
Practical Provably Secure Flooding for
Blockchains

Chen-Da Liu-Zhang1[0000−0002−0349−3838], Christian
Matt2[0000−0001−5900−336X], Ueli Maurer3, Guilherme Rito3[0000−0002−0080−8670],

and Søren Eller Thomsen4[0000−0002−6931−4740]

1 NTT Research, USA
chen-da.liuzhang@ntt-research.com

2 Concordium, Zurich, Switzerland
cm@concordium.com

3 Department of Computer Science, ETH Zurich, Switzerland
{maurer, gteixeir}@inf.ethz.ch

4 Concordium Blockchain Research Center, Aarhus University, Denmark
sethomsen@cs.au.dk

Abstract. In recent years, permisionless blockchains have received a lot
of attention both from industry and academia, where substantial effort
has been spent to develop consensus protocols that are secure under the
assumption that less than half (or a third) of a given resource (e.g., stake
or computing power) is controlled by corrupted parties. The security
proofs of these consensus protocols usually assume the availability of a
network functionality guaranteeing that a block sent by an honest party
is received by all honest parties within some bounded time. To obtain an
overall protocol that is secure under the same corruption assumption, it
is therefore necessary to combine the consensus protocol with a network
protocol that achieves this property under that assumption. In practice,
however, the underlying network is typically implemented by flooding
protocols that are not proven to be secure in the setting where a fraction
of the considered total weight can be corrupted. This has led to many so-
called eclipse attacks on existing protocols and tailor-made fixes against
specific attacks.
To close this apparent gap, we present the first practical flooding protocol
that provably delivers sent messages to all honest parties after a logarith-
mic number of steps. We prove security in the setting where all parties
are publicly assigned a positive weight and the adversary can corrupt
parties accumulating up to a constant fraction of the total weight. This
can directly be used in the proof-of-stake setting, but is not limited to it.
To prove the security of our protocol, we combine known results about the
diameter of Erdős–Rényi graphs with reductions between different types
of random graphs. We further show that the efficiency of our protocol is
asymptotically optimal.
The practicality of our protocol is supported by extensive simulations
for different numbers of parties, weight distributions, and corruption
strategies. The simulations confirm our theoretical results and show
that messages are delivered quickly regardless of the weight distribution,

mailto:chen-da.liuzhang@ntt-research.com
chen-da.liuzhang@ntt-research.com
mailto:cm@concordium.com
cm@concordium.com
mailto:maurer@inf.ethz.ch
mailto:gteixeir@inf.ethz.ch
mailto:sethomsen@cs.au.dk
sethomsen@cs.au.dk

2 Liu-Zhang, Matt, Maurer, Rito, and Thomsen

whereas protocols that are oblivious of the parties’ weights completely
fail if the weights are unevenly distributed. Furthermore, the average
message complexity per party of our protocol is within a small constant
factor of such a protocol.

Keywords: flooding networks · peer-to-peer networks · blockchain · network
layer · multicast

1 Introduction

1.1 Motivation

Since Nakamoto proposed the first decentralized permisionless blockchain protocol
[32], a significant line of works has been done. In such protocols, one considers a
setting where different parties are weighted according to how much of a resource
they own (mining power, stake, space, etc.), and security relies on the fact that
a certain fraction of the total weight (typically more than the majority, or two
thirds) is owned by the honest parties.

Current blockchain protocols typically are proven secure assuming the avail-
ability of a multicast network, which allows each party to distribute a value
among the parties within some delivery time ∆ (see e.g. [3, 12, 14–16,20,34, 36]).
However, very little attention has been devoted to the construction of provably
secure multicast networks themselves.

In practice, the multicast network is typically implemented via a message-
diffusion mechanism, where in order for a party P to distribute a message, P
sends the message to a subset of its neighbors, who then forward the message to
their neighbors and so on. The idea is that if the graph induced by the honest
parties is connected, the message will reach all the honest parties, and if the
graph has low diameter, it will reach all honest parties after only a few iterations.
Indeed, there have been works that study how to randomly select the neighbors
so that the induced graph remains connected with small diameter after removing
corrupted nodes (see e.g. [24, 30,37]).

Unfortunately, to the best of our knowledge, currently analyzed diffusion
mechanisms do not consider weighted parties, and therefore can only be proven
secure when a certain constant fraction of the parties is honest (in particular it is
not enough to assume a fraction of the total weight is owned by honest parties).
This means that when such a message diffusion mechanism is used to build a
blockchain, the overall protocol relies on both the constant-honest-fraction-of-
weight assumption and the constant-honest-fraction-of-parties assumption.

Note that for a fixed weight distribution, a bound on the corrupted weight
also implies a bound on the number of parties that can be corrupted, where
this maximum is achieved by greedily corrupting parties with the least weight
first. Hence, current multicast protocols could in principle also be used assuming
only a bound on the corrupted weight. However, the message complexity of such
protocols is inversely proportional to the guaranteed honesty ratio. That is, to

Practical Provably Secure Flooding for Blockchains 3

25 50 75 100 125 150 175 200
0%

50%

100%

Average Messages Sent Per Party

Su
cc

es
s

R
at

e

W*F, Exp(1)
WFF, Exp(103)
WFF, Exp(106)
WFF, Exp(109)
WOF, Exp(103)
WOF, Exp(106)
WOF, Exp(109)

Fig. 1. Comparison of our WFF protocol with a weight oblivious protocol WOF that
chooses a fix number of random neighbors independently of their weight. The simulations
are for n = 1024 parties with exponential weight distributions Exp(r) where the heaviest
party’s weight is r times the lightest party’s weight. Note that for Exp(1), WFF and
WOF are identical. For each setting, we consider a 50% corruption threshold, and a
greedy corruption strategy where lighter parties are corrupted first. Each simulation
was repeated 10 000 times and the success rate measures how often all parties received
a single sent message.

still guarantee security under more corrupted parties, the remaining parties have
to send to more neighbors. In particular, this means that in many of the current
weight distributions where there are very few people owning a large fraction of
the total weight, but thousands of parties owning a tiny little fraction of the
weight, the incurred concrete message complexity to achieve security significantly
blows up (see an example in Fig. 1, where even for large sizes of neighborhood
sizes, the protocol fails).

The need for a practically efficient multicast network secure solely relying on
the constant-honest-fraction-of-weight assumption is therefore apparent.

1.2 Our Contributions

In this work, we investigate provably secure protocols that implement a multicast
network for the weighted setting, relying solely on the constant-honest-fraction-of-
weight assumption. Additionally, we are interested in protocols that are concretely
efficient. In short, we explore the following natural questions:

Is there a provably secure multicast protocol in the weighted setting,
assuming only a constant fraction of honest weight? And if so, is there a
practically efficient one?

We answer both of these questions in the affirmative by presenting the
first multicast protocol WFF (weighted fan-out flooding) that relies solely on
the constant-honest-fraction-of-weight assumption, and evaluate its practical
efficiency by performing various simulations. More concretely, we prove the
following theorem:

4 Liu-Zhang, Matt, Maurer, Rito, and Thomsen

Theorem 1 (Informal). Let κ be a security parameter, n be the number of
parties, and γ ∈ [0, 1] be the fraction of the total weight that is guaranteed to
belong to honest parties. Further, let δChannel be an upper bound on the delays of
the underlying point-to-point channels. Then, WFF is a secure flooding protocol
with maximal delay ∆ :=

(
7 · log

(
6n

log(n)+κ

)
+2

)
·δChannel and message complexity

2n · log(n)+κ
γ .

Note that the maximum delay and the message complexity in the theorem
are independent of the weight distribution. By naturally assigning the weights to
corresponding stake quantities, the achieved guarantees match those required in
previous proof-of-stake blockchain protocols (see e.g. [12, 15,16]), and therefore
our protocol can be used to build a blockchain protocol from point-to-point
channels without the need for any additional assumption apart from those needed
in the blockchain protocol itself.

Asymptotic optimality and practicality. Our protocol has the property that 1)
parties accumulating large amounts of weight need to send to more parties, and
2) the number of parties that each party sends to increases logarithmically in
the total number of parties. We prove that both properties are inherent for
secure flooding protocols, meaning that Theorem 1 is asymptotically optimal.
Concretely, for the first point, if a small set S (say, of constant size) accumulates
more than a γ-fraction of the weight, then this set necessarily needs to send at
least to a linear number Θ(n) of parties.

This means it is undesirable to have parties with very small weight and also
to have parties with a huge weight. A simple way to mitigate this in practice is
to exclude parties with less than Wmin weight and cap the maximal weight to
Wmax. This means if we use the flooding for a proof-of-stake blockchain, that
parties with a huge amount of stake need to split their stake over several nodes
such that none has more than Wmax weight. Parties with very little stake can
still obtain data from other nodes by requesting data from them periodically. We
discuss this further below.

Simulations. We use simulations to evaluate the practicality of our provably
secure protocol. The simulations confirm our theoretical results and also show
that our protocol is practical: Messages are diffused quickly to all parties with
high success probability even when weights are unevenly distributed. On the
other hand, as our simulations also show, prior protocols—oblivious of the parties’
weights—fail completely for neighborhood sizes for which our provably secure
protocol succeeds (see Fig. 1). This in particular means that our protocol achieves
the necessary security guarantees considerably fewer number of messages than
current (weight-oblivious) protocols.

1.3 Model and Assumptions

Network and corruption model. We assume all parties have access to an underlying
network that allows them to establish point-to-point channels to other parties.

Practical Provably Secure Flooding for Blockchains 5

We further assume each party p is publicly assigned a weight Wp > 0 and an
adversary can corrupt parties accumulating at most a constant fraction 1 − γ
of the total weight. For simplicity, we consider static corruptions in our proofs,
but using the techniques from [30], all our results can be extended to security
against delayed adaptive adversaries (adversaries for which there is a delay from
the time they decide to corrupt a party until the party is effectively controlled by
the adversary). Intuitively, if a corruption takes longer than the duration from
the earliest point in time an adversary can learn the neighbors of a party till
the neighbors are guaranteed to have resent the message to other parties, then
adaptivity does not help the adversary prevent delivery of any messages. However,
there is significant overhead involved in proving this because the adversary can
still dynamically decide how many parties are left to guarantee delivery for. This
is why we only present proofs for a static adversary and refer to [30] for techniques
for how to prove such statement.

