
Optimizing Rectangle Attacks: A Unified and
Generic Framework for Key Recovery

Ling Song1,3 , Nana Zhang2,5 , Qianqian Yang2,5B , Danping Shi2,5 , Jiahao
Zhao2,5 , Lei Hu2,5 , and Jian Weng1,3,4

1 College of Cyber Security, Jinan University, Guangzhou, China
2 State Key Laboratory of Information Security, Institute of Information Engineering,

Chinese Academy of Sciences, Beijing, China
3 National Joint Engineering Research Center of Network Security Detection and

Protection Technology, Jinan University, Guangzhou, China
4 Guangdong Key Laboratory of Data Security and Privacy Preserving,

Jinan University, Guangzhou, China
5 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

songling.qs@gmail.com,zhangnana@iie.ac.cn,yangqianqian@iie.ac.cn,
shidanping@iie.ac.cn, zhaojiahao@iie.ac.cn hulei@iie.ac.cn,

cryptjweng@gmail.com

Abstract. The rectangle attack has shown to be a very powerful form
of cryptanalysis against block ciphers. Given a rectangle distinguisher,
one expects to mount key recovery attacks as efficiently as possible. In
the literature, there have been four algorithms for rectangle key recovery
attacks. However, their performance vary from case to case. Besides,
numerous are the applications where the attacks lack optimality. In this
paper, we investigate the rectangle key recovery in depth and propose a
unified and generic key recovery algorithm, which supports any possible
attacking parameters. Notably, it not only covers the four previous rect-
angle key recovery algorithms, but also unveils five types of new attacks
which were missed previously. Along with the new key recovery algorithm,
we propose a framework for automatically finding the best attacking
parameters, with which the time complexity of the rectangle attack will
be minimized using the new algorithm. To demonstrate the efficiency of
the new key recovery algorithm, we apply it to Serpent, CRAFT, SKINNY
and Deoxys-BC-256 based on existing distinguishers and obtain a series
of improved rectangle attacks.

Keywords: Boomerang attack, Rectangle attack, Key recovery algorithm,
Serpent, CRAFT, SKINNY, Deoxys-BC

1 Introduction

Differential cryptanalysis, which was introduced by Biham and Shamir [BS91],
is one of the most powerful cryptanalytic approaches for assessing the security
of block ciphers. The basic idea is to exploit non-random propagation of input
difference to output difference, i.e., high-probability differentials. In many cases,

https://orcid.org/0000-0001-9298-7313
https://orcid.org/0000-0002-3817-2743
https://orcid.org/0000-0002-2062-1344
https://orcid.org/0000-0003-2809-8647
https://orcid.org/0000-0002-2674-6359
https://orcid.org/0000-0002-9920-5342
https://orcid.org/0000-0003-4067-8230

2 L. Song et al.

Figure 1: Basic boomerang attack (left) and the schematic view of the key recovery
(right)

it is may be hard to find a long differential of high probability. In 1999, Wagner
proposed the boomerang attack [Wag99], which divides a cipher E into two
sub-ciphers and utilizes two short differentials of high probability to construct a
long one.

Suppose E = E1 ◦ E0, where there are two short differentials α → β and
γ → δ with probability p and q for E0 and E1, respectively. The boomerang
attack, as depicted in Figure 1 (left), exploits the high probability of the following
differential property:

Pr
[
E−1(

E(x)⊕ δ
)
⊕ E−1(

E(x⊕ α)⊕ δ
)

= α
]

= p2q2. (1)

The basic boomerang attack requires adaptive chosen plaintexts and cipher-
texts. Later, Kelsey et al. developed a chosen-plaintext variant, named the
amplified boomerang attack [KKS00]. However, this transition reduced the proba-
bility of the distinguisher to 2−np2q2. In [BDK01], Biham et al. further converted
the amplified boomerang attack into the rectangle attack by considering as
many differences as possible in the middle to estimate the probability more accu-
rately. As a result, the probability of a rectangle distinguisher becomes 2−np̂2q̂2,
where p̂ =

√
ΣiPr2(α −→ βi) and q̂ =

√
ΣjPr2(γj −→ δ). The boomerang and

rectangle attack then have been applied to numerous block ciphers, such as
Serpent [BDK01], AES [BK09], KASUMI [DKS10b,DKS14], etc.

Since the boomerang attack was proposed, there has been a line of research on
estimating the probability of boomerang distinguishers more accurately so as to
find better distinguishers. At first, the probability of a boomerang distinguisher
was considered as p2q2 by simply assuming the two differentials are independent
until the dependency issue between the two differentials came into view. In
boomerang or rectangle attacks on concrete ciphers, observations were made
that the probability computed via p2q2 may be inaccurate in some cases from

Optimizing Rectangle Attacks 3

[BK09, Mur11], where the probability can be higher by using tricks or the
two chosen differentials may be even incompatible. Taking the dependency
between the two differentials into account, Dunkelman et al. suggested the
sandwich attack [DKS10b, DKS14] which estimates the probability by p2q2r,
where r is the exact probability for a middle part. Later, a new tool named
boomerang connectivity table (BCT) was proposed to estimate the probability r
theoretically [CHP+18,SQH19].

Another line of research on the boomerang and rectangle attack is to mount
key recovery attacks as efficiently as possible. Figure 1 (right) displays a schematic
view of key recovery attacks based on a distinguisher over the middle part Ed. The
first rectangle key recovery algorithm was proposed by Biham et al. in [BDK01]
along with the proposal of the rectangle attack. This algorithm was applied
to 10-round Serpent [ABK98] with an 8-round rectangle distinguisher. Shortly
after that, in [BDK02] the same authors introduced the second rectangle key
recovery algorithm which can improve the result on Serpent by reducing the
time complexity. There was no improvement until Zhao et al. proposed a new
rectangle key recovery algorithm in [ZDM+20] which originally works for ciphers
with a linear key schedule in the related-key setting, but it can be converted to the
single-key setting trivially. Such an algorithm, when applied to SKINNY [BJK+16a]
outperforms the two previous key recovery algorithms. However, the algorithm
presented in a very recent work [DQSW22] makes a step further on improving
rectangle attacks on SKINNY and some other ciphers.

Motivation. Even though the two recent rectangle key recovery algorithms
provide surprisingly good results on SKINNY, we carefully check that they do not
beat the algorithm in [BDK02] when applied to Serpent. On the other hand,
the algorithm in [BDK02] is not efficient on SKINNY when compared with the
two recent ones. Then, the following questions arise.

– Given a rectangle distinguisher of a block cipher, how efficient the key recovery
can be?

– Are there any other ways to mount key recovery attacks?

Not only would answers to these questions be of great significance to the crypt-
analysis of block ciphers, but also provide a deeper understanding of the key
recovery of the rectangle attack.

Our contributions. In this paper, we investigate the rectangle key recovery in
depth and completely answer the above questions. In the previous key recovery
algorithms, the involved subkey bits in the rounds added around the distinguisher
may or may not be guessed. The four previous algorithms use four different
kinds of subkey guessing strategies. Our basic idea is that any possible guessing
strategy should be allowed and that there must be a guessing strategy leading
to optimal complexities of the key recovery attack. To achieve these, we have to
solve two problems. The first is that how the attack proceeds when partial key
bits (the extreme cases are full/none of subkey bits) are guessed on both sides of

4 L. Song et al.

the distinguisher. Note such generalized cases have never been considered before.
The second problem is how the attack proceeds so that the time complexity is
low.

The starting point of our work is some new insights that the key recovery of the
rectangle attack always includes steps of constructing pairs from single messages
and quartets from pairs, whereas the number of pairs or quartets that will be
constructed is affected by guessed subkey bits. Unlike in the previous works, we
do not have to restrain ourselves to only one side and can generate pairs on either
side. With this in mind, we come up with a unified and generic rectangle key
recovery algorithm which supports any possible attacking parameters, together
with a framework to find the best attacking parameters, including the subkey bits
to be guessed. Our contributions on the key recovery algorithm are summarized
as follows.

– Based on a deeper understanding of the rectangle key recovery, a unified and
generic key recovery algorithm is proposed. It supports any number of guessed
key bits and covers the four previous rectangle key recovery algorithms, i.e.,
any of the previous four algorithms is a special case of our algorithm. What’s
more, it unveils five types of new attacks which were missed previously (see
Figure 4 in Section 4 for more information).

– Although our new algorithm supports any set of attacking parameters, it does
not tell which is the best on its own. As a complement, we propose a framework
for automatically finding the best parameters for the new algorithm. When
we feed the parameters returned by this framework to our new key recovery
algorithm, the time complexity of the rectangle attack will be minimized.

– We also develop variants of the new key recovery algorithm for related attacks,
including the rectangle attack in the related-key setting for ciphers with a
linear key schedule and boomerang attacks in both single-key and related-key
setting, etc.

Previously, the four mentioned key recovery algorithms are treated as separate
ones. Given a rectangle distinguisher, one can compute the complexities for all
algorithms and pick the algorithm with the lowest complexity. Now, we can
work with the new algorithm only. To demonstrate the efficiency of the new key
recovery algorithm, we apply it to four block ciphers using existing distinguishers
and obtain a series of improved results.

– We revisit the attack on 10-round Serpent and find better attacks than the
one given in [BDK02].

– We revisit the rectangle attacks on round-reduced SKINNY in [DQSW22],
which are the best existing attacks on SKINNY in the related-tweakey setting.
For the four distinguishers of SKINNY, we find better attacks for three of
them, despite the fact that these distinguishers were searched dedicated for
the key recovery algorithm in [DQSW22].

– We extend the rectangle attack on CRAFT by one round and give the first
19-round attack, which is the best attack on this cipher so far in the single-key
setting.

Optimizing Rectangle Attacks 5

– On Deoxys-BC-256, we improved the 11-round rectangle attack and extend
the boomerang attack by one round in the related-tweakey setting. These
are the best attacks on Deoxys-BC-256 so far in terms of time complexity.

These results are summarized in Table 1. According to these applications, we find
that the best attacking parameters differ significantly from those which were used
in previous works and even the number rounds added around the distinguisher
is different. Notably, these new attacking parameters are not covered by the
previous key recovery algorithms in many cases. Thus, it is likely that previous
rectangle attacks can be improved to some extent using the new key recovery
algorithm.

Table 1: Summary of the cryptanalytic results.
Cipher Rounds Data Memory Time Approach Setting Ref.

