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Abstract. All existing works building non-interactive zero-knowledge
(NIZK) arguments for NP from the Learning With Errors (LWE) as-
sumption have studied instantiating the Fiat-Shamir paradigm on a par-
allel repetition of an underlying honest-verifier zero knowledge (HVZK)
Σ protocol, via an appropriately built correlation-intractable (CI) hash
function from LWE. This technique has inherent efficiency losses that
arise from parallel repetition.
In this work, we show how to make use of the more efficient “MPC in

the Head” technique for building an underlying honest-verifier protocol
upon which to apply the Fiat-Shamir paradigm. To make this possible,
we provide a new and more efficient construction of CI hash functions
from LWE, using efficient algorithms for polynomial reconstruction as
the main technical tool.

We stress that our work provides a new and more efficient “base con-
struction” for building LWE-based NIZK arguments for NP. Our proto-
col can be the building block around which other efficiency-focused boot-
strapping techniques can be applied, such as the bootstrapping technique
of Gentry et al. (Journal of Cryptology 2015).

1 Introduction

A recent line of work instantiates the Fiat-Shamir heuristic by building correlation-
intractable hash functions from the LearningWith Errors (LWE) assumption [34,7,29],
yielding the first Non-Interactive Zero-Knowledge (NIZK) protocols for NP from
LWE. Such protocols are particularly desirable as LWE is believed to be hard
even for quantum computers. While this line of work has been exciting in terms
of achieving new feasibility based on LWE, our understanding of how to optimize
the efficiency of such constructions is still in its infancy.

In particular, before our work, all known papers constructing NIZK argu-
ments for NP from the LWE assumption studied instantiating the Fiat-Shamir
paradigm on a parallel repetition of an underlying honest-verifier zero knowledge
(HVZK) Σ protocol. Unfortunately, parallel repetition entails inherent efficiency
loss. Can we do better?
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Our Work. In this work, we study how to apply the “MPC-in-the-Head” paradigm [30]
to the construction of NIZK arguments for NP from the LWE assumption. More-
over, we do so by directly using simple and efficient polynomial reconstruction
algorithms [37,27], avoiding the need for more complex coding previously used
in [29]1 We note that this paradigm has previously been used to yield practically
efficient constructions in other contexts [1,18,11].

The starting point: Zero Knowledge Protocols. A zero knowledge protocol [22]
is an interactive protocol which allows a prover to prove to a verifier that an
input x is in some NP language L without revealing anything more than the fact
that x ∈ L. A classic example of such a protocol was introduced by Goldreich,
Micali and Wigderson [21] for Graph 3-Coloring. The NP-completeness of Graph
3-Coloring implies that the GMW protocol indeed leads to zero knowledge proofs
for all problem in NP. The basic version of this protocol is public coin and has
large soundness error, but this error can be made negligible while still preserving
honest-verifier zero-knowledge by parallel repetition. However, such parallel rep-
etition is a source of significant inefficiency, both asymptotically and concretely.
This is especially true if the number of parallel repetitions required is large – an
issue that we will come back to later!

An alternative to using parallel repetition of such classic protocols is the
MPC-in-the-head paradigm introduced by Ishai, Kushilevitz, Ostrovsky and Sa-
hai [30], which allow us to construct highly sound general zero knowledge proof
systems for any NP relation R(x,w), where w is a witness to the fact that x ∈ L.
Such a protocol makes black box use of an honest-majority MPC protocol Πf

for a functionality f for the circuit for NP relation R. This approach bypasses
the computational overhead of a Karp reduction. Moreover, there is a successful
line of work on producing highly efficient perfectly-robust MPC with minimal
communication [13,14,24,3].

The MPC-in-the-head paradigm avoids the need for parallel repetition en-
tirely. At a high level, the paradigm works by having the prover run the MPC
protocol among q virtual servers entirely in the imagination of the prover, and
then commit to the views of these virtual servers. The verifier then specifies a
small random subset of these servers to the prover. The prover then opens the
commitments to the inputs of the chosen servers, and all messages sent and re-
ceived by those servers. This allows the verifier to check that the prover correctly
executed the MPC protocol for almost all servers. It is absolutely crucial that
the number of servers that the verifier specifies to open is significantly smaller
than the number of servers q, otherwise no security would remain for the prover.

Using the Fiat-Shamir paradigm with Correlation-Intractable Hash Functions to
obtain NIZK. A non-interactive zero knowledge protocol (NIZK) [19] lets the

1In personal correspondence after the initial posting of our result, Alex Lombardi
showed us that it was possible to use the construction in [29] using Parvaresh-Vardy
codes over extension fields to achieve parameters compatible with our variant of MPC-
in-the-head, albeit at a significant efficiency cost relative to what we achieve here. Refer
to Appendix A.1 for a detailed discussion.
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prover eliminate the need for interaction by assuming a common random string
(CRS2) that is given as input to both parties. A beautiful tool for constructing
NIZKs is the Fiat Shamir heuristic [15]: it starts with a public-coin honest-
verifier zero knowledge proof system and transforms it into a NIZK. This works
by placing a random hash key in the CRS and replacing each of the verifier’s
messages in the interactive protocol with the hash of the input and the entire
transcript so far. A sequence of works [8,9,7,5,34,28,31] has shown that if this
hash function is correlation-intractable for certain relations, then the resulting
NIZK is sound.

The recent work of [34,29] constructs such a correlation-intractable hash func-
tion from the LWE assumption and demonstrates how to apply the Fiat-Shamir
transformation to a broad class of public-coin honest-verifier zero knowledge
protocols built using parallel repetition. However, it is worth noting that the
number of parallel repetitions needed for the technique of [29] to apply is ac-
tually a rather large polynomial. Specifically, if k is the security parameter for
LWE and if the size of the verifier’s challenge set is bounded by any polynomial
in k, then the number of repetitions required is roughly O(k2) (though they
note this can be optimized to O(k1+ε)). One crucial reason for this polynomial
expression being O(kc), for c > 1, is that list-recoverable error correcting codes
play a starring role in the work of [29], and unfortunately the best-known such
codes require large block lengths to achieve the parameters needed for [29] to
work3.

Our New Idea in a Nutshell. Our starting technical observation is that the corre-
lation that needs to be intractable for the hash function is in fact far more struc-
tured in the case of a variant of the MPC-in-the-head protocol that we consider,
than in the case of parallel repetition based protocols. The looser structure of
the correlation behind parallel repetition based protocols is what led to the work
of [29] requiring general list-recoverable codes. The greater structure present in
the case of MPC-in-the-head protocols allows us to significantly relax the require-
ments, and in particular lets us use an aggregate size analysis when decoding. As
a result, we are able to use standard polynomial reconstruction algorithms [37,27]
directly to solve our problem. To highlight this structure, we define a new vari-
ant of list-recoverability, that we call Recurrent List-Recoverability, over product
sets where each term in the product is the same set.

Definition 1 (Recurrent List-Recoverable Codes). An ensemble of codes
{Cλ : Mλ → Znλ

qλ
} is said to be a (ℓ(·), L(·))-recurrent list recoverable (for

ℓ, L : Z+ → Z+) if there is a polynomial-time algorithm Recover that:

– Takes as input λ ∈ Z+ and explicit descriptions of “constraint” sets S ⊆ Zn
q

where |S| ≤ ℓ(λ).

2More generally, CRS can also refer to a common reference string, but our work
will achieve NIZKs with a common random string.

3In particular, the alternative method pointed out to us by Lombardi using
Parvaresh-Vardy codes over extension fields would also incur this O(k1+ε), ε > 0
overhead. We show a more detailed computation in Section A.1
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– Produces as output a list of at most L(λ) messages, containing all m ∈ M
for which C(m)i ∈ S for all i ∈ [n].

We show that this aggregate size analysis and polynomial reconstruction algo-
rithms implies the existence of recurrent list-recoverable codes with the desired
parameters, resulting in the following theorem.

Theorem 1. (Restatement of Theorem 6). For arbitrary constants 0 < η, α < 1
and 0 < δ ≤ ε < 1, there exists a probabilistic constructible ensemble for codes{

Ck : Zk+1
q2 → Zηq

q

}
such that Ck is (αq, T 2)-Recurrent List Recoverable with probability at least 1−
e−ω(k log k), where q = k log1+ε+ δ

2 k and T = O(k log2ε−
δ
2 k).

