
Authenticated Encryption with
Key Identification

Julia Len1, Paul Grubbs2, and Thomas Ristenpart1

1 Cornell Tech
2 University of Michigan

Abstract. Authenticated encryption with associated data (AEAD)
forms the core of much of symmetric cryptography, yet the standard tech-
niques for modeling AEAD assume recipients have no ambiguity about
what secret key to use for decryption. This is divorced from what occurs
in practice, such as in key management services, where a message recip-
ient can store numerous keys and must identify the correct key before
decrypting. To date there has been no formal investigation of their se-
curity properties or efficacy, and the ad hoc solutions for identifying the
intended key deployed in practice can be inefficient and, in some cases,
vulnerable to practical attacks.

We provide the first formalization of nonce-based AEAD that sup-
ports key identification (AEAD-KI). Decryption now takes in a vector of
secret keys and a ciphertext and must both identify the correct secret key
and decrypt the ciphertext. We provide new formal security definitions,
including new key robustness definitions and indistinguishability security
notions. Finally, we show several different approaches for AEAD-KI and
prove their security.

Keywords: Key identification, authenticated encryption, key commit-
ment, key robustness

1 Introduction

Authenticated encryption with associated data (AEAD) is ubiquitously used in
practice. Standard formalizations of AEAD schemes model a “single-key” setting
where a single sender sends an encrypted message to a single receiver. Though
simple to analyze, this model is increasingly divorced from practice in a number
of important aspects.

A setting which has received little or no attention in the cryptographic litera-
ture is one where a message recipient will store numerous keys and must identify
the correct key to use before decryption can proceed. This practice can be seen
in cryptographic libraries such as Google’s Tink API [32], key management ser-
vices (KMS) such as for Amazon Web Services (AWS) [5], and multi-user Shad-
owsocks [30], among others. Notably, AEAD schemes and their security models
do not formally address the issue of key identification, producing a gap when
translating from cryptographic theory to practice.

Two approaches for key identification are often used in practice. The first
is trial decryption, where one attempts to decrypt the ciphertext under each of
the keys held by the recipient. However, this is slow, even for a small number of
keys. As such, a second approach is often used: the sender attaches a previously
agreed-upon key identifier to each message it sends. For instance, this approach
is used by Tink, which derives 5-byte strings as the identifier. The recipient can
then efficiently use the identifier to look up the corresponding key. However, this
approach does not work in settings where keys must remain anonymous, such
as in anonymous messaging protocols. It is also unclear what security properties
(for both approaches) are being achieved in the case where there is potential
for adversarial modification of key identifiers and/or adversarial choice of some
of the recipient keys. Adversarially chosen keys can arise in settings where the
sender chooses a secret key to share with the recipient, which have resulted in
several recent attacks [2, 15,19,23].

One example is multi-user Shadowsocks [30]. Shadowsocks is an anonymity
proxy that works by having a client encrypt their traffic under a shared password
with a server, which decrypts using AEAD. The multi-user mode allows multiple
passwords to be specified for a single server, which means that incoming pack-
ets must be trial decrypted under every possible user password. Len et al. [23]
describe an attack on this scheme where an attacker can insert a malicious pass-
word into this set of passwords, then mount a partitioning oracle attack that
enables the attacker to learn some target user’s password. Fundamentally, the
vulnerability is that Shadowsocks’s AEAD has no efficient and secure way to
identify the appropriate key.

Our contributions. We initiate the formal study of AEAD that supports key
identification. The starting point is nonce-based AEAD [28], which we extend
to include in the formal syntax and semantics of encryption schemes the key
identification task: decryption takes in a vector of secret keys as well as a nonce,
associated data, and a ciphertext, and must both identify the correct secret key
and decrypt the ciphertext. This change, while conceptually simple, immediately
introduces a number of complexities. It forces scheme designers to specify how
the right key is identified, requires changes to notions of correctness, suggests
that we must give new security definitions that speak to issues such as adversaries
forcing the wrong key to be identified, and more.

We formalize a new cryptographic primitive called AEAD-KI, or AEAD with
key identification. Like AEAD, the primitive is composed of a triple of algorithms
for key generation, encryption, and decryption. Key generation takes in what we
call a key label so that AEAD-KI keys are composed of the traditional secret
key as well as the key label. This label acts as optional public metadata for
the key and models techniques in practice, e.g., URLs that suggest where to
locate the key or other kinds of static identifiers. Encryption takes in a key,
nonce, associated data, and message. Ciphertexts can opt to include a special
component, called a key tag. Decryption for AEAD-KI, in turn, accepts a vector
of keys, instead of one key as for AEAD. We use a vector instead of a set to
preserve information about the order of keys, which could affect the decryption

2

outcome. Given the ciphertext (including the key tag), decryption returns both
the key that correctly decrypts the ciphertext as well as the resulting message.
If decryption determines that no key correctly decrypts the ciphertext, it simply
returns an error symbol ⊥.

We next consider which security definitions best capture the AEAD-KI set-
ting. Our first goal is to extend the standard AEAD security notions of confiden-
tiality and ciphertext integrity to AEAD-KI. A good starting point is transform-
ing the traditional all-in-one real-versus-random indistinguishability security no-
tion for AEAD due to Rogaway and Shrimpton [29] to the AEAD-KI setting.
Specifically, we can allow the attacker to interact with multiple encryption key
instances, reminiscent of the multi-user setting for encryption [6]. However, this
definition only allows for honest keys, which unfortunately does not capture at-
tacks in which a malicious key is somehow inserted into a recipient’s key vector.
Indeed, attacks have already been shown in practice where malicious keys are
given to a recipient to prevent decryption under honest keys [2, 15].

We therefore opt for a notion of security for which adversaries can insert ma-
licious keys into key vectors used during decryption queries. This renders more
complex how the security game should handle decryption oracles in order to
distinguish between honest and malicious keys. To handle these subtleties, we
introduce KI-nAE, a new security notion that uses a simulation-based approach
for the all-in-one definition. This definition captures a wide class of interfer-
ence attacks in which a malicious user somehow inserts a malicious key into a
recipient’s key vector in an attempt to interfere with honest keys.

A security property intrinsic to the key identification setting is key robust-
ness, a security goal first investigated in the context of public-key encryption [1]
and later investigated for authenticated encryption [17] (see also [2,8,15,19,23]).
Interestingly, robustness here functions as a form of correctness, as ensuring the
correct key decrypts a given ciphertext in the presence of many (potentially ad-
versarial) keys can only be guaranteed by robustness. We thus extend the AEAD
robustness notion called full robustness (FROB) [17] to the AEAD-KI setting,
which is straightforward. Interestingly, this extension however proves insufficient
to rule out some attacks. In particular, when decryption is given the correct key
within a key set, it should not fail to decrypt; such failures could leak informa-
tion about the (honest) keys composing a key vector. One way to handle this is
with an extended key robustness notion, but an observation due to Mihir Bellare
is that one can instead extend correctness to rule out such decryption failures.
See the body and the full version of this work for more details.

Approaches to AEAD-KI. We then turn to analyzing security of existing key
identification schemes as well as suggesting new ones. A summary of our analyses
appears in Figure 1. We divide key identification into several categories. The first
approach utilizes the key label of the key as the key tag itself. Decryption can
then find all keys whose label matches the key tag of the ciphertext and perform
trial decryptions. (Note the second category, trial decryption, is a special case
where all labels are the empty string.) This reflects how, in practice, labels
are sometimes not unique and instead used to label a set of keys. Using key

3

Approach Description
AEAD Key

Section
FROB? anon.?

Key labels Key gen. labels each key, sent as part of
ciphertext; brute-force decrypt with all
keys matching key label in ciphertext

Yes No §4

Trial decryption Special case of key labels where all labels
are empty (ε)

Yes Yes §4

Static key hint Ciphertext includes deterministic non-
CR hash of key

Yes No §5

Static key commitment Ciphertext includes deterministic CR
hash of key

No No §5

Dynamic key hint Ciphertext includes PRF of key & nonce Yes Yes §6
Dynamic key commitment Ciphertext includes CR-PRF of key &

nonce
No Yes §6

Fig. 1: Summary of various approaches to AEAD-KI that we consider. For each ap-
proach, we also list whether it must use a FROB AEAD scheme and whether it provides
key anonymity.

labels obviates achieving key anonymity, since a ciphertext produced by a certain
key will always be flagged by the key’s label. Nevertheless, brute-force trial
decryption, a special case of the key label approach, can achieve anonymity,
although with the trade-off of increased computational costs. Since key labels
are not unique, they do not provide key commitment to AEAD schemes that
are not key committing. Nevertheless, we see this insecure construction arises
in practice, such as in the Tink library. Our analysis shows that if one instead
uses the key label approach with a key-committing AEAD scheme, then the
composition is key committing.

Next we turn to what we call “static” approaches, those where key tags are
deterministically computed from the secret key. These are similar to “key check
values”, legacy schemes for ensuring integrity of the key [18,27,31]. Since the key
tag for a key never changes, this approach also does not allow for key anonymity.
We further divide static key identifiers into two classes: static key hints and static
key commitments. Key hints are key tags computed from the key in a non-key-
committing way, typically using a non-collision resistant hash of the key. This
means that AEAD-KI schemes using key hints, like key labels, will need to trial
decrypt on all keys matching the key hint and use a FROB AEAD scheme to
achieve key robustness. The benefit of key hints is that they can often be short
and efficiently computed. In contrast, static key commitments, the second class
of static key identifiers, do commit to the key. These are typically a collision-
resistant hash of the key. While static key commitments might be less efficient
to compute than key hints, they can be used to build secure AEAD-KI from
non-FROB AEAD schemes.

Finally, both key hints and key identifiers can be made “dynamic” to provide
key anonymous counterparts of static schemes. This approach uses a nonce when
computing the key tag so that the key tag for a key is unique for each encryption
call. Like static identifiers, dynamic identifiers can be both key hints and key

4

commitments, with security achieved when combining with any AEAD or FROB
AEAD, respectfully.