Serpent 10

2126.8 2192 2217 Rectangle SK [BDK01]
2126.3 2126.3 2173.8 Rectangle SK [BDK02]
2126.3 2126.3 2159.11 Rectangle SK Sect. 5.1
2124.15 2124.15 2155.67 Rectangle SK Sect. 5.1

CRAFT
18 260.92 284 2101.7 Rectangle SK [HBS21]
19 260.92 272 2112.61 Rectangle SK Sect. 5.2

SKINNY-64-128 25 261.67 264.26 2118.43 Rectangle RK [DQSW22]
261.67 263.67 2110.03 Rectangle RK Sect. 5.3

SKINNY-128-384 32 2123.54 2123.54 2354.99 Rectangle RK [DQSW22]
2123.54 2129.54 2344.78 Rectangle RK Full version

SKINNY-128-256 26 2126.53 2136 2254.4 Rectangle RK [DQSW22]
2126.53 2136 2241.38 Rectangle RK Full version

Deoxys-BC-256

10 2127.58 2127.58 2204 Rectangle RK [CHP+17]
11 2122.1 2128.2 2249.9 Rectangle RK [ZDJ19]
11 2126.78 2128 2222.49 Rectangle RK Full version
10 298.4 288 2249.9 Boomerang RK [ZDJ19]
11 2122.4 2128 2218.65 Boomerang RK Sect. 5.4

Organization. The rest of the paper is organized as follows. In Section 2, we
give notations which will be used throughout the paper. In Section 3, the new
rectangle key recovery algorithm will be introduced as well as the framework for
automatically finding the best attacking parameters and extensions of the new
algorithm. In Section 4, we compare our new rectangle key recovery algorithm
with the four previous ones in detail. Section 5 presents applications of the new
algorithm to four block ciphers. We conclude this paper in Section 6.

6 L. Song et al.

2 Notations

In this paper, we focus on the key recovery for a given boomerang distinguisher.
For simplicity, we treat a target cipher E : {0, 1}n × {0, 1}k → {0, 1}n as
E = Ef ◦Ed ◦Eb, where there is a boomerang distinguisher over Ed of probability
P 2, i.e.,

Pr
[
E−1

d (Ed(P1)⊕ δ)⊕ E−1
d (Ed(P1 ⊕ α)⊕ δ) = α

]
= P 2. (2)

That is, we take the probability of the boomerang distinguisher for P 2 and do
not pay attention to whether it is evaluated with p2q2r or q̂2q̂2. Figure 1 (right)
depicts the framework of E, where Eb and Ef are added around Ed. The aim of
the key recovery is to identify partial subkeys used in Eb and Ef by utilizing the
distinguisher over Ed and further to find the master key more efficiently than
the exhaustive search.

Eb Ed Ef
α

difference between
(P1, P2) and (P3, P4)

δ

difference between
(C1, C3) and (C2, C4)

α′ δ
′

rb
rf

mb

kb

︸ ︷︷ ︸

mf

︸ ︷︷ ︸
kf

Figure 2: Outline of rectangle key recovery attack

To describe the key recovery, a series of notations are used through out the
paper. For convenience, we borrow some notations which are frequently used in the
previous works on rectangle attacks, such as [BDK02,LGS17,ZDM+20,DQSW22].
As shown in Figure 2, the input difference of the distinguisher α propagates back
over E−1

b to α′. Let Vb be the space spanned by all possible α′ where rb = log2 |Vb|.
The output difference of the distinguisher δ propagates forward over Ef to δ

′ .
Let Vf be the space spanned by all possible δ′ where rf = log2 |Vf |. Let kb be
the subset of subkey bits which are employed in Eb and affect the propagation
α′ → α. Similarly, let kf be the subset of subkey bits which are used in Eb and
affect the propagation δ ← δ′. Then let mb = |kb| and mf = |kf | be the number
of bits in kb and kf , respectively.

In a specific key recovery algorithm, a part of kb and kf , denoted by k′
b, k′

f ,
may be guessed at first. Let m′

b = |k′
b| and m′

f = |k′
f |. With the guessed subkey

Optimizing Rectangle Attacks 7

bits, the differential propagations α′ → α and δ ← δ′ can be partially verified.
Suppose under the guessed subkey bits a r′

b-bit condition on the top and a r′
f -bit

condition on the bottom can be verified. Finally, let r∗
b = rb−r′

b and r∗
f = rf −r′

f .
In this paper, we mainly focus on the rectangle key recovery algorithms in the

single-key setting and these can be easily converted into the related-key setting
for ciphers with linear key schedule.

3 A Unified and Generic Key Recovery Algorithm

In this section, we present our unified and generic key recovery algorithm for the
rectangle attack. Before specifying our algorithm, we recall basics of the rectangle
attack and provide new insights into the key recovery, which will be the base of
our algorithm. Our algorithm is generic and supports any possible key guessing
strategy. However, given a specific rectangle distinguisher, which parameters
are the best for our algorithm? A framework for automatically finding the best
parameters is then introduced afterwards. Finally, we discuss extensions of our
algorithm to related cases.

3.1 Basic Ideas and Intuitions

In this subsection, we recall the principles of the rectangle attack and give some
new insights on the key recovery which are core ideas behind our new algorithm.

As can be seen from Figure 1 and Eq. (2), the boomerang distinguisher is
built on a nonrandom property of quartets. The rectangle distinguisher is its
chosen-plaintext variant. This nonrandom property is then used to extract subkey
information in Eb and Ef . As in standard differential cryptanalysis, candidates for
subkey kb and kf are identified if they are suggested by a sufficiently large number
of quartets. Here, kb and kf are suggested by a quartet (Pi, Ci), i = 1, 2, 3, 4, if

Eb(kb, P1)⊕ Eb(kb, P2) = Eb(kb, P3)⊕ Eb(kb, P4) = α,

E−1
f (kf , C1)⊕ E−1

f (kf , C3) = E−1
f (kf , C2)⊕ E−1

f (kf , C4) = δ

holds. As shown in Figure 2, the α difference propagates to α′ via E−1
b and

α′ ∈ Vb. It does not mean every element of Vb is a possible α′, whereas any
difference outside Vb is impossible for α. The same applies for the bottom side.
This means, quartets with plaintext difference outside Vb or ciphertext difference
outside Vf will not suggest any subkeys. Therefore, an important step in rectangle
key recovery algorithms is to construct quartets which are possible to suggest
subkeys and at least satisfy P1 ⊕ P2, P3 ⊕ P4 ∈ Vb and C1 ⊕ C3, C2 ⊕ C4 ∈ Vf .

Data complexity. A commonly-used idea to improve differential cryptanalysis
is to employ plaintext structures. A plaintext structure takes all possible values
for the rb bits and chooses a constant for the remaining n− rb bits. It allows to
enjoy the birthday effect. For each structure, there are 22rb−1 pairs of plaintext

8 L. Song et al.

with difference in Vb and 2rb−1 of them satisfy α difference by meeting the rb-bit
condition.

Given a boomerang distinguisher with probability P 2, the number of quartets
satisfying the input difference α of the distinguisher should be at least sP −22n

for a rectangle attack, where s is the expected number of right quartets (say
s = 4). These quartets can be formed from plaintext pairs taken in structures.
Suppose the number of structures needed is y. Note y structures can constitute
2 ·

(
y2rb−1

2
)6 quartets that satisfy α difference. Then y =

√
s2n/2−rb+1/P and

the data complexity is D = y · 2rb =
√

s2n/2+1/P. This infers that the data
complexity is the same with different key recovery algorithms.

Time complexity. Next, let us investigate the time complexity from a high-
level perspective. We stress that the key recovery of the rectangle attack always
includes steps of constructing pairs from single messages and quartets from pairs.
Therefore, the whole key recovery can be split into the following phases: (1) data
collection, (2) pair construction, (3) constructing quartets and processing them
to extract subkeys, and last (4) a brute force search for the unique right master
key among key candidates. The time complexities of the first and the last phases
are easy to estimate, so let us focus on the time complexities of the middle two
phases, which we denote by T2 and T3, respectively.

T3 is mainly affected by the number of quartet candidates. From D plaintexts,
we can construct N = D2 · 22rb+2rf −2n−2 quartet candidates with plaintext
difference in Vb and ciphertext difference in Vf . This seems to be a fixed term like
the data complexity. However, the number of quartets to be processed may be
reduced when some subkey bits are guessed. Recall that mb-bit kb and mf -bit kf

are involved for the propagation α′ ← α and δ → δ′ and verifying α difference and
δ difference for such a quartet takes 2rb-bit and 2rf -bit conditions (as there are two
pairs), respectively. Thus, there will be N · 2mb+mf −2rb−2rf = D2 · 2mb+mf −2n−2

suggestions for kb and kf in total. On average, the number of suggestions for a
wrong subkey is less than 1 as D2 · 2−2n−2 < 1, while it is s for the right subkey.
On the one hand, this confirms that the rectangle attack works; on the other
hand, it means when the subkey is fixed, most quartets are wrong and thus may
likely be filtered out before being constructed. This is what has been done in the
first rectangle key recovery algorithm proposed in [BDK01], which guesses the
whole kb and kf .

However, a full guess of kb and kf is not necessary to reduce the number
of quartet candidates, as studied in [ZDM+20, DQSW22]. In this paper, we
consider the most general situation where a part of kb, i.e., k′

b, and a part of kf ,
i.e., k′

f are guessed, with m′
b = |k′

b|, m′
f = |k′

f |, 0 ≤ m′
b ≤ mb and 0 ≤ m′

f ≤ mf .
To have a better view of this situation, we present a toy example in Figure 3
to illustrate the parameters. Assume under the guess a r′

b-bit (resp. r′
f -bit)

condition can be verified for a plaintext (resp. ciphertext) pair. Then the number

6 If both (P1, P2) and (P3, P4) satisfy α difference, then we can form two quartets:
(P1, P2, P3, P4) and (P1, P2, P4, P3).

