)− w + 1

Q′ − w + 1

)w
≥ N ·

(γ
2
− w

Q′

)w
≥ N(

γ

4
)w .

26

The condition δc
a√

Nε ≥ 2ac2a in Lemma 9 becomes b ≥ 2a+1w log(4/γ) + 6a+
2 log(1/ε), where we set δ = (γ/4)w. The probability argument (and the rest of
the proof) is similar Theorem 8 by adding the extra term 2a · 2−Ω(Q′γ2). ut

Table 7. The space, time and sample complexities of different variants of the BKW
algorithms for solving the LPNn,µ problem with µ = (1− γ)/2 and sample complexity
Q = n1+ε, where ab = n, N1 = 2b, N2 = (4/γ)2

a+2·n/(ε log(n)) and constant ε > 0
disregarding poly(n) factors for convenience.

Algorithm Space Time Sample Condition
Lyubashevsky’s [34] N1 N1 ·N2 n1+ε N1 ≈ N2

Ours N1 N1 n1+ε (N1)
log log(n) ≈ N2

As shown in Table 7, we compare [34] with our algorithm for solving LPNn,µ
problem with Q = n1+ε, µ = 1/2 − γ/2 and γ ≥ 2− log(n)σ . Lyubashevsky’s
technique [34] requires log

(
Q
w

)
> n to satisfy the entropy condition of the

leftover hash lemma, and thus picks w = 2n/(ε log(n)), a = κ · log log(n) and
b = n

κ log log(n) for positive constants σ, κ satisfying 0 < κ+ σ < 1. Concretely,
consider the extreme case γ = 2− log(n)σ whose running time (omitting poly(n)

factors) Tn
1+ε

Lyu05 ≈ 2b · (1/γ)2a·n/ log(n) ≤ 2
n

κ log log(n) · 2
n

log(n)1−σ−κ .
In contrast, our algorithm uses all the w-linear combinations and do not

require them to look jointly independent, and therefore only need log
(
Q′

w

)
≥ b.

As a result, for same values a = κ · log log(n) and b = n
κ log log(n) , we let w =

2n/(εκ log(n) log log(n)) for positive constants κ and σ satisfying κ+ σ < 1. One
can verify that the three inequalities (for Qγ, log

(
Q/2a

w

)
, and b) in Theorem 9

are all satisfied with running time and success probability (where ε = 2− log2 n):

Tn
1+ε

c-sum+bkw ≈ 2b = 2
n

κ log log(n)

Pn
1+ε

c-sum+bkw ≥ 1− 26a · n · ε− 2a · 2−Ω(Qγ
2

2a) = 1− negl(n) .

That is, for the same parameter choices our algorithm saves a sub-exponential
multiplicative factor 2

n

log(n)1−σ−κ over [34] in running time, where constant 1−σ−κ
arbitrarily close to 0 for optimized time complexity. We refer to Table 7 below
for a comparison in the general case, which enjoys (for constant 0 < γ < 1)
a sub-exponential factor (4/γ)2

a+2·n/(ε log(n))/poly(n) = 2Ω(n)/ log(n)1−κ speedup
in running time without consuming (substantially) more space. Note that our
N1 could be even smaller in magnitude than N2 by using a smaller w and thus
produces less stronger noise for majority voting.

Another interesting setting is LPNn,µ with µ = 1/2 − γ/2, γ ≥ 2−n
σ

, and
Q = 2n

ε

for constant 0 < ε < 1, for which we can keep the time complexity
within 2O(n/ log(n)) as depicted in Table 8. Lyubashevsky’s technique [34] picks
w = 2n1−ε (to satisfy log

(
Q
w

)
> n), a = κ · log(n) and b = n

κ log(n) for positive

27

Table 8. The space, time and sample complexities of different variants of the BKW
algorithms for solving the LPNn,µ problem with µ = (1− γ)/2 and sample complexity
Q = 2n

ε

, where ab = n, N1 = 2b, N2 = (4/γ)2
a+2·n1−ε

and constant ε > 0 disregarding
poly(n) factors.

Algorithm Space Time Sample Condition
Lyubashevsky’s [34] N1 N1 ·N2 2n

ε

N1 ≈ N2

Ours N1 N1 2n
ε

(N1)
log(n) ≈ N2

constants σ, κ and ε satisfying σ + κ < ε. Concretely, consider the extreme case
γ = 2−n

σ

whose running time T 2n
ε

Lyu05 ≈ 2b · (1/γ)2a·n1−ε ≤ 2
n

κ log(n) · 2n1−(ε−σ−κ)
.

