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Abstract. We continue the study of sum-preserving encryption schemes,
in which the plaintext and ciphertext are both integer vectors with the
same sum. Such encryption schemes were recently constructed and ana-
lyzed by Tajik, Gunasekaran, Dutta, Ellia, Bobba, Rosulek, Wright, and
Feng (NDSS 2019) in the context of image encryption. Our first main re-
sult is to prove a mixing-time bound for the construction given by Tajik
et al. using path coupling. We then provide new sum-preserving encryp-
tion schemes by describing two practical ways to rank and unrank the
values involved in sum-preserving encryption, which can then be com-
bined with the rank-encipher-unrank technique from format-preserving
encryption. Finally, we compare the efficiency of the Tajik et al. con-
struction and our new ranking constructions based on performance tests
we conducted on prototype implementations.
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1 Introduction

A sum-preserving encryption scheme, recently studied by Tajik, Gunasekaran,
Dutta, Ellis, Bobba, Rosulek, Wright, and Feng [18] in the context of image en-
cryption, is a symmetric encryption scheme with an encryption algorithm that
takes as its plaintext input a vector of integers, and outputs as a ciphertext
another vector of integers with the same sum as the plaintext vector. For appli-
cations, the vector components of both the plaintext and ciphertext will typically
be integers from 0 up to d, where d is called the component bound.

Tajik et al. introduced definitions and provided a practical construction of
sum-preserving encryption in order to build a separate primitive called thumbnail-
preserving encryption [12, 20], which is a type of image encryption in which a
much smaller version, called a thumbnail, of an encrypted image matches the
thumbnail of the unencrypted image. The key idea is that, since sum-preserving
encryption turns the plaintext vector of integers into a ciphertext vector with the
same length and the same sum, then the mean will also be preserved. Creating a
thumbnail of an image involves replacing a b× b block of pixels with the average
pixel value in the block, so it follows that applying sum-preserving encryption
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to each block will result in a ciphertext image with the same thumbnail as the
original image.

Sum-preserving encryption can be viewed as a special type of format-preserving
encryption (FPE). Format-preserving encryption schemes were originally studied
by Brightwell and Smith [4] and were eventually formally defined and analyzed by
Bellare, Ristenpart, Rogaway, and Stegers [2]. They have since been widely stud-
ied, have found numerous applications, and have even been standardized [6,10].
Looking forward, one of the main techniques for constructing FPE schemes, the
rank-encipher-unrank construction analyzed in [2], will be an important tool for
constructing sum-preserving encryption schemes.

While Tajik et al. focused on the use of sum-preserving encryption in the
context of images, the fact that the primitive allows one to encrypt a vector
of data while maintaining a common statistical measure like mean opens up
the possibility of numerous applications for more general dataset encryption.
For example, suppose an instructor would like to encrypt her final exam scores
each semester before archiving them (which might be especially important given
student privacy laws like FERPA in the United States), yet she would still like
to be able to go back and compute exam averages to compare different course
sections or compare across semesters. Sum-preserving encryption seems to fit
the instructor’s requirements perfectly.

At the same time, as we will discuss later when introducing security notions,
there is the possibility that the sum or mean themselves leak important infor-
mation about the plaintexts. To see this, consider the extreme example in which
the same instructor gave a particularly easy final exam one semester and every
student got a score of 100 out of 100. Encrypting a vector of all 100s in a sum-
preserving way will just result in another vector of all 100s, so every student’s
exam score would be revealed by the ciphertext! Nevertheless, while such extreme
examples are concerning and are somewhat reminiscent of some of the security
issues that arise with other property-preserving encryption schemes (e.g., order-
preserving encryption [3]), we emphasize that sum-preserving encryption has
already found practical application in the context of image encryption, and can
likely be used safely in a number of other application settings, some of which we
discuss later in the paper.

1.1 Previous construction

In order to build thumbnail encryption schemes, Tajik et al. set their sights on
building a sum-preserving encryption scheme on vectors with values 0-255. Sup-
pose (m1, . . . ,mn) with sum S is such a vector. With the obvious connection to
format-preserving encryption, they first explore using rank-encipher-unrank, one
of the common techniques for building FPE schemes, for sum-preserving encryp-
tion. With rank-encipher-unrank, plaintexts are first ranked, meaning mapped
to the set of integers {0, . . . , N − 1}, where N is the number of possible plain-
texts. Then a cipher with integer domain is applied to get another integer in
this same range, before finally an unrank algorithm maps that integer back into
the original plaintext domain. Tajik et al. observe that it should be technically
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possible to apply rank-encipher-unrank to sum-preserving encryption by first
representing the plaintext vector using the stars-and-bars representation from
combinatorics to get a vector 1m101m20 . . . 01mn , where each component of the
plaintext vector is given in unary with 0s as separators. Such binary strings, with
S total 1s (since S is the sum we wish to preserve), are a regular language, and
thus known techniques for ranking deterministic finite automata (DFAs) could
be applied [2]. Unfortunately, Tajik et al. point out such a method would have
very high time complexity and would be impractical for applications.

Tajik et al. then show that, while ranking vectors of length n with a particular
sum in general seems hard, it is actually possible to rank vectors of length 2
with a particular sum simply and efficiently. Given this ability to rank (and
thus rank-encipher-unrank) vectors of length 2, they go on to give a method to
encrypt longer vectors. The idea is to proceed in rounds and, in each round,
match up adjacent vector components and apply rank-encipher-unrank to each
pair. Since each pair is enciphered in a sum-preserving way, the entire vector
will also maintain its sum. Then the entire vector is shuffled before the next
round, effectively randomizing the points that will be matched up in the next
round. Because each round matches up points and then applies rank-encipher-
unrank to each matched pair, we refer to this algorithm as the matching-based
construction for the rest of the paper.

Tajik et al. observe their algorithm can be modeled as a Markov chain and the
number of necessary rounds to achieve security is then tied to the mixing time
of this chain. They discuss how the mixing time would relate to the eigenvalues
of the Markov chain transition matrix but, because such matrices are so large in
practice, were unable to explicitly compute these values. They go on to give some
heuristic arguments for what secure round choices might be, and ultimately test
performance with 1000, 3000, and 5000 rounds, but their paper does not provide
a mixing time proof for the matching-based construction.

1.2 Our Results

We continue the study of sum-preserving encryption and produce two main
results. First, we provide the first mixing-time proof of the matching-based
construction of Tajik et al., using a path-coupling technique due to Dyer and
Greenhill [7]. Second, we show it actually is possible (and practical) to use rank-
encipher-unrank to build sum-preserving encryption for vectors of length n by
giving new algorithms for directly ranking and unranking such vectors. Further,
we create prototype implementations of both the matching-based construction
of Tajik et al. and our new ranking constructions, and show that our ranking
constructions have significant performance benefits in a number of applications,
including the thumbnail encryption application that was the original motivation
for sum-preserving encryption. We now discuss each of these contributions in
more detail.

Mixing-time proof of the Tajik et al. construction. Our first contri-
bution is to formally analyze the matching-based construction given by Tajik et
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al. [18] and give a bound on the mixing time. We begin by framing their algo-
rithm as a Markov chain MS with state space the set of all vectors of length n
with component bound d and sum S. Next we prove that the mixing time τMS

of their Markov chain MS satisfies τMS
(ε) ≤ n ln(min(dn, 2S)ε−1).

Our proof uses a path coupling technique due to Dyer and Greenhill [7]. To
apply path coupling, we carefully select a custom distance metric and design a
coupling. Path coupling allows us to only consider a subset of pairs of config-
urations namely those that differ on only two points and show that using our
coupling the expected distance between two configurations will decrease after a
single step ofMS . If the shuffling selected byMS pairs the two points that differ
together the distance decreases to zero. However if these points are not paired
together the situation is much more complex and requires a detailed coupling
and careful analysis. Much of the complexity comes because the two chains will
often have a different number of possible valid next configurations (since the
pairs of points have different sums) and thus each individual configuration is
selected with a different probability in each chain. The complete proof is given
in Section 3.

New algorithms for ranking/unranking sum-preserving vectors. Sec-
ond, we give algorithms for directly ranking and unranking sum-preserving vec-
tors based on two different total orders. The first is the standard lexicographical
order. Stein [17] previously described an algorithm for unranking such vectors
using lexicographical order, for use in random sampling. Their algorithm relies
on pre-computing a table Cd where position (n, S) stores the number of vectors
of length n with sum S and component bound d. We improve on this algorithm
by using a cumulative sum table where each position (i, j) stores

∑n
k=i Cd(k, j).

Additionally we give a dynamic programming based justification for the compu-
tations required to fill the table (Section 4.3). Finally, in Section 4.1 we give a
ranking algorithm which also uses the cumulative sum table.