Optimizing Rectangle Attacks 9

Figure 3: A toy example to illustrate the parameters of the rectangle key recovery. Both
Eb and Ef contain one round. Bold lines stand for active bits, so rb = 12, rf = 8 and
the number of involved subkey bits in Eb and Ef are mb = 12 and mf = 8, respectively.
The subkey bits corresponding to blue lines are guessed. With the guessed subkey bits,
r′

b = 4 out of rb = 12 bits of conditions can be ensured. Likewise, r′
f = 4 out of rf = 8

bits of conditions can be ensured.

of quartets to be processed is 2m′
b+m′

f ·D2 · 22r∗
b +2r∗

f −2n−2, where r∗
b = rb − r′

b

and r∗
f = rf − r′

f . We point out the number of quartet candidates gets smaller as
long as m′

b + m′
f < 2r′

b + 2r′
f .

Let us come to the time complexity of constructing pairs, i.e., T2. Note that
T2 is determined by the number of pairs that are used to construct quartets.
We emphasize that pairs can be constructed either on the top for plaintexts
or on the bottom for ciphertexts. Still assume partial subkey bits are guessed.
Then the number of filters for plaintext pairs is n− r∗

b while it is roughly n− r∗
f

for ciphertext pairs (we will present the exact number of filters in the next
subsection). Since filters for plaintext pairs and filters for ciphertext pairs work
on different faces, they can not be taken into account simultaneously in the phase
of constructing pairs. The key principle is to form pairs on the side with more
filters so that T2 is lower.

Questions. Then, there come two questions:

Question 1: How does the key recovery algorithm proceed when k′
b and k′

f are
guessed, where m′

b = |k′
b|, m′

f = |k′
f |, 0 ≤ m′

b ≤ mb and 0 ≤ m′
f ≤ mf ?

Question 2: What is the best choice for (k′
b, k′

f) so that the overall time com-
plexity is minimized?

To answer the first question, we propose a detailed algorithm for the rectangle
key recovery in the next subsection. Because this algorithm supports any possible
(k′

b, k′
f) and covers all previous key recovery algorithms, we call it a generic and

unified algorithm for the rectangle key recovery. For the second question, we
present a framework for automatically finding the best (k′

b, k′
f) in Section 3.3.

Combining both, we are able to find the most efficient rectangle key recovery
attack.

10 L. Song et al.

3.2 Generic and Unified Algorithm for the Rectangle Key Recovery
Attack

In the following, we describe our algorithm for the rectangle key recovery attack
which works for any number of guessed key bits. Like the most key recovery
algorithm, our new algorithm also employs the counting method. Namely, we set
counters for the involved subkey bits and search for the correct one among the
subkey candidates with a large number of suggestions. Suppose m′

b-bit k′
b and

m′
f -bit k′

f are to be guessed. For these guessed subkey bits, we may or may not
set counters for them. To enjoy such flexibility, we set counters for t bits of the
guessed subkey bits, 0 ≤ t ≤ m′

b + m′
f .

Then the specific steps of our algorithm are as follows. Note the toy example
in Figure 3 would be helpful for understanding the algorithm.

1. Collect and store y structures of 2rb plaintexts. Hence, the data complexity
is D = y · 2rb . The time and memory complexities of this step are also D.

2. Split (m′
b + m′

f)-bit k′
b∥k′

f into two parts: GL∥GR where GL has t bits.
3. Guess GR:

(a) Initialized a list of key counters for GL and the unguessed key bits of
kb, kf . The memory complexity in this step is 2t+mb+mf −m′

b−m′
f .

(b) Guess the t-bit GL:
i. For each data (P1, C1), partially encrypt P1 and partially decrypt

C1 under the guessed subkey bits. Let P ∗
1 = Enck′

b
(P1) and C∗

1 =
Deck′

f
(C1). For each structure, we will get 2r′

b sub-structures, each of
which includes 2rb−r′

b = 2r∗
b plaintexts which take all possible values

for the active bits. In other words, there are y∗ = y · 2r′
b structures of

2r∗
b plaintexts. The time complexity of this step is D.

ii. Let 2−µ = D · 2−n. If r∗
b ≤ r∗

f − µ7, it turns to step (A); else if
r∗

b > r∗
f − µ, it turns to step (D).

A. Insert all the obtained (P ∗
1 , C∗

1) into a hash table according to
n− r∗

b bits of P ∗
1 . Then construct a set as S = {(P ∗

1 , C∗
1 , P ∗

2 , C∗
2) :

P ∗
1 and P ∗

2 have difference only in r∗
b bits}. The size of S is

y · 2r′
b · 22(rb−r′

b)−1 = D · 2r∗
b −1. Hence, the time and memory

complexities of this step are both D · 2r∗
b −1.

B. Insert S into a hash table by n− (rf − r′
f) = n− r∗

f inactive bits
of C∗

1 and n− (rf − r′
f) = n− r∗

f inactive bits of C∗
2 .

C. For each 2(n−r∗
f)-bit index, we pick two distinct (P ∗

1 , C∗
1 , P ∗

2 , C∗
2),

(P ∗
3 , C∗

3 , P ∗
4 , C∗

4) to generate the quartet. We will get

2 ·
(|S|

2
2(n−r∗

f
)

2

)
· 22(n−r∗

f) = D2 · 22r∗
b · 22r∗

f · 2−2n−2

quartets. Then go to step (iii).
7 The number of filters for plaintext pairs is n − r∗

b while it is n − r∗
f + µ for ciphertext

pairs.

Optimizing Rectangle Attacks 11

D. Insert all the obtained (P ∗
1 , C∗

1) into a hash table according to
n− r∗

f bits of C∗
1 . Then construct a set as S = {(P ∗

1 , C∗
1 , P ∗

3 , C∗
3) :

C∗
1 and C∗

3 are colliding in n − r∗
f bits}. The size of S is D2 ·

2rf −r′
f −n−1 = D · 2r∗

f −1−µ. Hence, the time and memory com-
plexities of this step are both D · 2r∗

f −1−µ.
E. Insert S into a hash table by n− r∗

b inactive bits of P ∗
1 and n− r∗

b

inactive bits of P ∗
3 .

F. There are at most 22(n−r∗
b −µ) possible values for the 2(n− r∗

b)-bit
index. For each index, we pick two distinct entries (P ∗

1 , C∗
1 , P ∗

3 , C∗
3),

(P ∗
2 , C∗

2 , P ∗
4 , C∗

4) to generate the quartet. We will get

2 ·
(|S|

22(n−r∗
b

−µ)

2

)
· 22(n−r∗

b −µ) = D2 · 22r∗
b · 22r∗

f · 2−2n−2

quartets.
iii. Determine the key candidates involved in Eb and Ef and increase the

corresponding counters. Denote the time complexity for processing
one quartet as ϵ. Then the time complexity in this step is D2 · 22r∗

b ·
22r∗

f · 2−2n−2 · ϵ.
(c) Select the top 2t+mb+mf −m′

b−m′
f −h hits in the counters to be the can-

didates, which delivers a h-bit or higher advantage, where 0 < h ≤
t + mb + mf −m′

b −m′
f .

(d) Guess the remaining k −mb −mf unknown key bits according to the
key schedule algorithm and exhaustively search over them to recover the
correct key. The time complexity of this step is 2k+t−m′

b−m′
f −h.

Data complexity. The data complexity is D = y · 2rb =
√

s2n/2+1/P.

Memory complexity. The memory complexity is M = D + min{D · 2r∗
b −1, D ·

2r∗
f −1−µ}+2t+mb+mf −m′

b−m′
f for storing the data, the set S, and the key counters.

Time complexity. The time complexity of collecting data is T0 = D, the time
complexity of doing partial encryption and decryption under guessed key bits is

T1 = 2m′
b+m′

f ·D = 2m′
b+m′

f · y · 2rb =
√

s · 2m′
b+m′

f + n
2 +1/P,

the time complexity of generating set S is

T2 = 2m′
b+m′

f ·D ·min{2r∗
b −1, 2r∗

f −1−µ}

= min{
√

s · 2m′
b+m′

f +rb−r′
b+ n

2 /P, s · 2m′
b+m′

f +rf −r′
f +1/P 2},

the time complexity of generating and processing quartet candidates is

T3 = 2m′
b+m′

f ·D2 ·22r∗
b ·22r∗

f ·2−2n−2 ·ϵ = (s·2m′
b+m′

f −n+2rb+2rf −2r′
b−2r′

f +1/P 2)·ϵ,

and the time complexity of exhaustive search is T4 = 2m′
b+m′

f −t ·2k+t−m′
b−m′

f −h =
2k−h, where h ≤ 2t+mb+mf −m′

b−m′
f . The overall time complexity is the sum of

Ti, i ∈ [0, 4].

12 L. Song et al.

On h. According to [Sel08], the success probability of differential analysis is

Ps =
∫ ∞

√
sSN −Φ−1(1−2−h)√

SN +1

ϕ(x)dx,

where SN is the signal-to-noise ratio and SN = 2−nP 2

2−2n in rectangle attacks as
well as in boomerang attacks. In the algorithm, the parameter t not only gives
much greater flexibility in choosing h, but also allows the previous rectangle key
recovery algorithm to fit in easily regarding setting the key counters. We will
discuss more about the relation with the previous algorithms in Section 4.

On ϵ. In the algorithm, m′
b bits of kb and m′

f bits of kf are guessed, respectively.
With the guessed subkey bits, partial differential propagation over Eb (resp. Ef)
can be ensured by properly selecting pairs. Now suppose input difference (resp.
output differencce) fall in a smaller space V ∗

b (resp. V ∗
f) where r∗

b = |V ∗
b | (resp.

r∗
f = |V ∗

f |). In step 3(d) of the algorithm, the subkey information is extracted
from quartets with input difference in V ∗

b and output difference in V ∗
f . Then, ϵ is

defined to be the time to process one such quartet.
Recall that a right quartet satisfies Eb(P1)⊕Eb(P2) = α = Eb(P3)⊕Eb(P4).

Both pairs are encrypted by the same subkey, so a right quartet must agree on the
remaining m∗

b bits of kb. Under the guess of m′
b bits of kb, there are 2r∗

b possible
input differences that lead to α difference after Eb. Since each pair suggests
2m∗

b −r∗
b subkeys on average, both pairs agree on 22(m∗

b −r∗
b)/2m∗

b = 2m∗
b −2r∗

b for
Eb. Similarly, for Ef we get 2m∗

f −2r∗
f suggestions for the remaining m∗

f bits of
kf . Consequently, each quartet suggests 2m∗

b +m∗
f −2r∗

b −2r∗
f possible subkeys.