Realising public weights from resource assumptions. Proof-of-stake blockchains
rely on a constant fraction of the stake being honest (typically more than
1/2 [14, 15] or more than 2/3 [12]). Furthermore, a blockchain itself provides a
ledger accessible by all parties describing how much stake each party owns. Hence,
it is immediate how to assign weights to parties by simply accessing the ledger
in order to instantiate the weights for our protocols.

To achieve a weight distribution for blockchain protocols that rely on a
constant fraction of the computational resources being honest [20,34–36] one can
make use of the techniques for committee selection for such setting [35,36]. The
idea behind this is that for long fragments of a chain with high chain-quality,
the distribution of block creators is similar to the distribution of computational
resources among parties. Hence, this distribution translates directly to a weight
distribution publicly available to all parties. For techniques to achieve a high
chain-quality, see [34].

Delivery to zero-weight parties. While we assume that all parties have positive
weight and parties with zero weight cannot contribute to the security of the
protocol, it is still desirable in practice to allow such parties to obtain the state of
the system. This can be achieved, e.g., by letting such parties fetch missing data
from other nodes. We discuss some options in the full version of this work [26].

Static versus dynamic weight. For simplicity, we consider for this paper the static-
weight setting, in which the weight of all parties remains fixed. When weight
is instantiated with the stake in a proof-of-stake, this might appear unrealistic.
This is, however, not a real limitation of our protocol when combined with such
a blockchain. For example in [15], to prove their protocol secure for a dynamic
stake, the authors divide time into epochs where the stake used for producing
blocks remains unchanged and additionally make assumptions on the speed that
stake can between epochs. In their proofs, they note that all parties agree on the
stake distribution in a previous epoch. We note that our proofs only rely on the

6 Liu-Zhang, Matt, Maurer, Rito, and Thomsen

weight being static for the propagation of a single message, and the time it takes
to propagate a message is very small compared to such epochs.

Practicality of complete network. We note that the assumption that any two
parties can establish a point-to-point connection between each other is indeed
a reasonable assumption, e.g., in the proof-of-stake setting: Parties who want
to participate in the protocol first need to register their node, see, e.g., [6].
This registration process can include the node’s IP address and further required
information that allows other nodes to establish a connection with that node.

1.4 Technical Overview

Flooding protocol skeleton. Our protocol follows the basic structure of previous
flooding protocols: When a party p receive a message m for the first time, p
samples a set of neighbors N from the party set P , according to some probability
distribution Np. The party then forwards the message m to all parties in N . The
crucial variable of this protocol is the distribution Np, i.e., how parties select
their peers.

Remark 1. In most practical blockchain implementations, parties do not resample
their peers for every message, but keep the connections over an extended period
of time [22, 29]. We note that our protocol can also be used in such a fashion
and all our results can be translated to such a setting. The reason for resampling
peers often is that against a delayed adaptive adversary [30], security can only
be guaranteed if the corruption delay is longer than the time peers keep their
connections. Hence, resampling more often provides better security guarantees.

Dependency of neighborhood selection on weight distribution. It is clear that to
achieve efficient results, one must make use of the overall weight distribution to
decide whether a party pi forwards the message to party pj . What is perhaps less
clear, is what the required amount of dependency is. We here argue intuitively
that the neighborhood selection must depend (at least) on both the weights of
pi and pj : Consider a weight distribution where pi’s weight is overwhelming,
and there are many parties with very little weight (including pj). In this case,
the adversary has corruption budget to corrupt all parties except for pi and
pj . Therefore, in order to guarantee that an honest pj receives the message, pi

must send to that party with probability 1. Consequently, the neighborhood
selection distribution Npi must depend on pi’s weight. It follows via an analogous
argument that pi must send to pj if the latter’s weight is overwhelming. Hence,
the probability to choose pj in Np must also depend on pj ’s weight.

A simple inefficient solution. From the above observations, we see that the
neighborhood distribution must depend on both the weights Wi of pi and Wj of
pj . A simple idea is to let each party pi internally emulate Wpi

parties, and then
run a traditional unweighted flooding protocol among W =

∑
p Wp nodes, where

two nodes are connected with some probability ρ. By properties of Erdős–Rényi

Practical Provably Secure Flooding for Blockchains 7

graphs, this leads to a secure flooding protocol [30]. Note that the probability
that a node from pi is connected to a node from pj depends on both weights Wpi

and Wpj
, namely 1− (1− ρ)Wpi

·Wpj .
However, the resulting protocol is highly inefficient, since it has a message

complexity that depends on the total sum of the weights W , rather than the
number of parties. Note that in current proof-of-stake systems, the total stake is in
the order of billions, so any dependency on the total weight is highly undesirable.

Scaling invariance. The simple protocol from above not only is inefficient if
the total weight is large, it also has the undesirable property that the efficiency
depends on the “unit” of the weight: If we multiply everybody’s weight by 100, the
overall number of messages increases substantially, even though this scaling has
no effect on the possible corruptions. We thus postulate that practical protocols
should be invariant under such weight scalings.

A simple fix seems to be to normalize the weight distribution by dividing
every party’s weight by the weight of the lightest party. This, however, introduces
two issues: First, since the number of internally emulated nodes must be an
integer, this division leads to rounding issues, with implications for the security
argument. Secondly, introducing an additional extremely light party now has
a massive impact on the efficiency, even though this additional party does not
substantially change the possible corruptions.

A first theoretical protocol. Our first technical theoretical contribution is a new
simple way to choose the neighbors in the flooding protocol. More precisely, we
generalize the approach above and show that it is actually enough to emulate a
number of nodes that is proportional to the total number of parties (rather than
the total weight).

For that, we introduce the notion of an emulation-function E : P → N \ {0}.
According to the emulation function, we let each party p internally emulate
E(p) ≥ 1 different nodes, in a graph consisting of nE :=

∑
p E(p) nodes. As

explained above, the basic idea is to create an Erdős–Rényi graph on the emulated
graph with nE nodes and edge-probability ρ. Then, we say that a party pi forwards
the message to pj if any of the emulated nodes from pi is connected to any of
the emulated nodes from pj . This means that the probability that pi forwards
the message to pj is 1− (1− ρ)E(pi)·E(pj).

We then consider the emulation function E(p) = ⌈αp · n⌉, where αp is p’s
fraction of the total weight. That is, we let each party emulate a number of nodes
proportional to the number of parties scaled by the party’s relative weight. Note
that the ceiling ensure that each party emulates at least one node. We then prove
that by choosing ρ appropriately such that the unweighted subgraph emulated
by honest parties remains connected with low diameter, we obtain a flooding
protocol with message complexity O((log(n) + κ) · n · γ−1) and time complexity
O(log(n) · δChannel).

A practical protocol. Although the method described above is intuitive and
gives us asymptotically good complexities, it is very far from being practical. In

8 Liu-Zhang, Matt, Maurer, Rito, and Thomsen

particular, the protocol requires every party to locally flip Ω(n) coins for each
message. Similar to current protocols deployed in practice, we would like to have
a protocol that instead chooses a fixed set of neighbors (possibly dependent on
the weight distribution, but nothing else), and provide provable security for it.

We propose a protocol where each party p chooses to send to K = k · E(p) =
k · ⌈αp · n⌉ distinct parties (for a parameter k), according to a weighted sampling
without replacement [7]. More precisely, p chooses K parties, where the probability
to choose a certain tuple5 of parties (q1, . . . , qK) (among the set of parties P\{p})
is

Pr[(q1, . . . , qK)] =
K∏

i=1

E(qi)
nE − E(p)− E(q1)− · · · − E(qi−1) .

We show that this practical protocol has the same asymptotic guarantees as the
first protocol above.

Importance of emulation function. Even though that this protocol is so simple
that it can be described in a few lines, it is by no means trivial. In fact, it is
crucial for the correctness of the protocol that the emulation function is used to
determine both the number of neighbors and the distribution of these neighbors.

To see that it is crucial to use the emulation function to decide how many
neighbors each party should choose, consider a small change to the protocol,
namely send to K = k · αp · n parties (instead of K = k · E(p)). Now, consider
a sender p with a small fraction of the total weight αp, and let us estimate the
parameter k to ensure that this p sends to at least one honest party. As any
party potentially could be corrupt it must be that p sends to more than just
one neighbor. Hence, it must be that k > 1

αp·n , just to ensure this very minimal
requirement. A rough bound on the message complexity of such protocol would
be

∑
p′ k · αp′ · n > 1

αp
, which is impractical if αp is small.

To see that it is crucial to weigh the selection of neighbors with the emulation
function, we consider another small change to the protocol, namely to select
parties weighted by their weight instead of the emulation function. Now, consider
a weight distribution where just one party p has a very small fraction of the
total weight and all others having roughly equal weight. Note, that for any party
choosing less than n neighbors the probability that p is chosen as a neighbor
becomes arbitrarily small for a decreasing αp. Hence, to ensure that p receives a
message this would induce a quadratic message complexity which is impractical.

Security proof. Proving security of such a protocol in the weighted setting directly
is non-trivial for two reasons: First, the choices of whether to send to a neighbor
or not are not independent. Secondly, the fact that the choices are according to
an arbitrary weight distribution makes the analysis considerably harder than
traditional graph-theoretic results that consider the non-weighted setting. Instead
of providing a direct graph-theoretic analysis, we give a security proof via a
5 The probability to choose the unordered neighborhood set N = {q1, . . . , qK} is the

sum over the probabilities of all permuted tuples.

Practical Provably Secure Flooding for Blockchains 9

sequence of intermediate protocols, essentially relating the success probability of
the first protocol above based on Erdős–Rényi graphs to the practical protocol.
This leads to Theorem 1. Due to space constraints, many proofs are left out of
this version. We refer to the full version of this paper [26] for these.

1.5 Current State of the Art and Related Work

Flooding networks in a Byzantine setting. [24] was the first to relate probabilistic
gossiping to the connectivity of the induced graph. They considered (1− γ) · n
out of n parties failing and showed that each party needs to forward a message
with probability ρ > log(n)+κ

γ·n to any other party to ensure that messages are
delivered to all non-failing parties with a probability overwhelming in κ.

