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Abstract. Protocols for state machine replication (SMR) are typically
designed for synchronous or asynchronous networks, with a lower corrup-
tion threshold in the latter case. Recent network-agnostic protocols are
secure when run in either a synchronous or an asynchronous network. We
propose two new constructions of network-agnostic SMR protocols that
improve on existing protocols in terms of either the adversarial model or
communication complexity:
1. an adaptively secure protocol with optimal corruption thresholds and

quadratic amortized communication complexity per transaction;
2. a statically secure protocol with near-optimal corruption thresholds

and linear amortized communication complexity per transaction.
We further explore SMR protocols run in a network that may change
between synchronous and asynchronous arbitrarily often; parties can be
uncorrupted (as in the proactive model), and the protocol should remain
secure as long as the appropriate corruption thresholds are maintained.
We show that purely asynchronous proactive secret sharing is impossible
without some form of synchronization between the parties, ruling out a
natural approach to proactively secure network-agnostic SMR protocols.
Motivated by this negative result, we consider a model where the ad-
versary is limited in the total number of parties it can corrupt over the
duration of the protocol and show, in this setting, that our SMR proto-
cols remain secure even under arbitrarily changing network conditions.
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1 Introduction

Protocols for state machine replication (SMR) allow a set of parties P1, . . . , Pn

to agree on a continuously growing, ordered log of transactions. SMR protocols
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enable the evolving state of a distributed system to be replicated across multiple
parties, even when some of them are malicious. SMR lies at the core of many
distributed applications and has recently received considerable attention in the
context of blockchain protocols. Most of the literature focuses on protocols that
are secure in either the synchronous or the asynchronous model. SMR protocols
in the synchronous model can tolerate t < n/2 corrupted parties (or t < n
corrupted parties if external validity is not required [34]), but may fail if the
synchrony assumption is violated. On the other hand, asynchronous protocols
are secure under arbitrary network conditions, but do not exist when t ≥ n/3.

Recent work of Blum, Katz, and Loss [7] introduced the network-agnostic
model in which a single protocol is required to be secure regardless of whether
it is run in a synchronous or an asynchronous network, for different corruption
thresholds. In subsequent work [8], they show that for any thresholds ta ≤ ts
with 2ts+ ta < n, there is an SMR protocol that tolerates ta corrupted parties if
the network is asynchronous and simultaneously tolerates ts corrupted parties if
the network is synchronous. A major benefit of network-agnostic protocols over
classical ones is that ta, ts can be chosen arbitrarily subject to the above con-
straints. This allows a protocol designer to flexibly choose ta, ts so as to minimize
the probability of failure based on assumed properties of the environment.

Although network-agnostic protocols have recently received significant at-
tention [7,9,8,29,5,17], several open questions regarding network-agnostic SMR
remain. For one, existing results are primarily concerned with feasibility rather
than efficiency; this is especially true when considering protocols secure against
an adaptive adversary who can choose which parties to corrupt during the ex-
ecution of the protocol. Perhaps the most significant limitation of prior work
is that it either requires the network to be synchronous for the lifetime of the
protocol, or else guarantees security only if the attacker never exceeds the cor-
ruption threshold of ta. Providing a more elegant treatment of networks that
can change arbitrarily often between synchronous and asynchronous was left as
an explicit open question in prior work.

1.1 Challenges and State-of-the-Art

We begin with a brief overview of network-agnostic SMR, and then explain how
existing solutions (do not) deal with the issues raised above.

Network-agnostic SMR. The goal of an SMR protocol is to impose order
on transactions that arrive in parties’ buffers in an arbitrary fashion. An SMR
protocol must ensure consistency, which means that all parties agree on the order
in which transactions are committed to some log, and liveness, which means that
any transactions in the buffers of honest parties are eventually appended to the
log. SMR is significantly more challenging than the related problem of Byzantine
agreement, where parties agree on only a single value.

A network-agnostic SMR protocol must remain secure if the network is syn-
chronous and there are at most ts corruptions, or if the network is asynchronous
and there are at most ta corruptions. As a key building block for SMR in this
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setting, Blum et al. [8] introduced a novel protocol for asynchronous common
subset (ACS) that allows parties to agree on a subset of n − ta inputs in the
presence of ta corrupted parties in an asynchronous network. Their protocol has
the property that if all honest parties supply the same input B to the protocol,
then honest parties include B in their output even when ts parties are corrupted.
This facilitates the following strategy: parties first attempt to agree on an input
B using a synchronous protocol. If the network is synchronous, this step will suc-
ceed even in the presence of ts corrupted parties; thus, parties all use the same
input B to ACS which outputs this block even if there are ts corrupted parties.
On the other hand, if the network is asynchronous, ta-security of ACS ensures
that all parties can agree on B without relying on the synchronous protocol.

Problems with existing solutions. Blum et al. [8] present two SMR proto-
cols, Tardigrade and Upgrade. Tardigrade is secure against an adaptive adversary
and requires O(n4) bits of communication for n transactions. Upgrade gives a
more efficient alternative against a static adversary that requires only O(n3)
bits of communication for n2 transactions. However, Upgrade relies on random
subcommittees to execute the most expensive steps of the protocol. Such pro-
tocols are not adaptively secure and require very large committees in order to
provide meaningful corruption bounds. This arguably offsets the communication
improvements made by Upgrade, as it only offers an asymptotic improvement if
the total number of parties in the system is in the order of hundreds of thousands.

Moreover, their work only considers non-switching networks, i.e., the network
is either synchronous or asynchronous for the entire duration of the protocol.
Thus, if at any point in the lifetime of the protocol the adversary surpasses
ta corrupted parties, their protocols might be insecure if the network is ever
asynchronous. We are interested in a more flexible model that tolerates repeated
transitions of the network between synchronous and asynchronous behavior, and
even in the presence of an adaptive, mobile adversary.

1.2 Our Contributions

We study protocols in a more realistic model where network conditions can ar-
bitrarily change over time, and parties can also recover from corruptions. Such
recovery is necessary if we want to allow more than ta corruptions when the net-
work is synchronous, but then restrict the adversary to fewer than ta corruptions
when the network becomes asynchronous.

Modeling recovery from key exposure. Modeling parties that are tem-
porarily corrupted (sometimes referred to in the literature as transient faults) is
non-trivial when parties have long-term keys. To model the process of uncorrup-
tion, we endow parties with a mechanism to forcibly “flush out” the adversary.
(This could be achieved, for example, by having parties restart their computer
in safe mode at the onset of a new protocol epoch.) The adaptive adversary can
then choose to re-corrupt those parties or new ones. However, without additional
measures in place, the internal state of the previously corrupted parties (includ-
ing their long-term secret keys) remains known to the adversary. Proactive secret
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sharing is the main technique to refresh parties’ keys for threshold signatures
and related primitives commonly used in communication-efficient randomized
SMR protocols. We prove that without further restrictions, secure proactive se-
cret sharing protocols in the pure asynchronous and network-agnostic setting are
impossible. While this may seem to be a folklore result, modeling and proving
such a result is non-trivial. One of our contributions is to formalize this result
and provide a rigorous proof.

To address the above impossibility in the context of SMR protocols, we con-
sider a model in which the attacker is limited to corrupting a set S of at most ts
parties for the lifetime of the protocol. (It may corrupt this entire set of parties
when the network is synchronous, and must uncorrupt at least ts − ta of them
when the network becomes asynchronous.) Since transient corruptions are rarely
considered in the context of SMR, limiting the total number of faults to ts seems
like a reasonable assumption which is in line with most of the existing literature.

Practical network-agnostic SMR. We propose two new efficient protocols
for SMR, Update and Upstate.

Update is adaptively secure for optimal corruption thresholds and has O(n3)
communication complexity for committing a block of O(n). This is an O(n)
improvement over Tardigrade [8], which requires O(n4) communication to commit
blocks of O(n) transactions. We obtain the improvement by carefully applying
error-correcting codes in a new ACS protocol.

Upstate is statically secure for near-optimal corruption thresholds and has
O(n2) communication complexity to commit blocks of O(n) transactions. Upstate
achieves its improved communication complexity by using committees. Upstate
compares favorably to Upgrade [8]: while Upgrade requires O(n3) communica-
tion to commit blocks of O(n2) transactions, Upstate commits blocks of O(n)
transactions and requires O(n2) communication.

SMR tolerating key exposure. We show that our protocols are also secure
when the network can transition between synchronous and asynchronous behav-
ior and the adversary can be mobile across epochs, but is limited to corrupting at
most ts unique parties. Adding reboots at the beginning of each protocol epoch
to flush the adversary out helps Update and Upstate to withstand the key expo-
sures caused by the adversary’s mobility. Security in this case follows naturally
from the structure of network-agnostic protocols. In order to be secure under a
higher number of corruptions during the synchronous phase, some parts of the
protocol have to use high thresholds for message collection. Although the adver-
sary can know up to ts keys/key shares during an asynchronous phase following
a transition from a synchronous phase, it can only actively corrupt ta parties
and is not able to break security even if it forges or erases keys.

Open questions. We leave open the question of designing an adaptively secure
SMR protocol in our setting with quadratic communication complexity per com-
mitted block. We also leave open to explore communication-efficient proactive
network-agnostic SMR protocols that bypass the impossibility result of network-
agnostic proactive secret sharing. We remark that although our protocols use
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threshold cryptosystems to boost efficiency and censorship resilience, these may
not be necessary. Thus, it is plausible that a solution for key refresh could be
achieved without limiting the adversary to corrupting a set of ts parties. One
could then hope to use a network-agnostic ACS protocol to agree on a new list
of valid public keys obtained from distributed key generation.