There are different methods to deduce the remaining m∗
b bits of kb suggested

by these quartets. A recommended method is to precompute a hash table for all
possible input pairs and the value of m∗

b -bit kb that can lead to α difference. This
table can be built with time complexity 2r∗

b +m∗
b and indexed by the values of

the pairs. The memory cost of this table is 2r∗
b +m∗

b (rather than 2r∗
b in [BDK01]).

When processing a quartet, we can extract the subkey candidates suggested by
both pairs by looking up the table twice. Do the same thing for Ef . Therefore,
ϵ will be no more than max{4, 2m∗

b −r∗
b + 2m∗

f −r∗
f } memory accesses, provided

that two lookup tables have been built with time and memory complexity of
2r∗

b +m∗
b + 2r∗

f +m∗
f . If 2m∗

b −r∗
b + 2m∗

f −r∗
f is relatively large, ϵ can be lowered to

no more than max{2, 2m∗
b −2r∗

b + 2m∗
f −2r∗

f } by using tables built for quartets. In
this case, the memory cost increases to 22r∗

b +m∗
b + 22r∗

f +m∗
f , which also means

achieving the smallest ϵ at the cost of memory. This is specially profitable when
22r∗

b +m∗
b + 22r∗

f +m∗
f is not dominant for memory cost.

Note that sometimes the above method of processing quartets may not be
applied directly. In certain cases, besides the r∗

b bits, some other non-active bits
of pairs are needed to verify α difference after Eb, resulting in a larger time
complexity for building a precomputation table as well as a larger memory cost.
For the bottom part Ef , it is similar. As an example, this can be seen from
rectangle attacks on SKINNY (e.g., Figure 7). In such cases, we suggest building

Optimizing Rectangle Attacks 13

lookup tables for smaller local operations. Consequently, ϵ can be equivalent to a
few memory accesses.

Another method to determine the remaining subkey bits suggested by a
quartet candidate is to guess and check. One can guess the remaining subkey
bits and check if the quartet is a right one under the guess. Such a method does
not require additional memory, whereas ϵ is an amount of partial encryptions or
decrytions.

Minimizing the time complexity. As can be seen from the formulas of
Ti, i ∈ [0, 4], the overall time complexity depends on the number of guessed
subkey bits m′

b + m′
f and the number of filters r′

b + r′
f obtained under these

guessed subkey bits. In order to reduce the time complexity, a natural strategy is
to guess those subkey bits which can lead to a large filter. If each subkey cell is
equally profitable (e.g., the attack on Serpent in Section 5.1), one can find by
hand the subkey k′

b and k′
f to be guessed in the key recovery, so that the time

complexity is minimized. However, it is not the case for many ciphers. For certain
ciphers, not only the subkey cells are not equally profitable, but also the subkey
cells are closely related through the key schedule. Finding the best parameters by
hand is challenging. Moreover, given a set of parameters that permit an efficient
key recovery, one may wonder whether it is optimal or not. Therefore, optimal
rectangle attacks are possible only when the above key recovery algorithm is fed
with a set of proper parameters.

3.3 Framework for Finding the Best Attacking Parameters

In this subsection, we present a framework which acts as a complement of our new
key recovery algorithm. This framework finds the best attacking parameters for
the rectangle attack. When we apply the parameters returned by this framework
to our key recovery algorithm, the time complexity of the attack will be minimal.

Specifically, the framework takes as input a boomerang distinguisher with
(α, δ, P 2), i.e., the input difference and output difference, and its probability, and
extended rounds (Ed, Ef), and returns (k′

b, k′
f) and the minimal time complexity.

In essence, this is a optimization problem which can be solved with various
tools. A similarity can be observed in finding optimal differential/linear trails
[SHW+14, SWW21, KLT15], division property [HLM+20], meet-in-the-middle
attack [SSD+18], etc. Therefore, tools like Mixed-Integer Linear Programming
(MILP) and SAT which are widely used for solving these previously mentioned
problems can be applied as well in this framework. Since we want to keep our
framework generic and flexible, we will describe it as a template in a high level
language. When it comes to a specific cipher, one can instantiate it and solve it
with MILP solvers or SAT solvers.

Our framework has five modules:

Difference propagation. Model the differentials α′ E−1
b←−−− α and δ

Ef−−→ δ′, both
of which propagate difference with probability 1. Compute rb and rf . Mark
the state cell if its difference is fixed.

14 L. Song et al.

Value path. Mark the state cells whose values are needed for verifying α dif-
ference and δ difference. Alongside, mark the subkey kb and kf which are
needed for the verification.

Guess-and-determine. Model the relation between the subkey bits and the
internal state cells, i.e., when certain subkey bits are guessed, the correspond-
ing internal state cell can be determined. When a internal state cell resulting
from some active cells is determined and should have a fixed difference, then
a filter is reached. Model the number of filters r′

b + r′
f .

Key bridging. 8 Model the relation between subkey bits according to the key
schedule algorithm. Model the number of independent guessed subkey bits
m′

b + m′
f .

Objective function. Compute Ti, i ∈ [0, 4] from P, n, rb, rf , r′
b, r′

f , m′
b and m′

f .
Set the objective function to min

∑4
0 Ti.

Other constraints can be imposed alongside, such as constraints on memory.
Given a rectangle distinguisher of a certain cipher, one can follow this framework
to build a concrete model dedicated to this cipher and try different Eb and Ef to
find a set of best parameters. Key information that can be extracted from these
parameters include

– Subkey k′
b and k′

f which will be guessed;
– The number of independent key bits in k′

b and k′
f , i.e., m′

b + m′
f ;

– The overall time complexity.

Feed these parameter to our key recovery algorithm, the rectangle key recovery
will be optimized. For more details, one can refer to our source codes9 which
showcase the implementation of this framework for the attack on Serpent.

3.4 Extensions

In this subsection, we discuss possible extensions of our rectangle key recovery
algorithm presented in Section 3.2. Details about the extensions listed below can
be found in the full version of this paper [SZY+22].

When rb = n. The algorithm in Section 3.2 applies only when rb < n. However,
it can be extended to the case when rb = n by changing the way of choosing
plaintexts.

The related-key setting. The algorithm in Section 3.2 is specifically targeted
at the rectangle attack in the single-key setting. With small modifications,
it can be adapted to the related-key setting for ciphers with a linear key
schedule. This extension is particularly useful as many block ciphers, especially
lightweight ones, employ a linear key schedule, e.g., SKINNY [BJK+16b] and
Deoxys-BC [JNPS16].

8 “Key bridging” is borrowed from [DKS10a, DKS15] which originally connects two
subkeys separated by several key mixing steps.

9 https://drive.google.com/file/d/1gZpqtm4pg6ezZ4TrS9cRirnRz9YbqjgL/view?
usp=sharing

https://drive.google.com/file/d/1gZpqtm4pg6ezZ4TrS9cRirnRz9YbqjgL/view?usp=sharing
https://drive.google.com/file/d/1gZpqtm4pg6ezZ4TrS9cRirnRz9YbqjgL/view?usp=sharing

Optimizing Rectangle Attacks 15

Boomerang attack. An attacker can only choose plaintexts in rectangle attacks.
However, in boomerang attacks, the attacker is allowed to choose plaintexts
and ciphertexts adaptively. With this in mind, we also propose variants of
our algorithm dedicated for boomerang attacks. We specifically consider the
key recovery for E = Ed ◦ Eb and E = Ef ◦ Ed. The algorithm for the latter
case is presented as follows.

Boomerang key recovery for E = Ef ◦ Ed. Similarly, we assume there exists
a distinguisher of Ed, whose probability is P 2, input difference is α and output
difference is δ. Ef is appended to Ed and partial subkey k′

f will be guessed.

1. Construct a set S0 which is made up of y structures, each of 2rf ciphertexts.
Let D = y · 2rf . Query and collect two sets of data:

S1 = {(P1, C1)|P1 = E−1(C1), C1 ∈ S0},

S2 = {(P2, C2)|P2 = P1 ⊕ α, C2 = E(P2), P1 ∈ S1}.

2. Split m′
f -bit k′

f into two parts: GL∥GR where GL has t bits, 0 ≤ t ≤ m′
f .

3. Guess GR:
(a) Initialized a list of key counters for GL and unguessed key bits of kf .
(b) Guess the t-bit GL:

i. For each data in S1, S2, do partial decryptions under k′
f . Let C∗

1 =
Deck′

f
(C1) and C∗

2 = Deck′
f
(C2). Then the set of obtained C∗

1 con-
tains y · 2r′

f sub-structures, each of 2r∗
f ciphertexts.

ii. Construct a set as

S1,2 = {(P1, C∗
1 , P2, C∗

2)|P2 = P1 ⊕ α, C∗
2 = Deck′

f
(Enc(P2))}.

Insert S1,2 into a hash table by n− r∗
f inactive bits of C∗

1 and n− r∗
f

inactive bits of C∗
2 .

iii. There are y · 2r′
f possible values for the n− r∗

f bits of C∗
1 and 2n−r∗

f

possible values for the n− r∗
f bits of C∗

2 . For each index, we pick two
distinct entries (P1, C∗

1 , P2, C∗
2) and (P3, C∗

3 , P4, C∗
4) to generate the

quartet. The number of quartet we will get is(|S1,2|

2
n−r∗

f ·y·2
r′

f

2

)
· 2n−r∗

f · y · 2r′
f = D · 22r∗

f −n−1.

iv. Determine the key candidates involved in Ef and increase the corre-
sponding counters. Denote the time complexity for processing one
quartet as ϵ.

(c) Select the top 2t+mf −m′
f −h hits in the counters to be the candidates,

0 < h ≤ t + mf −m′
f , which delivers a h-bit or higher advantage.

(d) Guess the remaining k − mf unknown key bits according to the key
schedule algorithm and exhaustively search over them to recover the
correct key, where k is the key size.

16 L. Song et al.

Data complexity. From y structures, we can form y · 22rf −1 plaintext pairs.
Among them, y · 2rf −1 pairs satisfy δ difference on average. Let s be the expected
number of right quartets, so we have y · 2rf −1 · P 2 = s, y = s · 21−rf /P 2 and
D = y · 2rf = 2s/P 2. Therefore, the data complexity is DB = 2D = 4s/P 2.

Memory complexity. The memory complexity is M = DB + D + 2t+mf −m′
f

to store the data, the set S1,2 and the counters.