[30] observed that against an adversary capable of adaptively corrupting up
to t parties, any flooding network where each party sends to less than t neighbors
is inherently insecure (an adversary can simply corrupt all neighbors of a sender).
To mitigate this problem and achieve a protocol secure against a Byzantine
adaptive adversary, [30] formalized the notion of a delayed adversary (informally
introduced by [35]) for which there is a delay from the time the adversary decides
to corrupt a party until the party is effectively controlled by the adversary. In
this setting, they showed that against an adversary delayed for the time it takes
to send a message plus the time it takes to resend a message, it is sufficient to
on average send to Ω((log(n) + κ) · γ−1) neighbors to achieve a flooding protocol
that with an overwhelming probability in κ has O(log(n)) round complexity for
n parties with at most (1− γ) · n of the parties being corrupted. In this work,
we match the theoretical performance of their flooding protocol with a practical
protocol that only relies a γ fraction of the weight remaining honest, which is
more relevant in the blockchain setting.

Kadcast [37] is a recent flooding protocol specifically designed for blockchains.
Interestingly, they claim that structured networks are inherently more efficient
than unstructured networks and propose a structured protocol with O(log n)
neighbors and O(log n) steps to propagate a message, which is similar to what we
achieve using an unstructured network. It is unclear how their protocol performs
under Byzantine failures. Further, we note that structured networks are inherently
vulnerable to attacks by adaptive adversaries.

A different line of work [27, 28, 31] considers how to propagate updates in
a database using gossip where at most t of the processors may be corrupted.
The setting is however different from ours as they assume that at least t honest
parties get the update as input initially, and only updates input to some honest
processor can be accepted by the other processors.

Probabilistic communication have also been used to improve the communi-
cation complexity for both multi-party-computation (MPC) [9] and Byzantine
broadcast [39]. In [9], communication between honest parties is assumed to be hid-
den from the adversary. This is exploited by constructing a random communication
network with an average polylogarithmic degree based on Erdős–Rényi graphs.
They thereby achieve a MPC protocol with low communication locality that is
secure against a fully adaptive adversary. [39] combines the classic broadcast

10 Liu-Zhang, Matt, Maurer, Rito, and Thomsen

protocol by Dolev and Strong [17] with gossiping based upon Erdős–Rényi-graphs
to obtain the first broadcast algorithm with a sub-cubic communication complex-
ity for a dishonest majority. Using similar techniques and assuming a trusted
setup they also achieve an asymptotically optimal communication complexity for
parallel broadcast.

A different line of work considers the problems of MPC and Agreement on
incomplete communication networks [10, 11, 18, 21, 23, 25, 40]. To circumvent com-
plexity bounds for fully adaptive adversaries, the seminal work of [18] introduced
the problem of almost-everywhere agreement as a relaxation of agreement where
not all nodes are required to be consistent, but a small number of nodes are
allowed to be inconsistent. Since then, the relaxation has also been extended to
MPC [21], and different aspects of solutions to this problem have been continu-
ously improved [10, 11, 23, 25, 40]. Notably, [25] used probabilistic communication
to increase the number of consistent parties, and [11] used Erdős–Rényi graphs
with a diameter of 2 to obtain a construction secure not only against adaptive
corruptions but also an adversary allowed to adaptively remove some communi-
cation links. In our work nodes are also of bounded degree, but contrary to this
line of work we work in a slightly weaker adversarial model which allows us to
ensure correctness for all parties.

Attacks on the network layers of blockchains. Attacks on network layers of
blockchains are not only a theoretical concern. In fact, several works [5,22,29,38]
have shown that it has been possible to launch eclipsing attacks6 against nodes
in the Bitcoin network and the Ethereum network.

Bitcoin’s peer-to-peer network works by letting each node in the network
maintain 8 outgoing connections and up to 117 incoming connections. This is
clearly insecure when considering a resource-constrained adversary instead of a
traditional adversary (as the probability of only connecting to adversarial nodes
can be arbitrarily high). Additional to this inherent insecurity, [22] showed how to
eclipse a node that is already a part of an existing honest network by exploiting
a bias in the way a peer selects its outgoing connections. They launched such
an attack with only 4600 bots and achieved 85% success probability to actually
eclipse a targeted node.

By default, a node in the Ethereum peer-to-peer network selects 13 outgoing
connections contrary to the 8 that is the default in Bitcoin. Hence, one might
be led to believe that it is more difficult to eclipse an Ethereum node than a
Bitcoin node. However, in a Ethereum neighbors are selected using a distance
measure that is based on nodes’ public keys. Exploiting that in a prior version
of the Ethereum client a single computer was allowed to run several nodes, [29]
showed that just a single computer can be used to mount an attack by creating
multiple carefully selected public keys.

6 An attack where an adversary tricks an honest party into talking only with adversarial
parties. It is thereby possible for the adversary to manipulate the honest node in
various ways.

Practical Provably Secure Flooding for Blockchains 11

[5] showed that BGP-Hijacking can also be used to eclipse Bitcoin nodes.
However, we note that such attack is immediately observable as an adversary
will need to announce a false BGP prefix publicly. In [38], it was shown that a
stealthier version of such an attack in can also be launched against a Bitcoin node
by additionally influencing how a bitcoin node selects its outgoing connections.
We note that such attacks are attacks on the infrastructure of the internet, and
therefore fall outside the scope of our model.

We note that the attacks presented in [22, 29, 38] all rely on exploiting
the heuristics used to select outgoing connections for nodes in the peer-to-peer
network. Hence, such attacks would not have been possible if, instead of heuristics
a provably secure protocol (such as the one presented in this work) had been
deployed.

Detecting eclipse attacks. As a way of mitigating attacks on the network layer a
line of work considers the possibility of detecting eclipse attacks [4,41,44]. [41]
provide a method for using supervised learning to detect eclipsing attacks based
on the metadata in packages. We note that this method is only as good as its
data set for training, and hence cannot be used to detect attacks in general.
A different approach is to try to detect eclipse attacks based on the absence
of new blocks [4, 44]. However, this method has the drawback that it becomes
arbitrarily slow as the fraction of resources controlled by an adversary approaches
50%, and even for small values, it takes upwards of 3 hours to detect. Finally, it
has been considered to detect eclipse attacks using an additional overlay gossip
protocol [4]. However, contrary to this work this is not proven to work but rather
demonstrated to work empirically.

Consequences of eclipse attacks. If a party is eclipsed it is immediate that security
proofs that rely on guaranteed message delivery no longer apply. Several works
have shown that eclipse attacks do not only invalidate the security proofs but
actually invalidate the actual security of blockchain protocols [22,33,43]. Eclipsing
can be used to invalidate the total order that blockchain provides and thereby
allow double-spend attacks [22], amplify the rewards from selfish mining [33],
and dramatically speed up ”stake-bleeding”-attacks [43].

The Generals’ Scuttlebutt: Byzantine-Resilient Gossip Protocols [13]. Concurrent
with and independent of our work, [13] considered the problem of designing a
message diffusion mechanism based on the majority of honest stake assumption.
The main focus of that paper is to design a network protocol specifically for the
Ouroboros Praos consensus protocol [15]. To mitigate a specific denial-of-service
attack possible in that protocol (and related proof-of-stake protocols), the authors
propose a mechanism that relies on long-lived connections between parties to
synchronize chains instead of generically diffusing messages. A consequence of
these long-lived connections between parties is that an adaptive adversary can
eclipse a set of honest parties. Because their ideal functionality allows such
eclipsing, the functionality is different from the assumed functionality of [15]
(and thereby the functionality implemented in this work), and the authors argue

12 Liu-Zhang, Matt, Maurer, Rito, and Thomsen

in [13] that security of [15] can be proven using this new functionality. In contrast
to that, the focus of our work is to realize the flooding functionality without
eclipsing assumed by most existing blockchain protocols. Hence, while some
techniques are similar, the results of [13] are mostly orthogonal to our work.

2 Notation and Model

2.1 Notation

We will use κ to denote the security parameter of our protocols. We will write
A

$← D to sample the value A from the distribution D and use the infix notation
∼ to denote that two random variables are distributed identically. We will let
B(n, ρ) denote the binomial distribution with parameters n and ρ, and U(A)
denote the uniform distribution on a set A. We denote by log x the natural
logarithm of x. In our proofs we will write RHS and LHS to refer to respectively
the right hand side and left hand side of (in)equalities.

Graphs. We use standard notation for graphs and let G = (V, E) be a graph
with nodes V and edges E. An edge can be either directed in which case we
will write (v, z) to denote the edge from v to z, or undirected in which case we
will write {v, z} to denote the edge between the two nodes. We write dist(v, z)
to denote the shortest distance between two nodes v and z. Further, we use
the shorthand notation MaxDist(G, v) ≜ maxz∈V dist(v, z) for the maximum
distance from v to any node in a graph G = (V, E), and the following notation
Diam(G) ≜ maxv∈V MaxDist(G, v) for the diameter of a graph G.

We also define Erdős–Rényi graphs and digraphs.

Definition 1 (Erdős–Rényi (di)graphs). An Erdős–Rényi (di)graph is an
(di)graph G = (V, E) where all possible edges are present with an independent
probability ρ. That is for any v, z ∈ V, we have Pr[{v, z} ∈ E] = ρ for Erdős–Rényi
graphs and Pr[(v, z) ∈ E] = ρ for digraphs. To sample such a graph G with |V| = η,
we write G

$← GER(η, ρ) and for the directed case G
$← G →

ER
(η, ρ).

2.2 Parties, Weight, Adversary and Communication Network

We let P denote the static set of parties for which our protocols will work. For
convenience we let n := |P| and let H ⊆ P be the set of parties that are honest.

We assume that a public weight is assigned to each party. We let Wp denote
the weight assigned to party p, and let αp := Wp∑

p∈P
Wp

i.e., the fraction of the

total weight assigned to party p.
We allow an adversary to corrupt any subset of the parties such that the

remaining set of honest parties together constitutes more than a γ ∈ (0, 1] fraction
of the total weight. Formally, we assume that

∑
p∈H αp ≥ γ, and that all parties

Practical Provably Secure Flooding for Blockchains 13

have a non-zero positive weight i.e. ∀p ∈ P, Wp > 0.7 We will refer to this
assumption as the honest weight assumption. For simplicity, we consider a static
adversary, although our results also hold against a so-called delayed-adaptive
adversary [30], where the corruptions can be adaptively chosen but only happen
after a certain amount of time.