Main Technical Milestone: Quasi-linear blocklength. As noted above, the (or-
dinary) list-recoverable codes constucted in [29] have block length O(k1+ε), for
ε > 0, in the number of input symbols k above. In contrast, in our theorem
above, we achieve quasi-linear blocklength Õ(k). This improvement is despite
using a qualitatively weaker algebraic component (polynomial reconstruction)
in our codes compared to the one used previously (Parvaresh-Vardy codes over
extension fields). We discuss why this is possible in our technical overview below.

Composing this recurrent list-recoverable code with the Peikert-Shiehian cor-
relation intractable hash function allows us to instantiate the Fiat-Shamir tech-
nique with the MPC-in-the-head technique.

Theorem 2. (Restatement of Theorem 8). Assuming that LWE m
2 log q ,m,q,χ holds

for the particular parameter settings where χ is a B-bounded distribution for
B = qΩ(1), q = poly(k), k is the security parameter, and a MPC protocol with
perfect αn-robustness and perfect, statistical, or computational security exists,
where α ∈ (0, 1/2) is a constant and n is the size of the challenge set in the
interactive protocol, there exists NIZKs with computational soundness for all of
NP whose proof size is

O(|C|+ q · depth(C)) + poly(k)

where C is an arithmetic circuit for the NP verification function and q = k log1+ϵ k
for any ϵ > 0.

Bootstrapping. A NIZK with proof size |w|+ poly(λ) for witness w and security
parameter λ can be constructed using Fully Homomorphic Encryption [17] to
bootstrap an underlying NIZK. Their construction uses this NIZK to prove that
the fully homomorphic encryption key generation and evaluation is performed
correctly by the Prover. Our construction provides an efficient base NIZK con-
struction and can be used in conjunction with the construction of [17] to yield
a more efficient form of this bootstrapping. Similarly, other (future) methods
of bootstrapping for efficiency can potentially make use of our NIZK as a base
construction.
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1.1 Technical Overview

MPC-in-the-head An MPC protocol [4,12,20,38] allows us to compute a q-
party functionality (a function of their inputs) while maintaining privacy of
the inputs and correctness of the output. In a n-private MPC protocol, any
adversary that corrupts at most n players is unable to learn any information
about the non-corrupted players’ private inputs beyond that obtainable from
learning the output of the function. Zero-knowledge protocols can be viewed as
a special case of secure two-party computation, where the function verifies the
validity of a witness held by the prover.

Modifying the IKOS protocol Recall that we will be using the Fiat-Shamir
paradigm (more on this below) to convert a public coin honest-verifier zero
knowledge (HVZK) proof into a NIZK argument. All previous work studied us-
ing parallel repetition of a HVZK protocol. We aim to avoid this by starting
with an HVZK protocol based on the MPC-in-the-head paradigm [30], as we
explain next. The HVZK protocol we use slightly modifies the original protocol
presented in [30] by asking the Prover to commit to a single copy of the transcript
rather than commit to several (possibly overlapping) views. For any party the
Verifier specifies to the Prover, the Prover opens up the relevant commitments
in the transcript. The modification, not only simplifies the soundness proof, but
ensures that each party’s view can be independently verified rather than cross
checking different party views for consistency of the views, as was the case in the
original protocol. In this way, each party that the Verifier specifies constitutes
an independently verifiable challenge. This property of independently verifiable
challenges is necessary to cleanly define a single fixed bad challenge set S for the
correlation-intractable hash function (the bad challenge space is S×S× . . .×S).

Let RL be a relation corresponding to a NP language L. In other words,
RL(x,w) = 1 if and only if x ∈ L and w is a witness for x. Define a functionality
fL such that fL(x,w1, w2, ..., wq) = RL(x,w1 ⊕w2 ⊕ · · · ⊕wq). Thus, fL can be
viewed as a function computed by q parties where x is the public input and wi is
the private input for Player i. The HVZK protocol ΠZK begins with the Prover
carrying out all the steps of a q-party MPC protocol ΠfL in her head. First,
she secret shares w into w1, . . . , wq and executes the q-party MPC protocol to
produce the protocol transcript of inputs, initial randomness, and messages sent.
The Prover sends commitments to the transcript of the execution to the Verifier.
Now the Verifier picks a random set S of n < q parties, challenging the Prover to
open the commitments to the private inputs, their randomness, and all messages
sent or received by parties in S. The Verifier accepts if the openings form a
consistent MPC protocol (that is, every message sent matches what the MPC’s
next message function would output given the previous messages received) and
every party in the set S outputs 1.

The HVZK property follows from the privacy guarantee of the MPC. As-
suming that the underlying MPC protocol ΠfL is perfectly robust, violating the
soundness requires a cheating prover to commit to many messages that are not
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consistent with the rest of the transcript and we show in Lemma 2 that such a
cheating prover gets caught with overwhelming probability.

Fiat-Shamir Heuristic We begin by reviewing the Fiat-Shamir Heuristic, a
generic technique that compresses public-coin interactive arguments into non-
interactive arguments in the CRS model. The Fiat-Shamir Heuristic is defined
with respect to a public hash function family H. Let us consider the following
three-round interactive proof between a prover P and verifier V , in which P ’s
goal is to convince V that x ∈ L, for some language L ∈ NP:

1. P sends a first message α.
2. V responds with a uniform randomly chosen string β.
3. P finally sends a message γ to V .

Note that V accepts the proof (α, β, γ) if and only if x ∈ L. In order to convert
this to a non-interactive proof, the CRS consists of a randomly chosen hash
function h ← H. P computes β = h(x, α) and uses this compute γ. Finally,
V can recompute β using the publicly known h and checks if the transcript
(x, α, β, γ) is accepting.

This technique requires a careful analysis of soundness, because V no longer
has the capability to generate uniformly random strings β. One way to ensure
that the Fiat-Shamir transform is indeed sound is to instantiate the hash function
with one that is Correlation Intractable (CI), which we now define.

Suppose x /∈ L. Let us define the set of “bad” βs as:

Badα = {β | ∃γ such that V (x, α, β, γ) = 1},

A CI hash requires that it is computationally infeasible for an efficient cheating
prover to come up with an α such that h(x, α) ∈ Badα when given h ← H as
input, where H is a Correlation Intractable hash family with respect to Badα.
Formally, we say that H is a correlation intractable hash function family for
Badα if for all PPT adversaries A,

Pr
h←H

[h(x, α) ∈ Badα | A(h, x) = α] ≤ negl(λ).

Peikert and Shiehian [34] constructed a CI hash family when |Badα| = 1 from
the LWE assumption. In fact, Canetti et. al. [7] have shown that this construction
can be extended to settings when |Badα| is polynomially bounded.

Correlation Intractable Hash Functions from List Recoverable Codes
In their recent work, [29] propose a correlation intractable hash function family
for any three round public coin commit and open protocol. The classical GMW
protocol for 3-coloring with parallel repetition falls in the category of the proto-
cols that [29] dealt with. To illustrate the techniques from [29], we briefly review
them in the context of parallel repetition of the basic GMW protocol.

In the GMW protocol, the Prover who knows a 3-coloring of a graph G first
commits to a randomly chosen permutation on the 3-coloring. The Verifier then
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randomly picks an edge of G and asks the Prover to open the vertex colors
incident to that edge. If the colors differ, the Verifier accepts; otherwise, the
verifier rejects. Repeating the interactive protocol in parallel achieves negligible
soundness error while keeping the round complexity low. In any iteration of
the interactive protocol there are at most |E| − 1 edges which can allow the
prover to cheat (referred to as the “bad” challenge set). We define Si to be the
bad challenge set in the ith iteration of the interactive protocol. In a parallel
repetition of the protocol n times, these bad challenge sets form a product of
sets S1 × · · · × Sn, where ∀ i ∈ [n], |Si| ≤ |E| − 1. For G ̸∈ 3-COL, a malicious
Prover is able to convince the Verifier to accept if for all iterations i ∈ [n] the
challenge edges selected by the Verifier in the ith iteration belong to Si. This
product of sets defines a product relation R = S1 × · · · × Sn.