In order to handle applications with larger parameters d and n, we develop a
second set of rank and unrank algorithms based on a new total ordering we call
recursive block order. While recursive block order uses ideas that are reminiscent
to those used in orderings of monomials, specifically block order (see e.g., [8])
and graded order (see e.g. [5]), these are combined differently and applied re-
cursively unlike in monomial orderings. At a high-level, in recursive block order
configurations are first ordered based on the sum of the first n/2 points. Con-
figurations with smaller “first-half” sums have lower rank. Configurations with
the same “first-half” sum are then ordered recursively according to the first n/2
points or, if these are identical, the last n/2 points. We formally define this order,
give both rank and unrank algorithms, and go over an example in Sections 4.2
and 4.5.

One of the main advantages of recursive block order is that it requires fewer
rows of the C table to be computed and stored. Specifically it only requires at
most 2 log n rows (and only log n if n is a power of 2). However, the dynamic
programming approach to filling the C table does not allow us to take advantage
of this and requires all n rows be computed. To address this, we present an
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alternative way to compute only the values needed from the C table using well-
known formulas derived from generating functions (see e.g. [1], [15]).

Performance comparison. We created prototype implementations of both
the Tajik et al. matching-based construction and our two ranking-base construc-
tions and ran a number of performance tests for a variety of applications with a
wide range of parameter choices for the vector length n and component bound
d. In short, we found that for a number of applications, including the thumbnail
encryption application that originally motivated sum-preserving encryption, our
new ranking-based constructions are significantly more efficient, even when the
matching-based construction is used with round numbers well below the bounds
we prove in Section 3. The matching-based construction appears to be the supe-
rior choice when n is small but d is large (e.g., n = 30 and d = 100000). When n
is very large, in the thousands or higher, then neither the matching-based con-
struction nor our ranking constructions perform well, and new approaches are
likely needed. We discuss these and other details of our performance analysis in
Section 5.

2 Background on Sum-Preserving Encryption

In this section we define what a sum-preserving encryption scheme is, discuss
security goals, describe some example applications, and give details on previous
constructions. We note that much of this section closely follows the work of Tajik
et al. [18].

2.1 Syntax

We now give a formal definition of a sum-preserving encryption scheme. Let
n ≥ 1 be an integer called the vector length, and d > 0 be an integer called
the component bound. A d-bounded vector of length n is a vector of integers
(x1, . . . , xn) with 0 ≤ xi ≤ d. We denote by (Zd+1)n the set of all d-bounded
vectors of length n. A sum-preserving encryption scheme for (Zd+1)n is a pair
of algorithms (Enc,Dec) with the following properties.

– The (deterministic) encryption algorithm Enc : K × {0, 1}∗ × (Zd+1)n →
(Zd+1)n takes as input a key K ∈ K, a nonce T ∈ {0, 1}∗, and message
M ∈ (Zd+1)n, and outputs a ciphertext C ∈ (Zd+1)n which is also a d-
bounded vector of length n. Importantly, the encryption algorithm must be
sum-preserving, which means for all keys K ∈ K, all nonces T ∈ {0, 1}∗, and
all messages M ∈ (Zd+1)n, it is true that

∑
M =

∑
Enc(K,T,M), meaning

the sum of the message vector components
∑
M =

∑n
i=1mi must be equal

to the sum of the ciphertext components
∑

Enc(K,T,M) =
∑n
i=1 ci, where

Enc(K,T,M) = (c1, . . . , cn).
– The decryption algorithm Dec : K × {0, 1}∗ × (Zd+1)n → (Zd+1)n takes as

input a key K ∈ K, a nonce T ∈ {0, 1}∗, and ciphertext C ∈ (Zd+1)n and
outputs a message vector M ∈ (Zd+1)n.
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For correctness we require that for all K ∈ K, all T ∈ {0, 1}∗, and all M ∈
(Zd+1)n, it must be the case that Dec(K,T,Enc(K,T,M)) = M .

Connection to bounded integer compositions. We note that d-bounded vectors
of length n with the sum of vector components equal to an integer S are
also called d-bounded (or restricted) n-part compositions of S or d-bounded
n-compositions of S. There has been much previous work studying restricted
compositions. Much of the previous work has surrounded the problems of enu-
merating all compositions and counting the number of such compositions (see
e.g., [1], [13], [14], [15], [19]). We will use the terminology bounded n-composition
throughout the paper.

2.2 Examples

To help better understand sum-preserving encryption, we now discuss some ex-
ample applications where it has either already been used or could potentially be
used. We will also revisit these same examples in Section 5 when we evaluate
our prototype implementations.

Example 1: Thumbnail-preserving image encryption. Tajik et al. previously used
sum-preserving encryption to build a type of image encryption called Thumbnail-
preserving encryption, in which the thumbnail of an encrypted image exactly
matches the thumbnail of the unencrypted image. We can view image data as
a matrix of pixel values 0-255 with dimensions h × w × 3, where each of the
three h × w matrices represents an RGB channel. Tajik et al. showed one can
do thumbnail-preserving encryption by taking m × m blocks and encrypting
them in a sum-preserving way. Then, when forming a thumbnail by replacing
each m × m block with a single pixel that is its average, the sum-preserving
property of encryption ensures the encrypted blocks have the same average as
the unencrypted image blocks. Thus, to use this construction we need sum-
preserving encryption for vectors of length n = m ·m, the total number of pixels
in a block, and component bound d = 255, the maximum value of a pixel.

Example 2: Exam scores. Suppose an instructor has a class with 300 students,
and vector of final exam scores which are each integers 0-100. The instructor
may want to encrypt this vector of scores in a way that the exam average can
be calculated from the encrypted vector alone. In this case we can use sum-
preserving encryption with vector length n = 300 and component bound d = 100.

Example 3: Employee Salaries. A small company with 30 employees wants to
encrypt a vector of employee salaries, which are integers between 30,000 and
100,000, in a way such that the average salary can be computed from the en-
crypted salary vector. In this case we potentially have a few options for using
sum-preserving encryption. We could set n = 30, and d = 100000; in this case
the encrypted salaries will range from 0 to 100000, so we could get encrypted
salaries below the lowest actual salary of 30,000, and the top salary of 100,000
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will also potentially be revealed by the vector, since no value will be above that.
Due to this latter issue, the encryptor might instead choose to use a larger choice
of d. But, as we will discuss later in the implementation section, choosing a larger
d in this example could have significant performance consequences.

Example 4: Rating dataset. Suppose a website has 5,000 user ratings, each in-
tegers that are 0 to 4 stars. The website might want to encrypt this dataset
in a way that allows the average rating to still be computed. Sum-preserving
encryption with n = 5000 and d = 4 could be used.

We note that for some example applications, there may be possible solutions
other than using sum-preserving encryption. For example, one could encrypt the
data using a standard symmetric encryption scheme, and then simply append
the sum or mean of the original data to the ciphertext. However, sum-preserving
encryption has the benefit of also maintaining the format of the original mes-
sage, so it may be the superior solution when it is necessary, or even just more
convenient, for ciphertexts to still be d-bounded vectors.

2.3 Security notions

Like previous work on format-preserving encryption and sum-preserving en-
cryption, we aim to build sum-preserving encryption schemes that are indis-
tinguishable from randomly chosen sum-preserving permutations on the same
domains. Formally, let Enc : K × {0, 1}∗ × (Zd+1)n → (Zd+1)n be a sum-
preserving encryption algorithm on d-bounded vectors of length n and let Dec :
K × {0, 1}∗ × (Zd+1)n → (Zd+1)n be the corresponding decryption algorithm.
To define PRP security, we say the prp-advantage of an adversary A is

Advprp
Enc(A) = Pr

[
AEncK(·,·) ⇒ 1

]
− Pr

[
Aπ(·,·) ⇒ 1

]
.

The adversary is given access to either an encryption oracle that takes as input
a nonce and a message vector, or a randomly chosen family of permutations
π : {0, 1}∗ × (Zd+1)n → (Zd+1)n. We can also target a stronger security notion,
strong PRP security, if we additionally give the adversary either a decryption
oracle or an inverse permutation family π−1. The previous work of Tajik et
al. on sum-preserving encryption further restricted the definition above to only
consider adversaries that never repeat a nonce input to their oracles. They called
such adversaries nonce respecting (NR), and argued that this security notion is
meaningful for applications. Following Tajik et al., we will primarily focus on
security against NR adversaries, but will also discuss how to achieve the stronger
notions and the corresponding effects on performance.