Parties P have access to a complete network of point-to-point authenticated
channels that guarantee delivery within a bounded delay. Concretely, we assume
that all channels ensure delivery within δChannel time.

3 Weighted Flooding

In this section we present a practical and provably secure flooding protocol WFF
(weighted fan-out flooding) that only relies on the honest weight assumption.
Before doing so we first present our definition of a flooding protocol in Section 3.1.
Then, in Section 3.2 we present a generic skeleton for flooding protocols that is
parameterized by the way parties selects their neighbors, instantiate this skeleton
in order to obtain our practical protocol (WFF), and prove that it is sufficient to
consider the way neighbors are selected in order to derive security of a protocol.
We use this skeleton to define our theoretical flooding protocol that is secure based
upon each party emulating a number of nodes proportional to their weight in an
Erdős–Rényi graph (Section 3.3). Finally, in Section 3.4 we use two intermediary
protocols in order to derive the security of WFF from our theoretical protocol.
All proofs can be found in the full version [26].

3.1 Properties of Flooding Protocols

Below we give our property based definition of a flooding protocol.8

Definition 2. Let Π be a protocol executed by parties P, where each party p ∈ P
can input a message at any time, and as a consequence all parties get a message
as output. We say that Π is a ∆-flooding protocol if the two properties hold with
a probability overwhelming in the security parameter κ for each message m:

1) If m is input by an honest party for the first time at time τ , then by time
τ + ∆ it is ensured that all other honest parties output m.

2) If m is output by an honest party at time τ , then by time τ + ∆ it is ensured
that all honest parties output m.

7 For a discussion of the necessity of the zero-weight requirement see Section 4 and for
methods to anyway achieve delivery to such zero-weight parties we refer to the full
version of this work [26]. .

8 Note that for protocols with no secrecy (each event is leaked to the adversary), and for
functionalities that give the adversary full control while respecting these properties a
simulation-based security notion is directly implied by the property-based definition.
For flooding networks, this technique is used in the proofs in [30].

14 Liu-Zhang, Matt, Maurer, Rito, and Thomsen

Note that this definition subsumes the assumptions that many blockchain
protocols rely on [12, 15, 16, 20, 34, 36]. To the best of our knowledge only [16]
relies on both Properties 1) and 2), whereas the other works only rely solely
on Property 1). However, as Property 2) essentially comes for free for the type
of protocols we consider (each party will forward everything they receive and
thereby act as if they themselves send the message) we have chosen to include
it in our definition. Furthermore, because of this structure of our protocols, it
is sufficient to bound the probability of Property 1) in order to show that our
protocols are in fact flooding protocols according to the definition. For our proofs
and lemma statements, it is, therefore, useful to define notation for the predicate
that a message input to an honest party for the first time is delivered respecting
the delivery bound for a flooding protocol, which is what we encapsulate in the
predicate below.

Definition 3 (Timely delivery). For a message m that is input for the first
time at an honest party at time τ we say that m is ∆-timely-delivered if all honest
parties have output m no later than time τ + ∆. We let Timelym(∆) denote the
induced predicate.

Similarly, for a message m that is input for the first time at an honest party,
we define the message complexity as the number of messages sent by honest
parties until all honest parties output m. Looking ahead, since our protocols
only consist of forwarding the initial message m, the total message complexity is
simply |m| times the message complexity.

Mitigating denial-of-service attacks. It is immediate that any protocol that
lives up to the definition of a flooding protocol, as given above, is open to
denial-of-service attacks. An adversary can simply flood arbitrary messages until
the bandwidth is exceeded. This is possible because the definition requires all
messages to be forwarded. To prevent such attacks, it is natural to consider a
notion of validity and only require the delivery guarantees to apply for “valid”
messages. Concretely, one could let each party p ∈ P have an updatable local
predicate Validp and only require that messages that are considered valid by all
parties for ∆ after being input/output for the first time should be propagated.

For clarity of presentation, we have left this out of our definition and protocols.
However, we note that it is easy to accommodate our protocols to such notion by
letting each party check if a message is valid before propagating it. We note that
with such modification, all our proofs and lemmas still hold for messages that
are considered valid by all parties for at least ∆ after they are input/output.

3.2 A Skeleton For Flooding Protocols

We now present a skeleton for our flooding algorithm. The structure of the
protocol is very similar to the protocols proposed in [30], but contrary to their
protocols our protocol takes an additional parameter N , which is an algorithm
that allows each party to sample a set of neighbors. We refer to this parameter
as the neighborhood selection algorithm.

Practical Provably Secure Flooding for Blockchains 15

The protocol accepts two commands: One for sending and one for checking
which messages have been received. Once a send command is issued to a party,
the party will forward the message to a set of neighbors that are determined using
the neighborhood selection algorithm. Furthermore, once a message is received
on a point-to-point channel the receiver checks if the message has already been
relayed and if not it forwards the message to a set of neighbors that is again
selected using the neighborhood selection algorithm.

Protocol πFlood(N)

We use Np to denote the neighborhood distribution of party p. Each party
pi ∈ P keeps track of a set of relayed messages Relayedi which will also be
used to keep track of which messages party pi has received.

Initialize: Initially, each party pi sets Relayedi := ∅.
Send: When pi receives (Send, m), they sample a set of neighbors N

$←
Np and forwards the message to all parties in N . Finally, they set
Relayedi := Relayedi ∪ {m}.

Get Messages: When pi receives (GetMessages) they return Relayedi.

When party pi receives message m on a point-to-point channel where m ̸∈
Relayedi, pi continues as if they had received (Send, m). Otherwise, m is
ignored.

Looking ahead and as an example of a neighborhood selection algorithm we
present our practical and provably secure neighborhood selection algorithm.

A Practical Neighborhood Selection Algorithm Our algorithm WFS(E, k)
(abbreviation for “Weighted Fan-out Selection”) takes two parameters: a function
E : P → N that allows to take stake into account when deciding how many
neighbors each party should select and a parameter k that scales this number.

The idea of the algorithm is that each party p chooses K := k ·E(p) number of
neighbors (excluding themselves). The neighbors are chosen according to weighted
sampling without replacement [7] where each party again is being weighted with
E. More precisely, party p chooses K neighbors from P \ {p}, and the probability
to choose the tuple of neighbors (q1, . . . , qK) is defined as:

Pr [(q1, . . . , qK)] =
K∏

i=1

E(qi)∑
q∈P\{p,q1,...,qi−1} E(q) .

The probability to choose a certain neighborhood set {q1, . . . , qK} is then the
sum over the probabilities over all the permuted tuples. We denote by W(K, E, p)
the resulting distribution.

16 Liu-Zhang, Matt, Maurer, Rito, and Thomsen

Algorithm WFSp(E, k)

1: Let N := ∅.
2: Set K := k · E(p).
3: Sample N

$←W(K, E, p).
4: return N .

Our final protocol is the protocol obtained by instantiating the flooding
skeleton πFlood with the neighborhood selection algorithm WFS that again is to be
instantiated with the function E(p) := ⌈αp ·n⌉. We name this protocol the weighted
fan-out flooding protocol and use the abbreviation WFF(k) := πFlood(WFS(E, k))
for E(p) := ⌈αp · n⌉. In Sections 3.3 and 3.4 it will become apparent why this
exact choice of function is advantageous and ensures a secure protocol, but for
now we simply state our final theorem which states that WFF is in fact a flooding
protocol with a logarithmic round complexity and a low message complexity.

Theorem 2. Let ∆ :=
(

7 · log
(

6n
log(n)+κ

)
+ 2

)
· δChannel. Then WFF

(
log(n)+κ

γ

)
is a ∆-flooding protocol with message complexity less than 2n · log(n)+κ

γ .

The Honest Sending Process To prove security of WFF we will relate the
security of WFF to a series of other protocol which will all take the structure
of πFlood but use different neighborhood selection algorithms. Hence, we would
like to be able to relate the security of the overall flooding protocol to just
the neighborhood selection algorithm used. To do so we first define a random
process for creating a graph where each honest party is a node, given a family of
neighborhood selection algorithms N , a starting party p, and a distance λ. The
intuition is that this process mimics the worst-case behavior of the adversary
during a sending process starting from party p. However, separating this into a
process without adversarial influence allows us to relate probabilistic experiments
without taking into account the choices of an adversary which could have a
strategy that depends on parts of the outcome of the experiments.

Definition 4. Let N be a family of neighborhood selection algorithms, let p ∈ H,
and let λ ∈ N be a distance. We let the honest sending process, HSP(p,N , λ), be a
random process that returns a directed graph G = (V, E) defined by the following
random procedure:

1. Initially, E := ∅. Furthermore, we keep track of set Flipped := ∅ that
consists of nodes that have already had their outgoing edges decided, and a
first-in-first-out queue ToBeFlipped := {(p, 0)} of nodes and their distance
from p that are to have their edges decided.

2. The process proceeds with the following until ToBeFlipped == ∅.
(a) Take out the first element of ToBeFlipped and let it be denoted by (p′, i).
(b) Let N

$← Np′ and set N := N ∩H.

Practical Provably Secure Flooding for Blockchains 17

(c) Update the set of edges E := E ∪ {(p′, p′′) | p′′ ∈ N} and let Flipped :=
Flipped ∪ {p′}.

(d) If i + 1 < λ, for all p′′ ∈ N \ Flipped add (p′′, i + 1) to ToBeFlipped.
3. Finally, return G = (H, E).

Next, we are interested in bounding the probability that a message is delivered
within the time guaranteed by the flooding algorithm in terms of the probability
that there is a low distance to all parties from the sender. We show that the
probability that πFlood ensures timely delivery for a message is lower-bounded
by the probability that the honest sending process results in a graph where the
sender can reach all other honest nodes within a certain number of steps.
Lemma 1. Let N be a family of neighborhood selection algorithms, let p ∈ H,
and let λ ∈ N be a distance. Further, let m be a message that is input to p for the
first time during the execution of πFlood(N) and let G

$← HSP(p,N , λ). Then,

Pr[MaxDist(G, p) ≤ λ] ≤ Pr[Timelym(λ · δChannel)]. (1)

Proof Idea. We observe the random experiment arising from delivering the mes-
sage m in the protocol and construct a new graph where each honest party
corresponds to a node and we include a directed edge from one party to another if
a message is sent and delivered before time λ · δChannel. In this graph, we observe
that if the distance is at most λ from the sender to any party then the message
was delivered timely. We then define how to use this experiment to define the
HSP experiment by copying a subset of the edges from this new graph to the
honest sending graph and thereby ensuring that any path in the graph from the
honest sending process will also be in this new graph.