The usefulness of CI hash families prior to the work of [29], such as those
in [34,7], were limited to functions and polynomially bounded relations. Our
relation R does not fall in this category as there may be exponentially many
bad challenges on which an adversary can find the desired correlation. The work
of [29] addresses this concern by constructing new correlation intractable hash
functions for such product relations that are efficiently verifiable (defined in
Section 6). In order to do so, they use list recoverable codes to construct an-
other relation R′ which is “efficiently enumerable” and therefore amenable to
the techniques of [34,7].

To build this relation R′, they use a derandomization approach based on list-
recoverable error correcting codes. Informally, an error correcting code is a func-
tion C :M→ Zn

q . Here, n is called the block length of the code. We say that an
error correcting code C is (ℓ, L)-list recoverable if for all sets S1, S2, . . . , Sn ⊆ Zq

each of size at most ℓ, the number of messages v in M such that C(v) ∈
S1 × · · · × Sn is less than L + 1. Moreover, there must exist an efficient al-
gorithm Recover which extracts all such v. This notion was introduced in [26].
The parameters of the codes can be interpreted as follows in the context of the
GMW protocol:

– The size of the alphabet q is the maximum size of the Verifier’s challenge
set, i.e. q = |E|.

– The input list size ℓ is |E| − 1 which corresponds to the maximum size of a
bad challenge set for a single execution of the GMW protocol.

– The block length n is the number of parallel repetitions.
– The output list size L must be polynomially bounded.

The new CI Hash function they construct is given by H′ := C(H(·)) where C is
the list recoverable error correcting code as defined above and H is the previous
CI hash function from [34].

Our recurrent list-recoverable codes achieve a quasi-linear block size ofO(k log1+ϵ k)
for arbitrary ϵ > 0. We emphasize that this block size is not known to be achiev-
able by any previous framework.

Exploiting the MPC-in-the-head Product Relation We first highlight the
structure of the bad challenge set when using MPC-in-the-head to build a zero-
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knowledge protocol. Consider a cheating Prover that simulates a q-party MPC
protocol and corrupts an α fraction of them in an attempt to fool the Verifier.
The Prover commits to a transcript of the execution (denoted by com). The
Verifier then specifies n parties to the Prover. The Prover must decommit to
the corresponding commitments to inputs and the randomness of the specified
parties as well as the messages incident (sent or received) to these parties. Let
Scom ⊆ [q] be the set of the parties for which the messages sent are consistent
with the input, the randomness, and the previous messages received and where
the final output of the party is 1. The bad challenge set (equivalently the bad
challenge relation) that convinces a Verifier to accept, denoted by RMPC ⊆ [q]n,
is therefore seen to be the product Scom × · · · × Scom︸ ︷︷ ︸

n times

. Observe that this product

relation is a specific product relation where each component is the same set Scom.
The special structure of the bad challenge set in the MPC-in-the-head setting
opens up a new avenue for us to exploit in order to construct a CI hash for
RMPC.

Revisiting Random Codes A common technique in coding theory introduced by
Forney in 1966 [16] is that of code concatenation. Code concatenation involves
two codes, an inner code Cin and an outer code Cout. The code concatenation
encoding scheme first encodes a message m with the outer code Cout to produce
e = Cout(m). Then it encodes each symbol in e with the inner code Cin. We
denote the resulting code as Cout ◦ Cin 4.

This technique was used by [29] to obtain list-recoverable codes. In partic-
ular, their list-recoverable codes result from concatenating an inner code, given
by a family of random codes, with an outer code, given by an algebraic code
instantiated by the Parvaresh-Vardy code [33]. The inner code reduces the size
of the lists to be fed as input to the outer code, achieving an overall smaller
block length. The question before us is: Can we use the inner code to help us
reduce the size of the lists to be fed as input to the outer code, thereby helping
us achieve an overall block length that is smaller than the input list size to the
outer code?

Suppose we have a random code Crand : ZQ → Zm
q , where the parameters

Q, q,m are all polynomial in the security parameter. Then a list recovery al-
gorithm is trivial to implement by enumerating every codeword and checking
to see if the components of the codeword lie in the input lists. If one analyzes
the list recoverability of such a code, one immediately encounters a fundamental
barrier: If ℓ is the input list size to the list recovery algorithm, then the output
list size must also sometimes be at least ℓ. This is simply because the input lists
can correspond to the union of ℓ different codewords in Crand. Indeed, the work
of [29] analyzed the list recoverability of a single random code further to show

4The standard notation for code concatenation Cout ◦ Cin differs in two ways from
the standard function composition notation in which f ◦ g(x) = f(g(x)). Firstly, Cout

is used first to encode the message m. Secondly, Cin is applied index-by-index to each
symbol in the Cout(m)
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that this worst case is close to tight, but as we noted above, their analysis is not
good enough for us.

Can we exploit the fact that the inputs lists must all be equal, and equal
to Scom in particular? Unfortunately the output list size of the random code
must be at least ℓ/m, as the worst case Scom could be equal to the union of
all the symbols found in ℓ/m codewords. This seems to present a fundamental
barrier to us regarding the applicability of random codes as “inner” codes in
concatenated codes, since the random code blows up the overall blocklength of
the concatenated code by a factor of m, while only shrinking the list size by at
most a factor of m. In other words, we seem to have made no progress.

Many random codes are better than one. The key insight behind our work is
that while the barrier above applies to a single random code, a much different
picture emerges if we consider the sum of the list sizes output by the recover
algorithm of many random codes.

Indeed, suppose we have t completely independently chosen random codes

C(i)rand : ZQ → Zm
q for i ∈ [t]. While it is true that for each code there exist in-

put sets Scom that would lead to an output list of size ℓ/m, with overwhelming
probability, these input sets would have tiny intersections because of the inde-
pendence of the choice of each code. For i ∈ [t], let Li be the list obtained as

output of the list recovery algorithm of C(i)rand on input lists all equal to Scom. It
is hopeless to get a better bound on maxi {|Li|}. So instead we aim to bound∑

i |Li|.
In our work, we give a new analysis of this quantity for t independently

chosen random codes. We formulate a new variant of Chernoff’s Bound (see
Lemma 1), and use this to give our analysis in Theorem 5. This shows that with
suitably chosen parameters, with overwhelming probability. for every input list
Scom,

∑
i |Li| will be bounded by roughly Õ(t + ℓ/m). In other words, we get t

output lists roughly for the “price” of a single output list!

Using Polynomial Reconstruction to leverage the aggregate list bound. Now that
we have this bound, how can we take advantage of it to build a CI Hash function?
We do so by departing from the language of list recoverability of error correct-
ing codes, and instead adopting the more basic algebraic tool of polynomial
reconstruction.

In the polynomial reconstruction problem, we are given as input a prime Q,
a degree bound k, and n distinct pairs {(αi, yi)}i∈[n] where each αi, yi ∈ ZQ.
The algorithm of Guruswami and Sudan [27] outputs a list of every polynomial
f over ZQ of degree at most k, such that f(αi) = yi for at least

√
kn indices

i ∈ [n]. Furthermore, this output list has size at most n2. Combining polynomial
reconstruction to leverage the aggregate list bound results in a recurrent list-
recoverable code with the desired parameter settings.

The existence of this code and the Peikert-Shiehan correlation-intractable
hash function gives rise to our final construction of a CI hash function as follows:
Let H be the Peikert-Shiehan correlation-intractable hash and let α be the first
message of the protocol (including the instance x being proven). Interpret H(α)
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as coefficients for a degree k polynomial over field ZQ. Then use the evaluation
map on this polynomial at t fixed distinct elements in ZQ to yield the code
Calg : Zk+1

Q → Zt
Q to obtain t field elements in ZQ. We assume that we have

already sampled t independent random codes C(i)rand : ZQ → Zm
q for i ∈ [t] at

setup time (this is part of the description of the hash function). Then we apply

the ith random code C(i)rand on the ith element of Calg(H(α)). If Crand = {C(i)rand}i∈[t],
we denote this operation by Ck(H (α)) where Ck = (Calg ◦ Crand). This operation,
(Calg ◦ Crand) (H (·)), defines our final construction of a CI hash function.