Discussion. It is important to note there are inherent limitations in the security
we can achieve with sum-preserving encryption, even when achieving the security
notions just described. To see this, consider the exam score application described
above. If the exam is particularly easy and all 300 students achieve a score of
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100/100, then the resulting message vector with 100 repeated 300 times will
encrypt to exactly the same vector and end up revealing every student’s score. In
other applications, this may not be as problematic. For example, in the thumbnail
encryption example, a large block of white pixels will all have the maximum pixel
value of 255 and thus encrypt to another block of all white pixels. Yet if our goal
is to use such image encryption to hide details of the image like facial features,
then a large block of pixels staying the same color does not seem so damaging.

2.4 Previous Constructions

After defining sum-preserving encryption, Tajik et al. observe that one option
for constructing such schemes would be to use the rank-encipher-unrank con-
struction of [2], which is one of the common ways of building format-preserving
encryption schemes. We say that a set X has an efficient ranking if there is an
efficient algorithm rank : X → {0, . . . , |X | − 1} mapping elements of the set to
integers, and then an efficient inverse function unrank mapping integers back
into the set X . The idea behind rank-encipher-unrank is, given a point x ∈ X to
encipher, one can first rank x to get an integer nx in the range {0, . . . , |X | − 1}.
Then one applies a cipher that works on that integer domain to get another
integer ny in the same domain. Finally, applying unrank to ny yields another
point y ∈ X , which acts as the ciphertext.

Algorithms for ranking based on the DFA representation of a language are
known [2], so Tajik et al. observe it is technically possible to use this paradigm
for constructing sum-preserving encryption. The key idea is to use the stars-and-
bars representation of the message space: the individual elements of the vector
to encrypt are represented in unary and the symbol 0 can be used as a separator
between these unary sequences, so the vector (3, 1, 2) would be 11101011. It is
easy to come up with a regular expression for such binary strings, and from there
a DFA to be used in ranking. Unfortunately, Tajik et al. argue this would be far
too computationally expensive to be useful.

Tajik et al. then observe that, while ranking vectors of length n with a par-
ticular sum in general would be too computationally expensive, it is actually
straightforward to rank vectors of length 2. Let (a, b) ∈ {0, . . . , d}2 have sum
S = a + b. Then rank((a, b)) = a if S ≤ d and d + 1 − a otherwise, and
unrank(t) = (t, S − t) if S ≤ d and (d+ 1− r, S − d− 1 + r) otherwise.

Given a way to rank and unrank vectors of size 2, Tajik et al. then give an
efficient construction for encrypting longer vectors while preserving their sum.
Their algorithm proceeds in rounds. In each round, match up all of the points
in the vector with their neighbor and, for each pair of neighbors, apply rank-
encipher-unrank using the ranking and unranking formulas for length-2 vectors
just described. As a result, each pair of neighboring points in the vector will be
replaced by a new pair with the same sum, and the overall sum of the vector
will be maintained. The points of the vector are then randomly shuffled be-
tween rounds (e.g., with the Knuth shuffle) so that the next round finds new
neighboring points matched up.
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3 Analyzing the Matching-based approach of Tajik et al.

In this section we formally analyze the matching-based construction given by
Tajik et al. [18] and described in Section 2.4. We begin by framing the algorithm
formally as a Markov chainMS (Section 3.1) and then use Markov chain analysis
techniques to bound the mixing time (Sections 3.2 and 3.3). Finally in Section 3.4
we apply our bound to each example application given in Section 2.2.

We begin by formally defining the mixing time. The time a Markov chain
M takes to converge to its stationary distribution µ is measured in terms of the
distance between µ and Pt, the distribution at time t. Let Pt(x, y) be the t-step
transition probability and Ω be the state space. The mixing time of M is

τM(ε) = min{t : ||Pt
′
− µ|| ≤ ε,∀t′ ≥ t},

where ||Pt−µ|| = maxx∈Ω
1
2

∑
y∈Ω |Pt(x, y)−µ(y)| is the total variation distance

at time t.

3.1 The Sum-Preserving Markov chain MS

Let the state space ΩS,d,n = Ω be the set of all d-bounded n-compositions of
S. Specifically, given a configuration x, each point x(i) for 1 ≤ i ≤ n satisfies
0 ≤ x(i) ≤ d and the sum of the points satisfies

∑n
i=1 x(i) = S. We analyze the

following Markov chain which is equivalent to the construction given by Tajik
et al. [18].

The Sum-Preserving Shuffle Markov chain MS

Starting at any valid configuration x0 ∈ Ω, iterate the following:

– At time t, choose a random shuffling R on all points uniformly at random
(u.a.r.).

– Pair adjacent points in R to create a perfect matching M.
– Independently, for each matched pair of points (pi, pj) ∈ M select values

for xt+1(pi) and xt+1(pj) u.a.r. from all valid choices that preserve the
sum. Namely, all choices that satisfy xt(pi) + xt(pj) = xt+1(pi) + xt+1(pj),
xt+1(i) ≤ d, and xt+1(j) ≤ d.

Next we show that this Markov chain is irreducible (i.e. the state space Ω is
connected) and thus has a unique stationary distribution (see e.g., [11]) and
that the stationary distribution is uniform.

Lemma 1. The Markov chain MS is irreducible and has the uniform distribu-
tion on ΩS,d,n as its unique stationary distribution.

Proof. We will prove thatMS is irreducible by defining a distance metric φ and
showing that there is always a move ofMS that decreases the distance between
any two configurations. By repeatedly decreasing the distance it is thus possible
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to create a path between any two valid configurations. Define the distance φ
between two configurations x and y as follows.

φ(x, y) =

n∑
i=1

|x(i)− y(i)|. (1)

We claim there is always a valid transition ofMS that will decrease the distance
between x and y. Select a point p+ which is larger in x than in y (i.e. x(p+) >
y(p+)) and a point p− that is smaller in x than in y. This is always possible
since x 6= y and the sum of the points in x is the same as the sum of the points
in y. Next, decrease p+ by 1, increase p− by 1, and leave other points the same
in x. This creates a valid configuration x′ such that φ(x′, y) < φ(x, y) and (x, x′)
is a valid transition of MS . To see that this is a valid transition in MS select a
shuffling where these points are adjacent, it is clear there is a valid selection for
each pair of matched points that gives the desired transition.

Next, we will show that for all x, y ∈ Ω,P (x, y) = P (y, x) and thus by
detailed balance the uniform distribution must be the stationary distribution
(see e.g., [11]). Consider any x, y ∈ Ω. Let Tx,y be the set of all shufflings that
allow a transition from x to y (i.e. starting from x if one of these shufflings is
selected there is a way to select the values in the second step of the chain to
match y.) Note that if P (x, y) = 0 then Tx,y = ∅. It is clear that Ty,x = Tx,y
and for each shuffling t ∈ Tx,y each matched pair has the same sum in x as in y
implying that both chains have the same valid choices in the last step of MS .
Thus the probability of moving from x to y if t is selected is the same in both
configurations and therefore P (x, y) = P (y, x). ut

3.2 Bounding the Mixing Time of MS

In order to bound the mixing time ofMS we will use the path coupling method
due to Dyer and Greenhill [7] which is an extension of the well-known coupling
method (see e.g., [9]). A coupling of Markov chains with transition matrix P is
a stochastic process (Xt, Yt)

∞
t=0 on Ω×Ω such that Xt and Yt are both Markov

chains with stationary distribution P and if Xt = Yt, then Xt+1 = Yt+1. In other
words when viewed in isolation each of the chains X and Y simulate the original
chain and once they agree, they will always agree. Informally, the coupling time
is the time until the two chains agree. A common technique is to select an
appropriate coupling and then use the coupling time to bound the mixing of
time of the Markov chain. This is often done by defining a distance metric and
showing that in expectation the distance between any two arbitrary pairs of
configurations is decreasing. The path coupling technique, which common in
the Markov chain community, only requires considering pairs of states that are
close according to the selected distance metric. In our case we will again use the
Manhattan distance metric and will only need to consider pairs of states that
differ on exactly 2 points.

More formally, we will use the following path coupling theorem due to Dyer
and Greenhill [7].
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Theorem 1. Let φ be an integer valued metric defined on Ω × Ω which takes
values in {0, ..., B}. Let U be a subset of Ω×Ω such that for all (xt, yt) ∈ Ω×Ω
there exists a path xt = z0, z1, ..., zr = yt between xt and yt such that (zi, zi+1) ∈
U for 0 ≤ i < r and

∑r−1
i=0 φ(zi, zi+1) = φ(xt, yt). Let M be a Markov chain

on Ω with transition matrix P . Consider any random function f : Ω → Ω such
that Pr[f(x) = y] = P (x, y) for all x, y ∈ Ω, and define a coupling of the Markov
chain by (xt, yt) → (xt+1, yt+1) = (f(xt), f(yt)). If there exists β < 1 such that
E[φ(xt+1, yt+1)] ≤ βφ(xt, yt), for all (xt, yt) ∈ U , then the mixing time of M
satisfies

τ(ε) ≤ ln(Bε−1)

1− β
.