1.3 Related work

Network-agnostic protocols were introduced by Blum et al. in the context of
Byzantine agreement [7], and was later extended to multi-party computation [9]
and SMR [8]. The latter presents two network-agnostic SMR protocols. Tardi-
grade achieves total communication O(n4+n3ℓ) against adaptive adversaries, for
n the number of parties and ℓ the block size. Upgrade uses committees to achieve
total communication O(n3 + nℓ) against static adversaries (but tolerates fewer
corruptions). Appan et al. [5] proposed a protocol for network-agnostic perfectly
secure multi-party computation; their protocol uses a novel network-agnostic
perfectly secure verifiable secret sharing protocol.

Since our protocols need to support both synchronous and asynchronous net-
works, and asynchronous SMR protocols are less communication efficient com-
pared to their synchronous counterparts [2,3], we focus here on asynchronous
SMR protocols tolerating t < n/3 corruptions. Canonical constructions for SMR
and atomic broadcast are based on multi-value validated asynchronous Byzantine
agreement or asynchronous common subset [24,11,28,15,21] with cubic commu-
nication complexity for input sizes linear in n. Only a few existing protocols
in the asynchronous setting tolerate adaptive corruptions. EPIC [25] and DAG-
Rider [23] achieve adaptive security with cubic total communication complexity;
Dumbo2 [21] can be modified to achieve adaptive security by using the MVBA
from [26]. Neither can be easily adapted to the network-agnostic setting.

A final group of related works concerns secret sharing and distributed key
generation (DKG) where parties may crash and then recover or where the set of
participants may change. In the proactive model [31], the adversary can be mo-
bile across the corrupted parties over time. Proactive secret sharing (PSS) was
introduced by Herzberg et al. [22]. Canetti et al. [12] and Frankel et al. [16] gave
solutions for synchronous DKG against adaptive proactive adversaries using ver-
ifiable secret sharing schemes. Benhamouda et al. [6] introduced a secret-sharing
protocol for passing secrets from one anonymous committee to another, while
Groth [20] proposed a DKG scheme based on publicly verifiable secret sharing
that allows refreshing key shares to a new committee. In the asynchronous case,
Cachin et al. [10] presented a proactive refresh protocol assuming clock ticks that
define epochs, based on [13] which recovers state in an SMR protocol. Schulze et
al. [33] proposed a mobile PSS protocol in a partially synchronous network.
Recently, several works [27,35,32] have proposed more efficient dynamic/mobile
PSS protocols assuming eventual synchrony, short periods of synchrony at the
end of an epoch, or synchronized epochs. Subsequent to our work, Yurek et
al. [36] constructed an asynchronous dynamic PSS protocol (circumventing our
impossibility result) but with respect to different definitions than ours.
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A related notion of security in the presence of exposed parties was considered
in [19], which studied synchronous authenticated broadcast with both corrupted
parties and parties who are honest but whose keys have been exposed.

Paper organization. We describe our model in Section 2, and provide defi-
nitions in Section 3. In Section 4, we present an ACS protocol that uses error-
correcting codes in order to achieve O(n3) communication against an adaptive
adversary, and prove its special properties. This ACS protocol is used as a build-
ing block in the Update SMR protocol presented in Section 5, which achieves
optimal corruption thresholds in a network-agnostic setting. In Section 6, we
describe an asymptotically more efficient SMR protocol, Upstate, that is secure
under near optimal thresholds against a static adversary. In Section 7, we prove
that under a restricted adversarial model, the SMR protocols discussed so far
remain secure under arbitrary network transitions. In Section 8, we model and
provide an impossibility proof for proactive asynchronous verifiable secret shar-
ing. This result motivates our restricted mobile adversarial model.

2 Model

Network. We consider n parties P1, . . . , Pn that are connected via pairwise
authenticated channels and have access to a public key infrastructure. During
the protocol’s execution, transactions are delivered to parties’ local buffers. We
are not concerned with how these transactions originate; in practice, there is an
external mechanism where clients gossip these transactions in the network.

When the network is synchronous, messages between parties are delivered
with a finite, known delay ∆, and the local clocks of the parties are synchronized.
When the network is asynchronous, messages between parties are eventually de-
livered to their intended recipient, but may be adversarially delayed or reordered.
The local clocks of parties are only assumed to be monotonically increasing and
are not necessarily synchronized anymore. If an asynchronous phase is followed
by a synchronous phase, all messages sent during the asynchronous phase of the
network are delivered by the beginning of the synchronous phase. Transitions
between synchronous and asynchronous behaviors can happen arbitrarily.

An SMR protocol operates in logical intervals called epochs, which are mea-
sured and incremented locally. Another concept is that of a round of communi-
cation. In the synchronous setting, a round r refers to the time between (r−1)∆
and r∆. In the asynchronous case, the round number will describe some partic-
ular send actions that are performed by a party.

We assume that parties perform atomic send operations, i.e., parties can send
a message to multiple parties simultaneously in such a way that the adversary
cannot corrupt them in between individual sends. Moreover, we assume that
the adversary cannot perform after the fact removal, i.e., the adversary cannot
indefinitely prevent a message from being delivered once it is sent by an honest
party, even if the adversary corrupts it at some point after the send action.

Threat model. We consider a Byzantine fault model, in which some fraction
of the parties may be corrupted by an adversary. The adversary controls the
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local computations, messages, and current state of any corrupted party, and can
coordinate the actions of all corrupted parties. Uncorrupted parties are called
honest. For any honestly-initiated communication, the adversary receives the
epoch τ , the sender identity S, the receiver identity R and the message m (which
can be encrypted, in which case the adversary does not see its contents). The
adversary determines when to deliver each message.

We assume that the adversary is (ta, ts)-limited, i.e., for some fixed thresh-
olds ts, ta (ta ≤ ts), up to ts < n/2 parties may be corrupted if the network is
synchronous and up to ta < n/3 parties may be corrupted if the network is asyn-
chronous. (The optimal trade-off between ts, ta is known to be 2ts + ta < n [8]).
In Sections 4–5 we consider an adaptive and rushing adversary that adaptively
corrupts parties over the course of a protocol execution; in Section 6, we consider
a static adversary who corrupts parties prior to the start of an epoch.

Further, we address a mobile adversary. In Section 8, we consider an epoch-
wise mobile adaptive adversary that can move freely between parties from epoch
to epoch as long as it does not exceed more than ts adaptive corruptions in
the synchronous case and ta adaptive corruptions in the asynchronous case at a
given moment in time or in a given epoch. In Section 7, we consider a slightly
different adversary who adaptively corrupts at most ts parties over the lifetime
of the protocol, and is only permitted to move between those ts parties between
epochs. We will explicitly mention the adversary’s capabilities in each section.

Reboot. To enable protocols to withstand network changes, we assume a reboot
mechanism that causes a party to restart its device, thereby flushing out the
adversary. Reboots occur at specified times during the protocols, not necessarily
simultaneously. The adversary can immediately corrupt a party after rebooting,
as long as it does not exceed the allowed threshold at that time. The restart
is performed via code written in untamperable memory. Importantly, rebooting
does not remove the previous state of a corrupted party from the adversary’s
view; in particular, the adversary still knows the secret state of a party, including
any secret keys that were held by that party during corruption. Furthermore, the
internal state of a corrupted party that has restarted may have been arbitrarily
modified by the adversary. For clarity, we call a party actively corrupted when
the adversary actively controls that party’s behavior and passively corrupted or
exposed if the party was uncorrupted either by the adversary or by reboot.

Keys. Every party Pi holds a private key ski of a threshold signature scheme with
individual public signature key pki and public key pk. Further, every party Pi

holds a private key dki of a threshold encryption scheme with individual public
verification key vki and public key ek. The threshold for both schemes is ts+1. We
assume a trusted dealer that generates PK = (pk1, . . . , pkn, pk, vk1, . . . , vkn, ek)
and sk1, . . . , skn, dk1, . . . , dkn and outputs a signature and encryption private
keys ski, dki and the public key PK to each party Pi.

A party Pi can use its signature key ski to generate a signature share σi on
a message m. The signature share σi can be verified using the message m and
the public verification key pki, and is called valid if the verification is successful.
As a shorthand notation for legibility, we use ⟨m⟩i for a threshold signature σi
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of message m under secret key ski. A set of ts + 1 valid signature shares on the
same message m can be used to compute a signature σ for that message, which
can be verified using the public key pk and m.

A party Pi can encrypt a message m using the public encryption key ek to
generate a ciphertext c, and can use its decryption key dki to obtain a decryption
share ci of c. A decryption share ci can be verified with respect to c, ek and vki
and is called correct if the verification is successful. A set of ts + 1 correct
decryption shares can be used to obtain the decryption m of the ciphertext c.

We assume adaptively secure idealized threshold signature scheme and thresh-
old encryption scheme. For a parameter κ, a signature share and a full signature
have length O(κ). We implicitly assume that parties use domain separation when
constructing signatures to ensure only local context validity. An encryption of
a message m of length |m| has length |m| + O(κ), and a decryption share has
length O(κ); these criteria can be met using standard KEM/DEM mechanisms.