This construction indeed satisfies correlation-intractability by observing an
efficient recovery algorithm for (Calg ◦ Crand) (H (·)). Namely a brute force enu-
meration of the codewords for the random codes in Crand gives an output list of
size Õ(t+ ℓ/m) that consists of pairs {(αi, yi)}i. Of these, at most t pairs can be
consistent with a degree-k polynomial. The polynomial reconstruction algorithm

of [27] will succeed as long as t >
√
k · Õ(t+ ℓ/m). This provides us with ample

room to set parameters, and indeed we have significant freedom when choosing
values of k, t, ℓ,m to make this work. Then the polynomial reconstruction algo-
rithm outputs at most Õ(t2+ ℓ2/m2) many polynomials. Therefore this efficient
recovery algorithm produces a polynomial-size set so the Peikert-Shiehian CI
hash function can now be applied, yielding a CI hash function for the MPC-in-
the-head setting, achieving our goal. In the remainder of the paper, we show how
to instantiate parameters precisely and provide all details regarding our analysis.

2 Preliminaries

2.1 Proof Systems

Zero Knowledge: We define the standard notion of zero knowledge as well
known in prior work [23,21,30].

An NP Relation R(x,w) is an efficiently decidable binary relation which can
be viewed as a boolean function that outputs 0 or 1. Any NP relation defines
a language L = {x : ∃w,R(x,w) = 1}. A zero knowledge proof consists of two
PPT algorithms, namely, a prover P and verifier V . The prover is given access
to instance x and witness w, whereas the verifier only has the instance w.

Definition 2 (Interactive Honest Verifier Zero Knowledge Proof). The
protocol (P, V ) for a language L defined above consists of an interactive P and
V with the following requirement:

– Completeness: If x ∈ L, and both P, V are honest, then V must always
accept.

– Statistical Soundness: If x /∈ L, then for any malicious and computationally
unbounded prover P ∗, V accepts with a negligible probability only.

– Zero Knowledge: If x ∈ L, then for any non-malicious PPT verifier V ∗,
there exists a PPT simulator M such that the view of V ∗ upon interaction
with P is computationally indistinguishable from the output distribution of
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M(x). Here, view of V ∗ consists of its input x, its random coins and all
incoming messages.

Definition 3 (Public Coin). An interactive proof system is said to be public
coin if for every x ∈ {0, 1}n, and some l(n), the messages sent by an honest
verifier V are i.i.d uniform l(n) bit strings. Moreover, the final output of V
must be efficiently computable in polynomial time given x and the transcript
upon interaction with P .

Definition 4 (Non-Interactive Zero Knowledge(NIZK) Arguments in
the CRS model). A non interactive zero knowledge argument for a language L
in the Common Reference String (CRS) model is defined three PPT algorithms:

– Setup(1n, 1λ) outputs a uniform random string crs given a statement of length
n and security parameter λ.

– Prover P (crs, x, w) outputs a proof π given a statement witness pair (x,w)
in the NP relation R.

– Verifier V (crs, x, π) either accepts or rejects.

The following properties must be satisfied:

– Completeness: V (crs, x, π) must always accept if x ∈ L and π ← P (crs, x, w).
– Computational Soundness: for every non-uniform poly time prover P ∗, there

exists a negligible function ϵ(λ) such that for any n ∈ N and x /∈ L,

Pr[crs← Setup(1n, 1λ), π∗ ← P (crs, x), V (crs, x, π∗) accepts] ≤ ϵ(λ).

– Non Interactive Zero Knowledge: There exists a PPT simulator M such that
for every x ∈ L such that the distribution of the transcript output by Setup
and P , i.e., (crs, P (crs, x, w)) : crs ← Setup(1n, 1λ) is statistically indistin-
guishable from the output of M(x). Note that M is allowed to generate its
own CRS.

2.2 Cryptographic Assumptions and Commitment Schemes

Definition 5 (Decisional Learning with Errors Problem [36]). Let n ≥ 1
be a parameter for dimension, and let q = q(n) ≥ 2 be a modulus. Let m ≥ 1 be a
parameter for number of samples. Let χ = χ(n) be an error distribution over Zq.
The decisional learning with errors problem LWEn,m,q,χ is to distinguish between
the following two distributions:{

(A,As+ e) | A $←− Zm×n
q , s

$←− Zn
q , e

$←− χm
}

and {
(A, u) | A $←− Zm×n

q , u
$←− Zm

q

}
Definition 6 (Bounded Error Distributions). Let B = B(λ) such that
B(λ) ∈ N. We say that a family of distributions χ = {χλ}λ∈N over the inte-
gers is B-bounded if for all λ ∈ N,

Pr [x← χλ | |x| ≤ B(λ)] = 1.
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Definition 7 (Statistically Binding Commitment Scheme in the CRS
model). A Statistically binding commitment scheme in the CRS model is a pair
of efficiently computable functions (Setup,Com), where,

– Setup(1λ) outputs a common reference string crs.
– Com(crs,m; r) takes as input crs, a message m to be commited, and uses

randomness r to output a commitment com.

They have the following security properties:

– Statistical Binding: With high probability over the choice of crs← Setup(1λ),
there does not exists r0, r1, and messages m0 ̸= m1 such that Com(crs,m0; r0) =
Com(crs,m1; r1).

– Computational Hiding: For messages m0 ̸= m1, and randomness r0, r1
the distribution of (crs, com0) is computationally indistinguishable from (crs, com1).
Here, crs← Setup(1λ), com0 ← Com(crs,m0; r0), and com1 ← Com(crs,m1; r1).

Given a commitment com and crs, a valid corresponding pair (m, r) is known as
the opening for com.

Remark 1. [Non-interactive Perfectly Binding Commitment Schemes from LWE-
based PKEs] Any PKE with perfect decryption correctness gives a non-interactive
commitment. As observed previously [32], this perfect decryption correctness
implies perfect binding even though the committer is allowed to choose the
public key maliciously. Since LWE with polynomial modulus-to-noise ratio under
a bounded error distribution gives Regev encryption with perfect decryption
error [2], it also gives non-interactive perfectly binding, computationally hiding
non-interactive commitments.

2.3 Error Correcting Codes

Definition 8. A q-ary code is a function C : M → Zn
q , where n is called the

block length,M is called the message space, and Zq is called the alphabet of C.

Definition 9 (List-Recoverable Codes [26,27,25]). An ensemble of codes
{Cλ :Mλ → Znλ

qλ
} is said to be a (ℓ(·), L(·))-list recoverable (for ℓ, L : Z+ → Z+)

if there is a polynomial-time algorithm Recover that:

– Takes as input λ ∈ Z+ and explicit descriptions of “constraint” sets S1, . . . , Sn ⊆
Zn
q with each |Si| ≤ ℓ(λ), and

– produces as output a list of at most L(λ) messages, containing all m ∈ M
for which C(m)i ∈ Si for all i ∈ [n].

Definition 10 (N-independent Concatenated Code). Let C =
{
C(2)1 , . . . , C(2)N

}
be a collection of N codes where for i ∈ [N ], C(2)i : ZQ → Zm

q . Let C(1) :M→ ZN
Q

be a code. The N -independent concatenated code C(1) ◦C :M→ ZNm
q is defined

by

(C1 ◦ C )(x)(i−1)m+j = C
(2)
i

((
C(1)(x)

)
i

)
j
,

for all x ∈M, i ∈ [N ], and j ∈ [m].

12



Definition 11 (Reed-Solomon codes [35]). A Reed-Solomon code Cλ : Zk+1
Q →

Zt
Q is parameterized by a base field size q = q(λ), a degree d = k(λ), a block length

t = t(λ), and a set of values Qλ = {α1, . . . , αt}. Cλ takes as input a polynomial
p of degree k over Zq, represented by its k+1 coefficients, and outputs the vector
of evaluations (p(α1), . . . , p(αt)) of p on each of the points αi.