To apply the theorem, we will present a coupling and show that the expected
distance between any pair of configurations that differ by exactly two points
decreases by at least β after each step of the Markov chain (for an appropriately
choosen β). Note that here B is the maximum distance between two configura-
tions using the selected distance metric.

Next, we prove the following theorem giving an upper bound on the mixing
time of MS . Note that the mixing time (defined at the beginning of Section 3)
bounds the number of steps of MS needed and does not include the time to
implement each step. We believe our bound can be improved.

Theorem 2. Let n be the vector length, d the component bound, and S be the
fixed sum. Given these definition, the mixing time τMS

(ε) of the sum-preserving
Markov chain MS on state space Ωn,d,S satisfies

τMS
(ε) ≤ n ln(min(dn, 2S)ε−1).

Proof. In order to apply Theorem 1 we begin by formally defining φ, U, and then
bound B and β. As before, we define the distance φ(x, y) as in Equation 1 as the
L1 norm (the Manhattan distance). Let U be the set of configurations x and y
which differ on exactly 2 points. Next, we will show that for all (x, y) ∈ Ω × Ω
there exists a path x = z0, z1, ..., zr = y between x and y such that (zi, zi+1) ∈ U
for 0 ≤ i < r and

∑r−1
i=0 φ(zi, zi+1) = φ(x, y).

Consider the path between any true arbitrary configurations given above in
the proof that MS is irreducible (Lemma 1). We claim this path satisfies the
conditions. Given a configuration zi to determine the next step in the path zi+1

two points p+ and p− are chosen where zi(p
+) > y(p+) and zi(p

−) < y(p−). A
shuffling is selected where these points are paired together and these are the only
two points that are modified. Namely, zi+1(p+) = zi(p

+)−1, zi+1(p−) = zi(p
−)−

1, and for all other points p, zi(p) = zi+1(p). It is thus clear that (zi, zi+1) ∈ U.
It is easily seen that for 0 ≤ i < r, φ(zi, zi+1) = 2 and φ(zi−1, y) = φ(zi, y) − 2
and thus the second distance requirement is satisfied.

To bound the maximum distance B recall that S is the sum over all points
S =

∑n
i=1 x(i). Since each point can contribute at most d to φ and there are n

points, B satisfies
B ≤ min(dn, 2S).
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In our coupling we will use the same shuffling in both x and y. If the two
points that differ get paired together in the shuffling then the valid choices for
all paired points are identical in both x and y, our coupling will choose the same
configurations in both chains, and the distance will decrease to 0. This happens
with probability 1/(n− 1) > 1/n. Otherwise, both of the two points that differ
between x and y will get paired with points that are the same in both x and y.
For all other pairs that do not include these points, our coupling will make the
same choice in both x and y. We will prove in Lemma 2 that no matter what
values the 2 points that differ have, there is a way to couple them so that the
distance never increases. Thus we have

E[φ(xt+1, yt+1)] ≤
(

1

n

)
· 0 +

(
n− 1

n

)
· φ(xt, yt) =

(
n− 1

n

)
· φ(xt, yt).

Letting β = n−1
n , B ≤ min(dn, 2S), and applying Theorem 1 gives

τMS
(ε) ≤ n ln(min(dn, 2S)ε−1).

ut

3.3 Proof of Lemma 2 Coupling Two Points

It remains to show we can construct a coupling of any two points with different
values where the expected change in distance is zero. We will prove the following
lemma.

Lemma 2. Given two arbitrary points i and j with xt(i) = yt(i) and xt(j) 6=
yt(j), there exists a coupling such that

|xt(j)− yt(j)| ≥ |xt+1(i)− yt+1(i)|+ |xt+1(j)− yt+1(j)|.

Proof. Recall that for two points i and j with xt(i) + xt(j) = Sx, the values
xt+1(i), xt+1(j) are chosen uniformly from all possible choices with xt+1(i) +
xt+1(j) = Sx, xt+1(i) ≤ d, and xt+1(j) ≤ d. For example, if Sx = 4 and d = 3
the options are (1, 3), (2, 2), (3, 1) and each is selected with probability 1/3. Since
xt(j) 6= yt(j), the two chains will often have a different number of possible choices
(see Fig. 1) and thus each individual configuration is selected with a different
probability in each chain.

We begin by creating an ordering of the possible choices for (xt+1(i), xt+1(j))
(and similarly for (yt+1(i), yt+1(j))) and then show how we will carefully pair
the choices to ensure that the distance never increases. This is especially difficult
because when the two chains have a different number of possible choices, one
configuration in x will needed to be paired with multiple configurations in y (or
vice versa). We can view the coupling as creating a weighted bipartite graph (as
shown in Fig. 1) where one partition is the possible choices in x and the other is
the choices in y. A valid coupling is a set of edges between the partitions where
each edges is assigned a probability such that the sum of the edges adjacent to
each configuration is equal to the probability of that configuration.
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(0,3)

(1,2)

(2,1)

(3,0)

(0,5)

(1,4)
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(3,2)

(4,1)

(5,0)

x y
1/6

1/12
1/12
1/6

1/6
1/12
1/12
1/6

Fig. 1. The weighted bipartite graph visualizing the coupling for Sx = 3, Sy = 5, and
d = 5.

We will order the choices by increasing value of xt+1(i) (or yt+1(i)) start-
ing from the lowest possible value (i.e. lexicographical order). For example, if
xt(i)+xt(j) = 3 there are 4 choices ordered (0, 3), (1, 2), (2, 1), (3, 0) and each has
probability 1/4. With configurations in this order, we will always couple a config-
uration in x to the lowest possible configuration in y while maintaining the cor-
rect probabilities. More specifically, let Sx = xt(i)+xt(j) and Sy = yt(i)+yt(j).
We will begin with the case that xt(i) + xt(j) <= d, yt(i) + yt(j) <= d, and
Sx < Sy = δ + Sx. We will handle the general case later. In this case, x has
Sx + 1 possible configurations ordered (0, Sx), (1, Sx − 1), . . . , (Sx, 0). Similarly,
y has Sy + 1 possible configurations ordered (0, Sy), (1, Sy − 1), . . . , (Sy, 0). We
start by pairing (adding an edge between) the lowest configurations (i.e.(0, Sx)
and (0, Sy)) with probability 1/(Sy + 1). At this point, configuration (0, Sx) still
has probability 1/(Sx + 1) − 1/(Sy + 1) remaining. We will then pair it to the
next lowest configuration in y (i.e. (1, Sy − 1)) with the remaining probability
or 1/(Sy + 1) whichever is smaller. We will continue pairing (0, Sx + 1) with the
lowest configuration in y that has unused probability (i.e. it’s adjacent edges do
not add to 1/(Sy + 1)) until the edges assigned add to the correct probability
1/(Sx + 1). We then iterate through the remaining configurations in x (in the
ordering above) using the same algorithm. Specifically, pairing each with the
lowest configuration(s) in y that have remaining probability. For example, the
case xt(i) = yt(i) = 2, xt(j) = 1, and yt(j) = 4 is shown in Fig. 1.

It remains to show that using the coupling described above the distance will
never increase. Specifically we will show for each coupled pair (i.e. configurations
connected by an edge), the distance between those configurations is at most
δ = |xt(j) − yt(j)|. Let (i, Sx − i) for 0 ≤ i ≤ Sx be any valid configuration for
x. We want to show that given our coupling the edges leaving this configuration
only go to configurations in y at distance at most δ. Specifically we need to show
that all edges are to configurations in the range {(i, Sy−i), . . . , (i+δ, Sy−i−δ)}
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(using the ordering defined above). Let Px(i, j) be the probability of all x points
in the range {(0, Sx), . . . , (i, j)} (and similarly define Py(i, j)). Recall that our
coupling will match a point in x to the lowest point(s) in y that have remaining
probability. Thus to show that (i, Sx − i) only gets mapped to points in the
appropriate range (i.e. the points in y at distance δ) we need to show that
the point in y just before that range (i − 1, Sy − i − 1) will have no remaining
probability and that (i, Sx−i) will not get matched to points after (i+δ, Sy−i−δ).
Specifically it suffices to prove the following.

Proposition 1.