Further related work. Farshim, Orlandi, and Rosie [17] first proposed the
set of key robustness notions for symmetric primitives. Their strongest defini-
tion, full robustness, represents the goal of key commitment for AEAD schemes.
Grubbs et al. [19] suggest a notion of compactly committing AEAD, which is
useful in abuse moderation settings. Dodis et al. [15] describe an attack against
Facebook Messenger’s abuse moderation tooling that relies on AES-GCM, which
is not key committing. In this attack, a malicious sender can force an honest re-
cipient to use a malicious key to decrypt a message to abusive content that
cannot be reported. Len et al. [23] and Albertini et al. [2] showed that other
commonly used AEAD schemes, such as AES-GCM-SIV, ChaCha20-Poly1305,
and OCB3, are not key committing and they describe other practical attack
scenarios that exploit non-key committing AEAD schemes.

Albertini et al. also propose two approaches to adding key commitment to
AEAD schemes. One of these approaches is to compute a collision-resistant PRF
of the key, both deterministically and using a nonce for key anonymity. Our static
and dynamic identifiers parallel these schemes, but for the AEAD-KI setting.
Bellare and Hoang [9] propose a spectrum of new definitions for commitment
that capture not just committing to the key but also committing to the nonce,
associated data, and plaintext message. They also propose new key-committing
AEAD schemes based on AES-GCM and AES-GCM-SIV as well as a construc-
tion that transforms a legacy AEAD scheme into one that is key-committing
using what they call a committing PRF. This construction is similar to that
proposed by Albertini et al. (and indeed they note that Albertini et al.’s con-
struction can be viewed as a specific instantiation of their scheme). Their work
considers only the single-key setting, but their schemes can be used as the nec-
essary FROB AEAD schemes in our AEAD-KI constructions.

Degabriele et al. [14] propose nonce-set AEAD, which is similar to our AEAD-
KI formalism but instead for nonce sets. Their formalism considers decryption
accepting a set of nonces and then returning the correct nonce along with the
plaintext message.

Chan and Rogaway [13] formalize anonymous authenticated encryption, which
requires that ciphertexts maintain strong privacy when considering nonces and
associated data. They mention the need for robustness, although they only con-
sider robustness for honestly generated keys, which is implied by the typical
AEAD security notion as shown in [17]. Finally, Jaeger and Tyagi [22] consider
multi-user simulation-based security definitions for various standard symmetric
definitions where keys can be adaptively compromised.

2 Preliminaries

We follow the notational conventions used in [19]. We fix some alphabet Σ,
e.g. Σ = {0, 1}. For any x ∈ Σ∗, let |x| denote its length. We write x←$X
to denote uniformly sampling from a finite set X. We write X‖Y to denote

5

concatenation of two strings. For a string X of n bits, we will write X[i, . . . , j]
for 1 ≤ i < j ≤ n to mean the substring of X beginning at index i and ending at
index j. For notational simplicity, we assume that one can unambiguously parse
Z = X‖Y into its two parts, even for strings of varying length. For strings X,Y ∈
{0, 1}∗ we write X ⊕ Y to denote taking the XOR of X[1, . . . ,min(|X|, |Y |)] ⊕
Y [1, . . . ,min(|X|, |Y |)]. For some table of values where yi is stored at key xi,
denoted as T[xi]← yi, for a set of keys X = {xi : 1 ≤ i ≤ κ} for some integer κ,
T[X] denotes the set {T[xi] : xi ∈ X}. We denote a vector of elements as [·]. We
denote the value stored at index i in vector K as K[i]. For vector K, we denote
x ∈ K as x is an element of K and |K| as the number of elements in K. We also
denote K.add(x) to mean adding x to the end of vector K. We denote [n]` as the
`-bit representation of the integer n.

We use code-based games [11] to formalize security notions. Variables’ types
should be clear from context and are modeled as random variables in the prob-
ability distribution defined by the random coins used in execution. Pr [G⇒ y]
denotes (over the random coins of G) that the game G outputs the value y.
For a scheme S, we will sometimes use “a GS adversary” to describe an adver-
sary in the game G instantiated with the scheme S. For an adversary A, GAS
denotes the game G instantiated with the scheme S and specific adversary A.
Pr
[

GAS ⇒ out
]

denotes the probability that game G instantiated with scheme
S and adversary A outputs out.

Authenticated encryption. An authenticated encryption with associated
data (AEAD) scheme AEAD = (Kg,Enc,Dec) consists of a triple of algorithms.
Associated to any scheme AEAD is a key space K ⊆ Σ∗, nonce space N ⊆ Σ∗,
header space A ⊆ Σ∗, message space M ⊆ Σ∗, and ciphertext space C ⊆ Σ∗.
The randomized key generation algorithm Kg outputs a secret key K ∈ K.
Encryption Enc is deterministic and takes as input a 4-tuple (K ,N ,AD ,M) ∈
(Σ∗)4 and outputs ciphertext C or a distinguished error symbol ⊥. We require
that Enc(K ,N ,AD ,M) 6= ⊥ if (K ,N ,AD ,M) ∈ K × N × A ×M. Decryption
Dec is deterministic and takes as input a tuple (K ,N ,AD ,C) ∈ (Σ∗)4 and
outputs value M or ⊥. An AEAD scheme is correct if for any (K ,N ,AD ,M) ∈
K ×N ×A×M it holds that Dec(K ,N ,AD ,Enc(K ,N ,AD ,M)) = M .

The security notion we consider for AEAD schemes is nonce-based real-or-
random security under chosen-ciphertext attack [29]. We generalize this to a
multi-user setting [12] where an adversary can interact with multiple instances
of the AEAD scheme, which we call MU-nAEAEAD. The game pseudocode is
presented in Figure 2. We restrict our attention to nonce-respecting adversaries,
meaning they never query the same nonce twice to Enc for the same key iden-
tifier id, and they only query a key identifier id < i to Enc and Dec. The
MU-nAEAEAD advantage of an adversary A is defined as

Advmu-nae
AEAD (A) = |Pr

[
MU-nAE1AAEAD ⇒ 1

]
− Pr

[
MU-nAE0AAEAD ⇒ 1

]
|.

Full robustness. We use the full robustness notion for AEAD schemes from
Farshim et al. [17], but adapted to the nonce-based setting. Albertini et al. [2]

6

MU-nAE1AAEAD:

i← 0

b′←$AGenKey,Enc,Dec

Return b′

GenKey():

K ←$ AEAD.Kg()

T[i]← K ; i← i+ 1

Enc(id,N ,AD,M):

C ← AEAD.Enc(T[id],N ,AD,M)

C[N ,AD,C]← id

Return C

Dec(id,N ,AD,C):

If C[N ,AD,C] = id then return ⊥
M ← AEAD.Dec(T[id],N ,AD,C)

Return M

MU-nAE0AAEAD:

i← 0

b′←$AGenKey,Enc,Dec

Return b′

GenKey():

i← i+ 1

Enc(id,N ,AD,M):

C ←$ {0, 1}clen(|M|)

Return C

Dec(id,N ,AD,C):

Return ⊥

Fig. 2: Games MU-nAE1 and MU-nAE0 are used for MU-nAEAEAD, or multi-user real-
or-random security, for scheme AEAD = (Kg,Enc,Dec).

also provide a FROB notion for nonce-based AEAD, with slightly different syn-
tax — our formulation is equivalent to theirs. Roughly, FROB security tasks
an adversary with providing two keys and a ciphertext such that both keys
successfully decrypt the ciphertext. We define the game in Figure 3.

The FROBAEAD advantage of an adversary A is defined as

Advfrob
AEAD(A) = Pr

[
FROBAAEAD ⇒ 1

]
.

Pseudo-random functions. We use a multi-user variant of the traditional
pseudo-random function (PRF) definition (q.v., [7]) for two functions, where
the adversary is given access to oracles for both functions. We define the games
in Figure 3. The game gives the adversary an additional GenKey oracle that
allows it to generate multiple keys. The MU-PRFF advantage of an adversary A
is defined as

Advmu-prf
F0,F1

(A) = |Pr
[

REALAF0,F1
⇒ 1

]
− Pr

[
IDEALA ⇒ 1

]
|.

Collision resistance. The collision resistance (CR) game for function F =
{0, 1}κ×{0, 1}` → {0, 1}n measures the ability of an adversary to find two key-
value pairs such that the evaluation of F on these inputs evaluates to the same
output. More formally, the CRF advantage of an adversary A is defined as

Advcr
F (A) = Pr [K0, x0,K1, x1 ← A : (K0, x0) 6= (K1, x1) ∧ F(K0, x0) = F(K1, x1)] .

Pre-image resistance. The pre-image resistance game for function F = {0, 1}κ×
{0, 1}` → {0, 1}n measures the ability of an adversary to find the pre-image of a

7

FROBAAEAD:

K0,K1,N ,AD,C ← A
If K0 = K1:

Return 0

M0 ← Dec(K0,N ,AD,C)

M1 ← Dec(K1,N ,AD,C)

Return M0 6= ⊥∧M1 6= ⊥

REALAF0,F1
:

i← 0

b←$AGenKey,Func0,Func1

Return b′

GenKey():

K ←$ {0, 1}κ

T[i]← K ; i← i+ 1

Func0(id, x):

Return F0(T[id], x)

Func1(id, x):

Return F1(T[id], x)

IDEALA:

i← 0; T0,T1 ← []

b′←$AGenKey,Func0,Func1

Return b′

GenKey():

i← i+ 1

Func0(id, x):

If T0[id, x] = ⊥: T0[id, x]←$ {0, 1}n

Return T0[id, x]

Func1(id, x):

If T1[id, x] = ⊥: T1[id, x]←$ {0, 1}n

Return T1[id, x]

Fig. 3: (Left) Game FROBAEAD is the full robustness security notion for scheme
AEAD = (Kg,Enc,Dec). (Center/Right) Games REAL and IDEAL are used for
MU-PRFF0,F1 , or multi-user PRF security for functions F0 = {0, 1}κ × {0, 1}`0 →
{0, 1}n0 and F1 = {0, 1}κ × {0, 1}`0 → {0, 1}n0 .

random range point for F. More formally, the PREF advantage of an adversary
A is defined as

Advpre
F (A) = Pr [y←$ {0, 1}n; K , x← A(y) : F(K , x) = y] .