We look into the problem of list recovery for Reed-Solomon Codes for our
desired parameters. Note that as mentioned in section 1.1, the primary challenge
for us is to have list recoverability of Reed-Solomon with list sizes larger than
what is standard in the error correcting codes world. We point out that the
problem of list recovery for Reed-Solomon Codes boils down to the following
notion of polynomial reconstruction due to Sudan’s algorithm [37].

Polynomial Reconstruction

– INPUT: Integers kp and np distinct pairs {(αi, yi)}i∈[np], where αi, yi ∈
ZQ.

– OUTPUT: A list of all polynomials p(X) ∈ ZQ[X] of degree at most
kp which satisfy p(αi) = yi, ∀ i ∈ [np].

This polynomial reconstruction can be performed efficiently by interpolation.
We refer readers to Chapter 4 of [25] for a detailed analysis of the algorithm and
how to use it for list recovery. In this work we use the following theorem from
Guruswami and Sudan [27] as a black-box.

Definition 12 (Agreement Parameter). For a Reed-Solomon Code Calg :
Zk+1
Q → Zt

Q, the L many reconstructed polynomials {pj}j∈[L] are said to have an
agreement parameter tA ≤ t if ∀j ∈ [L], pj(αi) = yi for at least tA many pairs
(αi, yi), i ∈ [t].

Note that tA = t denotes the case of perfect polynomial reconstruction which
is the setting of interest in this work.

Theorem 3 (Efficient Polynomial Reconstruction of Reed-Solomon Codes).

The polynomial reconstruction problem with np input pairs, degree kp, and
agreement parameter tA can be solved in polynomial time as long as tA is at least√
kp · np. Furthermore, at most n2

p polynomials will be output by the algorithm.

2.4 Correlation Intractable Hash Function Family and the
Fiat-Shamir Transform

We present this section by following the same flavor as [29].

Definition 13 (Hash Family). A hash family is a collection H = {hλ : Iλ ×
Xλ → Yλ}λ of keyed hash functions such that {Iλ} is uniformly poly(λ)-time
sampleable and {hλ} is uniformly poly(λ)-time evaluable. We will also write Hλ

to denote the distribution on functions hλ(i, ·) obtained by sampling i ∈ Iλ.
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Definition 14 (Correlation-Intractability [10]). For a hash family H =
{hλ : Iλ × Xλ → Yλ}λ and a relation ensemble R = {Rλ ⊆ Xλ × Yλ}, the
correlation intractability game is the following game, played by any adversary A
against a fixed challenger C:

1. On input 1λ, C samples i ∈ Iλ and sends i to A.
2. A sends x ∈ Xλ to C, and wins the game if (x, hλ(i, x)) ∈ Rλ.

We say that H is correlation intractable for R if every nonuniform poly-time
A wins the correlation-intractability game only with probability negligible in the
security parameter λ.

Definition 15. Let Π be a public coin interactive protocol where the messages
exchanged between P and V are denoted by (α1, β1, . . . , αr, βr) for r rounds
of interaction. Here αi and βi denote messages sent by P and V respectively.
If the verifier’s messages are l bits long, then for a hash function family H :
{0, 1}∗ → {0, 1}l, we define FSH[Π] to be the non interactive protocol by sam-
pling a common reference string h ← H and computing the message βi if V
as h(x, α1, β1, . . . , αi). The verifier for FSH(Π) accepts iff the verifier for the
interactive protocol accepts and all βi are correctly computed.

Definition 16 (FS Compatible). We say that a hash function family H is
FS- compatible for an interactive proof Π for language L if the non interactive
protocol FSH(Π) defined above is a non interactive argument.

2.5 Secure Multiparty Computation (MPC)

We define the standard notion of a Multiparty Computation along with some
of the necessary properties of a MPC protocol necessary in our work. All the
definitions are standard in literature [6,30,19].

Definition 17 (q-Party Protocol). Let P1, . . . , Pq be q parties, and let each
Pi each have a shared public input x, a private input wi, and private random-

ness ri. Let m
(i)
j be the messages received by party Pi in the jth round. We

specify a q-party protocol by its next message function NEXT which on input

(1λ, i, x, wi, ri, (m
(i)
1 , . . . ,m

(i)
j )) where λ is the security parameter, outputs all

messages sent or output by Pi in round j + 1 given inputs x,wi, ri and round

messages (m
(i)
1 , . . . ,m

(i)
j ).

Definition 18 (View of a Party). The view Vi of a party Pi during protocol Π
contains common input x, private input wi, randomness ri, its received messages

{m(i)
j }, and all messages sent or output by Pi.

Definition 19 (Transcript of an Execution). The transcript Ξ of an exe-
cution of a q-party protocol Π is a set containing the public input, every party’s
randomness ri, every party’s private input wi, every message sent in each round.
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Definition 20 (Correctness).
Let f be a deterministic functionality that on inputs (x,w1, . . . , wq) outputs

(f(x,w1, . . . , wq))i∈q. We say that a q-party protocol Πf realizes f with perfect
(respectively statistical) correctness if for all inputs (x,w1, . . . , wq), the probabil-
ity that there exists an i ∈ [q] such that the output of party Pi is not equal to
f(x,w1, . . . , wq) is 0 (respectively negl(λ)).

Definition 21 (n-Privacy). Let 1 ≤ n < q. We say that Πf realizes f with
perfect (respectively statistical) n-privacy if there is a PPT simulator Sim such
that for all inputs x,w1, . . . , wq and every set of corrupted players T ⊆ [q] where
|T | ≤ n, the joint views {Vi}i∈T of players in T is distributed identically (respec-
tively statistically close) to Sim(T, x, (wi)i∈T , (fi(x,w1, . . . , wq))i∈T ).

Definition 22 (n-Robustness (imported from [30]). We say that Πf re-
alizes f with perfect (resp., statistical) n-robustness if it is perfectly (resp.,
statistically) correct in the presence of a semi-honest adversary as in Defini-
tion 20, and furthermore for any computationally unbounded malicious adver-
sary corrupting a set T of at most n players, and for any inputs (x,w1, . . . , wq),
the following robustness property holds. If there is no (w′1, . . . , w

′
q) such that

f(x,w′1, . . . , w
′
q) = 1, then the probability that some uncorrupted player outputs

1 in an execution of Πf in which the inputs of the honest players are consistent
with (x,w1, . . . , wn) is 0 (resp., is negligible in λ).

Efficiently Instantiable Perfectly Robust MPC Protocol

Remark 2. Several previous works give perfectly robust communication-efficient
MPC protocols [14,3,24].

Theorem 4 (Theorem 7 from [24]). In the client-server model, let c denote
the number of clients, and n = 2s + 1 denote the number of parties (servers).
Let k be the security parameter and let F denote a finite field. For an arithmetic
circuit C over F and for all 1 ≤ o ≤ s, there exists an information-theoretic
MPC protocol which securely computes the arithmetic circuit C in the presence
of a semi-honest adversary controlling up to c clients and s− o+1 parties. The
communication complexity of this protocol is O(|C|·n/k+n·(c+depth(C))+n5·k)
elements in F.

Remark 3. The client-server generalizes the standard MPC model of parties. To
translate this communication complexity into the standard MPC model, every
party has a single client and single server so if there are q parties there are
q clients and q servers. Choose o = s, then in the standard MPC model, the
communication complexity is given by,

O(|C|+ q · depth(C)) + poly(k).

where o, k, |C| are as defined in the previous theorem.

Remark 4. The protocol defined above was proved to have perfect security in
the Universal Composability (UC) Model [6].
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3 A Chernoff bound

In our work, we will analyze the sum of n Bernoulli random variables Xi where
the probability p that Xi = 1 is much smaller than 1/n. We derive a “custom”
Chernoff bound that is useful for this case:

Lemma 1 (Chernoff for Bernoulli distributions Ber(p) with small p).
For i ∈ [n] let Xi ∼ Ber(p) be independent identically distributed Bernoulli
random variables for p = p(n) ∈ (0, 1]. Let X ≜

∑n
i=1 Xi.Then for t ≥ 0, we

have:

Pr[X − np ≥ t] ≤
(
1

e
+

t

enp

)−t
Proof. Let τ = np+ t. For tidiness, we use the notation exp(a) to denote ea for
any a ∈ R. For all λ ≥ 0, by Markov’s inequality,

Pr[X ≥ τ ] ≤
E
[
eλX

]
eλτ

=

(
peλ + (1− p)

)n
eλτ

=

(
1 + p

(
eλ − 1

))n
eλτ

≤
exp

(
np(eλ − 1)

)
exp(λτ)

= exp
(
np
(
eλ − 1

)
− λ(np+ t)

)
.