3 Preliminaries

State machine replication protocols enable a set of parties to emulate a sin-
gle server by agreeing on an ever-growing, ordered log of transactions.3 Given
that SMR protocols usually continue indefinitely, we opt for a definition that
clearly states how the logs are constructed and committed, and their relation
order depending on epochs. A party maintains an ever-growing append-only log
consisting of blocks of transactions: blocksi = (blocki[1], blocki[2], . . .), where the
notation blocki[e] refers to the block output by party Pi in epoch e. Each blocki[e]
is initialized with a special character ⊥ and populated by a set of transactions by
Pi in epoch e. A party’s epoch number is incremented after it outputs a block.

Definition 1 (State Machine Replication (SMR)). Let Π be a protocol ex-
ecuted by n parties P1, . . . , Pn. Let pp be some public parameters (e.g., PKI).
Parties receive transactions as input, locally maintain arrays blocks, and output
blocks and a publicly verifiable proof πi[e] for each blocki[e] in blocks. Π is a
secure SMR protocol tolerating t corruptions if the following properties hold:

– (t-Consistency) If an honest party outputs a block B in epoch e then all
honest parties output B in epoch e.

– (t-Completeness) Every honest party outputs a block in all epochs.
– (t-Liveness) If a transaction tx is input to at least n− t honest parties, then

all honest parties eventually output a block containing tx.
– (t-External validity) If an honest party outputs (B, π), then for a fixed public

Boolean function Verify it holds that Verify(pp, B, π) = 1.

Definition 2 (Binary Byzantine Agreement (BA)). Let Π be a protocol
executed by n parties P1, . . . , Pn, where each party Pi begins holding input xi ∈
{0, 1} and parties terminate upon generating output. Π is a secure BA protocol
tolerating t corruptions if the following properties hold:
3 Following [29], we distinguish between SMR and atomic broadcast in that the former

explicitly requires an externally verifiable proof of output validity.
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– (t-Validity) If every honest party’s input is equal to the same value x, then
every honest party outputs x.

– (t-Consistency) All honest parties output the same message x.
– (t-Termination) Every honest party eventually terminates with output x.

Definition 3 (Asynchronous Common Subset (ACS)). Let Π be a protocol
executed by n parties P1, . . . , Pn, where each party Pi begins holding input xi ∈
{0, 1}∗ and parties output sets of cardinality at most n. Π is a secure ACS
protocol tolerating t corruptions if the following properties hold:

– (t-Validity) If every honest party’s input is equal to the same value x, then
every honest party outputs the value {x}.

– (t-Validity with termination) If every honest party’s input is equal to the
same value x, then every honest party outputs the value {x} and terminates.

– (t-Consistency) If an honest party outputs S, all honest parties output S.
– (t-Set quality) If an honest party outputs a set S, then S contains the input

of at least one honest party.
– (t-Termination) Every honest party generates output and terminates.

Block agreement (introduced in [8]) is a validated agreement on objects called
pre-blocks. A pre-block is a vector of length n where the ith entry is either ⊥ or a
message with a valid signature attached. The quality of a pre-block is defined as
the number of entries that are not ⊥; a k-quality pre-block has quality at least k.

Definition 4 (Block Agreement (BLA)). Let Π be a protocol executed by n
parties P1, . . . , Pn, where each party Pi begins holding input xi ∈ {0, 1}∗ and
terminates upon generating output. Π is a secure BLA protocol tolerating t cor-
ruptions if the following properties hold:

– (t-Validity) If every honest party has input an (n−ts)-quality pre-block, then
every honest party outputs an (n− ts)-quality pre-block.

– (t-Consistency) Every honest party outputs the same pre-block B.

Next, we briefly introduce some standard cryptographic primitives we use.

Threshold signature schemes. A (t, n)-threshold signature scheme is a signa-
ture scheme allowing t+1 parties out of n to compute a signature on a message,
with up to t < n corruptions. It is non-interactive if parties can non-interactively
compute signature shares that can be combined in the signature on a message,
using protocols TS.Setup,TS.KeyGen,TS.Sign,TS.ShVer,TS.Verify for setup, key
generation, partial signing, share verification and signature verification. The de-
sired properties are correctness, security (unforgeability under chosen-message
attack) and robustness (any number ≥ t+1 of signature shares can be combined
to yield a signature) against a probabilistic polynomial-time adversary.

Linear error correcting codes. We adopt from [30] the description of er-
ror correcting codes, in particular, the Reed-Solomon (RS) code. An (n, b)-RS
code encodes b data symbols into codewords of n symbols, and can decode the
codewords to recover the original data.
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Given inputs m1, . . . ,mb, the encoding function ENC computes codewords
s1, . . . , sn. Knowledge of any b elements of the codeword uniquely determines
the input message and the remaining of the codeword.

The decoding function DEC computes (m1, . . . ,mb), and is capable of tol-
erating up to c errors and d erasures in codewords (s1, . . . , sn), if and only if
n− b ≥ 2c+ d.

Committee election. A first method to elect a committee uses threshold sig-
natures to produce an unpredictable coin. The coin is used to determine an
ordering of parties by computing the hash H(coin, i) and to order the parties ac-
cordingly. To elect a size κ committee, one simply takes the first κ parties in the
ordering. The second method, known as cryptographic sortition, uses verifiable
random functions (VRF) to allow each party to individually determine whether
they are part of a committee, and then prove their membership to others [18,1].
During the protocol, parties are elected to a committee if and only if the output
of the VRF on a specific string is less than a parameter b.

Throughout the paper, we deal with several security parameters. The sig-
nature size and the hash output size depend on a parameter that ensures com-
putational security. The committee sizes depend on a parameter that ensures a
negligible failure probability. To streamline notation, we denote all these by κ.

4 Asynchronous Common Subset

The protocol proceeds as outlined in Figure 1. Each party P1, . . . , Pn, starts with
an input of size ℓ and splits it into b blocks. These b blocks are then encoded
into n codewords of size ℓ/b using a linear error correcting code. Each party Pi

forms a message containing the j-th codeword and a hash of the input, signs it
and sends it to party Pj . Upon receiving a validly signed message, each party
multicasts it, along with the associated signature which will serve as a proof
of the codeword validity. We refer to this procedure of input distribution as
INDI, and present it in Figure 2. INDI is performed before the agreement on
whose messages to output, and ensures that all parties are eventually able to
reconstruct the selected inputs despite an adaptive adversary.

Upon receiving n− ts messages containing codewords, parties attempt to re-
construct the input. Instructions related to reconstruction (referred to as RECON)
are shown in Figure 2. Upon reconstructing a valid input from some party Pj ,
parties multicast a signed vote message. Upon receiving ts +1 votes for Pj , par-
ties assemble a certificate of validity for the reconstructed value of Pj , which
consists of ts + 1 signatures on hj , used to form a full signature. The parties
multicast a commit message carrying this certificate and the combined signa-
ture. We note that recently, Das et al. [14] proposed an asynchronous reliable
broadcast protocol using error correcting codes (but without digital signatures)
that is related to this step. Finally, upon receiving a unique commit message
for party Pj , parties input 1 to the corresponding BAj instance. We implicitly
assume that if honest parties receive conflicting commit messages, they do not
input 1 to the respective BA.
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Fig. 1. Diagram of the steps in the ΠACS protocol. BA stands for Byzantine Agreement.
Ii is the set of indices j for which party Pi reconstructed the initial message of party Pj .

INDI(x)

1. Encode x using ENC into codewords si,1 . . . , si,n. Compute hi := H(x).
2. For j ∈ [n], compute φi,j := TS.Sign(PK, ski, (si,j , hi)). Set vi,j :=

(si,j , hi, φi,j). Send vi,j to party Pj .
3. Upon receiving a valid vj,i = (sj,i, hj , φj,i), multicast ⟨vj,i⟩i.
4. Output the received set of {⟨vj,k⟩k} for Pj from Pk.

RECON({⟨vj,k⟩k})

1. Parse vj,k as (sj,k, hj , φj,k) and ignore the ones with invalid signatures
(either from Pj or from Pk). Let K be the set of remaining messages.

2. If there exists a subset K′ ⊆ K such that |K′| ≥ n−ts and all contained
messages vj,k have the same value hj , compute x = DEC({sj,k}k∈K′).

3. If H(x) = h, output x. Else, output ⊥.

Fig. 2. Input distribution and reconstruction from the perspective of party Pi∈{1,...,n}.

Protocol ΠTerm (Figure 4) assembles an output certificate that allows parties
to output and terminate (OC 0), ensuring no honest parties are “left behind”.

Across the protocols, we use PK as the public keys output by TS.KeyGen and
ski the secret key associated to Pi. For simplicity, in ΠACS and the corresponding
functionalities, we use φi,j as both the signature of Pi over si,j , and over hi, sent
to party Pj . In this section (and all sections but Section 7), we use a binary BA
protocol with ta-validity, ta-consistency, and ta-termination in the presence of
ta < n/3 adaptive corruptions, and communication complexity of O(n2).

Encoding and reconstruction. ENC and DEC are associated to a (n, b)-RS
code (Section 3). In the reconstruct procedure RECON, before feeding the code-
words into the DEC algorithm, parties first check that the corresponding signa-
tures are correct. Then, parties check whether at least n − ts of the messages
have the same associated hash value. If an honest party has not managed to
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ΠACS(xi)

1. Run INDI(x) and store {⟨vj,k⟩k} for Pj as they are received from Pk.
2. Input {⟨vj,k⟩k} to RECON. If RECON outputs xj , multicast a vote

votei := ⟨vote, ⟨hj⟩i, φj,i⟩i.
3. Upon receiving ts + 1 valid votes from distinct Pk on j, combine the

threshold signatures into a full signature and form a certificate cj :=
(commit, ⟨hj⟩) and send it to all parties.