Lemma 1 ensures that it is sufficient to consider neighborhood selection
algorithms and prove that graphs constructed via the honest sending process has
a low distance from the sender to all other parties.

3.3 A Theoretical Protocol: Emulating Nodes in Erdős–Rényi
Graphs

Our central idea for achieving a flooding network that relies on the honest weight
assumption is to let each party emulate a number of nodes proportional to their
weight in a hypothetical Erdős–Rényi graph. We will refer to this hypothetical
graph as the emulated graph. Now, our idea is that if there is an edge between
an emulated node v and another emulated node z corresponds to that the party
emulating node v should forward the message to the party emulating z. Our
goal is now to ensure each honest party emulates at least one node and that the
emulated graph has a low diameter, as this will result in that all parties will
receive the message quickly.

Concretely, we introduce a function E : P → N \ {0} which for each party
determines how many nodes this party should act as in the emulated graph. We
refer to this function as the emulation function.9 For such emulation function
9 For a function to be an emulation function, we require that all parties should emulate

at least 1 node, which is why the codomain of the function is defined to be N \ {0}.

18 Liu-Zhang, Matt, Maurer, Rito, and Thomsen

we define notation for the number of emulated nodes nE ≜
∑

p∈P E(p) and the
number of honest nodes that are emulated hE ≜

∑
p∈H E(p).

Before looking at how to choose an emulation function, let us present how
the idea leads to a very simple algorithm for selecting neighbors by letting the
emulated graph take the form of an Erdős–Rényi graph. We let ρ denote the
probability that there should be an edge between any two nodes in the emulated
graph. The probability that party pi should forward a message to party pj is:

Pr[pi should forward a message to pj]
:= Pr[exists edge from any of pi’s emulated nodes to any of pj ’s]
= 1− Pr[there are no edges between any of pi and pj ’s emulated nodes]
= 1− (1− Pr[there is an edge between any two emulated nodes)E(pi)·E(pj)

= 1− (1− ρ)E(pi)·E(pj).

(2)

This gives rise to the following family of neighbor selection algorithms indexed
by a party p ∈ P and parameterized by an emulation function E and an edge
probability ρ.

Algorithm ER-Emulationp(E, ρ)

1: Let N := ∅.
2: Let P := P \ p.
3: while P ̸= ∅ do
4: Pick r ∈ P .
5: Sample c

$← U([0, 1]).
6: if c ≤ 1− (1− ρ)E(p)·E(r)) then
7: Update N := N ∪ {r}.
8: Update P := P \ {r}.
9: return N .

Relating Erdős–Rényi graphs and the honest sending process. We now formalize
the intuition that given that an emulated graph is “well connected” then the
graph from the honest sending process is also “well connected”. In particular,
we relate the probability that the distance in a directed Erdős–Rényi graph is
large to the probability that the distance from the sender is large in the honest
sending process.

Lemma 2. Let ρ ∈ [0, 1], let λ ∈ N, let p ∈ H, and let E : P → N \ {0} be
an emulation function. Further, let G1

$← HSP(p, ER-Emulation(E, ρ), λ) and let
G2

$← G →
ER

(hE, ρ). Then for any node v ∈ V we have,

Pr[MaxDist(G2, v) ≤ λ] ≤ Pr[MaxDist(G1, p) ≤ λ]. (3)

Practical Provably Secure Flooding for Blockchains 19

Proof Idea. We use Eq. (2) and a mapping between the nodes of G2 and the
honest parties to define both graph distributions in terms of the same random
experiment. We then observe that the edges that are relevant for the distance
from v in G2 are also included in G1.

Next, we show that the probability that a particular node can reach all other
nodes within a certain distance in a directed Erdős–Rényi graph is lower-bounded
by the probability that an undirected Erdős–Rényi graph has a high diameter.

Lemma 3. Let ρ ∈ [0, 1], let λ ∈ N and let η ∈ N. Further, let G1 = (V1, E1) $←
G →

ER
(η, ρ) and let G2 = (V2, E2) $← GER(η, ρ). Then for any node v ∈ V1 we have,

Pr[Diam(G2) ≤ λ] ≤ Pr[MaxDist(G1, v) ≤ λ]. (4)

Proof Idea. We define a coupling between the two graphs such that the edges
that are relevant for the distance from v in G1 are ensured to have undirected
counterparts included in G2. Hence, any path starting from v in G2 translates to
a similar path in G1.

Choosing a good emulation function. Let us now turn our attention to how to
select a good emulation function. Before looking at a concrete function, let us
consider what properties constitute a good emulation function. The only property
of the emulation function that we have used so far is that all parties should
emulate at least 1 node.10 However, there are additional things that we want
from a useful emulation function:

1. It should ensure a low distance from any sender in the graph resulting from
the honest sending process.

2. The message complexity of the protocol should be as small as possible.

Lemmas 2 and 3 bounds the probability that the honest sending process
results in a graph with some nodes not reachable within the sender in terms of
the probability that an Erdős–Rényi graph (of size identical to the number of
honest emulated nodes) has a large diameter. Furthermore, looking ahead we will
instantiate ρ ≈ log(hE)+κ

hE
to obtain an Erdős–Rényi graph that has a diameter

logarithmic in hE unless with a probability that is negligible in κ. Unfortunately,
hE will not be known at the time of instantiation, so we will have to instantiate
ρ with a lower bound on hE in the denominator and similarly an upper bound in
the denominator. For this discussion, let us use nE as an upper bound.

The expected number of neighbors for a party is linear in ρ. To see this
let N

$← ER-Emulationp(E, ρ) and let us estimate the expected size of N using
Bernoulli’s inequality:

E[|N |] =
∑

r∈P\{p}

1− (1− ρ)E(p)·E(r) ≤
∑

r∈P\{p}

ρ · E(p) · E(r) ≤ ρ · E(p) · nE. (5)

10 This property was used in the proof of Lemma 2.

20 Liu-Zhang, Matt, Maurer, Rito, and Thomsen

Hence, for ρ chosen according to the above, a bound on the expected message
complexity will be

O

(
(log(nE) + κ) · n2

E

hE

)
. (6)

Our approach for finding a good emulation function has thus been to search for
an emulation function which makes this value as small as possible. As result
of this approach we choose the emulation function to be E(p) := ⌈αp · n⌉. For
this emulation function above we can derive the following bounds using only the
honest weight assumption:

hE =
∑
p∈H

E(p) ≥
∑
p∈H

αp · n ≥ γ · n, (7)

and
nE =

∑
p∈P

E(p) ≤
∑
p∈P

(αp · n + 1) = 2 · n. (8)

By plugging the bounds from Eqs. (7) and (8) into Eq. (6) we acquire an expected
message complexity that is upper bounded by O

(
(log(n)+κ)· nγ

)
when parameters

are instantiated to obtain a logarithmic diameter of the graph. If we instead of
assuming a constant fraction of honest weight assumed a constant fraction of
honest parties, we could let E(p) := 1, which would result in nE := 1 and thereby
a protocol identical to the one proposed in [30]. By using the same analysis as
above we would then be able to bound the expected message complexity by
O

(
(log(n) + κ) · n

γ

)
. Interestingly, the bound on the message complexity for the

weighted section would only be a factor of ≈ 4 larger than the corresponding
bound for the non-weighted setting.

Proving security of our theoretical flooding protocol. We now state and prove
that the probability that πFlood(ER-Emulation(E, ρ)) protocol does not ensure
timely delivery is negligible for certain choices of E and ρ. To prove this, we
make use of probabilistic bounds on the diameter of undirected Erdős–Rényi
graphs from the full version of [30]. As a first step, we bound the probability
that the distance of the honest sending process using the neighborhood selection
algorithm ER-Emulation(E, ρ) has a large distance from the sender.
Lemma 4. Let E(p) := ⌈αp · n⌉, let d ∈ [7,∞], and let ρ := d

γ·n . Further, let

p ∈ H and G
$← HSP(p, ER-Emulation(E, ρ), (

(
7 · log

(
n
d

)
+ 2

)
). Then

Pr
[
MaxDist(G, p) ≤

(
7 · log

(n

d

)
+ 2

)]
≥ 1−

(
2 · n ·

(
e− d

18 +
(

6 · log
(n

d

)
+ 1

)
· e− 7·d

108

)
+ e−γ·n·(d

9 −2)
)

.
(9)

Proof Idea. We use Eqs. (7) and (8) to bound the size of the emulated graph in
the honest sending process and apply Lemmas 2 and 3 to reduce the probability
to the probability that an Erdős–Rényi graph has a low diameter. The bound
then follows by instantiating Lemma 3 in the full version of [30].

Practical Provably Secure Flooding for Blockchains 21

A direct corollary of Lemmas 1 and 4 is that the probability that the protocol
πFlood(ER-Emulation(E, ρ)) ensures timely delivery is lower bounded by Eq. (9)
when choosing E and ρ as discussed above.

3.4 Security of WFF

In the previous section we proved that ER-Emulation induces a secure protocol.
Unfortunately, it is not a practical neighborhood selection algorithm, as it requires
each party to do n coin-flips per message that is sent and forwarded. In this
section, we introduce two intermediate algorithms in order to prove WFF secure
(Fast-ER-Emulation and Practical-ER-Emulation) by doing gradual changes to
ER-Emulation, until we finally arrive at the algorithm WFS which is both practical,
simple, and similar to algorithms deployed in practice (except that this algorithm
maintains its complexity even for weighted corruptions).

Intermediary Neighborhood Selection Algorithms We first introduce the
algorithm Fast-ER-Emulation, which is distributed identically to ER-Emulation,
but is more practical. The algorithm exploits that another way of creating an
Erdős–Rényi graph is to first decide how many edges each node should have
using the binomial distribution and then select these neighbors at random.

Below we will abuse notation slightly and write E(P) to denote the set of
emulated nodes for a set of parties P ⊆ P and an emulation function E,

E(P) ≜ {pi | p ∈ P ∧ i ∈ {1, 2, . . . , E(p)}} .11

Algorithm Fast-ER-Emulationp(E, ρ)

1: Let N := ∅.
2: for i := 0; i < E(p); i ++ do
3: Sample k

$← B (|E(P \ {p})|, ρ).
4: Let A be k nodes sampled from E(P \ {p}) without replacement.
5: Set N := N ∪

{
p′ | p′

j ∈ A ∧ j ∈ N
}

.
6: return N .