Minimizing for λ ≥ 0, we choose λ = ln (1 + t/np). Plugging in for λ gives,

exp
(
np
(
eλ − 1

)
− λ(np+ t)

)
= et

(
1 +

t

np

)−(t+np)

≤ et
(
1 +

t

np

)−t
=

(
1

e
+

t

enp

)−t
.

This immediately yields:

Corollary 1. For i ∈ [n] let Xi ∼ Ber(p) be independent identically distributed
Bernoulli random variables for p = p(n) ∈ (0, 1]. Let X ≜

∑n
i=1 Xi.Then for

t > enp,

Pr[X − np ≥ t] ≤
(

t

enp

)−t
.

4 Recurrent List Recoverable Error Correcting Codes

We present a new notion of Recurrent List Recoverable error correcting codes
by N -independent concatenating Reed Solomon with random codes. This is a
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special case of general list recoverability of concatenated codes which we shall
formally define later in the section. First, we introduce Aggregate List Recovery
for Random Codes where a collection of independent random codes have identical
constraint sets which are input to their corresponding Recover algorithm.

4.1 Aggregate List Recoverability of Random Codes

Definition 23 (Aggregate List Recoverability). Given a collection of t in-
dependent codes {Cj : ZQ → Zn

q }tj=1, we say that they are (t, ℓ, T )-aggregate list
recoverable if the constraint sets Sj1, . . . , Sjn that the Recover algorithm corre-
sponding to the jth code takes as input are such that ∀i ∀j, Sji = S and |S| ≤ ℓ.
Furthermore the output list for Recover of the jth code is of size Lj, where∑

j∈[t] Lj ≤ T .

Theorem 5 (Aggregate List Recoverability of t independent random
codes). Let {Crand,i : ZQ → Zm

q }i∈[t] be a collection of t independent random
codes, and assume that there exist ε, δ, α, T such that the following hold,

– q = k log1+ε+ δ
2 k, ε > δ > 0,

– t = k logε k
– Q = q2,
– l = αq, for some constant α ∈ (0, 1)

– T ≤ 1
k2 log2+2ε+δ k

+ k log2ε−
δ
2 k, and

– αm ≤ 1
q4t ,

then t of such independent random codes are (t, l, T )-aggregate list recoverable
with probability at least 1− e−ω(k log k).

Proof. Given a function Crand,i : ZQ → Zm
q , let S ⊆ Zq be a subset of size l. Let

Xi,x be an indicator variable such that,

Xi,x =

{
1 if (Crand,i(x))j ∈ S, ∀, j ∈ [m],

0 otherwise

Thus, T =
∑

i,x Xi,x. Now, Pr[Xi,x = 1] = |S|
q = αm, where the probability is

taken over the choice of the set S. Thus, E[T ] = Qtαm.
A direct application of Corollary 1 immediately gives an upper bound on the

size of T . We have,

Pr[T −Qtαm ≥ k0] ≤
(

k0
eQtαm

)−k0

.

Plugging in Q,αm, t, k0 as q2, 1
q4t , k log

ϵ k, k log2ϵ−
δ
2 k respectively, we get,

Pr[T ≥ 1

k2 log2+2ε+δ k
+ k log2ε−

δ
2 k] ≤

(
q2k0
e

)−k log2ε− δ
2 k

≤

(
k3 log2+4ε+ δ

2 k

e

)−k log2ε− δ
2 k

.
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Taking a union bound over all choices of S, the probability that there exists a

set S for which the size of T is greater than 1
k2 log2+2ε+δ k

+ k log2ε−
δ
2 k is upper

bounded by,

(
q

αq

)(
k3 log2+4ε+ δ

2 k

e

)−k log2ε− δ
2 k

≤
( e
α

)αq (k3 log2+4ε+ δ
2 k

e

)−k log2ε− δ
2 k

=
exp {αq − αq lnα+ k log2ε−

δ
2 k}(

k3 log2+4ε+ δ
2 k
)k log2ε− δ

2 k

=
exp {α′q + k log2ε−

δ
2 k}(

k3 log2+4ε+ δ
2 k
)k log2ε− δ

2 k
where, α′ = α(1− lnα)

= exp

{
α′k log1+ε+ δ

2 k + k̃ − k̃ ln k̃ − k̃ ln
(
k2 log2+2ε+δ k

)}
where, k̃ = k log2ϵ−

δ
2 k

=exp

{
k̃
(
α′ log1−ε+δ k + 1− ln k̃ − ln

(
k2 log2+2ε+δ k

))}
=exp

{
k̃
(
α′ log1−ε+δ k + 1− 3 ln k − ln

(
log4ε+2+ δ

2 k
))}

=exp
{
k̃ (−ω(log k))

}
=exp {−ω (k log k)}

Thus, the probability that Crand,i are (αq, Li)-list recoverable such that
∑

i Li ≤
1

k2 log2+2ε+δ k
+ k log2ε−

δ
2 k is at least 1− e−ω(k log k).

4.2 Recurrent List Recoverability

We first define recurrent list-recoverability as a special case of list-recoverability
where the sets are identical, S1 = . . . = Sn.

Definition 24 (Recurrent List-Recoverable Codes). An ensemble of codes
{Cλ : Mλ → Znλ

qλ
} is said to be a (ℓ(·), L(·))-recurrent list recoverable (for

ℓ, L : Z+ → Z+) if there is a polynomial-time algorithm Recover that:

– Takes as input λ ∈ Z+ and explicit descriptions of “constraint” sets S ⊆ Zn
q

where |S| ≤ ℓ(λ).
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– Produces as output a list of at most L(λ) messages, containing all m ∈ M
for which C(m)i ∈ S for all i ∈ [n].

Theorem 6. For arbitrary constants 0 < η, α < 1 and 0 < δ ≤ ε < 1, there
exists a probabilistic constructible ensemble for codes{

Ck : Zk+1
q2 → Zηq

q

}
such that Ck is (αq, T 2)-Recurrent List Recoverable with probability at least 1−
e−ω(k log k), where q = k log1+ε+ δ

2 k and T = O(k log2ε−
δ
2 k)

Proof. Let C be a collection of t independent random codes {Crand,i : ZQ →
Zm
q }i∈[t] with t = k logε k, Q = q2 and m such that αm ≤ 1

q4t . Then, Theorem 5

tells us that with parameters set as above, the collection C is (t, αq, T )- aggregate
list recoverable with probability at least 1 − e−ω(k log k), for T ≤ 1

k2 log2+2ε+δ k
+

k log2ε−
δ
2 k.

Let Calg,k : Zk+1
Q → Zt

Q be a Reed Solomon Code. Theorem 3 tells us that if

Calg,k is a Reed Solomon Code, then O(k2 log4ε−δ k) polynomials can be recov-

ered by polynomial reconstruction as long as t ≥
√
k · T , where T is the total

number of input pairs. Choose T = O(k log2ϵ−
δ
2 k) and t = k logε k ,then the

necessary condition is satisfied. Thus, we can feed this list T to the polynomial
reconstruction algorithm of Calg,k.

Combining these two results and our choice of parameters which satisfy the
list recoverability constraint for Reed-Solomon in Theorem 3, we get that poly-
nomial reconstruction outputs a list Lst of size O(k2 log4ε−δ k). Moreover, our
choice of parameter ensures that there exists a constant 0 < η < 1 such that

mt = 2k log1+ϵ k+23k log k log log k
log 1

α

≤ ηk log1+ϵ k.