4. Upon receiving a commit certificate cj for the input of a party Pj ,
forward it to all parties.

5. Upon receiving a commit certificate for party Pj input 1 to BAj . After
outputting 1 in at least n− ta BA instances, input 0 for the rest.

6. Set S to be the set of indices of the BA instances that delivered 1.
7. Output according to the following output conditions:

OC 0. If Pi has received a valid certificate (output, c̃, x, h), multicast
(output, c̃, x, h). Output x and terminate.

OC 1. Else if Pi (i) has obtained n − ts certificates (commit, ⟨hj⟩) and (ii)
reconstructed inputs xj such that hj = H(xj) of distinct Pj , all have
the same value x, then input (xj , hj) to ΠTerm.

OC 2. Else if Pi has (i) |S| ≥ n−ta, (ii) all n BA instances have terminated, (iii)
Pi has obtained certificate (commit, ⟨hj⟩) for j ∈ S, (iv) reconstructed
input xj such that hj = H(xj) and such that a strict majority of
{xj}j∈S has value x, then input (xj , hj) to ΠTerm.

OC 3. Else if Pi has (i) |S| ≥ n− ta, (ii) all n BA instances have terminated,
(iii) Pi has obtained certificates (commit, ⟨hj⟩) and (iv) reconstructed
input xj such that hj = H(xj) for all j ∈ S, then output S =

⋃
j∈S xj

and terminate.

Fig. 3. ACS protocol from the perspective of party Pi∈{1,...,n}.

ΠTerm(x, h)

1. Multicast ⟨x, h⟩i.
2. Upon receiving at least ts + 1 valid signature shares ⟨x,H(x)⟩i from

distinct parties, aggregate the signature shares into an output certificate
c̃ for x and multicast (output, c̃, x,H(x)). Output x and terminate.

3. Upon receiving a valid output certificate c̃ for x, multicast
(output, c̃, x, h). Output x and terminate.

Fig. 4. Termination helper protocol from the perspective of party Pi∈{1,...,n}.

reconstruct an input yet, it waits for more messages, then calls RECON again.
Thus, each party feeds at least n−ts valid codewords in DEC. The (n, b)-RS code
allows a party to split an input in b blocks and encode them into n codewords.
In order to tolerate d erasures, it must be possible to reconstruct the b blocks
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from n − d correct codewords. Furthermore, to tolerate c errors among n − d
codewords, it must hold that n− b ≥ 2c+ d.

If we let b be equal to ts, we can tolerate either ts+ ta erasures, or tolerate ta
errors along with ts−ta erasures (since n > 2ts+ta). This means we need to wait
for n− ts + ta codewords in total in order to guarantee correct reconstruction in
the asynchronous case when ta parties are corrupted. Thus, a gain in communi-
cation efficiency, obtained from using codewords to achieve agreement on length
κ hashes instead of length ℓ inputs and from not multicasting the reconstructed
output, leads to potentially having to wait for n − ts + ta messages in order to
reconstruct the correct output if the adversary delivered ta bad codewords.

If we let b be equal to ta, we can tolerate either ts errors and no erasures,
or 2ts erasures. This corresponds to the synchronous case when ts parties are
corrupted, and honest parties receive all messages that were sent after at most
∆ time. Therefore, if an honest party only receives n − ts codewords, they are
all correct. However, we will show below that there is no need to tolerate ts
errors in the synchronous case. Briefly, we can use extra information—the hash
value—in order to detect an incorrect reconstruction, and there will be suffi-
ciently many inputs of the honest parties correctly reconstructed in order to
achieve termination. Therefore it suffices to let b = ts throughout.

Lemma 1. Suppose there are at most ta corruptions. Given a certificate
(commit, ⟨h⟩) for a party P , all honest parties can eventually reconstruct the
same output in a run of ΠACS.

Proof. If P is honest, then all honest parties will eventually receive n− ts valid
codewords of the true input (since we assume unforgeable signatures), allowing
them to correctly reconstruct x.

Assume P is dishonest. To obtain a valid commit certificate on P ’s hash ⟨h⟩,
ts − ta + 1 honest parties need to have seen n − ts valid messages, all with the
same h = H(x). Of these n− ts messages, ta could have been sent by corrupted
parties in the multicast round. In the worst case, in the first round when P sent
codewords, it could have sent only n−ts−ta codewords (but all valid) to distinct
honest parties. Eventually, all honest parties receive the n − ts − ta codewords
and can reconstruct the same input x if the code tolerates ts + ta erasures.

On the other hand, the adversary might send ta malicious codewords which
will prevent correct reconstruction from n − ts codewords. However, assuming
H is a collision-resistant hash function, except with negligible probability, there
do not exist inputs x ̸= x′ reconstructed by different sets of codewords such that
h = H(x) = H(x′). Therefore, if after inputting n − ts codewords to RECON
and not obtaining a valid output with respect to h, the honest parties wait until
they receive sufficient codewords in order to be able to correctly reconstruct.

As stated above, each input of size ℓ is split into to b = ts blocks: n − ts >
ta + ts = 2ta + ts − ta. This means that the code can tolerate either ta + ts
erasures, or ts − ta erasures and ta errors if parties wait for n− ts + ta messages
to honest parties. ⊓⊔
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Lemma 2. If there are at most ta-corruptions, there cannot be two valid cer-
tificates (commit, ⟨h⟩), (commit, ⟨h′⟩), associated with P , and h ̸= h′.

Proof. If P is honest, then all honest parties eventually receive n − ts valid
messages containing codewords and the same hash h of the true input, so they
can correctly reconstruct x. Therefore, assuming unforgeable signatures, no valid
commit message (commit, ⟨h′⟩) for h′ ̸= h can exist.

Now suppose P is dishonest. Since there is a certificate (commit, ⟨h⟩) con-
structed from at least ts + 1 signatures, and ts + 1 > ta, at least one honest
party Pj signed h. This implies Pj reconstructed an input x such that h = H(x)
and saw n− ts distinct valid messages v∗,l = (s∗,l, h). At most ta messages could
have originated from malicious parties, so n− ts− ta > ts+1 were messages that
honest parties relayed honestly. Assume there is a different honest party Pi that
participated in a different commit certificate on h′ for P . Then that party also
saw n−ts distinct valid messages v∗,l′ = (s∗,l′ , h

′), out of which n−ts−ta > ts+1
were messages that honest parties relayed honestly. These sets of honest parties
should not intersect, so 2(n− ts − ta) < n− ta, but this contradicts our assump-
tion that n > 2ts + ta. ⊓⊔

Note that if the network is synchronous and ts = ⌊n/2⌋, ta = 0, different
honest parties could receive commit certificates on different hashes of the same
malicious party (honest parties always multicast the received certificates). In
such a case, honest parties detect equivocation and do not input 1 in the associ-
ated BA. However, if the network is asynchronous equivocation is not necessarily
detected. Nevertheless, as we see below, validity will still hold.

Lemma 3. ΠACS satisfies ts-validity with termination.

Proof. Suppose all honest parties have the same input x and up to ts parties are
corrupted. At most ts <

⌊
n−ta

2

⌋
+1 < n−ts reconstructed values can be different

than x, so there cannot exist an output certificate on a value x′ ̸= x even if two
honest parties accept different commit certificates for the same corrupted party.

Honest parties will eventually be able to obtain valid commit certificates
for the inputs of at least n − ts honest parties, and therefore (by assumption)
eventually obtain at least n−ts valid certificates for x. At this point, if an honest
party has not yet output, it will input {x} to ΠTerm (in OC 1). If at least ts + 1
parties call ΠTerm via OC 1, then eventually, each party will receive an honest
output certificate on {x}, output and terminate. Below we handle the case in
which some honest parties output before the above conditions were satisfied.

Assume party P output before the above could occur. If P called ΠTerm via
OC 2, then despite ts corruptions that could break security of the ta-secure
BA, it saw x′ reconstructed in a strict majority of valid values associated with
n − ta BA terminated instances. Any set of BA instances constituting a strict
majority must contain at least one instance corresponding to honest party, since⌊
n−ta

2

⌋
+ 1 > ts + 1, and so {x′} = {x} by assumption. Furthermore, in this

case P would have input (x, h) to ΠTerm, and so all parties eventually receive an
output certificate on {x}. Since n− ts >

⌊
n−ta

2

⌋
+ 1, and honest parties’ inputs
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can always eventually be reconstructed, each honest party will be eventually able
to output due to OC 0, even if it was not able to finish the reconstruction of the
corrupted parties’ inputs.

Finally, if P output S as a result of OC 3, then P did not observe a strict
majority of BA instances in S corresponding to the same value. By assumption,
the honest parties have the same input x, so this implies a strict majority of
values S correspond to corrupted parties. However, this contradicts the assump-
tion that only ts parties are corrupted, because ⌊ |S|

2 ⌋ ≥ ts. Therefore, no honest
party outputs via OC 3 when all honest parties have the same input. ⊓⊔

Lemma 4. ΠACS satisfies ta-set quality.