3 Defining AEAD with Key Identification

We start by formalizing the notion of AEAD with key identification (AEAD-KI).
AEAD-KI extends AEAD schemes to the setting where a recipient stores mul-
tiple keys and must therefore choose which key to use for decryption. At a high
level, our formalization extends prior ones on AEAD in the following ways:

• We add a notion of key labels, which are potentially public, application-
defined strings associated to secret keys. For notational simplicity, we will
redefine a key to be a label, secret key pair.

• Decryption takes as input a vector of keys, instead of a single key. Decryption
must determine both which key to use, and the corresponding plaintext. We
model the keys used by decryption as a vector, instead of a set, to preserve
information about the order.

• Ciphertexts may include a key identification tag, to assist decryption. We
will explore a variety of ways to construct key identification tags, each with
different security and performance profiles.

These changes to our conceptualization of syntax and semantics of AEAD nec-
essarily require revisiting security as well. Later in this section we propose a
new simulator-based all-in-one security definition that captures confidentiality
and integrity for AEAD-KI schemes. Furthermore, we will see that the shift to

8

AEAD-KI introduces a number of subtleties related to ciphertexts potentially
being decryptable under more than one key. We will therefore provide new key
robustness (also called key commitment) notions for AEAD-KI.

Syntax and semantics. An AEAD-KI scheme is a triple of algorithms com-
bined with a a key space K ⊆ Σ∗, key label space L ⊆ Σ∗, nonce space N ⊆ Σ∗,
associated data spaceA ⊆ Σ∗, message spaceM⊆ Σ∗, ciphertext space C ⊆ Σ∗,
and key tag space T ⊆ Σ∗. We will often leave the spaces implicit and clear from
context. Thus we write that an AEAD-KI scheme AEKI = (Kg,Enc,Dec) consists
of the following algorithms:

• K ←$ AEKI.Kg(kid)
The randomized key generation algorithm takes as input the key label kid
to use for the generated secret key. The key label operates as metadata for
the secret key. Key generation outputs a key K ∈ L × K, which is a pair
composed of the key label and the secret encryption/decryption key. While
the encryption key must be kept secret, the key label can be public.

• (Tk ,C)← AEKI.Enc(K ,N ,AD ,M)
The nonce-based deterministic encryption algorithm takes as input tuple
(K ,N ,AD ,M) ∈ (Σ∗)4 and outputs pair (Tk ,C) ∈ T ×C or a distinguished
error symbol ⊥. Notice that encryption returns, in addition to the encrypted
plaintext, a bit string Tk , which can be empty. We will refer to this as the key
tag, as we discuss more below. Both the key tag and the encrypted plaintext
form the ciphertext. We require that if (K ,N ,AD ,M) ∈ K ×N ×A×M
then Enc(K ,N ,AD ,M) 6= ⊥.

• (K ,M)← AEKI.Dec(K,N ,AD ,Tk ,C)
The decryption algorithm’s input is (K,N ,AD ,Tk ,C) ∈ K∗×(Σ∗)4 and its
output is (K ,M) ∈ K ×M or ⊥. Decryption is deterministic. Notice that
instead of a single key, decryption takes as input a vector of keys K, and we
denote vectors of length one or greater by K∗. Furthermore, in addition to
the plaintext, decryption returns the corresponding key that produced the
plaintext. If no key can decrypt, then the error symbol ⊥ is returned.

Correctness. When extending AEAD to allow for multiple keys, a meaningful
definition of correctness becomes more complex. We expect that when encrypting
with a key K to produce ciphertext C , and then decrypting C with any vector K
that includes K , the original plaintext should be recovered. However, this cannot
for practical schemes be guaranteed absolutely, since there may exist another key
that successfully decrypts the ciphertext. Indeed, the correct outcome that we
expect of a scheme that allows decryption to accept multiple keys now becomes
more like a security property of key robustness, where we have computational
guarantees that decryption succeeds for a single key. We therefore provide here a
simpler, absolute correctness definition and later focus on capturing the behavior
we want from AEAD-KI through key robustness, which we cover below.

Definition 1. An AEAD-KI scheme is correct if the following hold:

9

(1) For any (K ,N ,AD ,M) it holds that Pr [(K ′,M ′) = (K ,M)] = 1 where
(K ′,M ′)← Dec([K],N ,AD ,Enc(K ,N ,AD ,M)) and the probability is over
the coins used by encryption;

(2) For any (K,N ,AD ,Tk ,C) and (K ,M) ← Dec(K,N ,AD ,Tk ,C) it must
be that either (K ,M) = ⊥ or K ∈ K; and

(3) For any K,K′ and any (N ,AD ,Tk ,C), let (K ,M)← Dec(K,N ,AD ,Tk ,C)
and (K ′,M ′) ← Dec(K′,N ,AD ,Tk ,C). If (K ,M) 6= ⊥ and K ∈ K′, then
(K ′,M ′) 6= ⊥.

The first condition lifts traditional perfect correctness for AEAD to the syn-
tax of AEAD-KI for decryption with a single key. The second condition addi-
tionally asks that decryption only ever output a key that was in the key vector.
The third correctness condition roughly requires that if Dec outputs some key
K for a key set K, any other K′ containing K must decrypt to non-⊥. (Note
we do not require decryption with K′ outputs K ; this property is guaranteed
by our key robustness security notion, which we discuss next.) For all schemes
we consider, correctness is easily established via inspection of their decryption
algorithm; we therefore will omit explicit analysis.

3.1 Key robustness

As mentioned, in the AEAD-KI setting, key robustness is partly about correct-
ness: we expect that the key used to encrypt a plaintext should be the only one
to correctly decrypt the resulting ciphertext. However, when decryption allows
for multiple keys—some of which may be adversarially-chosen—this property
cannot be satisfied without some form of key robustness. Briefly, key robustness
guarantees that only a single key can be used to decrypt a given ciphertext.

Farshim et al. [16] first defined several key robustness notions for AEAD
schemes. Their strongest notion is called full robustness (FROB), and requires
an adversary to discover two keys that each successfully decrypt an adversari-
ally chosen nonce, associated data, and ciphertext (see Section 2). Bellare and
Hoang [9] recently introduced even stronger notions, such as their CMT3, which
require commitment to not just the key but also nonces and associated data. For
simplicity we stick with adapting the FROB notion. Analogous adaptations can
be made to lift CMT3 to the key identification setting, but some schemes would
require modification to meet them (e.g., including nonce and associated data in
key check value computations).

We define KI-FROB security for an AEAD-KI scheme via the game shown in
Figure 4. It requires an adversary to find two key vectors and a nonce, associated
data, and ciphertext. Decryption is run with each key vector, and the adversary
wins should both decryptions succeed and the returned secret key, message pairs
are distinct. Note here that we are focused on the secret key, not key including
key label, thereby explicitly excluding as a win having distinct key labels. This is
to allow schemes that use multiple key labels for the same key. The KI-FROBAEKI

advantage of an adversary A is defined as

Advki-frob
AEKI (A) = Pr

[
KI-FROBAAEKI ⇒ 1

]
.

10

KI-FROBAAEKI:

K0,K1,N ,AD,Tk ,C ←$A
(K0,M0)← Dec(K0,N ,AD,Tk ,C)

(K1,M1)← Dec(K1,N ,AD,Tk ,C)

(kid0,K
∗
0)← K0 ; (kid1,K

∗
1)← K1

If (K0,M0) 6= ⊥ ∧ (K1,M1) 6= ⊥ ∧ K∗0 6= K∗1 :

Return 1

Return 0

Fig. 4: Game KI-FROBAEKI represents full robustness for AEAD-KI scheme AEKI =
(Kg,Enc,Dec).

Finally, note an important property of our KI-FROB security notion: any
scheme meeting it is in some sense agnostic to the ordering of keys in the key
vector input to decryption. If two different orderings of the same key vector
caused different keys to be output, these two key vectors would give a KI-FROB
win. (Note that correctness condition (3) above implies that two different order-
ings of the same key vector must both either output ⊥ or both non-⊥.) Looking
ahead, it also means our KI-nAE definition need not account for distinguishing
attacks caused by the order of keys in the key vectors; they are ruled out for any
KI-FROB scheme.

3.2 All-in-one confidentiality and integrity

Just as for an AEAD scheme, we expect an AEAD-KI scheme to maintain confi-
dentiality and integrity. Towards formalizing what this means, one starting point
is existing indistinguishability style security definitions for AEAD (e.g., [29]).
However, an important modeling question is how to handle key vectors during
decryption. This suggests we should start instead with a multi-user style AEAD
security notion [12] which allows the adversary to request generation of many
keys and obtain encryption of plaintexts under keys of their choice.

To model key anonymity, we may additionally require that adversaries not be
able to distinguish between encryptions under different honest keys. To model
chosen-ciphertext attacks and, in particular, ciphertext integrity, we face addi-
tional choices about how much control to give adversaries over key vectors during
decryption. One option would be to allow adversaries to choose the key vector
but only allow honestly generated keys to be added to the vector. Unfortunately,
this would not capture attacks in which a malicious key is somehow inserted into
a recipient’s key vector, a scenario that arises in practice. For instance, Albertini
et al. [2] describe a vulnerability arising from such a scenario in the context of
key rotation within key management services.

We therefore opt for a stronger notion of security for which adversaries can in-
sert malicious keys into key vectors. This renders more complex how the security
game should handle decryption oracles, because we need to somehow demarcate
between decryption queries that correspond to ciphertext forgeries and ones that

11

KI-nAE1AAEKI:

j ← 0

b←$AGenHonestKey,Enc,Dec

Return b

GenHonestKey(kid):

K ←$ AEKI.Kg(kid)

T[j]← K ; j ← j + 1

Enc(id,N ,AD,M):

(Tk ,C)← AEKI.Enc(T[id],N ,AD,M)

Return (Tk ,C)

Dec(K,N ,AD,Tk ,C):

K∗ ← []

For (honest, data) ∈ K:

If honest = true: K∗.add(T[data])
Else: K∗.add(data)

(K ,M)← AEKI.Dec(K∗,N ,AD,Tk ,C)

Return M

KI-nAE0AAEKI,S,LEnc
:

σs←$ S.Init()

b←$AGenHonestKey,Enc,Dec

Return b

GenHonestKey(kid):

σs←$ S.Kg(kid, σs)

Enc(id,N ,AD,M):

L←$ LEnc(id,M)

(Tk ,C , σs)←$ S.Enc(N ,AD,L, σs)

C[id,N ,AD,Tk ,C]← M

Return (Tk ,C)

Dec(K,N ,AD,Tk ,C):

For (honest, data) ∈ K:

If honest = true∧ C[data,N ,AD,Tk ,C] 6= ⊥:
Return C[data,N ,AD,Tk ,C]

If ∃(honest, data) ∈ K s.t. honest = false:

(M , σs)←$ S.Dec(K,N ,AD,Tk ,C , σs)

Return M

Return ⊥

Fig. 5: Game KI-nAEAEKI is the all-in-one security notion for AEAD-KI schemes.

should not: an adversary can always generate ciphertexts that decrypt under an
adversary-chosen key.