1. For 0 < i ≤ Sx, Px(i− 1, Sx − i− 1) ≥ Py(i− 1, Sy − i− 1).
2. For 0 ≤ i < Sx, Px(i, Sx − i) ≤ Py(i+ δ, Sy − i− δ).

Proof. Since there are Sx + 1 configurations for x and Sy + 1 = Sx + δ + 1
configurations for y we have the following

Px(i, j) =
i+ 1

Sx + 1
, Py(i, j) =

i+ 1

Sx + δ + 1
.

Given these definitions, it is straightforward to prove the proposition using basic
algebra. ut

It remains to consider the more general case where either xt(i) + xt(j) > d or
yt(i)+yt(j) > d (or both). We will use the same coupling described above where
a configuration x is paired with the lowest configuration(s) in y with remaining
probability. Similar to what we did in the first case, for each valid configuration
for x we will map the configuration to two configurations in y. We will prove that
these two configurations and all configurations between them are at distance at
most δ. Then we will show that the x configuration will never get coupled to a
y configuration outside of this range.

Let nx be the number of valid x configurations and ny be the number of valid
y configurations. Without loss of generality, we will assume that nx ≤ ny. Let
(x1, x2) be the lowest configuration for x and (y1, y2) be the lowest configuration
for y. As before, if Sx ≤ d then x1 = 0, x2 = Sx and there are x2−x1+1 = Sx+1
configurations. However if Sx > d then x1 = d − nx, x2 = d and there are
x2−x1+1 = 2d−Sx+1 configurations (Sx−d, d), (d−Sx+1, d−1), . . . , (d, Sx−d).
We begin by proving that these initial configurations are at distance δ = |Sx−Sy|.

Lemma 3. Let δ = |Sx−Sy| be the initial distance between x and y. Assuming
nx ≤ ny and the possible configurations are ordered as described above we have.

1. The lowest configurations (x1, x2) and (y1, y2) as defined above satisfy.

φ((x1, x2), (y1, y2)) ≤ δ.

2. The highest configurations (x2, x1) and (y2, y1) as defined above satisfy.

φ((x2, x1), (y2, y1)) ≤ δ.
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3. For 0 < c ≤ x2 − x1, φ((x1 + c, x2 − c), (y1 + c, y2 − c)) ≤ δ.
4. For 0 < c ≤ x2 − x1, φ((x2 − c, x1 + c), (y2 − c, y1 + c)) ≤ δ.

Proof. Here we will consider four cases based on how Sx and Sy compare to d.
If both Sx, Sy ≤ d then (x1, x2) = (0, Sx) and (y1, y2) = (0, Sy). Here we have

|x1 − y1|+ |x2 − y2| = |0− 0|+ |Sx − Sy| = δ.

Next, we will consider the case where exactly one of Sx, Sy is greater than d. If
Sx > d and Sy ≤ d. In this case (x1, x2) = (d − Sx, d) and (y1, y2) = (0, Sy).
Here we have

|x1 − y1|+ |x2 − y2| = |Sx − d|+ |d− Sy| = Sx − Sy = δ.

If instead Sy > d and Sx ≤ d the argument is identical. Finally if both Sx, Sy > d
we have (x1, x2) = (d− Sx, d) and (y1, y2) = (d− Sy, d). Here we have

|x1 − y1|+ |x2 − y2| = |(Sx − d)− (Sy − d)|+ |d− d| = |Sx − Sy| = δ.

It immediately follows that the final configurations (x2, x1) and (y2, y1) are
also at distance at most δ. Similarly it can easily be shown by the definition of
the L1 distance metric that third and fourth statements are true. ut

To begin, if nx = ny then we will match each point (x1 + c, x2 − c) with
exactly one point (y1 + c, y2 − c) with weight 1/nx = 1/ny. By Lemma 3 these
points are distance at most δ and we are done.

Next, assume nx < ny and consider any general configuration for x, (x1 +
c, x2−c). We will show that this configuration will only be matched with config-
urations in between (and including) (y1 + c, y2− c) and (y2− (x2− x1− c), y1 +
(x2 − x1 − c)). By Lemma 3 parts 3 and 4, these configurations are both at dis-
tance at most δ from (x1 + c, x2 − c). It also immediate follows that any points
between these are at distance at most d from (x1 + c, x2 − c).

Next we show that (x1 +c, x2−c) will only be coupled to points in y between
and including (y1 + c, y2 − c) and (y2 − (x2 − x1 − c), y1 + (x2 − x1 − c)). Again
as in the first case to do this we need to show that (x1 + c, x2 − c) will never be
matched with anything below (y1 + c, y2− c) or anything above (y2− (x2−x1−
c), y1 + (x2 − x1 − c)). Specifically we prove the following.

1. For 0 < c ≤ x2 − x1, Px(x1 + c− 1, x2 − c+ 1) > Py(y1 + c− 1, y2 − c+ 1).

2. For 0 ≤ c < x2−x1, Px(x1+c, x2−c) ≤ Py(y2−(x2−x1−c), y1+(x2−x1−c)).

Recall that Px(x1 + c− 1, x2 − c+ 1) is the probability of all configurations
for x up to and including (x1 + c− 1, x2 − c+ 1). This includes c configurations
each with probability 1/nx and thus Px(x1 + c− 1, x2− c+ 1) = c/nx. Similarly
Py(y1 + c− 1, y2 − c+ 1) = c/ny. Thus our first statement follows directly from
the fact that nx < ny.
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Using the fact that nx = x2 − x1 + 1 and ny = y2 − y1 + 1 we can prove the
second statement as follows.

c ≤ x2 − x1
c+ 1 ≤ x2 − x1 + 1

c+ 1 ≤ nx
(ny − nx)(c+ 1) ≤ (ny − nx)nx

ny(c+ 1) ≤ (ny − nx)nx + nx(c+ 1)

(c+ 1)/nx ≤ (ny − nx + c+ 1)/ny

(c+ 1)/nx ≤ (y2 − y1 − x2 + x1 + c+ 1)/ny

Px(x1 + c, x2 − c) ≤ Py(y2 − (x2 − x1 − c), y1 + (x2 − x1 − c)).

ut

3.4 Applying the Mixing Bound to Examples

Finally, we apply our upper bound on the mixing time (Theorem 2) to each of
the example applications given in Section 2.2. The results are given below in
Table 1. While our theorem gives the first formal proof bounding the mixing
time of MS that we are aware of, we expect that it is not a tight bound and
further improvements are possible. Thus, the number of rounds given in the table
while provably sufficient are likely more than needed.

Note that in our bound we have the term min(dn, 2S). Since we have not
specified a specific sum in any of the examples we used dn for the bounds in the
table. If the desired sum S satisfies S < dn/2 then our theorem could be used
to obtain a smaller upper bound.

Table 1. Our upper bound for the rounds needed in the matching-based algorithm of
Tajik et al.

Application ε = 10−10 ε = 2−80

10x10 image block (n = 100, d = 255) 3,318 6,560
16x16 image block (n = 256, d = 255) 8,733 17,034
32x32 image block (n = 1024, d = 255) 36,351 69,555

Exam scores (n = 300, d = 100) 10,001 19,729
Salaries (n = 30, d = 100000) 1,139 2,111

Ratings (n = 5000, d = 4) 164,647 326,777
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4 Approaches based on Ranking

In this section we describe algorithms for ranking and unranking d-bounded
n-compositions of S based on two different total orderings. The first is the stan-
dard lexicographical order (Section 4.1) and the second is a new ordering we
call recursive block ordering (Section 4.2). Both orderings rely heavily on pre-
computed information which we describe in Section 4.3. Finally in Sections 4.4
and 4.5 we describe the unrank algorithms for both orderings.

4.1 Lexicographical Ranking

In this section, we will use the lexicographical ordering on d-bounded n-compositions
of S to generate a ranking. We will use the notation <L and >L to refer to lex-
icographical order. Specifically let x, y ∈ ΩS,d,n be two arbitrary configurations
such that x 6= y and let i be the smallest integer such that x(i) 6= y(i). If
x(i) < y(i) then x <L y otherwise y >L x. For an example, see Fig. 2.

Configuration Rank Configuration Rank
(0,3,3) 0 (2,3,1) 5
(1,2,3) 1 (3,0,3) 6
(1,3,2) 2 (3,1,2) 7
(2,1,3) 3 (3,2,1) 8
(2,2,2) 4 (3,3,0) 9

Fig. 2. The lexicographical ranking of configurations in ΩS,d,n = Ω6,3,3.