Proof. Suppose an honest party Pi output a set S.
If Pi output S = {x} due to OC 0, then Pi must have obtained a valid output

certificate of at least ts + 1 signatures on x, which requires that at least one
honest party (call it Pj) input (x, h) to ΠTerm(x, h) in OC 1 or OC 2. Consider
each case. If Pj input (x, h) due to OC 1, then it gathered a valid certificate on at
least n−ts values equal to x. At least n−ts−ta ≥ ts+1 of the parties associated
to these values are honest, so RECON returns their correct original input value.
Otherwise, if Pj input (x, h) due to OC 2, then it output 1 in at least n− ta BA
instances and it saw a strict majority of the reconstructed corresponding inputs
reconstruct to the value x. Because n ≥ n − ts +

⌊
n−ta

2

⌋
+ 1, x was input by

some honest party. Thus, in either case some honest party input x.
If P output S due to OC 3, then it output 1 in at least n− ta BA instances

but without the majority condition satisfied. At least one of these instances
corresponds to an honest party, so S contains some honest party’s input. ⊓⊔

Lemma 5. ΠACS is ta-terminating.

Proof. Assume no honest party has output yet. Eventually, all honest parties
will obtain at least n− ta valid commit certificates, since there are at least n− ta
honest parties. Moreover, by Lemma 2, even on malicious inputs, honest parties
cannot obtain multiple valid certificates. By the ta-terminating property of BA,
all parties terminate all n BA instances eventually. By the ta-consistency of BA,
all honest parties will agree on the set S of BA instances that output 1. Finally,
by Lemma 1, all honest parties reconstruct the same inputs associated to S. This
allows some honest party to output and terminate.

It remains to show that once some honest party Pi has terminated, all honest
parties eventually terminate. If Pi output due to OC 0 (implying it received a
valid output certificate from OC 1 or OC 2), then eventually all honest parties
receive the certificate multicast by Pi and terminate (if they have not already).

If Pi output due to condition OC 3, then it must have terminated all BA
instances, obtained commit certificates and reconstructed all inputs correspond-
ing to S = {i|BAi output 1} for some |S| ≥ n − ta. Then, ta-termination and
consistency of BA ensure that each other honest party Pj eventually observes
parts (i) and (ii) of OC 3 to be true. Furthermore, each honest party eventually
reconstructs each {xj}j∈S and receives the certificates needed to terminate, since
Pi must have sent these certificates to all other parties during ACS. ⊓⊔
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Lemma 6. ΠACS satisfies ta-consistency.

Proof. Assume an honest party Pi has output S. By Lemma 5, each other honest
party eventually outputs some set S′. It remains to show that for each possible
combination of output conditions, S = S′.

Suppose S = {x} was output via OC 0, i.e., upon receiving a valid output
certificate. There are two subcases.

First, suppose Pj output S′ = {x′} via OC 0. The existence of an output
certificate for x implies that there exists an honest party P who contributed
a share via either OC 1 or OC 2; likewise, some honest party P ′ contributed
a share for x′. If both P and P ′ contributed shares via OC 1, then quorum
intersection among the two sets of n − ts certificates implies x = x′. If (say) P
and P ′ contributed shares by OC 1 and OC 2, respectively, then any set of n− ts
BA instances and any set of

⌊
n−ta

2

⌋
+1 BA instances must intersect at an honest

party, and so x = x′. Finally, if both P and P ′ contributed shares via OC 2,
then they agree on S, and once again x = x′.

Second, suppose towards a contradiction that Pj output S = ∪j∈Sxj for
reconstructed values xj via OC 3. Of those n− ta values, at most ts can have a
value x′ ̸= x. But this means that Pj saw at least n−ta−ts ≥ ts+1 reconstructed
values equal to x, in which case the order of else-if clauses would have caused Pj

to output via OC 2, a contradiction.
Third, say Pi outputs S as a result of OC 3. The case in which Pj output {x′}

via OC 0 is equivalent to the second subcase above. Suppose Pj also output a set
S′ via OC 3. Both Pi and Pj must have seen all BA instances terminate and agree
on the set of BA instances S that output 1. By Lemma 1, we have S′ = S. ⊓⊔

Communication complexity. The ΠACS protocol has a communication com-
plexity of O(n2ℓ+ κn3) per input of size ℓ.

5 The Update SMR Protocol

In this section, we consider an adaptive adversary without mobility, which can
actively corrupt at most ts parties if the network is synchronous, and can corrupt
at most ta parties if the network is asynchronous, in any given epoch. Protocol 5
describes our construction for a network-agnostic SMR protocol.

Apart from the ACS protocol described in Section 4, we also use a block agree-
ment protocol (BLA), whose role is to make parties agree on the input to ACS if
the network is synchronous. Honest parties input (n − ts)-quality pre-blocks of
length L to the BLA and ignore any pre-blocks with quality less than n− ts.

We use the adaptively secure BLA protocol from [8], which we call ΠBLA. The
protocol has a total complexity of O(κn3 + κn2L) per pre-block of size L. ΠBLA

has R inner rounds and guarantees ts-validity, ts-consistency and ts-termination
in a synchronous network when up to ts parties are corrupted. We cannot guar-
antee these in an asynchronous network. However, even if the network is asyn-
chronous, any honest party who terminates ΠBLA does so with output that is a
valid n− ts-quality pre-block.
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The logical flow of the network-agnostic SMR is the following. In every epoch,
each honest party first selects a random sample of L/n transactions from its
buffer of transactions. The selected transactions are then threshold encrypted.
Next, the parties multicast their encrypted samples and start to assemble a
(n − ts)-quality pre-block. If an honest party succeeds in assembling such a
pre-block within the allotted time, it inputs it to ΠBLA, which is guaranteed to
terminate with consistent output B∗ if the network is synchronous. Regardless,
honest parties will then input either B∗ if obtained from ΠBLA or a (n − ts)-
quality pre-block to ΠACS. Recall that ΠACS is guaranteed to terminate regardless
of the network condition. Lastly, honest parties participate in constructing the
final block: they jointly decrypt the output value of ΠACS, populate the block
with the unique transactions, assemble a validity certificate on the hash of the
obtained block, and remove the posted transactions from their buffer.

We consider that epoch e starts for a party at time Te = µ(e−1) as measured
by the local clock. The parameter µ is a spacing parameter that should be heuris-
tically tuned by the network designers to improve throughput, i.e., not have too
much overlap or separation between epochs. If the network is synchronous, then
epochs start at the same time for all parties. If the network is asynchronous, par-
ties might start the epochs at different times and might not output a block until
they have to start the next epoch. We implicitly assume parties can distinguish
between messages from different epochs, e.g. by tagging messages with e.

Below we give our main results on Update. The proofs use the results on
ΠACS and ΠBLA discussed so far, and are provided in the full version [4].

Condition (∗). Assume ta ≤ ts, 2ts + ta < n, and ta ≤ n/3, ts ≤ n/2.

Theorem 1. Under condition (∗), ΠSMR is (1) ts-consistent and ts-complete if
the network is synchronous and (2) ta-consistent and ta-complete if the network
is asynchronous.

Theorem 2. Under condition (∗), ΠSMR is (1) ts-externally valid if the network
is synchronous and (2) ta-externally valid if the network is asynchronous.

Theorem 3. Under condition (∗), ΠSMR is (1) ts-live if the network is syn-
chronous and (2) ta-live if the network is asynchronous.

Communication complexity. In ΠSMR, the parties select a batch of L/n trans-
actions, construct a pre-block of size O(L|tx|), and input the pre-block to ΠBLA.
If ΠBLA outputs, it also outputs a pre-block of size O(L|tx|). The input to ΠACS is
of size O(L|tx|), and if the network is synchronous, the output is of size O(L|tx|).
Conversely, if the network is asynchronous, the output is of size O(nL|tx|). Since
the transactions were randomly selected from honest parties’ buffers, with high
probability there will be O(nL) transactions in the output block after decryption,
assuming that throughput is not limited by a lack of transactions.

Step 1 of ΠSMR incurs O(nL|tx|+n2κ) total communication. In step 2, ΠBLA

incurs O(κn3+κn2L|tx|) total communication and ΠACS incurs O(κn3+n2L|tx|)
total communication. Finally, in step 3, the parties assemble an output block
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ΠSMR

Step 1. Proposal selection.
1.1 At time Te = µ(e− 1): Set Be

i := (⊥, . . . ,⊥) an empty pre-block of size
n, and set readye = false.

1.2 Let xi be a threshold encryption of a random selection of L/n transac-
tions without replacement from the first L transactions in the party’s
buffer. Multicast xi.

1.3 Upon receiving a validly signed message xj , if Be
i [j] =⊥, set Be

i [j] := xj .
1.4 Upon assembling a (n− ts)-quality pre-block Be

i , set readye = true.
Step 2. Agreement.

2.1 At time Te + ∆: If readye = true, pass Be
i as input to Πe

BLA. If Πe
BLA

terminates, let B∗ be the output.
2.2 At time Te + (5R+ 1)∆: Terminate Πe

BLA if not already terminated.
2.3 Pass B∗ or wait until readye = true and pass Be

i as input to Πe
ACS.

2.4 Receive S = {B∗
j }j∈S , where S ⊂ {1, . . . , n} from Πe

ACS.
Step 3. Output and public verification.