In contrast, our algorithm uses the same a = κ · log(n) and b = n
κ log(n) but set

w = 2n1−ε/(κ log(n)), where positive constants κ, σ and ε satisfying σ + κ < ε.
This meets all the three conditions (for Qγ, log

(
Q/2a

w

)
, and b) in Theorem 9. The

resulting running time and success probability (where ε = 2− log2 n):

T 2n
ε

c-sum+bkw ≈ 2b = 2
n

κ log(n) P 2n
ε

c-sum+bkw = 1− negl(n) .

That is, for the same parameter choices our algorithm enjoys a sub-exponential
factor 2n

1−(ε−σ−κ)
advantage over [34] in running time, where constant (ε−σ−κ)

is arbitrarily close to 0 for optimized time complexity. We refer to Table 8
below for a comparison in the general case, where for constant 0 < γ < 1 our
algorithm saves a sub-exponential factor (4/γ)2

a+2·n1−ε/
poly(n) = 2O(n1−(ε−κ))

for arbitrarily small constant (ε− κ) with roughly the same space. Note that our
N1 could be even smaller in magnitude than N2, thanks to the smaller w in use.

Acknowledgements

Yu Yu was supported by the National Key Research and Development Program
of China (Grant Nos. 2020YFA0309705 and 2018YFA0704701), the National
Natural Science Foundation of China (Grant Nos. 62125204 and 61872236),
and the Major Program of Guangdong Basic and Applied Research (Grant No.
2019B030302008). Yu Yu also acknowledges the support from the XPLORER
PRIZE and Shanghai Key Laboratory of Privacy-Preserving Computation.

References

1. Albrecht, M.R., Cid, C., Faugère, J., Fitzpatrick, R., Perret, L.: On the complexity
of the BKW algorithm on LWE. DCC 74(2), 325–354 (2015)

2. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography with constant input locality.
In: Advances in Cryptology—Crypto 2007. LNCS, vol. 4622, pp. 92–110. Springer
(2007)

3. Arratia, R., Goldstein, L., Gordon, L.: Two moments suffice for poisson approxima-
tions: the chen-stein method. The Annals of Probability pp. 9–25 (1989)

28

4. Bai, S., Laarhoven, T., Stehle, D.: Tuple lattice sieving. Cryptology ePrint Archive,
Report 2016/713 (2016), https://eprint.iacr.org/2016/713

5. Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic primitives based
on hard learning problems. In: Advances in Cryptology—Crypto 1993. pp. 278–291.
LNCS, Springer (1994)

6. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
and the statistical query model. In: 32nd Annual ACM Symposium on Theory of
Computing (STOC). pp. 435–440. ACM Press (2000)

7. Bogos, S., Tramèr, F., Vaudenay, S.: On solving LPN using BKW and variants -
implementation and analysis. Cryptogr. Commun. 8(3), 331–369 (2016)

8. Bogos, S., Vaudenay, S.: Optimization of LPN solving algorithms. In: Advances in
Cryptology—Asiacrypt 2016, Part I. pp. 703–728. LNCS, Springer (2016)

9. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching
(p493-505). Fortschritte Der Physik 46(4-5) (2010)

10. Budroni, A., Guo, Q., Johansson, T., Mårtensson, E., Wagner, P.S.: Making the
BKW algorithm practical for LWE. pp. 417–439. LNCS, Springer (2020)

11. Delaplace, C., Esser, A., May, A.: Improved low-memory subset sum and LPN
algorithms via multiple collisions. In: Albrecht, M. (ed.) 17th IMA International
Conference on Cryptography and Coding. LNCS, vol. 11929, pp. 178–199. Springer,
Oxford, UK (Dec 16–18, 2019)

12. Devadas, S., Ren, L., Xiao, H.: On iterative collision search for LPN and subset
sum. pp. 729–746. LNCS, Springer (2017)

13. Dinur, I.: An algorithmic framework for the generalized birthday problem. DCC
87(8), 1897–1926 (2019)

14. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient dissection of composite
problems, with applications to cryptanalysis, knapsacks, and combinatorial search
problems. In: Advances in Cryptology—Crypto 2012. LNCS, vol. 7417, pp. 719–740.
Springer (2012)

15. Dohotaru, C., Høyer, P.: Exact quantum lower bound for grover’s problem. Quantum
Inf. Comput. 9(5&6), 533–540 (2009)

16. Ducas, L.: Shortest vector from lattice sieving: A few dimensions for free. In:
Advances in Cryptology—Eurocrypt 2018, Part I. LNCS, vol. 10820, pp. 125–145.
Springer (2018)