We begin by describing our ranking algorithm using the running example
S = 6, d = 3, and n = 3 shown in Fig. 2. To rank a configuration x according
to our ordering we start by determining how many configurations start with a
number strictly less than x(1). For example if x = (2, 3, 1) there are three such
configurations: (0, 3, 3), (1, 2, 3), and (1, 3, 2) (see Fig. 2). Next we determine the
position of (2, 3, 1) among configurations in Ω6,3,3 that start with 2. Since these
configurations all start with 2 the remaining sum must add to 6-2 =4 and there
are 3-1 = 2 remaining points. Thus this is equivalent to determining the rank
of (3, 1) in Ω6−2,3,3−1 = Ω4,3,2 which is two. We then add the numbers together
to get 5, the rank of (2, 3, 1). More generally, let Cd(n, S) be the number of
n-compositions with sum S and component bound d and l-rankn,S(x) be the
lexicographical rank of x in ΩS,d,n. Given these definitions, we can define the
rank recursively as follows.



18 Sarah Miracle and Scott Yilek

1: procedure l-rank((x1, . . . , xn), S, CUM)
2: rankSoFar ← 0
3: startN ← n
4: for i← 1 to startN do
5: if xi 6= 0 then
6: rankSoFar ← rankSoFar + CUM[n− 1, S − xi + 1]
7: if S < CUM.length then
8: rankSoFar ← rankSoFar − CUM[n− 1, S + 1]
9: end if

10: end if
11: S ← S − xi
12: n← n - 1
13: end for
14: return rankSoFar
15: end procedure

Fig. 3. Lexicographic ranking algorithm with the cumulative sum table CUM.

l-rankn,S(x1, . . . , xn) ={
0 if n = 1∑

0≤i<x1
Cd(n− 1, S − i) + l-rankn−1,S−x1

(x2, . . . , xn) if n > 1

It is straightforward to implement an algorithm for ranking given the definition
above and a pre-computed C table storing the needed values.

In order to improve the efficiency of our ranking algorithm we will actually
store the cumulative sum so position (i, j) in our table will store

∑n
k=i Cd(k, j).

Using this cumulative sum table CUM, we give a more efficient ranking algorithm
in Fig. 3. Note that the efficiency gain comes from not having to compute a sum
in each iteration of the for loop.

4.2 Recursive Block Ranking

Next, we give an alternative ranking algorithm based on a new total ordering
we call recursive block order. While recursive block order uses ideas that are
reminiscent to those used in orderings of monomials, specifically block order
(see e.g., [8]) and graded order (see e.g. [5]), these are combined differently and
applied recursively unlike in monomial orderings. We will use the notation <B
and >B to refer to recursive block order. Throughout this section we will assume
n is a power of two. We can fairly easily generalize our ordering and algorithms
to work when n is not a power of two and briefly describe the needed alterations
at the end of the section. Let x, y ∈ ΩS,d,n be two arbitrary configurations such
that x 6= y. To compare x and y using recursive block order, we let xL be the
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first n/2 points in x, and xR be the remaining points. Similarly define yL as the
first n/2 points in y and yL to be the remaining points. We begin by considering
the sum SxL

of the points in xL and similarly SyL (the sum of the points in yL).
If SxL

< SyL then x <B y. Similarly, if SxL
> SyL then x >B y. If the sums are

equal then we will apply our ordering recursively. Specifically, if xL 6= yL then
x <B y if xL <B yL and x >B y if xL >B yL. Finally if xL is identical to yL
then x <B y if xR <B yR and x >B y if xR >B yR. As a base case, if n is 1
then there is only one configuration with rank 0. See Figure 4 for an example of
recursive block order. We summarize these conditions in the table below.

SxL
< SyL =⇒ x <B y (2)

SxL
> SyL =⇒ x >B y (3)

SxL
= SyL and xL <B yL =⇒ x <B y (4)

SxL
= SyL and xL >B yL =⇒ x >B y (5)

SxL
= SyL and xL = yL and xR <B xL =⇒ x <B y (6)

SxL
= SyL and xL = yL and xR >B xL =⇒ x >B y (7)

Configuration Rank Configuration Rank
(0,2,3,3) 0 (2,1,2,3) 7
(1,1,3,3) 1 (2,1,3,2) 8
(2,0,3,3) 2 (3,0,2,3) 9
(0,3,2,3) 3 (3,0,3,2) 10
(0,3,3,2) 4 (1,3,1,3) 11
(1,2,2,3) 5 (1,3,2,2) 12
(1,2,3,2) 6 (1,3,3,1) 13

Fig. 4. The recursive block ranking of some configurations in ΩS,d,n = Ω8,3,4.

Based on the above definition of recursive block order we will give a recursive
ranking algorithm. Again our algorithm will rely on pre-computed values stored
in the C table where Cd(n, S) is the number of n-compositions with sum S and
component bound d. Let b-rankn(x) be the recursive block rank of x in ΩSx,d,n. In
order to compute the rank of a configuration x we need to determine the number
of configurations y such that x >B y. Using the above definition of recursive
block order such configurations fit into three cases given by Equations 3, 5, and
7 in the above table. Our algorithm will compute the number of configuration for
each case and add the three to determine the rank of x. Consider first the case
given by Equation 3. Here, we need to compute the number of configurations y
that satisfy SxL

> SyL . For each possible smaller sum SyL (i.e. any sum less than



20 Sarah Miracle and Scott Yilek

1: procedure b-rank((x1, . . . , xn), S, C)
2: if n == 1 then
3: return 0
4: end if
5: XL ← (x1, . . . , xn/2)
6: XR ← (xn/2+1, . . . , xn)
7: leftSum ← Sum(x1, . . . , xn/2)
8: rightSum ← Sum(xn/2+1, . . . , xn)
9: case3 ← 0

10: for s← 0 to leftSum -1 do
11: case3 ← case3 + C[n/2, s] · C[n/2, S − s]
12: end for
13: case5 ← C[n/2, rightSum]·b-rank(XL, leftSum, C)
14: case7 ← b-rank(XR, rightSum, C)
15: return case3 + case5 + case7
16: end procedure

Fig. 5. Recursive block ranking algorithm.

SxL
) we compute the number of configurations with this left sum. We do this by

using the C table to determine the number of choices for yL and multiplying by

the number of choices for yR. This is exactly
∑SxL

−1
s=0 C(n/2, s) · C(n/2, S − s).

The second case is given by Equation 5, configurations with the same left sum
but yL <B xR. The number of such configurations yL is given by b-rankn/2(xL).
For each of these configurations there are C(n/2, SxR

) choices for yR. Thus
the total number of such configurations is b-rankn/2(xL) · C(n/2, SxR

). Finally
the last case corresponding to Equation 7 is configurations with yL = xL and
yR <B xR. There are b-rankn/2(xR) such configurations. Combining these gives
the following recurrence for b-rankn(x) :

SxL
−1∑

s=0

C(n/2, s)·C(n/2, S−s)+b-rankn/2(xL)·C(n/2, SxR
)+b-rankn/2(xR) (8)

It is straightforward to design a recursive algorithm based on the above recur-
rence. Note that as a base case, if n = 1 then b-rank1(x) = 0 since there is only
one configuration. Based on this equation we give a recursive algorithm for de-
termining the recursive block rank in Figure 5. A key advantage of this algorithm
is that it does not requirement the entire C table. As seen from Equation 8 in
order to compute the rank of a configuration with n points we look at row n/2
of the C table and make two recursive calls both with n/2 points. Thus we only
need to pre-compute the C table for rows that are powers of 2 resulting in only
log n rows. Note that if n is not a power of 2 it is straightforward to generalize
the rank algorithm and Theorem 4 below shows that we only need to at most
double the number of rows that need to be pre-computed.
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Lemma 4. The recursive calls in each level of the recursion tree for the recursive
block ranking algorithm will either all be the same size or have two unique sizes
that differ by one.

Proof. We will prove this using induction. As a base case the first call has a
single size. We will assume inductively that the conditions are satisfied at a level
i and show that they will continue to be satisfied at the next level. Recall that at
each step of the recursion the size will be split in half. We will consider 2 different
cases. If there is only one size x at level i then if x is even there will continue to
be one size x/2 at the next level. If x is odd then there will be exactly two sizes
that differ by one (x− 1)/2 and (x+ 1)/2 at the next level. The second case we
will consider is if there are two sizes x and x+ 1 that differ by one at level i. If
x is even then at the next step the calls will all have sizes x/2 or x/2 + 1. If x
is odd then at the next step the calls will all have sizes (x − 1)/2 or (x + 1)/2.
In all cases the conditions of the theorem are satisfied.

4.3 Pre-Computing the C table

To support the rank and unrank algorithms for lexicographical and recursive
block orderings we will need access to additional information stored in a table.
We consider two approaches for pre-computing the information needed based on
previous work in the area of counting restricted compositions. The first is based
on dynamic programming techniques. While this algorithm is faster per table
entry, it requires all values in the table to be computed. The second method
is based on generating functions and while slower, does not rely on previously
computed entries. This allows us to only compute the tables entries needed and
is thus useful for the recursive block ranking algorithm. Again let Cd(n, S) be
the number of n-compositions with sum S and maximum value d.