Time complexity. The time complexity of collecting data is T0 = DB , the time
complexity of doing partial encryption and decryption under guessed key bits is

T1 = 2m′
f ·DB = 2m′

f · 2 · y · 2rf = s · 2m′
f +2/P 2,

the time complexity of generating set S is

T2 = 2m′
f ·D = s · 2m′

f +1/P 2,

the time complexity of generating and processing quartet candidates is

T3 = 2m′
f ·D · 22r∗

f · 2−n−1 · ϵ = s · 2m′
f +2rf −2r′

f −n/P 2,

and the time complexity of exhaustive search is T4 = 2m′
f −t · 2k+t−m′

f −h = 2k−h,
where h ≤ t + mf −m′

f .

4 Comparison with Related Works

Rectangle key recovery algorithms in previous works. The rectangle
attack was proposed by Biham, Dunkelman, and Keller in [BDK01] and has been
applied to Serpent [ABK98]. Later, the same authors introduced a new rectangle
key recovery algorithm in [BDK02] which improves the result on Serpent by
reducing the time complexity. Since then, no much progress has been made
until Zhao et al. proposed a new key recovery algorithm in [ZDM+20] which
originally works for ciphers with a linear key schedule in the related-key setting,
but it can be converted to the single-key setting trivially. Such an algorithm,
when applied to SKINNY, outperforms the two previous key recovery algorithms.
However, the algorithm presented in a very recent work [DQSW22] makes a
step further on improving rectangle attacks on SKINNY. For convenience, we call
these four rectangle key recovery algorithm in a chronological order by Algo-
rithm 1, Algorithm 2, Algorithm 3, and Algorithm 4, respectively. As concluded
in [DQSW22], these algorithms seem independent and perform differently for
different parameters. Given a rectangle distinguisher, one can pick the algorithm
with lowest complexity among them.

Optimizing Rectangle Attacks 17

Similarities between our algorithm and the previous algorithms. Our
new algorithm reuses some techniques of the previous algorithms.

– Like Algorithm 2, we recommend using hash tables when generating pairs
and quartets. It costs a certain amount of memory (not necessarily increases
the overall memory complexity), but the time complexity is lowered.

– When constructing quartets, we apply the filters on both pairs simultaneously
with the help of hash tables. This is also a strategy to trade memory with
time which has been used in Algorithm 3 and 4.

– When processing a quartet, we make use of pre-computated tables so that
the term ϵ appearing in the time complexity is as small as possible. This
has been suggested in Algorithm 2 and we develop this technique in a more
practical way.

Our new algorithm unifies all the previous rectangle key recovery
algorithms. All the previous four algorithms are distinct from each other by
the the number of guessed key bits. Figure 4 illustrates the comparison of our
algorithm with the four previous algorithms.

Algorithm 1 mb + mf

mb + mfAlgorithm 2

Algorithm 3 mb mf

Algorithm 4 mb + m′f mf −m′f

m′b mb + mf −m′b

mb −m′b mf + m′b

mb mf

m′fmb + mf −m′f

m′b mb −m′b m′f mf −m′f

Our algorithmm′b mb −m′b m′f mf −m′f

︸
︷︷

︸

0 ≤ m′b ≤ mb 0 ≤ m′f ≤ mf

the number of guessed key bits
the number of unguessed key bits

Figure 4: Diagram of guessed key for different algorithms

Specifically, Algorithm 1 guesses the full (mb + mf)-bit subkey; the main
refinement of Algorithm 2 is to generate quartets with birthday paradox without
guessing key bits involved in Eb and Ef ; Algorithm 3 guesses the mb-bit key
bits involved in Eb to generate quartets; Algorithm 4 extended Algorithm 3 by
guessing additional key bits in Ef and exploiting the inner state bits as fast
filters.

Our new algorithm supports any number of guessed key bits. Hence, it not
only covers all the cases considered by the four previous algorithms, but also
includes five types of new cases (see Figure 4).

18 L. Song et al.

Any of the previous four algorithms is a special case of our algorithm.
We summarize the complexities of different algorithms in Table 2 using notations
in this paper. Note the data complexity D remains the same and all the algorithms
have to store the data and the subkey counters10. Some algorithm may need
some extra memory. Therefore, we mainly focus on the comparison of the time
complexity and the extra memory complexity.

From complexities listed in Table 2, we can see that Algorithm 1 to 4 are
special cases of our algorithm by substituting the corresponding parameters–
the exact number of guessed subkey bits and the number of resulted filters–for
m′

b + m′
f and r′

b, r′
f in our formulas shown in the last big row of Table 2. Note

r∗
b = rb − r′

b, r∗
f = rf − r′

f . More specifically,

1. When replacing m′
b = mb, m′

f = mf and setting t = mb + mf , we have
Algorithm 1. Since r∗

b = r∗
f = 0, the time complexities T2, T3 disappear or

can be neglected.
2. Algorithm 2 is the case of our algorithm with m′

b = m′
f = 0, t = 0 which

constructs pairs on the bottom side for ciphertexts.
3. Algorithm 3 is the case of our algorithm with m′

b = mb, m′
f = 0 which

constructs pairs on the top side for plaintexts.
4. Algorithm 4 is the case of our algorithm with mb +m′

f guessed key bits which
constructs pairs on the top side for plaintexts.

Table 2: Comparisons of different rectangle key recovery algorithms
Alg. #Guessed bits Extra memory Time

1 mb + mf 0 T1 = 2mb+mf · D

2 0 0 T2 = D2 · 2rf −n−1 = D
2 · 2rf −µ

T3 = D2 · 22rb+2rf −2n−2 · ϵ2

3 mb
D
2

T1 = 2mb · D
T2 = 2mb · D

2
T2 = 2mb · D2 · 22rf −2n−2 · ϵ3

4 mb + m′
f

D
2

T1 = 2mb+m′
f · D

T2 = 2mb+m′
f · D

2
T2 = 2mb+m′

f · D2 · 22r∗
f

−2n−2 · ϵ4

This m′
b + m′

f
D
2 · min{2r∗

b , 2r∗
f

−µ}
T1 = 2m′

b
+m′

f · D

T2 = 2m′
b

+m′
f · D

2 · min{2r∗
b , 2r∗

f
−µ}

T3 = 2m′
b

+m′
f · D2 · 22r∗

b
+2r∗

f
−2n−2 · ϵ

10 The key counters can be set flexibly. Thus the memory cost for them is elastic.

Optimizing Rectangle Attacks 19

Application to concrete ciphers. Previously, the four previous key recovery
algorithms are treated as separate ones. Given a rectangle distinguisher, one can
compute the complexities for different algorithms and pick the algorithm with
the lowest complexity. Now, with the new algorithm, we can work with this one
only and the best parameters that allow to minimize the time complexity may
likely lie outside the cases covered by the four previous algorithms. Section 5
includes a series of such examples.

5 Applications

In this section, we apply our new key recovery algorithm to four block ciphers
using existing distinguishers: Serpent, CRAFT, SKINNY, and Deoxys-BC-256. We
find that the best attacking parameters differ significantly from those which were
used in previous works and even the number rounds in outer part Eb or Ef

is different. Moreover, these new attacking parameters are not covered by the
previous key recovery algorithms in many cases. Consequently, improved results
on these ciphers are obtained.

5.1 Application to Serpent

We apply our new rectangle key recovery algorithm to Serpent [ABK98], which
was the first target when the rectangle attack was proposed in 2001 [BDK01].
Serpent is a block cipher which ranked the second in the Advanced Encryption
Standard (AES) finalist. It was an SP-network designed by Ross Anderson, Eli
Biham, and Lars Knudsen, which has a block size of 128 bits and supports a
key size of 128, 192 or 256 bits. Serpent iterates 32 rounds, and each round
i ∈ {0, 1, ..., 31} consists of three operations: key mixing, S-boxes and linear
transformation. Suppose Bi represents the internal state before round i, Ki is
the 128-bit subkey, and Si denotes the application of S-box in round i. Let L be
the linear transformation. Then the Serpent round function is defined as follows.

Xi = Bi ⊕Ki

Yi = Si(Xi)
Bi+1 = L(Yi), i = 0, · · · , 30
Bi+1 = Yi ⊕Ki+1, i = 31

The internal state of Serpent can be seen as a 4× 32 array, where each row
is a 32-bit word. The S-boxes is applied to 4-bit columns. Serpent applies eight
different 4-bit S-boxes, and these eight S-boxes are used four times. As our attack
does not depend on the order of S-boxes, we omit the details here.

Distinguisher. We use the 8-round rectangle distinguisher of Serpent proposed
by Biham et al in [BDK01] to attack 10-round Serpent with Eb and Ef consisting
of round 0 and round 9 respectively. The probability of the distinguisher is

20 L. Song et al.

2−nP 2 = 2−128−120.6, and other parameters of the attack are: n = 128, mb =
rb = 76, mf = rf = 20.

Recently in [KT22], this distinguisher has been re-evaluated and a more
accurate probability of 2−128−116.3 is reported. For a better comparison, we will
mount key recovery attack with both probabilities of the distinguisher.

In the case of Serpent, a 4-bit key guess for an active S-box will lead to a 4-bit
inner state filter for a pair of messages. That is, all the key nibbles corresponding
to the active S-boxes of the first round and the last round are equivalently good
for filtering data.

Parameters and complexities. When we take the old probability, the best
guessing parameters are m′

f = r′
f = 20, m′

b = r′
b = 8, which means guessing all

the kf and two nibbles of kb. Note that, this type of guessing strategy is not
covered in previous rectangle key recovery algorithms. The complexities are as
follows.

– The data complexity is D = y · 2rb =
√

s · 2n/2+1/P =
√

s · 2125.3.
– The memory complexity is M = D + D2 · 2r∗

f −n−1 + 2t+mb+mf −m′
b−m′

f =√
s · 2125.3 + s · 2121.6 + 2t+68.

– The time complexity T1 = 2m′
b+m′

f ·D =
√

s · 2153.3;
– T2 = 2m′

b+m′
f ·D2 · 2r∗

f −n−1 = s · 2149.6;
– T3 = 2m′

b+m′
f · D2 · 22r∗

b +2r∗
f −2n−2 · ϵ = s · 228+250.6+2×68+0−2×128−2 · ϵ =

s · 2156.6 · ϵ;
– T4 = 2k−h, h < 68 + t.