Thus, our code ensemble Ck can be constructed by an t-independent con-
catenation of Calg,k with C , i.e., Ck = Calg,k ◦ C . To elaborate further, accord-
ing to Definition 10, we first apply Calg,k on a message m ∈ Zk+1

q2 . This pro-

duces Calg,k(m) := (m′1, . . . ,m
′
t) ∈ Zt

Q. The final code output is then Ck =
Calg,k ◦ C (m) := (Crand,i(m′1), . . . , Crand,t(m′t)).

5 Zero Knowledge from Secure Computation

Definition 25 (Functionality fL). For a language L ∈ NP and its corre-
sponding relation RL, let fL be the functionality for q players P1, . . . , Pq. Given
a public input x and q shares of the witness w1, . . . , wq received from the Prover,
the functionality delivers to all players 1 if (x,w) ∈ RL and 0 otherwise.

Following [30], we slightly modify their zero knowledge protocol which makes
“black box” use of an MPC protocol ΠfL . This means that the zero knowledge
protocol simply implements the next message function for each party without
looking into the details of the circuits that describe these functions. The next
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message function NEXT is used by the prover and verifier to interact. NEXT
determines the next message to be sent based on the inputs and messages re-
ceived so far. In particular, we commit to a single transcript of the entire protocol
rather than committing to views of a party. We also note that Protocol 1 achieves
only honest-verifier zero knowledge. Although, the scheme can be extended to
obtain a standard zero knowledge proof, it leads to an increase in the num-
ber of rounds (cf. Theorem 4.4 in [30]). Hence, we stick to honest-verifier zero
knowledge which suffices for the purpose of producing a NIZK argument.

Protocol 1 (Honest Verifier Zero Knowledge Interactive Protocol ΠHVZK)

1. Prover picks at random w1, . . . , wq whose exclusive-or equals the witness w.
She simulates the execution of the MPC protocol ΠfL on input (x,w1, . . . , wq).
The prover then computes the transcript Ξ at the end and commits to each
element of Ξ using a statistically binding commitment scheme ComSB. Fi-
nally, she sends the commitments to the Verifier. Such a commitment scheme
can be instantiated from Remark 1

2. Verifier sends to Prover a challenge set of indices SCh ≜ {i1, . . . , iβ}.
3. Prover opens all commitments to private inputs wi, and all messages sent or

received by players indexed by i ∈ SCh in Ξ.
4. Given the public values x, the Verifier accepts if and only if the Prover suc-

cessfully opens all the requested commitments, all sent messages are consistent
with the application of the next-message function NEXT on the appropriate
set of received messages, and the output of all parties (computed determinis-
tically by the received messages and their inputs) is 1.

Fig. 1: HVZK Interactive Protocol using MPC.

Completeness and Honest Verifier Zero Knowledge. The correctness
property follow directly from an identical argument to that in [30]. However,
we present a sketch here for the sake of completeness. If (x,w) ∈ RL and the
prover is honest and w1 ⊕ . . . ⊕ wq = w, then the perfect correctness of ΠfL

implies that all the messages which were a part of the transcript Ξ will always
be consistent with the application of the next-message function NEXT, and the
outputs of each party must be 1. This implies correctness.

Let x belong to the language L, i.e., the functionality fL outputs 1. For
Honest Verifier Zero Knowledge, we construct a simulator M that simulates the
view of an honest verifier as follows: M samples a challenge set of cardinal-
ity β of indices chosen uniformly at random among q parties. Let the set be
S′Ch ≜ {i1, . . . , iβ}. Sim simulates the MPC protocol ΠfL in its head using the
parties with indices in S′Ch. Hence, M picks strings w′1, . . . , w

′
β uniformly at ran-

dom and simulates an execution of ΠfL on input x,w′1, . . . , w
′
β by invoking the

MPC simulator Sim on input (S′Ch, x, (w
′
i)i∈S′

Ch
, 1). Sim outputs a transcript Ξ ′.
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Recall that the transcript Ξ ′ consists of the public input, every party’s random-
ness, every party’s private input, and every message sent in each round. Along
with a commitment to the public input, for all i ∈ S′Ch, M commits to the ith
party’s input, randomness, private input, and messages sent and received in Ξ ′.
Let com(S′Ch) be defined to be the tuple of commitments listed in the previous
sentence. For the remaining values in the transcript Ξ ′, M commits to 0. M
sends all commitments, S′Ch, and openings to all commitments in com(S′Ch). The
opened values of the transcript generated by Sim has an identical (statistically-
close) distribution to the view of an Honest-Verifier due to the perfect (statisti-
cal) t-privacy of ΠfL . Moreover, the hiding property of the commitment scheme
implies that the Verifier cannot distinguish between the unopened commitments
of 0 from commitments to values in transcript Ξ ′.

Lemma 2 (Statistical Soundness). Let L ∈ NP be a language. Let ComSB be
a statistically-binding commitment scheme. Suppose that protocol ΠfL realizes
the q-party functionality fL with perfect β-robustness (in the malicious model),
and perfect, statistical or computational β-privacy (in the honest-but-curious
model) for β < ⌈q/2 − 1⌉, then the soundness error in ZK protocol ΠHVZK is
given by negl(q).

Proof. Suppose x ̸∈ L so that there does not exist w such that (x,w) ∈ RL for
relation RL on NP language L.

If the Prover commits to inputs, randomness, and messages from an honest
execution of ΠfL , all parties output 0 and the Verifier will reject for any choice
of SCh.

Otherwise, there exists a message m
(j)
i in Ξ that is not consistent with the

previous received messages and the next-message function NEXT. For any party
Pi who sends an inconsistent message, we say that Pi is a “corrupted” party.
There are two cases to consider: If malicious prover P ∗ corrupts at most β parties
and if P ∗ corrupts strictly more than β parties. For a fixed execution of ΠfL

and its corresponding commitments made by malicious Prover P ∗, we let B be
the set of the indices of all corrupted parties.

In the first case, the β-perfect robustness property guarantees that for all
indices i ̸∈ B, the output of Pi is 0. If the Verifier chooses any index i ̸∈ B,
then the Verifier will observe the output of Pi is 0 and the Verifier will catch the
Prover cheating. Therefore, with probability at least 1− 1/

(
q
β

)
, the Verifier will

choose a set of indices of size β that is not contained in set B (if |B| < β then
the probability that Verifier catches the prover is 1).

In the second case, the Prover has chosen strictly more than β parties to
corrupt. Here, we argue that the Verifier will ask for the commitment openings
to a corrupted party with overwhelming probability. Suppose the Prover has
chosen as little as β+1 many corrupted parties. The probability that the Verifier
chooses a subset of size β that does not contain any of these corrupted parties
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is given by (
q−β−1

β

)(
q
β

) =

β∏
i=0

q − β − i

q − i

=

β∏
i=0

(
1− β

q − i

)

≤
β∏

i=0

e−β/(q−i)

≤
(
e−β/(q−β)

)β+1

where we apply the inequality 1− x ≤ e−x for all real x. Then observe that by
our assumption β = αq for some constant α < 1, so(

e−β/(q−β)
)β+1

≤ e−c
2q−c.

Observe this probability forms an upper bound for the probability the Verifier
is fooled for when the Prover chooses at least β + 1 many corrupted parties.
Formally, for all i ≥ 1, (

q − β − i

β

)
≤
(
q − β − 1

β

)
.

Therefore the probability that the Verifier fails to catch the Prover in this setting
is negligible in q and therefore negligible in security parameter λ.

Finally, by a union bound the soundness error is then e−c
2q−c + 1/

(
q
β

)
=

negl(q).

6 Instantiating Fiat-Shamir via Correlation Intractable
Hash Functions.

We first reintroduce the notions of Efficient Product Verifiability and Product
Sparsity from [29].

Definition 26 (Product Relation). A relation R ⊂ X × Yt is a product
relation, if for any x, the set Rx = {y | (x, y) ∈ R} is the Cartesian product of
several sets S1,x, S2,x, . . . , St,x,

Rx = S1,x × S2,x × . . .× St,x.

Definition 27 (Efficient Product Verifiability, Definition 3.3). A relation
R is efficiently product verifiable, if there exists a polynomial-sized circuit C such
that, for any x, the sets S1,x, S2,x, . . . , St,x (in Definition 26) satisfy for any
i, yi ∈ Si,x if and only if C(x, yi, i) = 1.