To handle these subtleties, we use a simulation-based approach and an all-in-
one confidentiality and ciphertext integrity notion. The pseudocode games for the
resulting KI-nAEAEKI security notion are shown in Figure 5. KI-nAEAEKI is pa-
rameterized by the simulator, a stateful tuple of algorithms S = (Init,Kg,Enc,Dec).
The adversary is given access to an honest key generation oracle GenHonestKey,
an encryption oracle Enc, and a decryption oracle Dec. Dec accepts as input
a key vector K as well as ciphertext tuple (N ,AD ,Tk ,C). The key vector K is
composed of tuples (honest, data), where honest = true indicates that the key is
honestly generated and data is the game-generated key identifier for the key. If
honest = false, then the key is malicious and data is itself the key.

The game KI-nAE1 models interactions with the real scheme, and there-
fore calls the relevant AEKI algorithm to answer oracle queries. The ideal game
KI-nAE0 instead uses simulator S to generate the oracle outputs for the ad-
versary. Encryption provides leakage to the simulator. The encryption leakage
algorithm LEnc(id,M) takes as input the game-generated key identifier and the
plaintext message and outputs the encryption leakage. We specify two concrete
leakage functions, LidEnc and LanonEnc . The non-key anonymous algorithm LidEnc returns
as leakage both the game-generated key identifier and the size of the plaintext,
while LanonEnc only returns the size of the plaintext. In the latter case, this of course
means that the simulator will have no knowledge of which honest key the adver-
sary chose for encryption.

12

The decryption oracle in KI-nAE0 works in two parts. In the first part, the
table of previous Enc outputs is scanned for each honest key. If the queried ci-
phertext is in the table, the message is returned. Otherwise, if there are malicious
keys in K, the simulator is given its state, the ciphertext tuple, and K.

It may not be immediately obvious why this Dec is the “right” one. The main
advantage in defining Dec as we have is that for honest keys this decryption
oracle ensures our definition implies a variant of ciphertext integrity for AEAD-
KI: no matter the simulator’s behavior, crafting a new valid ciphertext for an
honest key automatically gives a distinguisher between real and ideal games.

We have two versions of KI-nAE, one key anonymous and one not. For a
simulator S, the more general (non-anonymous) KI-nAEAEKI advantage of an
adversary A with respect to S is defined as

Advki-nae
AEKI,S(A) =

∣∣∣Pr
[

KI-nAE1AAEKI ⇒ 1
]
− Pr

[
KI-nAE0AAEKI,S,Lid

Enc
⇒ 1

] ∣∣∣.
Meanwhile, the key anonymous KI-nAE-KAAEKI advantage of an adversary A
with respect to S is defined as

Advki-nae-anon
AEKI,S (A) =

∣∣∣Pr
[

KI-nAE1AAEKI ⇒ 1
]
− Pr

[
KI-nAE0AAEKI,S,Lanon

Enc
⇒ 1

] ∣∣∣.
We further note that while we chose to base our definitions on those for

nonce-based AEAD from [12, 29], we can also adapt these definitions to other
settings, such as those for randomized symmetric encryption and the nonce-
hiding framework for the AE2 definitions proposed by Bellare et al. [10].

Malicious keys and ciphertexts. As discussed before, we opt to capture
the adversary providing both malicious keys and malicious ciphertexts since
this models real-world settings. However, we must explicitly give the simulator
all malicious keys because the adversary knows these keys as well and could
otherwise trivially distinguish. This makes it difficult for KI-nAE to capture key
robustness notions like KI-FROB. We therefore opt for separate key robustness
notions, mirroring the AEAD setting. We believe it is possible to give an all-in-
one definition that also implies KI-FROB; we leave this difficult, but interesting,
modelling question to future work.

4 Key Labels

One simple technique for key identification is assigning to each key a static
label and then prepending the key’s label to every ciphertext it produces. In
practice, labels typically are randomly-generated strings, URLs indicating where
to fetch the key, or even user identifiers. This approach is widely used by both
key management services (KMS), such as the Amazon Web Services (AWS)
KMS [5], Microsoft Azure Key Vault [25], and Oracle Key Vault [26]; as well
as cryptography libraries, such as Google’s Tink [32]. Relatedly, the popular
cryptographic library Libsodium [24] also recommends using a key label as a
way to add robustness to AEAD schemes.

13

KL.Kg(kid):

K ←$K
Return (kid,K)

KL.Enc(K ,N ,AD,M):

(kid,K∗)← K

C ← AEAD.Enc(K∗,N ,AD‖kid,M)

Return (kid,C)

KL.Dec(K,N ,AD,Tk ,C):

For (kid,K) ∈ K:

If kid = Tk :

M ← AEAD.Dec(K ,N ,AD‖kid,C)

If M 6= ⊥: Return (K ,M)

Return ⊥

Fig. 6: A typical key label scheme KL which is parameterized by an AEAD scheme.

While key labels appear efficient and straightforward, they have not been
formally analyzed. For instance, key labels are often used with non-FROB AEAD
schemes, such as AES-GCM and ChaCha20-Poly1305. We will see in our analysis
that key labels do not automatically produce a KI-FROB AEAD-KI scheme.

We generalize the key labels construction as KL[AEAD] and provide the
pseudocode in Figure 6. The scheme is parameterized by an AEAD scheme, used
for encryption and decryption. To simplify notation, we also refer to the scheme
as KL when the specific AEAD scheme used can be arbitrary or is obvious from
context. Key generation allows the caller to specify the key label kid, which is
then stored as part of the key. We model the label as input to generalize label
creation out-of-band and to enable adversarial inputs. Meanwhile, encryption
simply uses kid as the key tag. Decryption iterates through K to find the first key
with an identifier matching the key tag that successfully decrypts the ciphertext.

Analyzing robustness. Utilizing a key label at first seems like a trivial and
practical way to add robustness to any AEAD-KI scheme. A ciphertext with
some key identifier can only be decrypted by the corresponding key. However, this
method fails when multiple keys can have the same label and a non-FROB AEAD
scheme is chosen. Notice, for instance, that KL does not enforce uniqueness
of labels. An adversary could choose two AEAD keys so that they have the
same label, compute an AEAD key multi-collision ciphertext [23] for these keys,
and attach the label to the ciphertext as the key tag. Decryption will then
proceed successfully for both keys because their labels match the key tag of the
ciphertext.

In the following theorem, we show that an FROB AEAD is both sufficient
and necessary for KL to be KI-FROB.

Theorem 1. Let A be a KI-FROB adversary for scheme KL[AEAD]. Then we
give FROB adversary B for AEAD such that

Advki-frob
KL[AEAD](A) ≤ Advfrob

AEAD(B).

Furthermore, let C be an FROB adversary for AEAD. Then we give a KI-FROB
adversary D for KL[AEAD] such that

Advfrob
AEAD(C) ≤ Advki-frob

KL[AEAD](D).

14

B runs in time that of A and D runs in time that of C.

Proof. We first construct FROB adversary B against AEAD as follows. B runs
A, which returns K0,K1,N ,AD ,Tk ,C . Let Dec(K0,N ,AD , Tk ,C) and
Dec(K1,N ,AD ,Tk ,C) return (K0,M0) and (K1,M1), respectively, where K0 =
(kid0,K

∗
0) and K1 = (kid1,K

∗
1). Note that A can only win the FROB game if

(K0,M0), (K1,M1) 6= ⊥ and K ∗0 6= K ∗1 , so let this be the case. B can return
K ∗0 ,K

∗
1 ,N ,AD ,C , where again both keys successfully decrypt N ,AD ,C . Thus,

B wins game FROB for AEAD when A wins game KI-FROB for KL[AEAD].
We now construct KI-FROB adversary D against KL as follows. D runs C,

which returns K0,K1,N ,AD ,C . Then D creates KL key vectors K0 ← [(0n,K0)]
and K1 ← [(0n,K1)] and finally returns K0,K1,N ,AD , 0n,C . Since both K0,K1

have the same identifier, which matches the given key tag, the scheme KL will
try both keys when decrypting and successfully decrypt. Thus, we have that D
wins game KI-FROB for KL[AEAD] when C wins game FROB for AEAD. ut

Analyzing KI-nAE. We now show that KL[AEAD] is KI-nAE secure for
leakage algorithm LidEnc when AEAD is both FROB and MU-nAE secure. Notably,
encryption cannot be key anonymous: the label is static across calls to Enc and
the simulator can only simulate this by knowing which key was queried for
encryption. We provide the theorem statement and proof sketch below. The full
proof is provided in the full version of this work.

Theorem 2. Using LidEnc, let A be a KI-nAE adversary making at most q queries
to its oracles and querying at most m malicious keys. Then we give KI-nAE
simulator S and adversaries B, C such that

Advki-nae
KL[AEAD],S(A) ≤ Advfrob

AEAD(B) + Advmu-nae
AEAD (C) +mq/|K|.

Adversaries B, C run in time that of A with an O(q) overhead and simulator S
runs in time O(mq).

Proof sketch: The KI-nAE simulator can simulate Enc queries by keeping track
of the label for each key and returning it as the key tag along with a random
string of the correct length for the encrypted plaintext. For Dec queries, the
simulator can iterate through the list of key data given in the key vector K and
check for malicious keys, for which it is directly given the secret key and can
decrypt itself for any that have a key label matching the key tag. If there are no
malicious keys or none that correctly decrypt, then the simulator returns ⊥.