For each of the remaining quartets, it can be processed S-box by S-box, so ϵ
takes about 1+2−4+2−8+· · ·+2−16∗4 = 20.09 memory accesses. Set s = 4, then the
data, and memory complexities of our attack are both 2126.3. The time complexity
besides the brute forcing part includes 2154.3 partial encryptions/decryptions and
2158.69 memory accesses. Assume a partial encryptions/decryptions is equivalent
to 7 memory accesses as 7 S-boxes are involved. Then it needs 2159.11 memory
accesses in total.

When we take the new probability, the guessing parameters m′
f = r′

f =
20, m′

b = r′
b = 8 are still the best. Another choice for these parameters is m′

f =
r′

f = 16, m′
b = r′

b = 12 which leads to the same time complexity but a slightly
higher memory complexity. Thus we choose the former one. Set s = 4, then the
data, and memory complexities of our attack are both 2124.15. The time complexity
besides the brute forcing part include 2152.15 partial encryptions/decryptions and
2154.39 memory accesses, which is about 2155.67 memory accesses in total.

The comparison with the previous rectangle attacks11 based on the same
distinguisher is presented in Table 3.
11 In [DQSW22], a rectangle attack on 10-round Serpent was also given. However,

the authors seem to mistake mf , rf for mb, rb. So we do not include their result in
Table 3.

Optimizing Rectangle Attacks 21

Table 3: Comparisons of key recovery attacks on 10-round Serpent where
the time is measured by the number of memory accesses.

P 2 mb, mf m′
b, m′

f Data Memory Time Reference

2−120.6 76, 20
76,20 2126.8 2192 2217 [BDK01]
0,0 2126.3 2126.3 2173.8 [BDK02]
8,20 2126.3 2126.3 2159.11 This

2−116.3 76, 20 8,20 2124.15 2124.15 2155.67 This

5.2 Application to CRAFT

We apply our new rectangle key recovery algorithm to CRAFT in the single-key
setting and obtain the first 19-round rectangle attack, which is one round more
than the previous work in [HBS21].

Specification. CRAFT is a lightweight tweakable block cipher which was in-
troduced by Beierle et al. [BLMR19]. It supports 64-bit plaintext, 128-bit
key, and 64-bit tweak. Its round function is composed of involutory building
blocks. The 64-bit input is arranged as a state of 4 × 4 nibbles. The state
is then going through 32 rounds Ri, i ∈ 0, · · · , 31, to generate a 64-bit ci-
phertext. As depicted in Figure 5, each round, excluding the last round, has
five functions, i.e., MixColumn (MC), AddRoundConstants (ARC), AddTweakey
(ATK), PermuteNibbles (PN), and S-box (SB). The last round only includes
MC, ARC and ATK, i.e., R31 = ATK31 ◦ ARC31 ◦MC, while for any 0 ≤ i ≤ 30,
Ri = SB ◦ PN ◦ATKi ◦ARCi ◦MC.

The tweakey schedule of CRAFT is rather simple. Given the secret key K =
K0∥K1 and the tweak T ∈ {0, 1}64, where Ki ∈ {0, 1}64, four round tweakeys
TK0 = K0 ⊕ T , TK1 = K1 ⊕ T , TK2 = K0 ⊕Q(T) and TK3 = K1 ⊕Q(T) are
generated, where Q is a nibble-wise permutation. Then at the round Ri, TKi%4
is used as the subtweakey.

Figure 5: A round of CRAFT

22 L. Song et al.

MC PermuteNibbles

SB

SB

SB

SBL Shift

Shuffle

Shuffle

R Shift

PermuteNibbles

SB

SB

SB

SBL Shift

Shuffle

Shuffle

R Shift

PermuteNibbles

SB

SB

SB

SBL Shift

Shuffle

Shuffle

R Shift

A

A

A

A

A

A

A

AA

A

Dedicated 14-Round Rectangle Distinguisher for CRAFT

MC

MC

MC PermuteNibbles

SB

SB

SB

SBL Shift

Shuffle

Shuffle

R Shift A

A

A

A

MC PermuteNibbles

SB

SB

SB

SBL Shift

Shuffle

Shuffle

R Shift

A

A

A

A

A

Zero difference

Nonzero difference

Zero difference but value is needed

Nonzero difference but value is also needed

Nonzero difference induced by distinguisher

Value is needed to fast filter quartets

A

A

A

A

A

Figure 6: A 19-round key recovery attack against CRAFT

Distinguisher. We use the 14-round rectangle distinguisher of CRAFT proposed
by Hadipour et al. in [HBS21] to attack 19-round CRAFT with 3-round Eb and 2-
round Ef , as shown in Figure 6. The probability of the distinguisher is 2−nP 2 =
2−64−55.85, and other parameters of the attack are: n = 64, k = 128, mb =
112, rb = 60, mf = rf = 24. The first three subtweakeys are TK0, TK1, and
TK2, respectively. The last subtweakey is TK2. Note TK2 shares the same key
information with TK0, and kb ∪ kf only contains (16 + 12 + 6 − 6) × 4 = 112
information bits.

Parameters and complexities. The best guessing parameters are m′
b =

32, r′
b = 16, mf = r′

f = 24, and |k′
b ∪ k′

f | = 40, which means guessing 10 cells of
kf and kb to get 10 cells filters. The key cells to be guessed and the corresponding
filters are highlighted with red squares in Figure 6. Note that this type of guessing
is not covered in previous rectangle key recovery attacks. The complexities of
our new attack are as follows.

Optimizing Rectangle Attacks 23

– The data complexity is D = y · 2rb =
√

s · 2n/2+1/P =
√

s · 260.92.
– The memory complexity is M = D + D2 · 2r∗

f −n−1 + 2mb+mf −m′
b−m′

f =√
s · 260.92 + s · 256.85 + 2t+72

– The time complexity T1 = 2m′
b+m′

f ·D =
√

s · 2100.92;
– T2 = 2m′

b+m′
f ·D2 · 2r∗

f −n−1 = s · 296.85;
– T3 = 2m′

b+m′
f · D2 · 22r∗

b +2r∗
f −2n−2 · ϵ = s · 240+121.85+2×44+0−2×64−2 · ϵ =

s · 2119.85 · ϵ;
– T4 = 2k−h, h < t + 72.

Processing a candidate quartet to retrieve the rest of kb and can be realized by
looking up tables. The time unit ϵ can be equivalent to about 2 memory accesses
which is around 2 × 1

16 ×
1

19 = 2−7.24 encryption. The memory complexity for
the look-up tables is about 252 (For more details, see the full version [SZY+22]).
If we set s = 1, h = 28 and t = 0, then the data, memory and time complexities
of our attack are 260.92, 272, and 2112.61, respectively. The success probability is
about 74.59% which is computed by Selçuk’s formula [Sel08].

The comparison with the previous rectangle attacks based on the same
distinguisher is presented in Table 4.

Table 4: Comparisons of key recovery attacks on CRAFT

P 2 Rounds mb, mf m′
b, m′

f Data Memory Time Reference

2−55.85 1 + 14 + 3 24, 84 24, 0 260.92 284 2101.7 [HBS21]

2−55.85 3 + 14 + 2 112, 24 32, 24 260.92 272 2112.61 This

5.3 Application to SKINNY

When we apply our new rectangle key recovery algorithm to SKINNY’s distinguish-
ers from [DQSW22], better attacks are obtained for three out of four distinguishers,
and for the rest one, our attack matches with the one in [DQSW22]. Even though
these distinguishers were searched dedicated for the key recovery algorithm in
[DQSW22] (named Algorithm 4 in Section 4), we found that the best attacking
parameters may be not covered by that key recovery algorithm.

Next, we give the detailed attack on 25-round SKINNY-64-128 and the attacks
on 32-round SKINNY-128-384 and 26-round SKINNY-128-256 can be found in the
full version [SZY+22].

Specification. SKINNY [BJK+16b] is a family of lightweight block ciphers which
adopt the substitution-permutation network and elements of the TWEAKEY
framework [JNP14]. Members of SKINNY are denoted by SKINNY-n-tk, where
n ∈ {64, 128} is the block size and tk ∈ {n, 2n, 3n} is the tweakey size. The

24 L. Song et al.

internal states of SKINNY are represented as 4× 4 arrays of cells with each cell
being a nibble in case of n = 64 bits and a byte in case of n = 128 bits. The
tweakey state is seen as a group of z 4×4 arrays, where, z = tk/n. The arrays are
marked as TK1, (TK1, TK2) and (TK1, TK2, TK3) for z = 1, 2, 3 respectively.

SKINNY iterates a round function for Nr rounds and each round consists of
the following five steps.

1. SubCells (SC) - A 4-bit (resp. 8-bit) S-box is applied to all cells when n is 64
(resp. n is 128).

2. AddConstants (AC) - This step adds constants to the internal state.
3. AddRoundTweakey (ART) - The first two rows of the internal state absorb the

first two rows of TK, where TK =
⊕z

i=1 TKi.
4. ShiftRows (SR) - Each cell in row j is rotated to the right by j cells.
5. MixColumns (MC) - Each column of the internal state is multiplied by matrix

M whose branch number is only 2.

The tweakey schedule of SKINNY is a linear algorithm. The tk-bit tweakey
is first loaded into z 4 × 4 tweakey states. After each ART step, a cell-wised
permutation P is applied to each tweakey state, where P is defined as: P =
[9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]. Then cells in the first two rows of all
tweakey states but TK1 are individually updated using LFSRs. For complete
details of the tweakeys scheduling algorithm, one can refer to [BJK+16b].

Distinguisher of SKINNY-64-128. We reuse the 18-round rectangle distinguisher
of SKINNY-64-128 from [QDW+21,DQSW21] and apply our new rectangle key
recovery algorithm to it. As a result, we obtain a new 25-round rectangle attack.
The probability of the distinguisher is 2−nP 2 = 2−64−55.34 = 2−119.34. Our
key recovery extends the distinguisher by three rounds at the top and four
rounds at the bottom, as shown in Figure 7. The parameters for this attack are:
rb = 8× 4 = 32, rf = 12× 4 = 48, mb = 10× 4 = 40 and mf = 21× 4 = 84. Due
to the tweakey schedule, we can deduce SKT22[6, 1, 7, 2] from STK0[0, 5, 6, 7]
and STK24[5, 0, 1, 4], and deduce STK21[6] from STK1[2] and STK23[5]. Such
that kb ∪ kf only contain (31− 5)× 4 = 104 information bits.