22



Definition 28 (Product Sparsity, Definition 3.4). A relation R ⊆ X × Yt

has sparsity ρ, if for any x, the sets S1,x, S2,x, . . . , St,x (in Definition 26) satisfies
|Si,x| ≤ ρ|Y|.

Definition 29 (Bad Challenge Set). For Protocol 1, let com be a string con-
taining all commitments the prover sends to the verifier and let Vi denote the
view of Pi formed by taking the appropriate subset of decommitments to com.
We say that Vi is consistent if there exists an honest execution of the the q-party
Protocol Πf with Pi’s inputs, randomness, and messages sent and received. Then
we have the following set of bad challenges

B = S|I|com = Scom × Scom × · · · × Scom︸ ︷︷ ︸
|I| times

where Scom = {i | Vi is consistent}.

Remark 5. The set Scom is efficiently verifiable by the MPC next message func-
tion. Also, |Scom| ≤ αq, for some tiny constant α ∈ {0, 1}. Here q is the number
of parties involved in the MPC-in-the-Head protocol so the size of the Bad Chal-
lenge Set is the maximum number of parties in the MPC protocol that can be
corrupted.

6.1 Construction of CIH family

Lemma 3 (CIH for Efficient Enumerable Relations [34,7]). Assuming
that LWE m

2 log q ,m,q,χ holds for the particular parameter settings where χ is a B-

bounded distribution for B = qΩ(1), q = poly(m). Then, for every triplet of
polynomials T = T (λ), n = n(λ),m = m(λ), there exists a hash function family
H : {0, 1}n → {0, 1}m log q that is correlation-intractable for relation that is
enumerable in time T .

Lemma 4 ([29]). Let R ⊆ ×X × Zn
q be an efficiently verifiable product rela-

tion with sparsity α. Moreover, let C : M → Zn
q be a code that is (αq, L) list

recoverable and H be a hash function family that is correlation intractable for all
efficiently enumerable relations R′ ⊆ X×M, then C◦H is correlation intractable
for R.

Theorem 7. Let Cconcat = Calg ◦ C : Zk+1
Q → Zηq

q , η < 1 be the Recurrent List
Recoverable Code with parameters as in Theorem 6. Let H be a Correlation
Intractable Hash Function Family for an efficiently enumerable relation as in
Lemma 3. Then the hash function family Cconcat ◦ H is a correlation intractable
hash function family for the efficiently verifiable relation B.

Proof. From Theorem 6, the recurrent list recovery of Cconcat tells us that a list
of size O(k2 log4ε−δ k), for arbitrary constants 0 < δ < ε < 1 can be efficiently
recovered. This is indeed bound by a polynomial, hence is certainly efficiently
enumerable. Thus, from Lemma 3 and Lemma 4, we conclude that C ◦ H is
indeed Correlation Intractable for the relation B.
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This leads to our final theorem.

Theorem 8. Assuming that LWE m
2 log q ,m,q,χ holds for the particular parameter

settings where χ is a B-bounded distribution for B = qΩ(1), q = poly(k), k is the
security parameter, and a MPC protocol with perfect αn-robustness and perfect,
statistical, or computational security, where α ∈ (0, 1/2) is a constant and n is
the size of the challenge set in the interactive protocol, there exists NIZKs with
computational soundness for all of NP whose proof size is

O(|C|+ q · depth(C)) + poly(λ)

where C is an arithmetic circuit for the NP verification function at q = k log1+ϵ k
for any ϵ > 0.

This theorem is a direct consequence of the following results:

– Theorems 3 and 7 combine to provide a hash function family which is Fiat-
Shamir compatible with parameters aligning with the “MPC-in-the-Head”
paradigm.

– Applying the Fiat-Shamir compatible hash to Protocol 1 gives us a com-
putational sound NIZK from the MPC-in-the-Head model without parallel
repetition.

– There exists perfect αn-robust MPC protocols with the aforementioned com-
munication complexity for α < 0.5 (Theorem 4).
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A Supplementary Materials

A.1 Comparison with Prior Work

We explicitly present the calculations depicting the parameters which are achiev-
able by [29] in our setting.

Let us briefly introduce some definitions needed for their construction:

Definition 30 (Parvaresh-Vardy Code [33].). There is an explicit code C :
{0, 1}k → [q′s]q

′
, parameterized by integers s, k, q′ ∈ Z+ (with q′ a power of two)

such that the code is (efficiently) (ℓ′, L)-list recoverable in time poly((2s)s, q′, ℓ′)
as long as

ℓ′ ≤
(

1

s+ 1

)s+1(
q′

k

)s

and

L ≥ c · (2s)s · q
′ℓ′

k
,

for some constant c.

Definition 31 (Random Codes). There exists a constant c ≥ 0 such that for
any q, q′, a, ℓ, ℓ′ (all of which are functions of n), a random function f : [q′s]→
[q]n is combinatorially (ℓ, ℓ′)-list recoverable with probability 1− 2−Ω(ℓ′), as long
as,

ℓ′ ≥ c · (q′sρ+ ℓn log(q/ℓ)),

where the parameter ρ =
(

ℓ
q

)n
. This list recovery can be done (by brute force)

in time O(q′s · n · ℓ · log q). Evaluation of f can be done in time O(q′s · n · log q).

As was done throughout the paper, assume that k is the security parameter.
We ask whether it is possible to achieve a block size q′ = Õ(k) for the Paravresh-
Vardy code. Minimizing this block size results in a smaller number of challenges,
and therefore a smaller proof.

Necessary parameter relations for MPC-in-the-head Recall that in the MPC-in-
the-head setting that q is the number of parties and ℓ is the maximum size of the
bad challenge set (also the maximum number of parties that can be corrupted)
so ℓ = αq for some constant 0 < α < 1. Moreover, q′ · n is the number of verifier
challenges produced by the CI hash function obtained by composing the error-
correcting code with the CI hash function from [34] (the output of this composed
function is in Zq′·n

q so it must be that q′ ·n < q) and this directly determines the
number of Zq field elements necessary in the NIZK proof.
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Necessary parameter relations for code concatenation It is a fact that the con-
catenated code C ◦f is (ℓ, L) list recoverable if C is (ℓ′, L) list recoverable and f
is (ℓ, ℓ′) list recoverable. From the two definitions above, the following relation
must be true for list recoverability of the concatenation of the Paravesh-Vardy
code with random codes:(

1

s+ 1

)s+1(
q′

k

)s

≥ ℓ′ ≥ c · (q′sρ+ ℓn log(q/ℓ)).

The LHS above is O
((

q′

k

)s)
. The RHS is equivalently (by substitution) given

by q′s ·αn +αqn log(1/α) for constant 0 < α < 1. Then observe that if the RHS
is dominated by q′sαn, satisfying this inequality is doomed because the LHS is

O
((

q′

k

)s)
. Therefore, assume that the RHS is dominated by the second term

which is O(qn). Now we directly compute to see if certain block sizes q′ for the
PV code can be used to instantiate this code concatenation.

1. The case of q′ = k1+ε: To use a PV code with block length q′ = k1+ε,
we observe that setting s ≥ 1+ε

ε gives a satisfying solution. However, we
note that this setting comes at a cost. PV codes group outputs into blocks
of constant size s, which it then treats as an element of the extension field
Fqs . The headline result from HLR which achieves block length growing
with k2 works by setting s = 2 logk(ℓ). If we were to try to carry out the
same with block length O(k1+ε) (as stated in a remark on page 29 after
the proof of Proposition 5.2 of their paper), this would require, roughly,
setting s > (1 + ϵ)/ϵ, which would yield finite fields that are enormously
large. Furthermore, one would need to compensate for a loss of roughly
(1/(s + 1))(s+1) in the list recovery size, which although a constant, would
also be very large – at least (1/ϵ)(1/ϵ) – and incur a massive degradation of
parameters.

2. The case of q′ = Õ(k): Setting q′ = k log1+ε k has no solution as the LHS is
only polylogarithmic in k whereas the RHS is at least O(k log k). Thus, [29]
can not achieve quasi linear block size even with the optimizations mentioned
in their paper.

We finally note that a major advantage of our work is that we get our results
by using simple polynomial reconstruction instead of the complex extension-field
based PV codes used by HLR.
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