We bound the advantage of A with a sequence of game hops. We first transi-
tion to a game in which Dec keeps iterating through K if A provides a malicious
key in K that was honestly generated by a call to GenHonestKey. We bound
the ability of A to distinguish between these games by mq/|K|, since there are
at most m malicious keys and at most q honest keys and A can only at best
guess one of the honest keys. We next transition to a game in which Dec skips
any malicious key that can decrypt a ciphertext output from a call to Enc. We
bound the ability of A to distinguish between these games by the FROB security

15

of AEAD. Finally, we transition to a game in which Enc generates a random
string as the encrypted plaintext and Dec skips honest keys in the key vector
if they were not used to produce the queried ciphertext from a call to Enc.
We bound the ability of the adversary to distinguish between these games by
the MU-nAE security of AEAD. Since this last game guarantees that no mali-
cious key can decrypt an honestly generated ciphertext and that no honest key
can decrypt a malicious ciphertext, iterating through K in order in this game is
identical to iterating through the honest keys first and then the malicious keys,
proving our claim. ut

Using unique random identifiers. Thus far, we have relied on an FROB
AEAD scheme, due to the fact that KL allows duplicate key identifiers, which
follows practice (e.g., the Tink library). One might instead suggest somehow
enforcing uniqueness of key labels at the “application layer”, and using a non-
FROB AEAD. We argue below that this approach either fails to meet natural
security goals or greatly increases the complexity of the application layer; thus,
FROB AEADs are superior as the “base” AEAD for an KL-like construction.

To study this question, we first need to express application-level enforcement
of unique key labels in our AEKI formalism. A simple way to do this is to have
Dec check the identifiers for all keys in K and output ⊥ if two different keys have
the same identifier. This approach does not meet condition (3) of our correctness
notion above. Any key vector with repeated labels will cause decryption to fail,
even if it contains the correct key.

More subtly, this approach also fails to provide KI-FROB for the AEKI
scheme. To see why, note that because decryption is stateless, uniqueness can-
not be checked across different invocations. Thus, if the underlying AEAD is not
FROB, an adversary can choose two keys, produce a key multi-collision cipher-
text, assign both keys the same label that matches the ciphertext’s key tag, and
then put the keys in separate key vectors. Decryption will succeed for both key
vectors, even though their keys have non-unique labels.

Preventing this attack and providing KI-FROB for the AEKI scheme requires
stateful decryption: namely, the application must track all key identifier-secret
key pairs seen across all decryption operations. This seems difficult to implement
correctly and efficiently, and is certain to increase the complexity of the appli-
cation. Thus, we believe it is better to use FROB AEAD to cryptographically
guarantee KI-FROB security of AEKI.

Analyzing trial decryption. A special case of the key labels scheme is brute-
force trial decryption, which we refer to as TD[AEAD]. This scheme simply
assigns the empty string ε as the key label for all keys, meaning there are no
key identifiers, and decryption must always trial decrypt for all keys in the key
vector. The Tink library, for instance, allows keys to also have “raw” labels,
which indicate they have no identifier.

Notably, the multi-user Shadowsocks protocol we describe in the introduction
falls into this category. The attack described by Len et al. [23] is made possible
by the fact that the Shadowsocks protocol uses a non-FROB AEAD scheme. The

16

benefit of our KI-FROB definition is that it demonstrates that such a scheme is
insecure when not using a FROB AEAD scheme.

While trial decryption still requires the use of an FROB AEAD scheme, it is
key anonymous. In the below theorem, we show that trial decryption meets our
stronger key anonymous encryption leakage model. We provide the full proof in
the full version of this work.

Theorem 3. Using LanonEnc , let A be a KI-nAE-KA adversary making at most
q queries to its oracles and querying at most m malicious keys. Then we give
KI-nAE-KA simulator S and adversaries B, C such that

Advki-nae-anon
TD[AEAD],S(A) ≤ Advfrob

AEAD(B) + Advmu-nae
AEAD (C) +mq/|K|.

Adversaries B, C run in time that of A with an O(q) overhead and simulator S
runs in time O(mq).

Proof sketch: The KI-nAE simulator can simulate Enc queries by returning a
random string of the correct length for the encrypted plaintext. For Dec queries,
the simulator can iterate through the list of key data given in the key vector K
and check for malicious keys, for which it is directly given the secret key and
can decrypt itself. If there are no malicious keys or none that correctly decrypt,
then the simulator returns ⊥.

We bound the advantage of A with a sequence of game hops. We first transi-
tion to a game in which Dec keeps iterating through K if A provides a malicious
key in K that was honestly generated by a call to GenHonestKey. We bound
the ability of A to distinguish between these games by mq/|K|, since there are
at most m malicious keys and at most q honest keys and A can only at best
guess one of the honest keys. We next transition to a game in which Dec skips
any malicious key that can decrypt a ciphertext output from a call to Enc. We
bound the ability of A to distinguish between these games by the FROB security
of AEAD. Finally, we transition to a game in which Enc generates a random
string as the encrypted plaintext and Dec skips honest keys in the key vector
if they were not used to produce the queried ciphertext from a call to Enc.
We bound the ability of the adversary to distinguish between these games by
the MU-nAE security of AEAD. Since this last game guarantees that no mali-
cious key can decrypt an honestly generated ciphertext and that no honest key
can decrypt a malicious ciphertext, iterating through K in order in this game is
identical to iterating through the honest keys first and then the malicious keys,
proving our claim. ut

While key labels are a simple and commonly used approach in practice for
identifying keys, here we have shown that a formal analysis surfaces subtleties.
In particular, key labels do not provide key anonymity, unless all keys have the
same label as in the less efficient trial decryption-based scheme. Moreover, a
key label approach must rely on the underlying AEAD scheme being FROB. In
the next section, we explore a different tactic called static key identifiers, which
computes the identifier from the key itself.

17

KCV.Kg(kid):

K ←$K
Return (kid,K)

KCV.Enc(K ,N ,AD,M):

(kid,K∗)← K

kcv← Fkcv(K
∗) ; Ke ← KDF(K∗)

Tk ← kid‖kcv
C ← AEAD.Enc(Ke,N ,AD‖Tk ,M)

Return (Tk ,C)

KCV.Dec(K,N ,AD,Tk ,C):

For K ∈ K:

(kid∗,K∗)← K

kcv∗ ← Fkcv(K
∗) ; Ke ← KDF(K∗)

If kid∗‖kcv∗ = Tk :

M ← AEAD.Dec(Ke,N ,AD‖Tk ,C)

If M 6= ⊥: Return (K ,M)

Return ⊥

Fig. 7: A key check value scheme KCV parameterized by encryption scheme AEAD =
(Kg,Enc,Dec) with associated key space K = {0, 1}k, key check value function Fkcv :
{0, 1}κ → {0, 1}n, and encryption key derivation function KDF : {0, 1}κ → {0, 1}k.

5 Static Key Identifiers

In this section we describe a class of AEAD-KI that uses what we call static key
identifiers. This technique computes a static identifier from the key that along
with the key label is used as the key tag. In practice, this static identifier is
often referred to as a key check value, also known as a key checksum value. We
formalize this approach as the AEAD-KI scheme KCV[AEAD,Fkcv,KDF], shown
in Figure 7. The scheme has key space {0, 1}κ and is parameterized by AEAD
scheme AEAD = (Kg,Enc,Dec) with associated key space K = {0, 1}k, key check
value function Fkcv : {0, 1}κ → {0, 1}n, and encryption key derivation function
KDF : {0, 1}κ → {0, 1}k. For simplicity, we will sometimes refer to the scheme
as KCV when the parameters are obvious.

Key generation generates a secret key and attaches the input label kid as
part of the AEAD-KI key. For static identifier schemes, the key tag is composed
of both the key label and the key check value. This models what happens in
practice, as schemes may use the key label as a way to locate a key or set of
keys and then use the key check value as a commitment or integrity check of
the key. For instance, AWS uses the Amazon Resource Name (ARN) as a URL
for looking up keys, while an extra commitment string verifies this is the correct
key [4].

Encryption derives the key check value using the function Fkcv and separately
derives the AEAD secret key using the function KDF. Encryption adds the key
tag to the authentication scope of AEAD by appending it to the authenticated
data. Decryption iterates through the key vector to compute each key’s identifier
using Fkcv and find the first key with one matching Tk . If AEAD decryption with
this key succeeds, then the corresponding decrypted plaintext is returned.

Key check values have been widely used in practice [2, 4, 18, 27, 31] to derive
a value from the key, typically using a hash function or block cipher, that can
then be used to confirm the integrity of or identify the key during decryption.
These static key identifiers can be used in two ways: as static key hints or as
static key commitments. Static key hints use a non-CR function to derive an

18

Application Key Check Value KH or KC?

AWS Encryption SDK [4] SHA256(K‖0x436f6d6d69740102) KC

GlobalPlatform [18] msb24(AESK (([1]8)
16)) KH

Telegram [31] lsb64(SHA1(K)) KH

PKCS#11 [27] msb24(AESK (0128)) KH

Fig. 8: Key check value functions used in practice. We list whether each function is a
key hint (KH) or key commitment (KC).

identifier from the key, meaning that key hints are not unique to a single key.
Because they are not used to commit to a key, they can be short and efficiently
computed, while still enabling AEAD-KI schemes to narrow down the scope of
keys to check during decryption. For instance, one common technique is taking
24 bits from the AES evaluation of the key over some fixed string. However, key
hints must be used with an FROB AEAD scheme in practice to guarantee robust
key identification.

Conversely, static key commitments do commit to the key and therefore do
not need to be used with an FROB AEAD scheme. In practice, this means key
commitments must employ a CR key check value function, which can be more
computationally intensive and require longer key tags. For instance, Albertini
et al. [2] suggest a variant of this method as their “generic solution” for adding
key commitment to AEAD schemes. Their Type I and II schemes in particular
feature a static identifier by computing two SHA256 hashes over the key and
using these values for the key identifier and AEAD encryption key. This scheme
has been adopted as the default method of key identification by AWS [4]. We
summarize some sample schemes used for both key hints and key commitments
in Figure 8. Later in this section we will show detailed security results for both
types of static key identifiers.