3.1 On input S = {B∗
j }j∈S , for each j ∈ S, do:

- Jointly decrypt the values in S = {xj}j∈S .
- Create a block by sorting

⋃
j∈S xj in canonical order.

- Hash and sign block, then multicast ⟨H(block)⟩i.
3.2 On receiving ts +1 distinct valid signatures ⟨h⟩j s.t. h = H(block), do:

- Assemble π as ⟨h⟩ and proof of correct decryption of S.
- Remove the transactions in block from the buffer and output (block, π).

3.3 Update e← e+ 1.

Fig. 5. Update SMR protocol with adaptive security for party Pi∈{1,...,n}.

and then multicast the signatures of the hash of the block to construct a proof,
incurring O(κn2) communication.

Summing over all steps, we see that Update incurs a total communication
of O(κn3 + κn2L|tx|). Choosing a proposal sample size L that is O(n) yields
an asymptotic total communication of O(κn3) per block of transactions and an
amortized communication complexity of O(κn2) per transaction.

6 The Upstate SMR Protocol

We consider a static adversary that is able to corrupt up to t̂a = (1−ϵ)ta parties
in the asynchronous case and up to t̂s = (1−ϵ)ts parties in the synchronous case,
for a small ϵ > 0. Informally, the ϵ slack in the corruption thresholds ensures
that with high probability the fraction of corruptions in a smaller committee
chosen at random is close to the fraction of corruptions in the pool of n parties.

Figure 6 describes the input selection mechanism INSEκ that handles input
encoding and primary committee election. The input of size ℓ = L/κ is split
as before into b blocks, which are then encoded into n codewords of size ℓ/b
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INSEκ(e, xi)

1. Encode xi using ENC into codewords si,1 . . . , si,n.
2. Compute hi := H(xi) and signature σi := TS.Sign(PK, ski, e).
3. Set vi,j := (si,j , hi, σi). For j ∈ {1, . . . , n}, send (vi,j , φi,j) to party Pj ,

where φi,j := TS.Sign(PK, ski, vi,j).
4. Upon receiving n− t̂s messages vj,i = (sj,i, hj , σj), select t̂s + 1 signa-

tures σj and compute coin from them.
5. For each j ∈ {1, . . . , n}, compute h̄j := H(coin, j) and select the first κ

values to populate the primary committee index set C.
6. For each j ∈ C, multicast the codeword sj,i and φj,i received from Pj .
7. For each member j in C, output the received {sj,k, φj,k, hj}, from Pk.

Fig. 6. Input selection—input encoding and primary committee election—from the
perspective of party Pi∈{1,...,n} in epoch e.

(Section 3). Each party sends the i-th codeword with a hash and a threshold
signature over the epoch number to party Pi. Combining t̂s + 1 threshold sig-
natures yields an unpredictable value that is used to select a committee of κ
parties whose inputs will form the output.

Protocol 7 describes our construction for a network-agnostic committee-based
SMR protocol. At the start of each epoch, parties choose a random sample of
L/κ transactions from their buffers. The parties then run an input selection
procedure, called INSE, to select κ committee members. Inputs from committee
members are gathered into pre-blocks, which are passed to committee-based
versions of BLA and ACS in the same way as in Update. Because the committee
is of size κ, the pre-blocks are (1−ts/n)κ-quality. The committee-based ACS and
BLA protocols are described at the end of the section, with additional details
in the full version of the paper [4]. After running BLA and ACS, the parties
construct the final block by jointly decrypting the output value of Πκ

ACS.

Condition (∗∗). Assume ta ≤ ts, 2ts + ta < n, ta ≤ n/3, ts ≤ n/2 and t̂a :=
(1− ϵ)ta, t̂s := (1− ϵ)ts for ϵ > 0.

Theorem 4. Under condition (∗∗) except with negligible probability, Πκ
SMR is

(1) t̂s-consistent, t̂s-complete, t̂s-externally valid and t̂s-live if the network is
synchronous and (2) t̂a-consistent, t̂a-complete, t̂a-externally valid and t̂a-live if
the network is asynchronous.

The proof follows along the same lines as the proofs of Theorems 1–3, using
the properties of the committee-based protocols Πκ

ACS and Πκ
BLA.

Committee-based asynchronous common subset. We now present an ACS
protocol Πκ

ACS in a network-agnostic setting with static corruptions.
An overview of the protocol appears in Figure 8. Inputs of size ℓ are passed

to the input selection procedure INSE (Figure 6), which determines the primary
committee C. Next, each party multicasts the codewords they received from the
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Πκ
SMR

Step 1. Proposal selection.
1.1 At time Te = µ(e− 1): Set Be

i := (⊥, . . . ,⊥) an empty pre-block of size
κ, and set readye = false.

1.2 Let xi be a threshold encryption of a random selection of L/κ transac-
tions without replacement from the first L in the party’s buffer.

1.3 Run INSE(e, xi) and store C and {sj,i, φj,i, hj}j∈C , as they are received.
1.4 Upon receiving n− t̂s codewords of xj , if (1) hj = H(xj) and Be

i [j
′] =⊥,

set Be
i [j

′] := xj , where j′ is the lexicographic order of Pj in C.
1.5 Upon assembling a (1− ts/n)κ-quality pre-block Be

i , set readye = true.
Step 2. Agreement.

2.1 At time Te + 2∆: If readye = true, pass Be
i as input to Πκ,e

BLA. If Πκ,e
BLA

terminates, let B∗ be the output.
2.2 At time Te + (7R+ 2)∆: Terminate Πκ,e

BLA if not already terminated.
2.3 Pass B∗ or wait until readye = true and pass Be

i as input to Πκ,e
ACS.

2.4 Receive S = {B∗
j }j∈S , where S ⊂ {1, . . . , n} from Πκ,e

ACS.
Step 3. Output and public verification.

3.1 Run Step 3 from Update ΠSMR.

Fig. 7. SMR protocol with adaptive security for party Pi∈{1,...,n}.

members of the primary committee. To reduce communication, one secondary
committee is elected for each member of the primary committee. The secondary
committee is responsible for constructing certificates of correctness for the re-
constructed values of the primary committee. The secondary committees are
self-elected as described in Section 3. Finally, parties agree on which primary
committee members’ values to output by running κ parallel BA instances.

Inputs are split into b = t̂s blocks using an error correcting code that tolerates
either t̂s erasures or t̂a errors and t̂s − t̂a erasures. For simplicity, in Πκ

ACS, we
use φi,j as both the signature of Pi over si,j and over hi, sent to Pj . Across the
protocols, H denotes a collision-resistant hash function and b a bound ensuring
committees of size κ in expectation.

Lemma 7. Πκ
ACS is t̂a-consistent, t̂a-terminating, has t̂s-validity with termina-

tion and t̂a-set quality except with negligible probability.

Committee-based block agreement protocol. Throughout the remainder
of the section, we consider a network that is synchronous with up to t̂s = (1−ϵ)ts
corruptions, such that with high probability a committee of size κ will have up
to tsκ/n corrupted members. Honest parties are assumed to input (1− ts/n)κ-
quality pre-blocks of total length κ to the block agreement protocol.

We construct a protocol BLAκ, based on the BA protocol from [2,1] and
the block agreement protocol from [8], with several changes to achieve security
against adaptive adversaries at a quadratic communication per pre-block. The
high-level idea is to elect a leader who proposes an input among the ones sent
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Fig. 8. Diagram of the steps in the Πκ
ACS protocol. CE stands for committee election

and BA for Byzantine Agreement.

Πκ,e
ACS(xi)

1. Run INSEκ(e, xi) and store C and {{sj,k}, hj , {φj,k}}j∈C , as they are
received from Pk.

2. For each j ∈ C, elect a secondary committee C̄j of size O(κ) as follows:
- Self-elect: if VRFski(i, j, e, coin) < b then compute proof ξi for Pi ∈ C̄j .
- If Pi ∈ C̄j , input {⟨vj,k⟩k} to RECON. If RECON outputs xj , multicast

a vote votei = (vote, ⟨hj⟩i, φj,i, ξi).
3. For j ∈ C, upon receiving tsκ/n+ 1 valid votes from distinct Pk in C̄j ,

form a certificate cj := (commit, ⟨hj⟩) and send it to all parties.
4. Upon receiving a commit certificate cj for the input of party Pj , forward

it to all parties.
5. Upon receiving a commit certificate cj on for party Pj , input 1 to BAj .

After outputting 1 in at least (1− ta/n)κ BAs, input 0 for the rest.
6. Set S to be the set of indices of the BA instances that delivered 1.
7. Output according to step 7 in ΠACS, where the set in OC 1 has size

(1− ts/n)κ and the sets in OC 2 and OC 3 have size (1− ta/n)κ.

Fig. 9. ACS protocol from the perspective of party Pi∈{1,...,n} in epoch e.

by the parties, such that honest parties will commit on the same value. In our
protocol, the proposal of inputs is performed before the leader election. Due to
the forward secure signatures, the adversary cannot later corrupt the leader and
cause them to equivocate. The construction is given in the full version [4].