We now show Fast-ER-Emulation and ER-Emulation are identically distributed.

Lemma 5. Let ρ ∈ [0, 1], let λ ∈ N, let p ∈ H, and let E : P → N \ {0}
be an emulation function. If G1

$← HSP(p, ER-Emulation(E, ρ), λ) and G2
$←

HSP(p, Fast-ER-Emulation(E, ρ), λ) then G1 ∼ G2.
11 This set may be different from the actual set of nodes that will be emulated in

an execution of the protocol as dishonest parties might choose to deviate from the
protocol. However, it is still useful to define the set in order to define honest behavior.

22 Liu-Zhang, Matt, Maurer, Rito, and Thomsen

Proof Idea. We show that the graphs are distributed identically by showing that
their respective neighborhood selection algorithms are distributed identically.
This is shown by showing that for both distributions each edge between emulated
nodes appears with independent probability ρ.

A problem of Fast-ER-Emulation is that each party p needs to make E(p)
number of draws from the binomial distribution. One way to avoid this is to make
a single random draw for the number of nodes all emulated nodes should send to
and then afterward choose this number of nodes uniformly without replacement.
Below we present the algorithm Practical-ER-Emulation, which does exactly that.

Algorithm Practical-ER-Emulationp(E, ρ)

1: Let N := ∅.
2: Sample k

$← B (E(p) · |E(P \ {p})|, ρ).
3: Let A be k nodes sampled from E(P \ {p}) without replacement.
4: Set N := {p | pi ∈ A ∧ i ∈ N}.
5: return N .

Practical-ER-Emulation is not distributed identically to Fast-ER-Emulation, as
there is a smaller expected overlap between the selected emulated nodes. However,
it still holds that the graph resulting from the honest sending process based upon
Practical-ER-Emulation has a higher chance of having a low distance from the
sender than the graph resulting from the honest sending process based upon
Fast-ER-Emulation. We make this intuition formal in the lemma below.

Lemma 6. Let ρ ∈ [0, 1], let λ ∈ N, let p ∈ H, and let E : P → N \ {0} be
an emulation function. If G1

$← HSP(p, Fast-ER-Emulation(E, ρ), λ) and G2
$←

HSP(p, Practical-ER-Emulation(E, ρ), λ) then

Pr[MaxDist(G1, p) ≤ λ] ≤ Pr[MaxDist(G2, p) ≤ λ]. (10)

Proof Idea. We define a coupling between the two graphs by defining a coupling
between their respective neighborhood selection algorithms and ensuring that
the set of neighbors sampled by Practical-ER-Emulation is a superset of the
neighbors of those sampled by Fast-ER-Emulation. We define the coupling using
rejection sampling and ensure that any neighbor that is rejected when sampling
neighbors for Fast-ER-Emulation will also be rejected when sampling neighbors
for Practical-ER-Emulation.

Note that Lemmas 1 and 4 to 6 together imply that the probability that
πFlood(Fast-ER-Emulation(E, ρ)) and πFlood(Practical-ER-Emulation(E, ρ)) do not
ensure timely delivery is negligible for a certain choice of E and ρ. Note that
Practical-ER-Emulation is very similar to WFS. The main difference is that in
Practical-ER-Emulation the number of neighbors is sampled according to the
binomial distribution whereas WFS chooses a fixed number of neighbors. We use
this observation to relate the probability that the graph constructed by the honest

Practical Provably Secure Flooding for Blockchains 23

sending process of Practical-ER-Emulation has a low distance from the sender to
the probability that the honest sending process of WFS has a low distance from
the sender.

Lemma 7. Let ρ ∈ [0, 1], let ϵ ∈ [0, 1] let λ ∈ N, let p ∈ H, let k ≥ ⌈(1 +
ϵ) · nE · ρ⌉, and let E : P → N \ {0} be an emulation function. If G1

$←
HSP(p, Practical-ER-Emulation(E, ρ), λ) and G2

$← HSP(p, WFS(E, k), λ) then

Pr[MaxDist(G1, p) ≤ λ]− |H| · e− ϵ2·(n−1)·ρ
3 ≤ Pr[MaxDist(G2, p) ≤ λ]. (11)

Proof Idea. Similarly to the proof of Lemma 6, we define a coupling between the
two graphs by defining a coupling between their neighborhood selection algorithms
using rejection sampling. However, in this coupling the invariant that the edges
sampled by WFS are a superset of those of Practical-ER-Emulation is only main-
tained when no party samples more than k neighbors in Practical-ER-Emulation.
We bound the probability that this happens using a Chernoff bound.

We now provide a corollary that bounds the concrete probability that a
message that is input via WFF is delivered timely.

Corollary 1. Let k ∈ N such that k ≥ 42
γ . If m is a message that is input to

some honest party in WFF(k) then

Pr
[
Timelym

((
7 · log

(
n · 6
k · γ

)
+ 2

)
· δChannel

)]
≥ 1− n · e− (n−1)·k

n·24

− e−γ·n·(k·γ
54 −2) −

(
2 · n ·

(
e− k·γ

108 +
(

6 · log
(

n · 6
k · γ

)
+ 1

)
· e− 7·k·γ

648

))
.

(12)

Proof Idea. We bound the size of the emulated graph and apply Lemmas 1 and 4
to 7.

As observed earlier, it is sufficient to bound the probability that a message is
timely delivered in order to bound the probability that any of the two properties
of a flooding protocol is achieved. Further, note that a party p sends at most
k · E(p) messages when a message is forwarded. Hence, the message complexity
is bounded by

∑
p∈H k · E(p) ≤ 2 · k · n. Therefore, the security of WFF (and

thereby Theorem 2) follows directly from this corollary.

4 Asymptotic Optimality and Practical Considerations

Our results from Section 3.2 show that the protocol WFF(k) provides provably
secure flooding. With respect to efficiency, the results show that there are two
possible drawbacks: First, the emulation function E(p) = ⌈αp · n⌉ forces parties
with very high weight to send to many parties, which lead to bandwidth issues.
Secondly, Theorem 2 shows that in our protocol, the number of parties each node
has to send to increases logarithmically in the total number of nodes. In this
section, we show that both properties are inherent for “flooding protocols”.

24 Liu-Zhang, Matt, Maurer, Rito, and Thomsen

4.1 Workload of Heavy Parties

It is easy to see that in at least in extreme cases, very heavy parties have to
send to a lot of other parties: If there is a single party that has the majority
of the total weight, it could be that only this party and an additional one are
honest. Since the heavy party is the only one that can be relied upon for message
delivery, it needs to send to all other parties. The following lemma generalizes
this idea to less extreme settings.

Lemma 8. For any protocol Π that guarantees delivery to all honest parties,
and for any subset S ⊆ P such that

∑
p∈S αp ≥ γ, we have with overwhelming

probability that ∑
p∈S

degreeΠ(p) ≥ |P \ S|. (13)

Proof. Let S be any such set. By the honesty assumption it could be that there
is exactly one honest party in P \ S. To guarantee delivery to this party, some
party in S must send to it. Since it cannot be distinguished which party in P \ S
is honest, the parties in S must send to all parties in P \ S.

Another consequence of Lemma 8 is that having a huge number of nodes with
very little weight also increases the workload for all other nodes, as shown below.

Corollary 2. Assume there is a large set T ⊆ P of parties with combined relative
weight ≤ 1− γ and |T | ≥ n− ϵ for some constant ϵ > 0, and define S := P \ T .
Then, the average degree of the parties in S must be at least n−ϵ

ϵ ∈ Ω(n) with
overwhelming probability.

Proof. Since
∑

p∈S αp = 1 −
∑

p∈T αp ≥ γ, Lemma 8 implies that the average
degree of the parties in S is at least |P\S|

|S| with overwhelming probability. By
assumption, we have |P\S|

|S| = |T |
n−|T | ≥

n−ϵ
ϵ ∈ Ω(n).

Limiting the workload. As we have seen above, having very heavy or many very
light parties necessarily yields a large number of outgoing connections for some
of the nodes. This is not only undesirable but may also become prohibitive in
practice due to limited network bandwidth. If the flooding is deployed, say for a
proof-of-stake blockchain, this can be mitigated by putting a lower and an upper
limit on the amount of stake for actively participating nodes. This implies that
people holding a lot of stake need to split their stake over several nodes (which
is anyway beneficial for decentralization if they are run in different locations),
and people with too little stake need to, e.g., delegate their stake to another
node if supported by the blockchain. The latter can still passively participate by
fetching data from other nodes. We discuss how zero-weight parties can fetch in
the full version of this work [26].

Practical Provably Secure Flooding for Blockchains 25

4.2 Logarithmic Growth of Message Complexity
It is well known that Erdős–Rényi graphs are connected with high probability if
and only if edges are included with probability larger than log n

n [8, Theorem 7.3].
This means the expected degree of a node must be larger than log n to obtain
a connected graph, even without considering corruptions. Since our proofs in
Section 3 depart from Erdős–Rényi graphs, one cannot hope to prove a better
message complexity with our proof techniques.

On the other hand, our final protocol WFF(k) does not choose neighbors in
the way Erdős–Rényi graphs are constructed, but more closely correspond to
so-called directed k-out graphs, which have also been considered in the literature.
Those are directed graphs where for each node v independently, k uniformly
random other nodes are sampled and directed edges from v to the k sampled
nodes are added. It is known that such graphs are connected with probability
approaching 1 for n→∞ already for constant k = 2 [19]. Hence, at least without
corruptions, O(n) overall message complexity should be enough for our protocol.
When considering corruptions, however, a result by Yagan and Makowski [42]
implies that log n connections for each node are necessary, as we show below.
This shows that WFF(k) and Theorem 2 are asymptotically optimal, at least for
the special case in which all parties have the same weight.

Lemma 9. For any flooding protocol in which all honest parties send to k
uniformly chosen nodes and delivery to all honest nodes is guaranteed with
probability ≥ 1/2 where up to a (1− γ) fraction of nodes can be corrupted, we
have for sufficiently large n that

k ≥ log n

γ + 1/n− log(1− γ − 1/n) .