Using a key derivation function. Whenever a fixed value is computed from
the key as a key tag and then composed with an AEAD scheme that uses the
same key, there is the potential that the AEAD scheme uses the same value
for its internal computation. Since the key tag is sent in the clear, this could
lead to confidentiality or integrity vulnerabilities. Indeed, Iwata and Wang [21]
have shown that this does happen in practice. They describe forgery attacks for
several variants of CBC-MAC proposed by ISO/IEC 9797-1:2011 [20] when used
with the key check value suggested by ANSI X9.24-1:2009 [3].

To simplify the analysis of composing Fkcv with an AEAD scheme, we also
use key derivation function KDF to derive an independent AEAD encryption key.
In this section, we will show that KDF will need to be a CR PRF. For similar
reasons, Albertini et al. also use a CR PRF to derive a separate AEAD key. This
of course results in extra overhead and could be unnecessary if the key identifier
is never used in the internal computation of AEAD. One could analyze specific
key check value functions and AEAD schemes that can be safely used together

19

without the need for a separate key derivation function; we leave this as an open
problem.

5.1 Static Key Hint

Static key hints are a sub-class of static key identifiers which compute the key
check value using a non-collision-resistant PRF. This means they can be short
and efficiently computed, e.g. using a universal hash or by truncating the output
of a hash function or block cipher. While key hints cannot be used to commit to
a key, they can be used to narrow down the search space of the given key vector
during decryption. However, in order to ensure that key robustness is achieved,
these key hints must rely on using an FROB AEAD scheme, as we show below.

Analyzing robustness. Here we show that static key hints rely on using
an FROB AEAD scheme as well as collision-resistant function KDF to achieve
KI-FROB.

Theorem 4. Let A be an KI-FROB adversary for scheme KCV[AEAD,Fkcv,KDF].
Then we give adversaries B, C such that

Advki-frob
KCV[AEAD,Fkcv,KDF](A) ≤ Advcr

KDF(B) + Advfrob
AEAD(C).

Adversaries B, C run in time that of A.

Proof. We prove the theorem using a sequence of game hops. Let game G0 be
the game FROB with the call to the decryption algorithm Dec replaced by the
pseudocode for KCV[AEAD,Fkcv,KDF].Dec(). Next we transition to game G1,
which is identical to G0 except that when KDF is called to derive the encryption
key from the keys in K1, it checks if there was some other different key K ∗ prior
to this call that output to the same encryption key derived from the keys in K0.
If this happens, then G1 will return 0.

We can upper bound the difference in advantage of A in G0 and G1 by the
probability that KDF finds a collision. We then provide the CR adversary B such
that its advantage in the CR game for KDF upper bounds this probability. B
runs A, which returns K0,K1,N ,AD ,Tk ,C . B then checks if there is some key
K0 ∈ K0 such that (kid0,K

∗
0)← K0 and Ke ← KDF(K ∗0) and some key K1 ∈ K1

such that (kid1,K
∗
1) ← K1 and Ke ← KDF(K ∗1), and returns K ∗0 ,K

∗
1 . Notice

that whenever KDF finds the collision in G1, then B wins the CR game for KDF.

Finally, we upper bound the advantage of A in game G1 by the advantage
of the following FROB adversary C against AEAD. C runs A, which returns
K0,K1,N ,AD ,Tk ,C . Let Dec(K0,N ,AD ,Tk ,C) and Dec(K1,N ,AD ,Tk ,C)
return (K0,M0) and (K1,M1), respectively. Also let (kid0,K

∗
0)← K0 and

(kid1,K
∗
1) ← K1. Note that A can only win game G1 if (K0,M0) 6= ⊥ and

(K1,M1) 6= ⊥ and K ∗0 6= K ∗1 , so let this be the case. C can return K ∗0 ,K
∗
1 ,N ,AD ,C ,

where both keys successfully decrypt N ,AD ,C . Thus, C wins FROB for AEAD
when A wins G1 for KCV. ut

20

Analyzing KI-nAE. We now show that KCV[AEAD,Fkcv,KDF] is KI-nAE
secure for leakage algorithm LidEnc when AEAD is both FROB and MU-nAE
secure, Fkcv and KDF are multi-user PRFs, and KDF is pre-image resistant.
Notably, this means that encryption is not key anonymous. We provide the
theorem statement and proof sketch below. We show the full proof in the full
version of this work.

Theorem 5. Using LidEnc, let A be a KI-nAE adversary making at most q queries
to its oracles, of which qk are to GenHonestKey, and querying at most m
malicious keys. Then we give KI-nAE simulator S and adversaries B, C,D, E
such that

Advki-nae
KCV[AEAD,Fkcv,KDF],S(A) ≤ Advmu-prf

Fkcv,KDF(B) + qk ·Advpre
KDF(C) + Advfrob

AEAD(D)

+ Advmu-nae
AEAD (E) +

q2k
2κ+1

.

B, C,D, E run in time that of A with O(q) overhead and S runs in time O(mq).

Proof sketch: The KI-nAE simulator can simulate Enc queries by keeping track
of the label for each key and generating a random n-bit string as the key check
value kcv. It can then return the label appended with the key check value as
the key tag along with a random string of the correct length for the encrypted
plaintext. For Dec queries, the simulator can iterate through the list of key data
given in the key vector K and check for malicious keys, for which it is directly
given the secret key and can decrypt itself for any that have a matching key tag.
If there are no malicious keys or none that correctly decrypt, then the simulator
returns ⊥.

We bound the advantage of A with a sequence of game hops. We first tran-
sition to a game in which calls to Fkcv and KDF for honest keys are replaced
with calls to random functions. We bound the ability of A to distinguish these
games by the MU-PRF security of Fkcv and KDF. We next transition to a game
in which malicious keys in K queried to Dec are skipped if for KDF they are the
pre-image of some honestly generated AEAD encryption key Ke computed in
GenHonestKey. We bound the ability of A to distinguish these games by the
pre-image resistance security of KDF, multiplied by a factor of qk. Then we tran-
sition to a game in which malicious keys in K queried to Dec are skipped if they
can decrypt some honestly generated ciphertext output by GenHonestKey.
We bound the ability of A to distinguish between these games by the FROB
security of AEAD. We then transition to a game in which we eliminate colli-
sions when key K is chosen at random from the key space K, for which we use
the birthday bound q2k/2

κ+1 to bound. Finally, we transition to a game in which
Enc generates a random string as the encrypted plaintext and Dec skips honest
keys in the key vector if they were not used to produce the queried ciphertext
from a call to Enc. We bound the distinguishing advantage by the MU-nAE
security of AEAD. Since this last game guarantees that no malicious key can
decrypt an honestly generated ciphertext and that no honest key can decrypt
a malicious ciphertext, iterating through K in order in this game is identical to

21

iterating through the honest keys first and then the malicious keys, proving our
claim. ut

5.2 Static Key Commitment

Static key commitments are the second subclass of static key identifiers. They
compute the key check value using using a collision-resistant PRF. While this
means they must be longer and less efficient than key hints, they can commit to
the key, and thus can be used with non-FROB AEADs, as we now prove.

Theorem 6. Let A be a KI-FROB adversary for KCV[AEAD,Fkcv,KDF]. Then
we give CR adversary B, running in time that of A, for Fkcv such that

Advki-frob
KCV[AEAD,Fkcv,KDF](A) ≤ Advcr

Fkcv
(B).

Proof. We construct adversary B as follows. It runs A, which returns K0,K1,N ,
AD ,Tk ,C . Let the values returned by decryption of the ciphertext for each key
vector be (K0,M0), (K1,M1). Also let (kid0,K

∗
0)← K0 and (kid1,K

∗
1)← K1. We

know that (K0,M0), (K1,M1) 6= ⊥ and K ∗0 6= K ∗1 for A to win. This also means
that Fkcv(K

∗
0) = Fkcv(K

∗
1). B can then return K0,K1 as a collision for Fkcv. ut

Analyzing KI-nAE. While Albertini et al. do not explicitly prove security for
this scheme, they claim that it meets their real-or-random AE security definition.
However, any encryption scheme that attaches a fixed string to a ciphertext
trivially cannot meet this definition. The benefit of our KI-nAE definition is
that it captures security for non-key anonymous schemes. Indeed, our result
shows that if Fkcv is a pre-image resistant multi-user PRF, KDF is a multi-user
PRF, and AEAD is MU-nAE-secure, then KCV is KI-nAE-secure, for leakage
LidEnc. We provide the theorem statement and proof sketch here; the full proof is
in the full version of this work.

Theorem 7. Using LidEnc, let A be a KI-nAE adversary making at most q queries
to its oracles, of which qk are to GenHonestKey, and querying at most m
malicious keys. Then we give adversaries B, C,D such that

Advki-nae
KCV[AEAD,Fkcv,KDF],S(A) ≤ Advmu-prf

Fkcv,KDF(B) + qk ·Advpre
Fkcv

(C)

+ Advmu-nae
AEAD (D) +

q2k
2κ+1

.

B, C,D run in time that of A with a O(q) overhead and S runs in time O(mq).