Parties encode their pre-blocks into codewords and distribute them, along
with the hash, for future reconstruction and verification. The protocol is run
for multiple rounds, and a leader is elected at each round. The parties commit
on a value when they receive sufficient votes on that value, prioritizing votes
with higher round numbers. In each round, a different committee is tasked with
assembling a certificate. In a given round , only votes from the current committee
are considered valid. Πκ

BLA makes calls to a graded consensus protocol Πκ
GC, which

makes a call to a Propose protocol Πκ
Propose.
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Communication complexity. Πκ
ACS has communication complexity O(κnℓ +

κ2n2) communication and Πκ
BLA has communication complexity O(Rκ2n2+κnℓ),

per input of size ℓ. In Πκ
SMR, Πκ

BLA and Πκ
ACS are run on pre-blocks of size

O(L|tx|). If the network is synchronous, the output is of size O(L|tx|), while if
the network is asynchronous, the output is of size O(κL|tx|). After decryption,
since the transactions were randomly selected from honest parties buffers, with
high probability, there will be O(κL) transactions in the output block.

For simplicity, we omit the |tx| factor in the following paragraph. Πκ
SMR incurs

O(n2L/(κb)+n2κ) total communication for step 1.3 and O(n2κL/b+n2κ2) total
communication in step 1.4. In step 2, Πκ

BLA incurs O(Rκ2n2+κn2L/b+κnL) total
communication and Πκ

ACS incurs O(κn2L/b+κnL+κ2n2) total communication.
Since b = t̂s = O(n), Upstate incurs a total communication of O(Rκ2n2 +

κnL|tx|). This allows us to select a proposal sample size of L = O(Rκn) and
obtain a total communication of O(Rκ2n2) per transaction and an amortized
communication complexity of O(κn) per block L.

7 SMR under Arbitrary Network Changes

We now consider a network that can arbitrarily transition between synchronous
and asynchronous behaviors and a constrained epoch-mobile adaptive adversary,
who can corrupt at most ts unique parties over the duration of the protocol, and
can move between those ts parties from epoch to epoch, as long as it does not
exceed the ta or ts limit in any epoch or at any moment in time. In this model,
parties’ local machines may reboot to flush the adversary out. Importantly, the
state of the parties is not removed from the adversary’s view after uncorruptions.

Adding a reboot step at the beginning of each epoch to the network-agnostic
protocols discussed so far, Update and Upstate, as well as Tardigrade, results in
protocols that are secure under arbitrary network changes, as long as rebooting
ensures that n > 2ts+ ta, ta ≤ ts, with at most ts− ta exposed keys in the asyn-
chronous case, in the restricted epoch-mobile model. For simplicity, we assume
the reboot is instantaneous; otherwise we can adjust the timings of the steps.

Theorem 5. Protocols Update, Upstate, and Tardigrade [8] with reboots are se-
cure under arbitrary network changes against a constrained epoch-mobile adap-
tive adversary, where n > 2ts + ta, ta ≤ ts.

We prove the first part of Theorem 5 below, after some technical observations.
Proofs of the rest of Theorem 5 and of the Lemmata are given the full version [4].

Throughout, we use threshold cryptographic primitives with a threshold of
ts + 1. Although the adversary has access to up to ts keys/key shares, it cannot
create full signatures or certificates on its own because these require at least
ts+1 valid contributions; likewise, it cannot decrypt independently of the honest
parties. Moreover, while forming commit or output certificates, honest parties
only sign messages that they locally verified, such as a hash value whose associate
input was correctly reconstructed, or the output of the ΠACS protocol.
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In all protocols in this section, we use the binary BA protocol from [7], which
is also designed for a network-agnostic setting with n > 2ts + ta. It is signature-
free, apart from a threshold cryptosystem with high threshold of ts+1 to compute
the common coin and ensure termination. This ensures that even with ts key
exposures (but only ta active corruptions), the protocol remains ta-valid, ta-
consistent and ta-terminating against an adaptive adversary.

Lemma 8. In a ΠACSexecution, if there are at most ta corruptions and ts − ta
exposed parties, then at least n− ta BA instances will terminate with output 1.

Lemma 9. Suppose there are at most ta corruptions and ts− ta exposed parties
during an execution of ΠACS. Given a certificate for a party P , (commit, ⟨h⟩),
all honest parties eventually reconstruct the same output.

Lemma 10. If there are at most ta corruptions, there cannot be two valid cer-
tificates (commit, ⟨h⟩), (commit, ⟨h′⟩) associated with P such that h ̸= h′.

Proof. (Theorem 5, Update) When the network is only synchronous or only asyn-
chronous, or there is a single asynchronous to synchronous transition, the proof
follows directly from the security proof of Update in Section 5.

Suppose the network has undergone a transition from synchronous to asyn-
chronous. The adversary actively controls at most ta parties, but may have
exposed up to ts parties. This means that each pre-block created by an actively
corrupted party may contain up to ts validly signed adversarial ciphertexts. How-
ever, exposed parties still act honestly, so each pre-block created by an honest
party contains at most ta malicious ciphertexts. Because pre-block entries are
received directly from the corresponding party, an honest party’s (n−ts)-quality
pre-block will have at least n− ts − ta honestly created and signed ciphertexts.

In the following, we first examine the security of the building blocks and then
the security of the overall protocol.

ACS. In ΠACS, parties need to be able to reconstruct all values correspond-
ing to the at least n− ta BA instances that terminated with output 1. The use of
codewords makes the analysis slightly subtler, since the adversary can forge valid
but bad codewords and distribute them in the multicast round of INDI as if they
originated from the exposed parties. By Lemma 8, at least n− ta BA instances
will still terminate, despite exposures. Coupled with Lemmata 9 and 10, which
show there cannot be conflicting certificates and all honest parties are able to
eventually correctly reconstruct the same input, it follows that ΠACS achieves
ta-termination, ta-set quality and ta-consistency. Finally, ts-validity with termi-
nation has the same proof as in Lemma 3.

BLA. There is a Leader mechanism in ΠBLA [8], that is obtained using a
strict majority of parties. Hence it is still unpredictable in the presence of ts
exposed parties. The property required of ΠBLA in the asynchronous case is the
following: if an honest party does output in ΠBLA, its output is a (n− ts)-quality
pre-block. Honest parties only validate and multicast (n− ts)-quality blocks, so
this property still holds.
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SMR. A corrupted party can forge the signature of an exposed party when
assembling its own (n − ts)-quality pre-block. Therefore, up to ta pre-blocks
input to ΠBLA could have only n− 2ts entries originating from honest parties. If
such a block is output by ΠBLA, then the same holds for the the output of ΠACS.

By ta-consistency and ta-validity with termination of ΠACS, all honest parties
output the same set of pre-blocks. As a result, at least n − ta > ts parties con-
tribute valid decryption shares, and so every honest party is able to reconstruct
the same block. Therefore, Update SMR is ta-consistent and ta-complete.

Next, we argue that ta-liveness holds. If an adversarial pre-block is output
by ACS, only n− 2ts honest parties are guaranteed to remove L/n transactions
in a given epoch. Thus, the presence of key exposures increases the number of
epochs needed for tx to move to the front of sufficiently many honest parties’
buffers (see [4]). However, this still happens and ensures that tx is eventually
output, but the probability increases with the number of epochs.

External validity follows from consistency of ΠACS, since a threshold of ts+1
is used in the validity certificates over the block hashes.

Finally, the adversary cannot break the liveness of the protocol by erasing
threshold key shares of the corrupted parties: any ts + 1 shares can be used to
reconstruct, so in order to prevent reconstruction, the adversary would need to
erase at least n− ts − ta shares. But this would require the adversary to corrupt
more than ts parties over the duration of the protocol, since 2ts + ta < n. We
conclude that security is preserved even across multiple network transitions. ⊓⊔

8 Asynchronous Proactive Secret Sharing

We first consider an asynchronous network in the presence of a mobile adaptive
adversary. At the end, we extend the analysis to changing network conditions.

In each epoch, the adversary is limited to ta corruptions, but those ta corrup-
tions need not target the same parties in each epoch. Thus, over multiple epochs,
the adversary could have controlled more than ta + 1 different parties. While a
party is corrupted, its current epoch is considered to be undefined, since it can
behave arbitrarily. Upon becoming uncorrupted, a party’s local epoch number
is considered to be the epoch in which it was originally corrupted. We refer to
the parties that are not corrupted as honest (in that epoch).

Here, we use an additional assumption of secure (authenticated private) chan-
nels, implemented using a pairwise shared key inaccessible to the adversary, e.g.,
stored in secure hardware. We show that even with secure channels, it is impos-
sible to have a proactive asynchronous protocol without making any assumption
on epoch length (as in [10] where epochs are defined to take place between clock
ticks) but with epochs determined by a successful reshare of the secret (as in [33]
but where the network is partially synchronous). While Cachin et al. [10] briefly
remark upon this impossibility before making the assumption of clock ticks and
“asynchronous proactive channels”, we fully model and prove this result.
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Definition 5. A (ta+1)-out-of-n proactive verifiable secret sharing scheme with
reshare is defined by an algorithm Share and protocols Reshare,Reconstruct that
satisfy the following:

– Share takes as input a secret s ∈ F and outputs shares (s
(0)
1 , . . . , s

(0)
n ). Party

Pi, i = 1, . . . , n is given s
(0)
i and sets its epoch number to 0.

– Reshare is an interactive protocol run by a subset of parties S of size at least
n − ta that takes as input an epoch number τ , a set of shares associated
to that epoch number consisting of the share of each of the parties in S:
(s

(τ)
i1

, . . . , s
(τ)
i|S|

) and outputs to every party Pi, i ∈ [n] a new share s
(τ+1)
i

or an error symbol ⊥. A party Pi that receives output from Reshare with
associated epoch τ sets its epoch number to τ + 1.