Parameters and complexities. We apply the related-key version of our
new algorithm to the above distinguisher. The best guessing parameters are
m′

b = 32, r′
b = 28 and m′

f = r′
f = 16, which means guessing partial bits of kb

and kf . This guessing strategy is not covered in previous rectangle key recovery
algorithms. The complexities of our new attack are as follows.

– The data complexity is DR = 4 · y · 2rb =
√

s · 2n/2+2/P =
√

s · 261.67.
– The memory complexity is MR = DR + D · 2r∗

b + 2t+mb+mf −m′
b−m′

f =√
s · 261.67 +

√
s · 263.67 + 256+t

– The time complexity T1 = 2m′
b+m′

f ·DR =
√

s · 212×4+61.67 =
√

s · 2109.67;
– T2 = 2m′

b+m′
f ·D · 2rb−r′

b =
√

s · 212×4+59.67+4 =
√

s · 2111.67;

Optimizing Rectangle Attacks 25

SC AC
>>>1

>>>2

A

>>>3

A

A

A

A

A

A

A

A

A

SC

A

A

A

A

A

A
AC

A

A

A

A

A

>>>1

>>>2

A

A

A

A

A

>>>3

A

A

A

A

A

A

SC AC
>>>1

>>>2

>>>3

A

SC AC
>>>1

>>>2

>>>3

A

A

SC AC
>>>1

>>>2

>>>3

9 2

2

2 2

2

2

2

2

2

2

9

A

A

A

A
SC

A

A

A

A
AC

A

A

A

A

>>>1

>>>2

A

A

A

A

A

>>>3

A

SC AC
>>>1

>>>2

A

A

A

>>>3

d

d

d

d

7

2

7

18-round rectangle distinguisher of SKINNY-64-128

Zero difference

Nonzero difference

Zero difference but value is needed

Nonzero difference but value is also needed

Nonzero difference induced by distinguisher

Value is needed to fast filter quartets

A

A

A

A

A

A

A

A

A

A

A

A

A

A 77

A A A

8

c

c

3

3

Figure 7: A 25-round key recovery attack against SKINNY-64-128

– T3 = 2m′
b+m′

f · D2 · 22r∗
b +2r∗

f −2n · ϵ = s · 212×8+119.34+2×4+2×32−2×64 · ϵ =
s · 2111.34 · ϵ;

– T4 = 2128−h, h < 56 + t.

Processing a candidate quartet to retrieve the rest of kb and kf can be realized
by looking up tables about 35 times, which is around 35 × 1

16 ×
1

25 = 2−3.51

encryption. The memory complexity of the looking-up tables is about 248 (see the
full version [SZY+22]). If we set s = 1, h = 30 and t = 0, then the data, memory
and time complexities of our attack are 261.67, 263.67, and 2110.03, respectively.
The success probability is about 75.81%.

The comparison with the previous rectangle attacks based on the same
distinguisher is presented in Table 5.

26 L. Song et al.

Table 5: Comparisons of key recovery attacks on SKINNY-64-128
P 2 Rounds mb, mf m′

b, m′
f Data Memory Time Reference

2−55.34 2 + 18 + 5 12, 116 12, 40 261.67 264.26 2118.43 [DQSW22]

2−55.34 3 + 18 + 4 40, 84 32, 16 261.67 263.67 2110.03 This

5.4 Application to Deoxys-BC-256

We apply a variant of our new algorithm dedicated to boomerang attacks to
Deoxys-BC-256 and obtain the first 11-round boomerang attack and also obtain
an improved 11-round rectangle attack using the original algorithm. Next, we
give details about the 11-round boomerang attack. For the 11-round rectangle
attack, please refer to the full version [SZY+22].

Specification. Deoxys-BC is an AES-based tweakable block cipher [JNPS16],
based on the tweakey framework [JNP14]. The Deoxys authenticated encryp-
tion scheme makes use of two versions of the cipher as its internal primitive:
Deoxys-BC-256 and Deoxys-BC-384. Both versions are ad-hoc 128-bit tweak-
able block ciphers which besides the two standard inputs, a plaintext P (or
a ciphertext C) and a key K, also take an additional input called a tweak T .
The concatenation of the key and tweak states is called the tweakey state. For
Deoxys-BC-256 the tweakey size is 256 bits.

Deoxys-BC is an AES-like design, i.e., it is an iterative substitution-permutation
network (SPN) that transforms the initial plaintext (viewed as a 4× 4 matrix
of bytes) using the AES round function, with the main differences with AES
being the number of rounds and the round subkeys that are used every round.
Deoxys-BC-256 has 14 rounds.

Similarly to the AES, one round of Deoxys-BC has the following four transfor-
mations applied to the internal state in the order specified below:

– AddRoundTweakey – XOR the 128-bit round subtweakey to the internal state.
– SubBytes – Apply the 8-bit AES S-box to each of the 16 bytes of the internal

state.
– ShiftRows – Rotate the 4-byte i-th row left by ρ[i] positions, where ρ =

(0, 1, 2, 3).
– MixColumns – Multiply the internal state by the 4× 4 constant MDS matrix

of AES.

After the last round, a final AddRoundTweakey operation is performed to produce
the ciphertext.

We denote the concatenation of the key K and the tweak T as KT , i.e.
KT = K||T . The tweakey state is then divided into 128-bit words. More precisely,
in Deoxys-BC-256 the size of KT is 256 bits with the first (most significant) 128
bits of KT being denoted W2; the second word is denoted by W1. Finally, we
denote by STKi the 128-bit subtweakey that is added to the state at round i

Optimizing Rectangle Attacks 27

during the AddRoundTweakey operation. For Deoxys-BC-256, a subtweakey is
defined as STKi = TK1

i ⊕TK2
i ⊕RCi. The 128-bit words TK1

i , TK2
i are outputs

produced by a special tweakey schedule algorithm, initialised with TK1
0 = W1

and TK2
0 = W2 for Deoxys-BC-256. The tweakey schedule algorithm is defined

as TK1
i+1 = h(TK1

i), TK2
i+1 = h(LFSR2(TK2

i)), where the byte permutation h
is defined as (

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 6 11 12 5 10 15 0 9 14 3 4 13 2 7 8

)
,

with the 16 bytes of a 128-bit tweakey word numbered by the usual AES byte
ordering.

Boomerang attack. We reuse the 9-round boomerang distinguisher of Deoxys-BC-
256 proposed by Cid et al. [CHP+17, WP19] to attack 11-round boomerang
Deoxys-BC-256 with 2-round Ef , as shown in Figure 8. The probability of the
distinguisher is P 2 = 2−120.4, and other parameteres are: n = 128, k = 256, mb =
rb = 0, mf = (16 + 10)× 8 = 208, rf = 16× 8 = 128.

e4

72

72

96 9d

9d

bc

21

25

14

9-round boomerang distinguisher of Deoxys-BC-256

Zero difference

Nonzero difference

Zero difference but value is needed

Nonzero difference but value is also needed

Nonzero difference induced by distinguisher

Value is needed to fast filter quartets

Figure 8: Rectangle/Boomerang attack on 11-round reduced Deoxys-BC-256

The best guessing parameters are m′
f = 12 × 8 = 96 and r′

f = 8 × 8 = 64,
which means guessing 8 bytes of kf . The complexities of our new attack are as
follows.

– The data complexity is DRB = 4s/P 2 = s · 2122.4.
– The memory complexity is MRB = DRB + D + 2mf −m′

f +t = s · 2122.4 + s ·
2120.4 + 2112+t.

– The time complexity T1 = 2m′
f ·DRB = 296 · s · 2122.4 = s · 2218.4;

28 L. Song et al.

– T2 = 2m′
f ·D = s · 2216.4;

– T3 = 2m′
f ·D · 22(rf −r′

f) · 2−n · ϵ = s · 296+120.4+2×64−128 · ϵ = 2212.4 · ϵ;
– T4 = 2256−h, h < 112 + t.

We consider the equivalent subtweakey MTKi = SR−1 ◦ MC−1(STKi).
To process a candidate quartet to retrieve the rest of kf , we prepare some
tables, which takes a memory complexity 2128, so that ϵ is equivalent to about 1
memory accesses, equivalent to around 1× 1

16 ×
1

11 = 2−7.45 encryption. If we set
s = 1, h = 40 and t = 0, then the data, memory and time complexities of our
attack are 2122.4, 2128, 2218.65, respectively. The comparison with the previous
boomerang attacks is presented in Table 6.

Table 6: Comparisons of key recovery attacks on Deoxys-BC-256
P 2 Rounds mb, mf m′

b, m′
f Data Memory Time Reference

2−96.4 10 0,88 0,0 298.4 288 2249.9 [ZDJ19]

2−120.4 11 0,208 0,96 2122.4 2128 2218.65 This

6 Concluding Remarks

In this paper, we propose a unified and generic rectangle key recovery algorithm
as well as a framework for automatically finding the best attacking parameters.
Combining both, we can find the optimal rectangle attack in terms of time
complexity for a given distinguisher. We also extend the new algorithm to other
related attacks, such as rectangle attacks in the related-key setting for ciphers
with a linear key schedule and boomerang attacks in both the single-key and
related-key setting. Applications to block ciphers Serpent, CRAFT, SKINNY and
Deoxys-BC-256 show that the best rectangle or boomerang attacks are missed by
the previous key recovery algorithms in many cases. Thus, better attacks can be
obtained. Also, it is likely that previous rectangle attacks can be improved to
some extent using the new key recovery algorithm.

Future works. In this paper, we only apply the new rectangle key recovery
algorithm to SPN ciphers. However, it should be noted that it is also applicable
to Feistel ciphers. Our new key recovery algorithm is generic and does not exploit
any property of the S-box as studied in [BCF+21]. It would be a potential future
work to exploit properties of the S-box and find more fine-grained parameters for
the new algorithm. To search rectangle distinguishers with the new key recovery
algorithm taken into account is another topic of interest.