Proof. Yagan and Makowski [42] have considered the setting in which for each of
the n nodes pi, k distinct random other nodes are sampled and undirected edges
between pi and all k sampled nodes are added to a graph. They then consider
the subgraph H consisting of the first ⌊γ′n⌋ nodes for some constant γ′ ∈ (0, 1)
and show in [42, Theorem 3.2] that

k <
log n

γ′ − log(1− γ′) =⇒ lim
n→∞

Pr[H contains isolated node] = 1.

To translate this to our setting, first note that corrupting at most ⌊(1− γ)n⌋
nodes from the end to leave the first ⌊γn + 1⌋ parties honest is a valid adversarial
strategy. To be compatible with the result above, we can set γ′ := γ + 1/n.
Further note that a node p being isolated in H has the same probability as an
honest node not sending to any other honest node and no honest node sending
to that one in a flooding protocol. In that case, if p is the sender in the flooding
protocol, no honest node will receive the message, and if some other node is
the sender, p will not receive the message. Hence, the flooding protocol will fail
to deliver the message to all honest nodes in both cases. This implies that, for
sufficiently large n, flooding protocols with k < log n

γ+1/n−log(1−γ−1/n) fail to deliver
messages with high probability.

26 Liu-Zhang, Matt, Maurer, Rito, and Thomsen

5 Performance Evaluation via Simulations

In order to show that our protocol WFF performs well in practice, we perform
various benchmarks with varying weight distributions and adversarial strategies.
The source code, and a description of how to run the benchmarks, can be found
at https://github.com/guilhermemtr/Weighted-Flooding-Simulator.12

5.1 Scope of Simulations

Weight distributions. We consider weight distributions covering scenarios where
parties have similar weights as well as scenarios with different weights. More
concretely, we consider:

– The constant distribution (Const), characterized by the number of parties n.
In this distribution all parties have equal weights and is therefore equal to
the non-weighted setting. This serves as a baseline for our simulations.

– The exponential distribution (Exp), characterized by the number of parties n
and the weight ratio r between the heaviest party and the lightest party. It
corresponds to the (perhaps more realistic) exponential weight distribution—
wherein the weights of parties form an exponential curve. More concretely,
for i ∈ {1, . . . , n− 1}, the weight of pi+1 is r−(n−1) times the weight of pi.

– The few heavy distribution (FH), characterized by the number of parties n,
the weight ratio r between the heaviest and lightest party, and the number
of heavy parties c. It corresponds to the distribution where n − c parties
have constant weight, and the other c parties have r times more weight. This
weight distribution is meant to capture extreme scenarios.

Sender. In order to ensure that our protocol performs well independently of the
weight of the sender, for the exponential distribution, we consider three choices
for the sender: heaviest, lightest and median-weight party, and for the few heavy
weight distribution, we consider both a heavy and a light party as the sender.

Corruption strategies. Given that parties in our protocol simply forward a
message to their neighbors, we consider the worst behavior that prevents message
propagation, i.e. corrupted parties simply do not send. We consider adversaries
that can corrupt up to 50% of the total weight. To ensure that our protocol
performs well independently of how adversaries spend their corruption budget, we
consider adversaries that greedily corrupt as many parties as possible, following
one of the strategies below:

– Random corruption (Rand) where the adversary corrupts parties uniformly
at random.

– Light-First corruption (Light) where the adversary corrupts parties by their
weight in increasing order, starting by the lighter ones.

– Heavy-First corruption (Heavy) where the adversary corrupts parties by their
weight in decreasing order, starting from the heavier ones.

12 All simulations were performed on the ETH Zurich Euler cluster, but there are no
hindrances to running them on less powerful computers.

https://github.com/guilhermemtr/Weighted-Flooding-Simulator

Practical Provably Secure Flooding for Blockchains 27

As one might note, for the constant weight distribution the corruption strategy
is irrelevant. For this reason, for the constant weight distribution we only consider
the random corruption strategy.

5.2 Methodology

To obtain statistical confidence, we make 10 000 runs for each parameter configu-
ration (e.g. weight distribution, adversary strategy, choice of sender, number of
parties, etc.). All runs are executed independently.

In the evaluations, a run is considered successful if the sender’s message is
delivered to all (honest and dishonest) parties. As one might note, this contrasts
with the timely predicate (see Definition 3), which only requires a message to be
delivered to all honest parties. Thus, the success rate metric we consider for the
evaluations is actually a lower bound on the real success rate of our protocol. The
rationale behind this definition is as follows: consider an adversary that corrupts
a set C of parties; if the adversary would alternatively pick some party p ∈ C,
and corrupt C \{p}, then the protocol would have to guarantee that every honest
party, including p still gets the message. Since p is now honest, it seems a harder
requirement to make p now also receive the message. This justifies our choice of
making adversaries corrupt as many parties as possible.

When counting successful runs, we do not take latency into account. The
reason for this is that all our simulations have in common that once they succeed,
they have a very low latency.13 Further details on this and plots of the actual
latency can be found in the full version of this paper [26].

To ensure our protocol performs well independently of the sender’s weight,
we take the worst result among the sender choices (for each weight distribution).

5.3 Simulations and Results

Comparison against weight-oblivious protocols. To compare the performance of
WFF and a weight oblivious protocol, we measured the success rate for WFF(k)
and a weight oblivious protocol WOF := πFlood(WFS(E, k)) with E(p) := 1 for
different exponential weight distribution (with changing ratios between the
heaviest and lightest party).14 The results can be found in Fig. 1. The plot shows
that our protocol (WFF) achieves 100% success rate at a much lower number
of transmitted messages than the weight-oblivious one (WOF). Only exception
is when the weight ratio between the heaviest and the lightest parties is 1, the
exponential weight distribution is the same as the constant weight distribution,
and hence the protocols become identical. Note, that while the WFF protocol
achieves practical security with low message complexity regardless of the ratio
13 The maximum latency observed in any of our simulations is 9 · δChannel for any

succeeding run
14 The protocol WOF := πFlood(WFS(E, k)) for E(p) := 1 corresponds to the protocol

where each party simply selects k parties uniformly at random as their neighbors
without taking weight into account.

28 Liu-Zhang, Matt, Maurer, Rito, and Thomsen

10 20 30 40 50
0%

50%

100%

Average Messages Sent Per Party

Su
cc

es
s

R
at

e

Exp, Rand
Exp, Heavy
Exp, Light
Const, Rand
FH, Rand
FH, Heavy
FH, Light

Fig. 2. Success rate of WFF protocol for different weight distributions and corruption
strategies, depending on the average number of messages sent per party, for n = 1024
parties, a 50% corruption threshold, a ratio of 106 between heaviest and lightest parties
and c = 10 heavy parties for FH.

between the heaviest and lightest party, the message complexity of WOF in order
to achieve a 100% success rate, increases drastically as the ratio increases.

Performance for changing weight distributions. In Section 3.2, we bounded the
message complexity of WFF by 2·n·(log(n)+κ)

γ (see Theorem 2), and in Section 4.2
we showed that this number of messages is inherent for the constant weight
distribution (see Lemma 9), implying that WFF is optimal up to a constant
factor for this distribution. Although the obtained upper-bound is independent
of the weight, since it is tight only for the constant weight distribution, it could
be that WFF performs poorly for other distributions. To show this is not the
case, we measured the success rate for sending a single message in WFF(k) as a
function of the message complexity (induced by adjusting k) for different weight
distributions and corruption strategies. See Fig. 2.

Unsurprisingly, the adversarial strategy inducing the highest cost is corrupting
as many light nodes as possible. This fits the intuition from Section 3.3: By
corrupting as many light nodes as possible, an adversary can get a slight advantage
in terms of the number of emulated nodes that they control because the ceiling
embedded in the emulation function has a proportionally larger effect on such
nodes. Furthermore, note that for the constant weight distribution WFF(k) simply
selects k neighbors uniformly at random and at least ⌈γ ·n⌉ of the parties remains
honest. Hence, this corresponds to the performance that can be expected by
additionally assuming that a certain fraction of the parties remains honest and use
flooding protocols tailored to this setting. We emphasize that our protocol only
induces marginally larger (within a small constant factor) message complexity
for all the considered weight distributions and corruption strategies. This aligns
with Section 3.3, where our bound on the message complexity for the weighted
setting was only worse by a factor of 4 compared to the bound that relied on a
constant fraction of honest parties. Therefore, security for our protocol in the
weighted setting comes at a much lower cost comparatively.

Practical Provably Secure Flooding for Blockchains 29

5 10 15 20 25 30
0%

50%

100%

Average Messages Sent Per Party

Su
cc

es
s

R
at

e

64 Parties
128 Parties
256 Parties
512 Parties
1024 Parties
2048 Parties
4096 Parties
8192 Parties

Fig. 3. Scalability of WFF protocol. We consider the constant weight distribution, and
the random corruption strategy, with a 50% corruption threshold.

Scalability. A key feature of flooding protocols is their scalability. To benchmark
the scalability of our proposed protocol WFF, we measured, for different numbers
of parties, the success rate of the protocol depending on the average number of
messages each party sends (again induced by varying k). For simplicity, we chose
to only include the constant weight distribution (the performance for varying
weight distributions is plotted in Fig. 2). The results can be found in Fig. 3. From
the plot, it is clear that the message complexity (normalized by the number of
parties) of our protocol only increases logarithmically in the number of parties,
and hence this once again confirms our theory from Section 3.4.

By the time of writing, there are around 12k running Bitcoin nodes [1] and
roughly 8k nodes in the Ethereum network [2]. Extrapolating from Figs. 2 and 3,
it seems that independently of the stake distribution, WFF can realize a secure
flooding network with an average number of connections per message of just
∼55 for such number of nodes. We conclude that this is within the realm of the
number of connections existing widely used implementations maintain by default.
Note, however, that the workload is not distributed evenly among nodes in WFF,
as heavier nodes need to maintain more connections. In Section 4, we showed
that this is inherent for this type of protocol in the weighted setting.

Acknowledgements

The work was in part done while Chen-Da Liu-Zhang was at Carnegie Mellon
University and Søren Eller Thomsen was at Purdue University. Chen-Da Liu-
Zhang was supported in part by the NSF award 1916939, DARPA SIEVE program,
a gift from Ripple, a DoE NETL award, a JP Morgan Faculty Fellowship, a PNC
center for financial services innovation award, and a Cylab seed funding award.