– Reconstruct is an interactive protocol run by a subset of parties S of size at
least n−ta, that takes as input a epoch number τ , a set of shares (s(τ)i1

, . . . , s
(τ)
i|S|

)

and outputs to all parties either a value s′ ∈ F or an error symbol ⊥.

An honest party is said to complete Share,Reshare, or Reconstruct in epoch τ
when they generate the corresponding output from the algorithm in epoch τ .

We give a standard privacy game between a challenger and an adversary A
where the goal of the adversary is to learn the secret in the full version of the
paper [4]. The advantage of the adversary is denoted by Adv(A).

Definition 6. A proactive verifiable secret sharing scheme with reshare is secure
against a ta-limited adversary if it satisfies the following:

– (Privacy): Adv(A) is negligible.
– (Correctness): For any s ∈ F, conditioned on the adversary eventually deliv-

ering all messages between honest parties, it holds that: if during any epoch τ ,
a set S of least n− ta honest parties locally call Reconstruct on epoch num-
ber τ and local shares associated with τ , they obtain the initially shared secret:
Reconstruct(τ, {s(τ)i }i∈S) = Reconstruct(Share(s)). Furthermore, all parties
in S proceed to epoch τ + 1.

– (Liveness): For any epoch number τ ≥ 0, if an honest party has reached
epoch τ , i.e., has obtained output from the Reshare protocol associated to
epoch τ − 1, then all honest parties will eventually reach a epoch number
τ ′ ≥ τ , provided the adversary delivers all messages sent between honest
parties so far and the responses triggered by these messages.

In verifiable secret sharing, in order to achieve correctness, Share,Reshare
and Reconstruct need to implicitly have validation procedures of the inputs. We
asked for at least n − ta instead of ta + 1 parties to participate in Reconstruct
to guarantee success against ta malicious parties who could submit ta invalid
shares. Nevertheless, ta + 1 valid shares are sufficient to reconstruct the secret.

Theorem 6. There does not exist a secure asynchronous (ta+1)-out-of-n proac-
tive verifiable secret sharing scheme with reshare.
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Fig. 10. We denote by s
(τ)
j,i the intermediate share obtained by party Pi from party Pj

in epoch τ . Pj can construct its share for the next epoch s
(τ+1)
j from n− ta values s(τ)j,i .

The red quantities are in the view of the adversary. The red edges represent delayed
messages from epoch 1 delivered in epoch 3.

Proof. We show that an adversary can break privacy by amassing shares corre-
sponding to ta+1 parties in a single epoch. Then, we prove that protocols which
avoid the prior attack do not satisfy liveness. For simplicity we first consider the
case of non-interactive reshare protocols, and then handle the general case.

Non-interactive Reshare protocol. Consider n = 4 and ta = 1. This coun-
terexample is depicted in Figure 10 and can be extended to arbitraryn and
corruption threshold ta < n/3.

The adversary corrupts party P1 in epoch 1. At this point in time, the ad-
versary knows the state of P1, which includes the share s

(1)
1 . Each honest party

locally initiates the Reshare protocol at the onset of epoch 1. The adversary in-
structs P1 not to deliver any message and delivers all the following messages:
from P2 to all other parties, from P3 only to P1 and P4, and from P4 only to P1

and P3. The parties P3, P4 thus obtain sufficient information to construct their
shares s

(2)
1 , s(2)3 , s(2)4 and advance to epoch 2. However, P2 remains in epoch 1.

The adversary uncorrupts party P1 after Reshare was completed. At this point in
time, the view of the adversary includes s(1)1 and the intermediate shares for s(2)1 .
The adversary allows P1 to also advance to epoch 2.

At the onset of epoch 2, each honest party locally initiates the Reshare proto-
col. The adversary delivers all messages between parties. This enables all parties
to obtain their corresponding share s

(3)
1 , s(3)2 , s(3)3 , s(3)4 , and advance to epoch 3.

At the onset of epoch 3, the adversary corrupts party P2 and delivers the
messages originated in epoch 1 from P3 and P4 destined to P2. The adversary now
has 3 messages, counting s

(1)
1 , and is able to obtain s

(2)
2 . Hence, it reconstructs s

from two correct shares in epoch 2: s
(2)
1 , s

(2)
2 , without corrupting more than

ta = 1 party per epoch.
Restarting and flushing the adversary out does not prevent this attack, since

there is no synchronizing signal instructing a corrupted party to restart before
the first Reshare is completed. This could be addressed using erasures and/or
interaction; however, we show that protocols that avoid this attack are not live.
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Interactive Reshare protocols. Consider a generic interactive Reshare protocol
where two parties, Pi and Pj , start an epoch with s

(τ)
i and s

(τ)
j , respectively.

After r rounds of communication, Pi obtains s
(τ)
j,i and Pj obtains s

(τ)
i,j .

If only one of the r messages is useful for computing the new share, then
the previous attack still applies. If more than one of the r messages are needed
for computing the new share, and honest parties erase their previous state when
transitioning to a new epoch (implying they do not respond to messages origi-
nated from previous epochs), then the above attack does not break privacy. But
such an interactive asynchronous protocol where parties can only advance to the
next epoch after repeated interactions does not achieve liveness, as shown next.

Consider now that the adversary delays all messages destined to P1, hence
keeping it in epoch 1, while allowing the rest of the parties to progress an arbitrar-
ily large number of epochs τ . At this point, the adversary delivers all messages
that were sent so far, including the messages originated at P1 as response to the
received messages. However, since obtaining the output of any Reshare requires
interaction and the other honest parties do not respond to messages originated
in previous epochs in order to preserve privacy, a party P1 cannot reach a sub-
sequent epoch based only on the messages sent so far, breaking liveness. ⊓⊔

The attack above hinges on the fact that a party can still retrieve in epoch
τ ′ > τ the contents of a message sent to it in epoch τ . Both privacy and liveness
would be maintained if parties had access to “setup-free asynchronous forward-
secure channels” with the following properties: (1) A message sent in epoch τ can
only be read in epoch τ ; (2) At the onset of epoch τ +1, the sender and receiver
on that channel have access to the new secret and public key, respectively, i.e.,
the adversary does not control the delivery of this information (it should not be
interactive); (3) Messages in different epochs are encrypted with different keys.

Secure co-processors using forward secure encryption are not sufficient to
implement this kind of channel. Say a party P1 was delayed and is still in epoch τ ,
and all other parties advanced to epoch τ ′ > τ , updating their channel keys. But
when honest parties start a new Reshare, they cannot use the key associated to
P1’s epoch τ , because an adversary corrupting P1 in epoch τ would learn shares
from epoch τ ′ and break privacy. These are points (1) and (3). So until the
adversary delivers the messages from epoch τ , P1 is stuck, but this does not
break liveness if the protocol is non-interactive. If point (2) is satisfied, the other
parties need to already have the public key in the channel for epoch τ + 1,
otherwise the impossibility proof for interactive protocols would apply. But a
forward secure with unique public key alows a ciphertext encrypted at epoch
τ + 1 to be decrypted at epoch τ , so privacy is broken.

Note that in [10], the transition between epochs is external, triggered by a
clock tick, and can happen even if a party did not complete the Reshare protocol
in the current epoch. This allows parties to rely on the clock tick event to set
new channel keys in a synchronized way.

To circumvent the result in Theorem 6, Yurek et al. [36] considered high
reconstruction thresholds and defined local epochs such that a party can decide
to not pass to a subsequent epoch even if it has all shares to do so, unlike our
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definition based on completing a Reshare. Briefly, the impossibility does not hold
because (i) a party decides to progress to the next epoch after receiving at least
n − ta epoch τ messages (while in epoch τ), forcing the adversary to deliver
at least these many messages to every party per epoch; (ii) combined with a
high reconstruction threshold of n − ta, the ta shares held by the adversary in
epoch τ and the at most ta messages it could have delayed are not sufficient to
reconstruct s(τ), as n− ta > 2ta. We also mention that the constructions in [36]
assume every party has Paillier key pairs that are not refreshed after corruptions.

Proactive secret sharing under network changes. We again consider a
network that can arbitrarily switch between synchronous and asynchronous cases
and n > 2ts + ta, ta ≤ n/3, ts ≤ n/2. Note that in this setting, the Reconstruct
threshold is at least ts +1 and the Reshare threshold is n− ts in order to satisfy
privacy in case the network is synchronous.

Corollary 1. There does not exist a secure (ts, ta)-proactive verifiable secret
sharing scheme with reshare under arbitrary network transitions.

Proof. Assume the network is in an asynchronous state, so the adversary can
corrupt up to ta parties in the same local epoch. The arguments in the proof of
Theorem 6 still hold. For the privacy attack, the adversary delays the messages
in epoch τ towards ts− ta+1 honest parties, until the epoch(s) it corrupts these
parties (if ts ≥ 2ta, it needs more epochs to corrupt all ts− ta+1 parties), while
allowing the rest of the parties to complete the refresh in all epochs, i.e., deliver
and receive at least n − ts share messages. For the interactive liveness attack,
the adversary can still cause the parties to be arbitrarily far apart. ⊓⊔

We remark that the clock ticks used in ΠSMR (Section 5) to start an epoch
are not the same as the ones assumed in [10]. In our model, the epoch started
at Te does not necessarily finish by Te+1, and can continue in the background,
so liveness could be lost if all parties would erase their key shares at Te+1.
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