Proof sketch: The proof uses the same KI-nAE simulator as that for Theorem 5.
We again bound the advantage of A with a sequence of game hops. We first tran-
sition to a game in which calls to Fkcv and KDF for honest keys are replaced with
calls to random functions. We bound the ability of A to distinguish these games
by the MU-PRF security of Fkcv and KDF. We next transition to a game in which
malicious keys in K queried to Dec are skipped if for Fkcv they are the pre-image

22

nKCV.Kg(kid):

K ←$K
Return (ε,K)

nKCV.Enc(K ,N ,AD,M):

(ε,K∗)← K ; (N0,N1)← N

kcv← Fkcv(K
∗,N0) ; Ke ← KDF(K∗)

Tk ← kcv

C ← AEAD.Enc(Ke,N1,AD‖Tk ,M)

Return (Tk ,C)

nKCV.Dec(K,N ,AD,Tk ,C):

(N0,N1)← N

For K ∈ K:

(ε,K∗)← K

kcv∗ ← Fkcv(K
∗,N0) ; Ke ← KDF(K∗)

If kcv∗ = Tk :

M ← AEAD.Dec(Ke,N1,AD‖Tk ,C)

If M 6= ⊥: Return (K ,M)

Return ⊥

Fig. 9: A nonce-based key check value scheme nKCV parameterized by AEAD =
(Kg,Enc,Dec) with key space K = {0, 1}k; key check value function Fkcv : {0, 1}κ ×
{0, 1}r → {0, 1}n, and encryption key derivation function KDF : {0, 1}κ → {0, 1}k.

of some honestly generated key check value kcv computed in GenHonestKey.
We bound the ability of A to distinguish these games by the pre-image resis-
tance security of Fkcv, multiplied by a factor of qk. We then transition to a game
in which we eliminate collisions when key K is chosen at random from the key
space K, for which we use the birthday bound q2k/2

κ+1 to bound. Finally, we
transition to a game in which Enc generates a random string as the encrypted
plaintext and Dec skips honest keys in the key vector if they were not used to
produce the queried ciphertext from a call to Enc. We bound the distinguishing
advantage by the MU-nAE security of AEAD. Since this last game guarantees
that no malicious key can decrypt an honestly generated ciphertext and that
no honest key can decrypt a malicious ciphertext, iterating through K in order
in this game is identical to iterating through the honest keys first and then the
malicious keys, proving our claim. ut

While static key identifiers are versatile in that they can be used either as
key hints or key commitments, they unfortunately do not provide key anonymity.
Next, we will see how dynamic identifiers enable anonymous key identification.

6 Dynamic Key Identifiers

In this section we describe the key anonymous counterpart to static key iden-
tifiers, which we call dynamic key identifiers. A dynamic identifier is computed
from the secret key during encryption using part of the input nonce. Unlike
the static identifier approach, this scheme cannot use key labels as part of the
key tag because key labels are fixed for a key and would therefore break key
anonymity. We formalize dynamic key identifiers as an AEAD-KI scheme with
nKCV[AEAD,Fkcv,KDF], shown in Figure 9. The scheme has key space {0, 1}κ
and is parameterized by encryption scheme AEAD = (Kg,Enc,Dec) with asso-
ciated key space K = {0, 1}k, key check value function Fkcv : {0, 1}κ × {0, 1}r →
{0, 1}n, and encryption key derivation function KDF : {0, 1}κ → {0, 1}k. For sim-
plicity, we may refer to the scheme as nKCV when the parameters are obvious.

23

Encryption now takes in a nonce for which one part is used to derive the
key check value and the other is used in the AEAD computation. These nonces
do not need to be distinct. Encryption derives the key check value and AEAD
key from the secret key using the functions Fkcv and KDF, respectively. The key
check value kcv is computed on part of the nonce so that it changes for each
encryption call. Meanwhile, the AEAD key is computed on just the secret key,
meaning the AEAD key is fixed for each nKCV secret key. Unlike for KCV, here
the key check value by itself forms the key tag. Encryption adds the key tag to
the authentication scope of AEAD by appending it to the authenticated data.
Decryption iterates through the key vector to compute each key’s identifier using
Fkcv and find the first key with one matching Tk .

6.1 Dynamic Key Hint

Dynamic key hints are a subclass of dynamic key identifiers which compute the
key check value using using a non-collision-resistant PRF. Similar to static key
hints, they can be short and more efficiently computed than key commitments.
They are useful for narrowing down the search space of the given key vector
during decryption. However, in order to ensure that key robustness is achieved,
these key hints must rely on using an FROB AEAD scheme, as we show below.

Analyzing robustness. Here we show that dynamic key hints rely on using
a CR function KDF and an FROB AEAD scheme to achieve KI-FROB.

Theorem 8. Let A be a KI-FROB adversary for scheme nKCV[AEAD,Fkcv,KDF].
Then we give adversaries B, C running in time that of A such that

Advki-frob
nKCV[AEAD,Fkcv,KDF](A) ≤ Advcr

KDF(B) + Advfrob
AEAD(C).

Proof. We prove the theorem using a sequence of game hops. Let game G0 be the
game KI-FROB with the call to the decryption algorithm Dec replaced by the
pseudocode for nKCV[AEAD,Fkcv,KDF].Dec(). Next we transition to game G1,
which is identical to G0 except that when KDF is called to derive the encryption
key from the keys in K1, it checks if there was some other different key K ∗ prior
to this call that output to the same encryption key derived from the keys in K0.
If this happens, then G1 will return 0.

We can upper bound the difference in advantage of A in G0 and G1 by the
probability that KDF finds a collision. We then provide the CR adversary B such
that its advantage in the CR game for KDF upper bounds this probability. B
runs A, which returns K0,K1,N ,AD ,Tk ,C . B then checks if there is some key
K0 ∈ K0 such that (kid0,K

∗
0)← K0 and Ke ← KDF(K ∗0) and some key K1 ∈ K1

such that (kid1,K
∗
1) ← K1 and Ke ← KDF(K ∗1), and returns K ∗0 ,K

∗
1 . Notice

that whenever KDF finds the collision in G1, then B wins the CR game for KDF.
Finally, we upper bound the advantage of A in game G1 by the advantage

of the following FROB adversary C against AEAD. C runs A, which returns
K0,K1,N ,AD ,Tk ,C . Let Dec(K0,N ,AD ,Tk ,C) and Dec(K1,N ,AD ,Tk ,C)
return (K0,M0) and (K1,M1), respectively. Also let (ε,K ∗0) ← K0, (ε,K ∗1) ←

24

K1, and N0‖N1 ← N . Note that A can only win game G1 if (K0,M0) 6=
⊥ and (K1,M1) 6= ⊥ and K ∗0 6= K ∗1 , so let this be the case. C can return
K ∗0 ,K

∗
1 ,N1,AD ,C , where again both keys decrypt N1,AD ,C . Thus, C wins

FROB for AEAD when A wins G1 for nKCV. ut

Analyzing KI-nAE. We now show that nKCV[AEAD,Fkcv,KDF] is KI-nAE-
KA secure for leakage algorithm LanonEnc when AEAD is both FROB and MU-nAE
secure, KDF is a pre-image resistant multi-user PRF, and Fkcv is a multi-user
PRF. Notably, this means that encryption is key anonymous. We assume that
the adversary A is a nonce-respecting adversary that never queries the same N0

or N1 to Enc. We provide the theorem statement and proof sketch below. The
proof is provided in the full version of this work.

Theorem 9. Using LanonEnc , let A be a KI-nAE adversary making at most q queries
to its oracles, of which qk are to GenHonestKey, and querying at most m
malicious keys. Then we give adversaries B, C,D, E such that

Advki-nae-anon
nKCV[AEAD,Fkcv,KDF],S(A) ≤ Advmu-prf

Fkcv,KDF(B) + qk ·Advpre
KDF(C) + Advfrob

AEAD(D)

+ Advmu-nae
AEAD (E) +

q2k
2κ+1

.

B, C,D, E run in time that of A with a O(q) overhead and S runs in time O(mq).

Proof sketch: The KI-nAE simulator can simulate Enc queries by generating a
random n-bit string as the key check value kcv. It can then return the key check
value as the key tag along with a random string of the correct length for the
encrypted plaintext. For Dec queries, the simulator can iterate through the list
of key data given in the key vector K and check for malicious keys, for which it is
directly given the secret key and can decrypt itself for any that have a matching
key tag. If there are no malicious keys or none that correctly decrypt, then the
simulator returns ⊥.

We bound the advantage of A with a sequence of game hops. We first tran-
sition to a game in which calls to Fkcv and KDF for honest keys are replaced
with calls to random functions. We bound the ability of A to distinguish these
games by the MU-PRF security of Fkcv and KDF. We next transition to a game
in which malicious keys in K queried to Dec are skipped if for KDF they are the
pre-image of some honestly generated AEAD encryption key Ke computed in
GenHonestKey. We bound the ability of A to distinguish these games by the
pre-image resistance security of KDF, multiplied by a factor of qk. Then we tran-
sition to a game in which malicious keys in K queried to Dec are skipped if they
can decrypt some honestly generated ciphertext output by GenHonestKey.
We bound the ability of A to distinguish between these games by the FROB
security of AEAD. We then transition to a game in which we eliminate colli-
sions when key K is chosen at random from the key space K, for which we use
the birthday bound q2k/2

κ+1 to bound. Finally, we transition to a game in which
Enc generates a random string as the encrypted plaintext and Dec skips honest

25

keys in the key vector if they were not used to produce the queried ciphertext
from a call to Enc. We bound the distinguishing advantage by the MU-nAE
security of AEAD. Since this last game guarantees that no malicious key can
decrypt an honestly generated ciphertext and that no honest key can decrypt
a malicious ciphertext, iterating through K in order in this game is identical to
iterating through the honest keys first and then the malicious keys, proving our
claim. ut

6.2 Dynamic Key Commitment

Dynamic key commitments are the second subclass of dynamic key identifiers;
they instead compute the key check value using using a collision-resistant PRF.
While this means they must be longer and less efficient than their key hint coun-
terpart, they can be used to commit to the key. This also means that they can
be used with non-FROB AEAD schemes. Dynamic key commitments parallel
the Type III generic construction from Albertini et al. [2]. They are also similar
to the UtC transform proposed by Bellare and Hoang [9], although this scheme
is only considered in the traditional single-key setting. The UtC transform uses
a committing PRF that takes as input a key and nonce and outputs pair (P,L)
such that P is a string that commits to the key. L is then used as the encryption
key. We note that a committing PRF can be used in place of KDF and Fkcv, al-
though our formalism allows for analyzing the security requirements for deriving
the key tag separately from deriving the key.

Furthermore, the NonceWrap scheme proposed by Chan and Rogaway [13]
can be considered a type of dynamic key commitment scheme. Their scheme
encrypts the ciphertext as C = AES(K1,N ‖032)‖AES-GCM(K2,N ,AD ,M),
where the first string is a 128-bit “header”. During decryption, the correct key is
found from a set of possible keys by re-computing the header and verifying the 32-
bit all-zeros string remains intact. Interestingly, this scheme may be considered
a key commitment scheme when the nonce must be specified along with the
ciphertext, as in our formalization of KI-FROB. However, if, as the setting in
this work intends, the nonce does not need to be specified, then this scheme does
not meet KI-FROB and a key-committing AEAD should be used instead.