Acknowledgement. The authors would like to thank anonymous reviewers for
their helpful comments and suggestions. The work of this paper was supported by

Optimizing Rectangle Attacks 29

the National Natural Science Foundation of China (Grants 62022036, 62132008,
62202460, 62172410, 61732021), the National Key Research and Development Pro-
gram (No. 2022YFB2700014, No. 2018YFA0704704 and No. 2018YFB0803801).
Jian Weng was supported by Major Program of Guangdong Basic and Applied
Research Project under Grant No. 2019B030302008, National Natural Science
Foundation of China under Grant No. 61825203, Guangdong Provincial Sci-
ence and Technology Project under Grant No. 2021A0505030033, National Joint
Engineering Research Center of Network Security Detection and Protection Tech-
nology, and Guangdong Key Laboratory of Data Security and Privacy Preserving.

References

ABK98. Ross Anderson, Eli Biham, and Lars Knudsen. Serpent: A proposal for the
advanced encryption standard. NIST AES Proposal, 174:1–23, 1998.

BCF+21. Marek Broll, Federico Canale, Antonio Flórez-Gutiérrez, Gregor Leander,
and María Naya-Plasencia. Generic framework for key-guessing improve-
ments. In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in
Cryptology - ASIACRYPT 2021 - 27th International Conference on the
Theory and Application of Cryptology and Information Security, Singapore,
December 6-10, 2021, Proceedings, Part I, volume 13090 of Lecture Notes in
Computer Science, pages 453–483. Springer, 2021.

BDK01. Eli Biham, Orr Dunkelman, and Nathan Keller. The rectangle at-
tack—rectangling the Serpent. In International Conference on the Theory
and Applications of Cryptographic Techniques, pages 340–357. Springer,
2001.

BDK02. Eli Biham, Orr Dunkelman, and Nathan Keller. New results on boomerang
and rectangle attacks. In International Workshop on Fast Software Encryp-
tion, pages 1–16. Springer, 2002.

BJK+16a. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Annual International Cryptology Conference, pages 123–153. Springer, 2016.

BJK+16b. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The
SKINNY family of block ciphers and its low-latency variant MANTIS. In
Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II, volume 9815
of Lecture Notes in Computer Science, pages 123–153. Springer, 2016.

BK09. Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the
full AES-192 and AES-256. In International conference on the theory and
application of cryptology and information security, pages 1–18. Springer,
2009.

BLMR19. Christof Beierle, Gregor Leander, Amir Moradi, and Shahram Rasoolzadeh.
CRAFT: lightweight tweakable block cipher with efficient protection against
DFA attacks. IACR Trans. Symmetric Cryptol., 2019(1):5–45, 2019.

BS91. Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosys-
tems. Journal of CRYPTOLOGY, 4(1):3–72, 1991.

30 L. Song et al.

CHP+17. Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. A
security analysis of Deoxys and its internal tweakable block ciphers. IACR
Trans. Symmetric Cryptol., 2017(3):73–107, 2017.

CHP+18. Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song.
Boomerang connectivity table: a new cryptanalysis tool. In Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, pages 683–714. Springer, 2018.

DKS10a. Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved single-key attacks
on 8-round AES-192 and AES-256. In Masayuki Abe, editor, Advances
in Cryptology - ASIACRYPT 2010 - 16th International Conference on the
Theory and Application of Cryptology and Information Security, Singapore,
December 5-9, 2010. Proceedings, volume 6477 of Lecture Notes in Computer
Science, pages 158–176. Springer, 2010.

DKS10b. Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time related-
key attack on the KASUMI cryptosystem used in GSM and 3G telephony.
In Annual cryptology conference, pages 393–410. Springer, 2010.

DKS14. Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time related-
key attack on the KASUMI cryptosystem used in GSM and 3G telephony.
Journal of cryptology, 27(4):824–849, 2014.

DKS15. Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved single-key
attacks on 8-round AES-192 and AES-256. J. Cryptol., 28(3):397–422, 2015.

DQSW21. Xiaoyang Dong, Lingyue Qin, Siwei Sun, and Xiaoyun Wang. Key guessing
strategies for linear key-schedule algorithms in rectangle attacks. IACR
Cryptol. ePrint Arch., page 856, 2021.

DQSW22. Xiaoyang Dong, Lingyue Qin, Siwei Sun, and Xiaoyun Wang. Key guessing
strategies for linear key-schedule algorithms in rectangle attacks. To appear
at EUROCRYPT 2022, 2022.

HBS21. Hosein Hadipour, Nasour Bagheri, and Ling Song. Improved rectangle
attacks on SKINNY and CRAFT. IACR Transactions on Symmetric Cryp-
tology, pages 140–198, 2021.

HLM+20. Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang.
Modeling for three-subset division property without unknown subset - im-
proved cube attacks against Trivium and Grain-128AEAD. In Anne Canteaut
and Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT 2020 -
39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings,
Part I, volume 12105 of Lecture Notes in Computer Science, pages 466–495.
Springer, 2020.

JNP14. Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block
ciphers: The TWEAKEY framework. In Palash Sarkar and Tetsu Iwata,
editors, Advances in Cryptology - ASIACRYPT 2014 - 20th International
Conference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings,
Part II, volume 8874 of Lecture Notes in Computer Science, pages 274–288.
Springer, 2014.

JNPS16. Jérémy Jean, Ivica Nikolic, Thomas Peyrin, and Yannick Seurin. Deoxys
v1. 41. Submitted to CAESAR, 124, 2016.

KKS00. John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified boomerang
attacks against reduced-round MARS and Serpent. In Bruce Schneier,
editor, Fast Software Encryption, 7th International Workshop, FSE 2000,

Optimizing Rectangle Attacks 31

New York, NY, USA, April 10-12, 2000, Proceedings, volume 1978 of Lecture
Notes in Computer Science, pages 75–93. Springer, 2000.

KLT15. Stefan Kölbl, Gregor Leander, and Tyge Tiessen. Observations on the
SIMON block cipher family. In Rosario Gennaro and Matthew Robshaw,
editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,
Part I, volume 9215 of Lecture Notes in Computer Science, pages 161–185.
Springer, 2015.

KT22. Andreas B. Kidmose and Tyge Tiessen. A formal analysis of boomerang
probabilities. IACR Transactions on Symmetric Cryptology, 2022(1):88–109,
Mar. 2022.

LGS17. Guozhen Liu, Mohona Ghosh, and Ling Song. Security analysis of SKINNY
under related-tweakey settings. IACR Trans. Symmetric Cryptol., 2017(3):37–
72, 2017.

Mur11. Sean Murphy. The return of the cryptographic boomerang. IEEE Transac-
tions on Information Theory, 57(4):2517–2521, 2011.

QDW+21. Lingyue Qin, Xiaoyang Dong, Xiaoyun Wang, Keting Jia, and Yunwen
Liu. Automated search oriented to key recovery on ciphers with linear key
schedule applications to boomerangs in SKINNY and forkskinny. IACR
Trans. Symmetric Cryptol., 2021(2):249–291, 2021.

Sel08. Ali Aydın Selçuk. On probability of success in linear and differential crypt-
analysis. Journal of Cryptology, 21(1):131–147, 2008.

SHW+14. Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song.
Automatic security evaluation and (related-key) differential characteristic
search: Application to SIMON, PRESENT, LBlock, DES(L) and other bit-
oriented block ciphers. In Palash Sarkar and Tetsu Iwata, editors, Advances
in Cryptology - ASIACRYPT 2014 - 20th International Conference on the
Theory and Application of Cryptology and Information Security, Kaoshiung,
Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, volume 8873 of
Lecture Notes in Computer Science, pages 158–178. Springer, 2014.

SQH19. Ling Song, Xianrui Qin, and Lei Hu. Boomerang connectivity table revis-
ited: Application to SKINNY and AES. IACR Trans. Symmetric Cryptol.,
2019(1):118–141, 2019.

SSD+18. Danping Shi, Siwei Sun, Patrick Derbez, Yosuke Todo, Bing Sun, and
Lei Hu. Programming the demirci-selçuk meet-in-the-middle attack with
constraints. In Thomas Peyrin and Steven D. Galbraith, editors, Advances
in Cryptology - ASIACRYPT 2018 - 24th International Conference on the
Theory and Application of Cryptology and Information Security, Brisbane,
QLD, Australia, December 2-6, 2018, Proceedings, Part II, volume 11273 of
Lecture Notes in Computer Science, pages 3–34. Springer, 2018.

SWW21. Ling Sun, Wei Wang, and Meiqin Wang. Accelerating the search of dif-
ferential and linear characteristics with the SAT method. IACR Trans.
Symmetric Cryptol., 2021(1):269–315, 2021.

SZY+22. Ling Song, Nana Zhang, Qianqian Yang, Danping Shi, Jiahao Zhao, Lei
Hu, and Jian Weng. Optimizing rectangle attacks: A unified and generic
framework for key recovery. IACR Cryptol. ePrint Arch., page 723, 2022.

Wag99. David A. Wagner. The boomerang attack. In Lars R. Knudsen, editor, Fast
Software Encryption, 6th International Workshop, FSE ’99, Rome, Italy,
March 24-26, 1999, Proceedings, volume 1636 of Lecture Notes in Computer
Science, pages 156–170. Springer, 1999.

32 L. Song et al.

WP19. Haoyang Wang and Thomas Peyrin. Boomerang switch in multiple rounds.
application to AES variants and deoxys. IACR Trans. Symmetric Cryptol.,
2019(1):142–169, 2019.

ZDJ19. Boxin Zhao, Xiaoyang Dong, and Keting Jia. New related-tweakey
boomerang and rectangle attacks on Deoxys-BC including BDT effect.
IACR Trans. Symmetric Cryptol., 2019(3):121–151, 2019.

ZDM+20. Boxin Zhao, Xiaoyang Dong, Willi Meier, Keting Jia, and Gaoli Wang.
Generalized related-key rectangle attacks on block ciphers with linear key
schedule: applications to SKINNY and GIFT. Designs, Codes and Cryptog-
raphy, 88(6):1103–1126, 2020.

	Optimizing Rectangle Attacks: A Unified and Generic Framework for Key Recovery
	1 Introduction
	2 Notations
	3 A Unified and Generic Key Recovery Algorithm
	3.1 Basic Ideas and Intuitions
	3.2 Generic and Unified Algorithm for the Rectangle Key Recovery Attack
	3.3 Framework for Finding the Best Attacking Parameters
	3.4 Extensions

	4 Comparison with Related Works
	5 Applications
	5.1 Application to Serpent
	5.2 Application to CRAFT
	5.3 Application to SKINNY
	5.4 Application to Deoxys-BC-256

	6 Concluding Remarks