Filling the Table with Dynamic Programming First we describe a dy-
namic programming based approach to filling the C table. We begin by develop-
ing and justifying a recurrence for Cd(n, S). Note that this same recurrence is
given previously by Abramson [1] although with a different more combinatorial
explanation. For each n-composition with sum S > 0, n > 1 the first point is
either 0 or some number greater than 0. The number of such compositions that
start with 0 is equal to Cd(n− 1, S). For those that start with a number greater
than 0, consider the quantity Cd(n, S−1). For each of the compositions counted
by Cd(n, S − 1) we can add one to the first point and obtain a n-composition
with sum S and first point greater than 0. However, if S > d some of these com-
positions will have the first point set to d+ 1 which is not a valid composition.
Thus, in this case, Cd(n, S − 1) is over counting the number of n-compositions
that start with a point greater than 0. If a n-composition starts with d+1, the re-
maining points are a (n−1)-compositions of the remaining sum S−(d+1). Thus
the excess number of compositions is exactly Cd(n− 1, S − (d+ 1)). Combining
these ideas gives the following recurrence for the C table.
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Cd(n, S) =



1 if n = 1, S ≤ d
0 if n = 1, S > d

1 if n = 0

Cd(n−1, S) + Cd(n, S−1) if n > 0, S ≤ d
Cd(n−1, S) + Cd(n, S−1)− Cd(n−1, S−d−1) otherwise

It is straightforward to see how using a nested loop and the above recurrence
we can use fill the C table with dimensions n× (n∗d) in time Θ(n2d). The value
n∗d is chosen since this is the maximum possible sum. Note that Stein [17] uses a
very similar approach to fill the table but does not use the dynamic programming
framework or provide a justification for the recurrence. As mentioned above, in
order to improve the efficiency of our lexicographical ranking and unranking
algorithms we will actually store the cumulative sum so position (i, j) in the
CUM table will store

∑n
k=i Cd(k, j).

Filling the Table with Generating Functions As an alternative approach
to fill in the table, we can use formulas derived from a generating function view
of the problem. This approach to counting restricted compositions is well estab-
lished (see e.g. [1], [15]) and we briefly provide the details here for completeness.
We will need the following well-known polynomial expansions:

1− xn+1

1− x
= 1 + x+ x2 + . . .+ xn (9)

(1 + x)n = 1 +

(
n

1

)
x+

(
n

2

)
x2 + . . .+

(
n

n

)
xn (10)

1

(1− x)n
= 1 +

(
1 + n− 1

1

)
x+

(
2 + n− 1

2

)
x2 + . . . (11)

If f(x) is a polynomial, we will use the notation [xk]f(x) to mean the coefficient
of xk in f(x). So for example, [x3](1 + x)15 would mean the coefficient of x3 in
the expansion of (1 + x)15, which from the identities above we can see is

(
15
3

)
.

We can use generating functions to compute the value Cd(n, S) by noting
that Cd(n, S) will actually be the coefficient of the xS term in the polynomial

(1 + x+ x2 + . . .+ xd)n .

Given this, we can then use the above identities to derive a formula for Cd(n, S).

Lemma 5. Consider vectors of length n with component bound d that sum to
S. Then the number of such vectors is given by

Cd(n, S) = [xS ](1 + x+ x2 + . . .+ xd)n =

n∑
k=0

(−1)k
(
n

k

)(
n+ S − (d+ 1)k − 1

n− 1

)
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Proof. From Equation (9) we can see that

[xS ](1 + x+ x2 + . . .+ xd)n = [xS ]

(
1− xd+1

1− x

)n
= [xS ](1− xd+1)n · 1

(1− x)n

We can apply Equations (10) and (11) to the two parts of this last polynomial
and see that

(1− xd+1)n = 1−
(
n

1

)
xd+1 + . . .+ (−1)k

(
n

k

)
xk(d+1) + . . .+ (−1)n

(
n

n

)
xn(d+1)

and
1

(1− x)n
= 1 +

(
1 + n− 1

1

)
x+

(
2 + n− 1

2

)
x2 + . . .

Given these two equations, we are interested in ways to get xS . We need to
account for possibly each term in the first equation combining with a term in the
second equation. Specifically, if we have xk(d+1) from the first equation, then to
get xS we need the term xS−k(d+1) from the second. Summing up over all such
possibilities and using the fact that

(
n
k

)
=
(
n

n−k
)

we get

Cd(n, S) =

n∑
k=0

(−1)k
(
n

k

)(
S − k(d+ 1) + n− 1

S − k(d+ 1)

)

=

n∑
k=0

(−1)k
(
n

k

)(
n+ S − k(d+ 1)− 1

n− 1

)
ut

In the next sections we describe the unrank algorithms for both lexicograph-
ical order and recursive block order. Both of these algorithms rely on the same
pre-computed information as the associated rank algorithms.

4.4 Lexicographical Unrank

Next we describe the unranking algorithm for lexicographical order l-unrank.
Note this is similar to the algorithm given by Stein [17] with the exception of
using the cumulative sum table. We begin by describing our unrank algorithm
again using the running example S = 6, d = 3, and n = 3 shown in Fig. 2. To
unrank an integer r according to lexicographical order we start by determining
x1. We can do this again using our C table. For example we know that x1 = 0
if the rank r is less than the number of configurations that start with 0 or r <
Cd(n−1, S). Similarly x1 = 1 if Cd(n−1, S) <= r < Cd(n−1, S−1)+Cd(n−1, S).
In our example, x1 is 1 if 1 ≤ r < 3. More generally,

x1 = max j :

S∑
i=S−j

Cd(n− 1, i) < r.
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1: procedure l-unrank(rank, S, n, CUM)
2: (x1, . . . , xn)← (0, . . . , 0)
3: startN ← n
4: for i← 1 to startN -1 do
5: if S < CUM.length then
6: offset ← CUM[n− 1, S + 1]
7: else
8: offset ← 0
9: end if

10: while CUM[n− 1, S − xi]−offset ≤ rank do
11: xi ← xi + 1
12: end while
13: n← n− 1
14: end for
15: xstartN ← S
16: return x
17: end procedure

Fig. 6. Lexicographic unranking algorithm with the cumulative sum table CUM.

We can use this idea to define the unrank algorithm recursively. At each step
i we will first determine xi using the formula above and then recursively call
the unrank algorithm to determine the remaining points l-unrankn−1,S−xi

(r −∑S
i=S−j+1 Cd(n − 1, i)). Based on this idea we give an l-unrank algorithm in

Fig. 6 that again uses the cumulative sum table. Note that since we are using
the cumulative sum table, the algorithm could be improved by replacing the
while loop with a variation on binary search. More specifically, look at the value
in the first position, the second, the fourth and so forth until a value greater
than rank is found and then perform binary search.

4.5 Recursive Block Unrank

Finally we describe the unranking algorithm for the recursive block ordering
b-unrank. At a high-level our algorithm begins by determining the sum of the
left n/2 points. Next we determine the rank of xL (i.e. b-rankn/2(xL)) and the
rank of xR. Finally we apply our unrank algorithm recursively to each of these
ranks to determine xL and xR. Throughout this section we will use the running
example S = 8, d = 3, and n = 4 shown in Fig. 4.

We begin by showing how to determine the left sum SxL
. In our example we

know that SxL
= 2 if the rank r is less than the total number of configurations

with left sum 0,1, or 2. Since there are no configurations with left sum 0 or 1
the left sum is 2 if r < Cd(n/2, 2) · Cd(n/2, S − 2) = 3 · 1 = 3. More generally,

SxL
= min s : r <

s∑
i=0

Cd(n/2, i) · Cd(n/2, S − i).
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1: procedure b-unrank(rank, S, n, C)
2: if n== 1 then
3: return (rank)
4: end if
5: leftPointsSmallerSum ← 0
6: leftSum ← 0
7: while leftPointsSmallerSum <= rank do . Determine the left sum
8: leftPointsSmallerSum += C[n/2, leftSum] · C[n/2, n− leftSum]
9: leftSum ← leftSum + 1

10: end while . The loop went one past the correct sum
11: leftPointsSmallerSum -= C[n/2, leftSum] · C[n/2, n− leftSum]
12: leftSum ← leftSum - 1
13: rightPoints ← C[n/2, S − leftSum]
14: leftRank ← (rank - leftPointsSmallerSum) / rightPoints
15: rightRank ← (rank - leftPointsSmallerSum) % rightPoints
16: left ← b-unrank(leftRank, leftSum, n/2, C)
17: right ← b-unrank(rightRank, S - leftSum, n/2, C)
18: return (left, right)
19: end procedure

Fig. 7. Recursive block unranking algorithm.