References

1. Bitnodes.io. https://bitnodes.io/ (2022), [Online; accessed 16-September-2022]

https://bitnodes.io/

30 Liu-Zhang, Matt, Maurer, Rito, and Thomsen

2. ethernodes.org. https://ethernodes.org/ (2022), [Online; accessed 16-September-
2022]

3. Abraham, I., Malkhi, D., Nayak, K., Ren, L., Yin, M.: Sync hotstuff: Simple and
practical synchronous state machine replication. In: IEEE Symposium on Security
and Privacy. pp. 106–118. IEEE (2020)

4. Alangot, B., Reijsbergen, D., Venugopalan, S., Szalachowski, P., Yeo, K.S.: De-
centralized and lightweight approach to detect eclipse attacks on proof of work
blockchains. IEEE Trans. Netw. Serv. Manag. 18(2), 1659–1672 (2021)

5. Apostolaki, M., Zohar, A., Vanbever, L.: Hijacking bitcoin: Routing attacks on
cryptocurrencies. In: IEEE Symposium on Security and Privacy. pp. 375–392. IEEE
(2017)

6. Badertscher, C., Gaži, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis:
Composable proof-of-stake blockchains with dynamic availability. In: Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
p. 913–930. CCS ’18, ACM (2018). https://doi.org/10.1145/3243734.3243848

7. Ben-Hamou, A., Peres, Y., Salez, J.: Weighted sampling without replacement.
Brazilian Journal of Probability and Statistics 32(3), 657–669 (2018), https://
www.jstor.org/stable/26496522

8. Bollobás, B.: Random Graphs. Cambridge Studies in Advanced Mathemat-
ics, Cambridge University Press, 2 edn. (2001). https://doi.org/10.1017/
CBO9780511814068

9. Chandran, N., Chongchitmate, W., Garay, J.A., Goldwasser, S., Ostrovsky, R.,
Zikas, V.: The hidden graph model: Communication locality and optimal resiliency
with adaptive faults. In: ITCS. pp. 153–162. ACM (2015)

10. Chandran, N., Garay, J.A., Ostrovsky, R.: Improved fault tolerance and secure
computation on sparse networks. In: ICALP (2). Lecture Notes in Computer Science,
vol. 6199, pp. 249–260. Springer (2010)

11. Chandran, N., Garay, J.A., Ostrovsky, R.: Almost-everywhere secure computation
with edge corruptions. J. Cryptol. 28(4), 745–768 (2015)

12. Chen, J., Micali, S.: Algorand: A secure and efficient distributed ledger. Theor.
Comput. Sci. 777, 155–183 (2019)

13. Coretti, S., Kiayias, A., Moore, C., Russell, A.: The generals’ scuttlebutt: Byzantine-
resilient gossip protocols. Cryptology ePrint Archive, Report 2022/541 (2022),
https://ia.cr/2022/541

14. Daian, P., Pass, R., Shi, E.: Snow white: Robustly reconfigurable consensus and
applications to provably secure proof of stake. In: Financial Cryptography. Lecture
Notes in Computer Science, vol. 11598, pp. 23–41. Springer (2019)

15. David, B., Gazi, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-secure,
semi-synchronous proof-of-stake blockchain. In: EUROCRYPT (2). Lecture Notes
in Computer Science, vol. 10821, pp. 66–98. Springer (2018)

16. Dinsdale-Young, T., Magri, B., Matt, C., Nielsen, J.B., Tschudi, D.: Afgjort: A
partially synchronous finality layer for blockchains. In: SCN. Lecture Notes in
Computer Science, vol. 12238, pp. 24–44. Springer (2020)

17. Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM
J. Comput. 12(4), 656–666 (1983)

18. Dwork, C., Peleg, D., Pippenger, N., Upfal, E.: Fault tolerance in networks of
bounded degree. SIAM J. Comput. 17(5), 975–988 (1988)

19. Fenner, T.I., Frieze, A.M.: On the connectivity of random m-orientable graphs
and digraphs. Combinatorica 2(4), 347–359 (1982). https://doi.org/10.1007/
BF02579431

https://ethernodes.org/
https://doi.org/10.1145/3243734.3243848
https://doi.org/10.1145/3243734.3243848
https://www.jstor.org/stable/26496522
https://www.jstor.org/stable/26496522
https://doi.org/10.1017/CBO9780511814068
https://doi.org/10.1017/CBO9780511814068
https://doi.org/10.1017/CBO9780511814068
https://doi.org/10.1017/CBO9780511814068
https://ia.cr/2022/541
https://doi.org/10.1007/BF02579431
https://doi.org/10.1007/BF02579431
https://doi.org/10.1007/BF02579431
https://doi.org/10.1007/BF02579431

Practical Provably Secure Flooding for Blockchains 31

20. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis and
applications. In: EUROCRYPT (2). Lecture Notes in Computer Science, vol. 9057,
pp. 281–310. Springer (2015)

21. Garay, J.A., Ostrovsky, R.: Almost-everywhere secure computation. In: EURO-
CRYPT. Lecture Notes in Computer Science, vol. 4965, pp. 307–323. Springer
(2008)

22. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s
peer-to-peer network. In: USENIX Security Symposium. pp. 129–144. USENIX
Association (2015)

23. Jayanti, S., Raghuraman, S., Vyas, N.: Efficient constructions for almost-everywhere
secure computation. In: EUROCRYPT (2). Lecture Notes in Computer Science,
vol. 12106, pp. 159–183. Springer (2020)

24. Kermarrec, A., Massoulié, L., Ganesh, A.J.: Probabilistic reliable dissemination in
large-scale systems. IEEE Trans. Parallel Distributed Syst. 14(3), 248–258 (2003)

25. King, V., Saia, J., Sanwalani, V., Vee, E.: Towards secure and scalable computation
in peer-to-peer networks. In: FOCS. pp. 87–98. IEEE (2006)

26. Liu-Zhang, C.D., Matt, C., Maurer, U., Rito, G., Thomsen, S.E.: Practical provably
secure flooding for blockchains. Cryptology ePrint Archive, Paper 2022/608 (2022),
https://eprint.iacr.org/2022/608, https://eprint.iacr.org/2022/608

27. Malkhi, D., Mansour, Y., Reiter, M.K.: On diffusing updates in a byzantine envi-
ronment. In: SRDS. pp. 134–143. IEEE (1999)

28. Malkhi, D., Pavlov, E., Sella, Y.: Optimal unconditional information diffusion. In:
DISC. Lecture Notes in Computer Science, vol. 2180, pp. 63–77. Springer (2001)

29. Marcus, Y., Heilman, E., Goldberg, S.: Low-resource eclipse attacks on ethereum’s
peer-to-peer network (2018), https://eprint.iacr.org/2018/236, https://
eprint.iacr.org/2018/236

30. Matt, C., Nielsen, J.B., Thomsen, S.E.: Formalizing delayed adaptive corruptions
and the security of flooding networks. In: Advances in Cryptology – CRYPTO 2022.
Springer (2022), to appear

31. Minsky, Y., Schneider, F.B.: Tolerating malicious gossip. Distributed Comput.
16(1), 49–68 (2003)

32. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Decentralized Business
Review p. 21260 (2008)

33. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: Generalizing selfish
mining and combining with an eclipse attack. In: EuroS&P. pp. 305–320. IEEE
(2016)

34. Pass, R., Shi, E.: Fruitchains: A fair blockchain. In: PODC. pp. 315–324. ACM
(2017)

35. Pass, R., Shi, E.: Hybrid consensus: Efficient consensus in the permissionless model.
In: DISC. LIPIcs, vol. 91, pp. 39:1–39:16. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2017)

36. Pass, R., Shi, E.: Thunderella: Blockchains with optimistic instant confirmation.
In: EUROCRYPT (2). Lecture Notes in Computer Science, vol. 10821, pp. 3–33.
Springer (2018)

37. Rohrer, E., Tschorsch, F.: Kadcast: A structured approach to broadcast in blockchain
networks. In: Proceedings of the 1st ACM Conference on Advances in Financial
Technologies, AFT 2019. pp. 199–213. ACM (2019). https://doi.org/10.1145/
3318041.3355469

38. Tran, M., Choi, I., Moon, G.J., Vu, A.V., Kang, M.S.: A stealthier partitioning
attack against bitcoin peer-to-peer network. In: IEEE Symposium on Security and
Privacy. pp. 894–909. IEEE (2020)

https://eprint.iacr.org/2022/608
https://eprint.iacr.org/2022/608
https://eprint.iacr.org/2018/236
https://eprint.iacr.org/2018/236
https://eprint.iacr.org/2018/236
https://doi.org/10.1145/3318041.3355469
https://doi.org/10.1145/3318041.3355469
https://doi.org/10.1145/3318041.3355469
https://doi.org/10.1145/3318041.3355469

32 Liu-Zhang, Matt, Maurer, Rito, and Thomsen

39. Tsimos, G., Loss, J., Papamanthou, C.: Gossiping for communication-efficient
broadcast. Cryptology ePrint Archive, Report 2020/894 (2020), https://ia.cr/
2020/894

40. Upfal, E.: Tolerating a linear number of faults in networks of bounded degree. Inf.
Comput. 115(2), 312–320 (1994)

41. Xu, G., Guo, B., Su, C., Zheng, X., Liang, K., Wong, D.S., Wang, H.: Am I eclipsed?
A smart detector of eclipse attacks for ethereum. Comput. Secur. 88 (2020)

42. Yagan, O., Makowski, A.M.: On the scalability of the random pairwise key pre-
distribution scheme: Gradual deployment and key ring sizes. Perform. Evaluation
70(7-8), 493–512 (2013). https://doi.org/10.1016/j.peva.2013.03.001

43. Zhang, S., Lee, J.: Eclipse-based stake-bleeding attacks in pos blockchain systems.
In: BSCI. pp. 67–72. ACM (2019)

44. Zheng, H., Tran, T., Arden, O.: Total eclipse of the enclave: Detecting eclipse
attacks from inside tees. In: IEEE ICBC. pp. 1–5. IEEE (2021)

https://ia.cr/2020/894
https://ia.cr/2020/894
https://doi.org/10.1016/j.peva.2013.03.001
https://doi.org/10.1016/j.peva.2013.03.001

	Practical Provably Secure Flooding for Blockchains