17. Esser, A., Heuer, F., Kübler, R., May, A., Sohler, C.: Dissection-BKW. In: Advances
in Cryptology—Crypto 2018, Part II. LNCS, vol. 10992, pp. 638–666. Springer
(2018)

18. Esser, A., Kübler, R., May, A.: LPN decoded. In: Advances in Cryptology—
Crypto 2017, Part II. LNCS, vol. 10402, pp. 486–514. Springer (2017)

19. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: 28th
Annual ACM Symposium on Theory of Computing (STOC). pp. 212–219. ACM
Press (1996)

20. Guo, Q., Johansson, T., Löndahl, C.: Solving LPN using covering codes. J. Cryp-
tology 33(1), 1–33 (Jan 2020)

21. Guo, Q., Johansson, T., Mårtensson, E., Wagner, P.S.: On the asymptotics of
solving the LWE problem using coded-BKW with sieving. Cryptology ePrint
Archive, Report 2019/009 (2019), https://eprint.iacr.org/2019/009

22. Herold, G., Kirshanova, E.: Improved algorithms for the approximate k-list problem
in euclidean norm. In: Intl. Conference on Theory and Practice of Public Key
Cryptography 2017, Part I. pp. 16–40. LNCS, Springer (2017)

29

https://eprint.iacr.org/2016/713
https://eprint.iacr.org/2019/009

23. Herold, G., Kirshanova, E., Laarhoven, T.: Speed-ups and time-memory trade-offs
for tuple lattice sieving. In: Intl. Conference on Theory and Practice of Public Key
Cryptography 2018, Part I. pp. 407–436. LNCS, Springer (2018)

24. Herold, G., Kirshanova, E., May, A.: On the asymptotic complexity of solving LWE.
DCC 86(1), 55–83 (2018)

25. Impagliazzo, R., Zuckerman, D.: How to recycle random bits. In: 30th Annual
Symposium on Foundations of Computer Science (FOCS). pp. 248–253. IEEE
(1989)

26. Kannan, R.: Improved algorithms for integer programming and related lattice
problems. In: 15th Annual ACM Symposium on Theory of Computing (STOC). pp.
193–206. ACM Press (1983)

27. Katz, J., Shin, J.S.: Parallel and concurrent security of the HB and HB+ protocols.
In: Advances in Cryptology—Eurocrypt 2006. pp. 73–87. LNCS, Springer (2006)

28. Kirchner, P., Fouque, P.A.: An improved BKW algorithm for LWE with applications
to cryptography and lattices. In: Advances in Cryptology—Crypto 2015, Part I.
LNCS, vol. 9215, pp. 43–62. Springer (2015)

29. Laarhoven, T.: Sieving for shortest vectors in lattices using angular locality-sensitive
hashing. In: Advances in Cryptology—Crypto 2015, Part I. LNCS, vol. 9215, pp.
3–22. Springer (2015)

30. Laarhoven, T., Mariano, A.: Progressive lattice sieving. In: PQCrypto 2018. pp.
292–311. Springer (Apr 9–11 2018)

31. Laarhoven, T., de Weger, B.: Faster sieving for shortest lattice vectors using
spherical locality-sensitive hashing. In: Progress in Cryptology—Latincrypt 2015.
pp. 101–118. LNCS, Springer (2015)

32. Levieil, É., Fouque, P.A.: An improved LPN algorithm. In: Intl. Conf. on Security
and Cryptography for Networks (SCN). pp. 348–359. LNCS, Springer (2006)

33. Liu, H., Yu, Y.: A non-heuristic approach to time-space tradeoffs and optimizations
for bkw. Cryptology ePrint Archive, Paper 2021/1343 (2021), https://eprint.
iacr.org/2021/1343

34. Lyubashevsky, V.: The parity problem in the presence of noise, decoding random
linear codes, and the subset sum problem. In: RANDOM 2005. pp. 378–389 (2005)

35. Minder, L., Sinclair, A.: The extended k-tree algorithm. J. Cryptology 25(2),
349–382 (Apr 2012)

36. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: 37th Annual ACM Symposium on Theory of Computing (STOC). pp. 84–93.
ACM Press (2005)

37. Schroeppel, R., Shamir, A.: A t=o(2n/2), s=o(2n/4) algorithm for certain np-
complete problems. SIAM J. Comput. 10(3), 456–464 (1981)

38. Wagner, D.: A generalized birthday problem. In: Advances in Cryptology—
Crypto 2002. LNCS, vol. 2442, pp. 288–303. Springer (2002)

30

https://eprint.iacr.org/2021/1343
https://eprint.iacr.org/2021/1343

	A Non-heuristic Approach to Time-space Tradeoffs and Optimizations for BKW