Next we will determine the rank of xL. Note that each possible configuration
of the left n points will occur in the ranking one time for each possible right
configuration or Cd(n/2, S − SxL

) times. For example, in our running example
when SxL

= 3 then there are 2 possible configurations for xR namely (2, 3) and
(3, 2) so each possible left configuration shows up in the ordering consecutively
2 times. Thus to determine the rank of the left configuration we first subtract
the number of configurations with smaller sum from the rank and then divide
by the number of right configurations Cd(n/2, S − SxL

). To determine the right
rank we again subtract the number of configurations with smaller sum and then
determine the remainder when divided by Cd(n/2, S − SxL

). Finally once we
have the left and right ranks we can apply our b-unrank algorithm recursively to
each rank. We give our b-unrank algorithm in Fig. 7.

5 Implementation and Performance Comparison

To compare the matching-based algorithm of Tajik et al. to the ranking algo-
rithms we proposed in the previous section, we created prototype implementa-
tions of both and ran a number of performance tests. All implementations were
done in Python 3.9.7 and performance tests were conducted on a machine with
an Intel Core i5-8265U CPU @ 1.60GHz (1 socket, 4 cores per socket, and 2
threads per core) and 8 GB of RAM, running 64-bit Ubuntu Linux 18.04. Before
looking at performance results, we discuss more details of our implementations.
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5.1 Implementation details

Matching-based algorithm. We implemented the matching-based algorithm of
Tajik et al. as we described it earlier. In each round, adjacent points are matched
and rank-encipher-unrank is applied to each pair. We shuffled the points between
rounds using the Knuth shuffle, which was suggested by Tajik et al. Like the
previous work, we are considering NR security, so we implemented each rank-
encipher-unrank using addition mod N , where N depends on the points being
paired up and their sum. For our performance tests, we considered 50, 500, and
1000 rounds.

Ranking-based algorithms. We implemented both the lexicographic and recursive
block ranking algorithms from the previous section to use with rank-encipher-
encrypt. For lexicographic, we implemented the rank and unrank algorithms that
use the cumulative sum table (Fig. 3 and Fig. 6). We also considered NR security,
so the encryption portion was implemented using addition mod N , where N is
the maximum rank given a vector length, component bound, and sum.

For the lexicographic ranking algorithm, we used a 2d numpy array with
datatype object for the Cd(n, S) table so that we could store unlimited precision
Python integers in the arrays. This is necessary since the numbers in the table
get very large; for the 16x16 image block example, the maximum value in the
table is over 2000 bits.

For the recursive block ranking algorithm, since we only need a much smaller
number of rows, we stored the needed rows of the Cd(n, S) table in a Python
dictionary indexed by n. We generated each entry using the generating function
formula in Lemma 5. We also used the Python decorator functools.cache to
memoize the choose function and speed up any repeated n choose k calculations
that take place while generating the table.

5.2 Performance tests and results

To compare the performance of the matching-based and ranking-based solutions,
we considered the applications mentioned earlier in Section 2.2 which have vari-
ous parameter choices for n and d. For each application, we generated five vectors
with n uniformly random elements chosen from 0 to d and measured the average
time to encrypt using the iPython %time built-in “magic” command.

For the matching-based algorithm, we tested three choices of rounds, 50,
500, and 1000. The results are shown in Table 2. For the ranking-based solu-
tions, we additionally measured the time to generate the Cd tables and also the
eventual sizes of those tables. We determined the size by applying the Python
sys.getsizeof method to each integer in the table, plus the result of apply-
ing sys.getsizeof to the table data structure itself. The results are shown in
Table 3. It is interesting to note that the lexicographic ranking algorithm failed
on the 32x32 block image encryption application and on the ratings application,
due to the table size getting too large for the system to handle. The recursive
block ranking, on the other hand, was successful on those two applications.
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Table 2. Performance results for our implementation of the matching-based algorithm
of Tajik et al.

Application 50 rounds 500 rounds 1000 rounds
10x10 image block (n = 100, d = 255) 0.06s 0.39s 0.77s
16x16 image block (n = 256, d = 255) 0.11s 0.98s 1.98s
32x32 image block (n = 1024, d = 255) 0.41s 3.91s 7.81s

Exam scores (n = 300, d = 100) 0.12s 1.14s 2.26s
Salaries (n = 30, d = 100000) 0.02s 0.13s 0.25s

Ratings (n = 5000, d = 4) 1.84s 18.5s 37.8s

Table 3. Performance results for our implementation of the ranking algorithms from
the previous section. Encryption (Enc.) time is the time to do rank-encipher-unrank.

Application
Lexicographic Recursive Block

Table size Table time Enc. time Table size Table time Enc. time
10x10 162 MB 1.81s 0.009s 9 MB 0.87s 0.06s
16x16 1885 MB 13.1s 0.013 32 MB 5.8s .18s
32x32 fail - - 271 MB 316s 3.50s
Exams 988MB 7.17s 0.011s 15 MB 3.81s .096s
Salaries 4756 MB 79s 0.34s 672 MB 40.5s 4.2s
Ratings fail - - 25 MB 271 s 0.40 s

5.3 Discussion

Looking at the results in Tables 2 and 3, we can come to a few conclusions.

For thumbnail encryption, ranking is likely the better choice. We can see from
the tables that for the 10x10 and 16x16 image block encryption applications, the
lexicographic ranking encryption time is faster than the matching-based solution
with only 50 rounds. Even at the 32x32 block size, the recursive block ranking
has faster encryption than 500 rounds of the matching-based solution. Since a
large image contains thousands of such blocks, using the faster ranking-based
solutions could be especially beneficial and well-worth the time and memory cost
of generating and storing the table.

For small n but large d, the matching-based algorithm is a good choice. From
the salaries application n = 30, d = 100000 we can see that the matching-based
algorithm performs well and, even at 1000 rounds, encrypts in 1/4 of a second.
The ranking solutions, on the other hand, are starting to hit their upper limits
as far as table size. Specifically, the lexicographic ranking table took nearly 80
seconds to generate and ended up at 4756 MB in size. Even with this large
table, encryption time for lexicographic ranking was still slightly slower than
1000 rounds of the matching-based algorithm. We also tried increasing n and d
slightly to 50 and 250,000 and, as expected, the table size ended up being too
large for our testing machine.
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Ranking solutions should scale better if more security is desired. We have done
the performance tests with NR (nonce-respecting) security in mind, which is
consistent with previous work. However, if we instead want to target something
like strong PRP security, then the ranking solutions should still be reasonably
performant, while the matching solution will likely significantly slow down. The
reason for this is that with the matching solution encryptions happen n/2 times
(once for each pair of points) each round, and each of these, which are just
additions mod N with NR security, would likely need to be replaced with a
stronger cipher. With the ranking solutions, there is just a single cipher call
that would need to be swapped for something stronger. One challenge with
this, however, is that the numbers are very large with the ranking solutions
(e.g., 2000 bit numbers in the 16x16 image example), so the inner cipher in
rank-encipher-unrank would need to support such large sizes. A strong, variable-
length cipher such as those in [16] may be a good choice. A closer look at these
issues and whether NR security or strong PRP security is the right target for
sum-preserving encryption applications would be interesting future work.

For larger n, new constructions are likely necessary. We can see from the rat-
ings application that as n gets large both the matching solution and the ranking
solutions start to struggle. The matching solution with 1000 rounds takes over
30 seconds to encrypt the vector with 5000 ratings; if we instead wanted to en-
crypt a vector with 1 million ratings, we might estimate it to take 10 minutes or
longer! With the ranking solutions, our lexicographic table generation already
failed on the ratings application with n = 5000. The recursive block ranking, at
first glance, appears to be an acceptable solution, but the table generation time
appears to drastically increase as n grows. Already at n = 5000 the table took
almost 5 minutes to generate, and in additional tests with n = 10000 the table
was not finished after 30 minutes. Scaling this up to something like 1 million
ratings is just not practical. A better solution for very large n is likely to be
a combination of the matching and ranking solutions. The matching algorithm
is already based on the idea of applying rank-encipher-encrypt to smaller sub-
vectors (of size 2), so a natural extension is to apply our ranking algorithms to
increase the size of the subvectors enciphered each round. It is not immediately
clear to us whether our proof from Section 3 could be adapted to this situation,
so we leave proving a mixing time bound on this combined algorithm to future
work.
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