Analyzing robustness. Here we show that dynamic key commitments rely
only on the collision-resistance of the function Fkcv to achieve KI-FROB. In
particular, this means that AEAD does not in fact have to be FROB.

Theorem 10. Let A be a KI-FROB adversary for KCV[AEAD,Fkcv,KDF]. Then
we give CR adversary B, running in time that of A, for Fkcv such that

Advki-frob
nKCV[AEAD,Fkcv,KDF](A) ≤ Advcr

Fkcv
(B).

B runs in time that of A.

Proof. We construct CR adversary B against Fkcv as follows. B runs A, which
returns K0,K1,N ,AD ,Tk ,C . Let Dec(K0,N ,AD ,Tk ,C) and

26

Dec(K1,N ,AD ,Tk ,C) return (K0,M0) and (K1,M1), respectively. Also let
(ε,K ∗0)← K0, (ε,K ∗1)← K1, and N0‖N1 ← N . We know that (K0,M0) 6= ⊥ and
(K1,M1) 6= ⊥ and K ∗0 6= K ∗1 for A to win. B can then return (K ∗0 ,N0), (K ∗1 ,N0)
as a collision for Fkcv since Fkcv(K

∗
0 ,N0) = Fkcv(K ∗1 ,N0) = Tk . We therefore have

that B wins game CR for Fkcv when A wins game KI-FROB for nKCV.

Analyzing KI-nAE. We now show that nKCV[AEAD,Fkcv,KDF] is KI-nAE-
KA secure for leakage algorithm LanonEnc when AEAD MU-nAE secure, KDF is a
multi-user PRF, and Fkcv is a CR multi-user PRF. Again, this means that encryp-
tion is key anonymous. We assume that the adversary A is a nonce-respecting
adversary that never queries the same N0 or N1 across queries to Enc. We pro-
vide the theorem statement below; the full proof is provided in the full version
of this work.

Theorem 11. Using LanonEnc , let A be a KI-nAE adversary making at most q
queries to its oracles, of which qk are to GenHonestKey and qe are to Enc,
and querying at most m malicious keys. Then we give adversaries B, C,D such
that

Advki-nae-anon
nKCV[AEAD,Fkcv,KDF],S(A) ≤ Advmu-prf

Fkcv,KDF(B) + qe ·Advpre
Fkcv

(C)

+ Advmu-nae
AEAD (D) +

q2k
2κ+1

.

B, C,D run in time that of A with a O(q) overhead and S runs in time O(mq).

Proof sketch: The proof uses the same KI-nAE simulator as that for Theorem 9.
We again bound the advantage of A with a sequence of game hops. We first
transition to a game in which calls to Fkcv and KDF for honest keys are replaced
with calls to random functions. We bound the ability of A to distinguish these
games by the MU-PRF security of Fkcv and KDF. We next transition to a game
in which malicious keys in K queried to Dec are skipped if for Fkcv they are the
pre-image of some honestly generated key check value kcv computed in Enc. We
bound the ability of A to distinguish these games by the pre-image resistance
security of Fkcv, multiplied by a factor of qe. We then transition to a game in
which we eliminate collisions when key K is chosen at random from the key
space K, for which we use the birthday bound q2k/2

κ+1 to bound. Finally, we
transition to a game in which Enc generates a random string as the encrypted
plaintext and Dec skips honest keys in the key vector if they were not used to
produce the queried ciphertext from a call to Enc. We bound the distinguishing
advantage by the MU-nAE security of AEAD. Since this last game guarantees
that no malicious key can decrypt an honestly generated ciphertext and that
no honest key can decrypt a malicious ciphertext, iterating through K in order
in this game is identical to iterating through the honest keys first and then the
malicious keys, proving our claim. ut

27

Acknowledgments

The authors thank Mihir Bellare for suggesting an improved correctness notion
and various improvements in security definitions, as well as other helpful feedback
on an early draft of the paper. The authors also thank Ian Miers and Nirvan
Tyagi for their help in the early stages of this project. Finally, the authors are
grateful to the anonymous reviewers of Asiacrypt 2022 for their feedback and
suggestions. This work was supported in part by NSF grant CNS-2120651 and
the NSF Graduate Research Fellowship under Grant No. DGE–2139899.

References

1. Abdalla, M., Bellare, M., Neven, G.: Robust encryption. In: Theory of Cryptogra-
phy Conference. pp. 480–497. Springer (2010)

2. Albertini, A., Duong, T., Gueron, S., Kölbl, S., Luykx, A., Schmieg, S.: How to
abuse and fix authenticated encryption without key commitment. In: USENIX
Security (2022)

3. ANSI: Retail financial services symmetric key management Part 1: Using symmet-
ric techniques. Standard, ANSI X9.24-1:2009 (2009)

4. Improved client-side encryption: Explicit KeyIds and
key commitment. https://aws.amazon.com/blogs/security/

improved-client-side-encryption-explicit-keyids-and-key-commitment/

(2020)
5. Amazon Web Services Key Management Service, https://aws.amazon.com/kms/
6. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:

Security proofs and improvements. In: International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 259–274. Springer (2000)

7. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: The
cascade construction and its concrete security. In: Proceedings of 37th Conference
on Foundations of Computer Science. pp. 514–523. IEEE (1996)

8. Bellare, M., Hoang, V.T.: Efficient schemes for committing authenticated encryp-
tion. In: Eurocrypt. pp. 845–875. Lecture Notes in Computer Science, Springer
(2022)

9. Bellare, M., Hoang, V.T.: Efficient schemes for committing authenticated encryp-
tion. In: Advances in Cryptology - EUROCRYPT (2022)

10. Bellare, M., Ng, R., Tackmann, B.: Nonces are noticed: AEAD revisited. In: Ad-
vances in Cryptology - CRYPTO. Lecture Notes in Computer Science (2019)

11. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Annual International Conference on the The-
ory and Applications of Cryptographic Techniques. pp. 409–426. Springer (2006)

12. Bellare, M., Tackmann, B.: The multi-user security of authenticated encryption:
AES-GCM in TLS 1.3. In: Robshaw, M., Katz, J. (eds.) CRYPTO. Lecture Notes
in Computer Science, vol. 9814, pp. 247–276. Springer (2016)

13. Chan, J., Rogaway, P.: Anonymous AE. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT. vol. 11922, pp. 183–208. Springer (2019)

14. Degabriele, J.P., Karadžić, V., Melloni, A., Münch, J.P., Stam, M.: Rugged pseu-
dorandom permutations and their applications (2022), https://rwc.iacr.org/

2022/program.php, real World Crypto

28

https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/
https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/
https://aws.amazon.com/kms/
https://rwc.iacr.org/2022/program.php
https://rwc.iacr.org/2022/program.php

15. Dodis, Y., Grubbs, P., Ristenpart, T., Woodage, J.: Fast message franking: From
invisible salamanders to encryptment. In: CRYPTO. pp. 155–186 (2018)

16. Farshim, P., Libert, B., Paterson, K.G., Quaglia, E.A.: Robust encryption, revis-
ited. In: Public Key Cryptography. Lecture Notes in Computer Science, vol. 7778,
pp. 352–368. Springer (2013)

17. Farshim, P., Orlandi, C., Rosie, R.: Security of symmetric primitives under incor-
rect usage of keys. IACR Transactions on Symmetric Cryptology (2017)

18. GlobalPlatform Technology Card Specification Version 2.3.1. Standard, Glob-
alPlatform (March 2018), https://globalplatform.org/wp-content/uploads/

2018/05/GPC_CardSpecification_v2.3.1_PublicRelease_CC.pdf

19. Grubbs, P., Lu, J., Ristenpart, T.: Message franking via committing authenticated
encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO. Lecture Notes in Computer
Science, vol. 10403, pp. 66–97. Springer (2017)

20. ISO/IEC: Information technology - security techniques - message authentication
codes (MACs) - part 1: Mechanisms using a block cipher. Standard, ISO/IEC
9797-1:2011 (2011)

21. Iwata, T., Wang, L.: Impact of ANSI X9. 24-1: 2009 key check value on ISO/IEC
9797-1: 2011 MACs. In: International Workshop on Fast Software Encryption. pp.
303–322. Springer (2014)

22. Jaeger, J., Tyagi, N.: Handling adaptive compromise for practical encryption
schemes. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO. Lecture Notes in
Computer Science, vol. 12170, pp. 3–32. Springer (2020)

23. Len, J., Grubbs, P., Ristenpart, T.: Partitioning Oracle Attacks. In: USENIX Se-
curity (2021)

24. libsodium AEAD, https://doc.libsodium.org/secret-key_cryptography/aead
25. Microsoft Key Vault, https://azure.microsoft.com/en-us/services/

key-vault/#product-overview

26. Oracle Key Vault, https://www.oracle.com/security/database-security/

key-vault/

27. PKCS #11 cryptographic token interface base specification version 2.40. Standard,
OASIS (April 2015), http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/
os/pkcs11-base-v2.40-os.pdf

28. Rogaway, P.: Nonce-based symmetric encryption. In: Fast Software Encryption –
FSE. pp. 348–358. Springer (2004)

29. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) Advances in Cryptology - EUROCRYPT. Lecture Notes
in Computer Science, vol. 4004, pp. 373–390. Springer (2006)

30. Shadowsocks. https://shadowsocks.org/en/index.html (2020)
31. Telegram mobile protocol, https://core.telegram.org/mtproto/description
32. Google Tink library, https://developers.google.com/tink

29

https://globalplatform.org/wp-content/uploads/2018/05/GPC_CardSpecification_v2.3.1_PublicRelease_CC.pdf
https://globalplatform.org/wp-content/uploads/2018/05/GPC_CardSpecification_v2.3.1_PublicRelease_CC.pdf
https://doc.libsodium.org/secret-key_cryptography/aead
https://azure.microsoft.com/en-us/services/key-vault/#product-overview
https://azure.microsoft.com/en-us/services/key-vault/#product-overview
https://www.oracle.com/security/database-security/key-vault/
https://www.oracle.com/security/database-security/key-vault/
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.pdf
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.pdf
https://shadowsocks.org/en/index.html
https://core.telegram.org/mtproto/description
https://developers.google.com/tink

	Authenticated Encryption with Key Identification

