
Collusion-Resistant Functional Encryption for
RAMs

Prabhanjan Ananth1, Kai-Min Chung2, Xiong Fan3 and Luowen Qian4

1 UC Santa Barbara, Santa Barbara, CA, USA, prabhanjan@cs.ucsb.edu
2 Academia Sinica, Taipei, Taiwan, kmchung@iis.sinica.edu.tw

3 Rutgers University, Piscataway, NJ, USA, xiong.fan@rutgers.edu
4 Boston University, Boston, MA, USA, luowenq@bu.edu

Abstract. In recent years, functional encryption (FE) has established itself as one
of the fundamental primitives in cryptography. The choice of model of computation
to represent the functions associated with the functional keys plays a critical role in
the complexity of the algorithms of an FE scheme. Historically, the functions are
represented as circuits. However, this results in the decryption time of the FE scheme
growing proportional to not only the worst case running time of the function but also
the size of the input, which in many applications can be quite large.
In this work, we present the first construction of a public-key collusion-resistant FE
scheme, where the functions, associated with the keys, are represented as random
access machines (RAMs). We base the security of our construction on the existence of:
(i) public-key collusion-resistant FE for circuits and, (ii) public-key doubly-efficient
private-information retrieval [Boyle et al., Canetti et al., TCC 2017]. Our scheme
enjoys many nice efficiency properties, including input-specific decryption time.
We also show how to achieve FE for RAMs in the bounded-key setting with weaker
efficiency guarantees from laconic oblivious transfer, which can be based on standard
cryptographic assumptions. En route to achieving our result, we present conceptually
simpler constructions of succinct garbling for RAMs [Canetti et al., Chen et al., ITCS
2016] from weaker assumptions.
Keywords: Functional Encryption, RAMs

1 Introduction
Functional Encryption. In the recent years, several interesting cryptographic primitives
have been proposed in the domain of computing on encrypted data, with one such primitive
being functional encryption [11,51,52]. This notion allows for an entity to encrypt their
input x such that anyone in possession of secret keys associated with functions f1, . . . , fq,
also referred to as functional keys, can decrypt this ciphertext to obtain the values
f1(x), . . . , fq(x) and nothing else. The setting where q is not a priori bounded is called
the collusion resistant setting and will be the primary focus of this work.

Functional encryption (FE) has proven to be a useful abstraction for many theoretical
applications, including constructing indistinguishability obfuscation [5,10], succinct ran-
domized encodings [1,6,34], watermarking schemes [40], proving lower bounds in differential
privacy [47], proving hardness of finding a Nash equilibrium [9,32] and many more.

Model of Computation. A vast majority of FE constructions model the functions asso-
ciated with the functional keys as circuits. While circuits are easy to work with, when
compared to other models of computation, they come with many disadvantages. The
parameters in the system tend to grow polynomially in the worst-case time bound of the

mailto:prabhanjan@cs.ucsb.edu
mailto:kmchung@iis.sinica.edu.tw
mailto:xiong.fan@rutgers.edu
mailto:luowenq@bu.edu

2 Collusion-Resistant Functional Encryption for RAMs

function; this includes the decryption time. Even worse, for functions that take sub-linear
runtime in the “big data" setting, the decryption time would now take time proportional
to the size of the entire data, which could be massive.

Designing FE for Alternate Models of Computation. These drawbacks prompt us to
look beyond circuits and construct FE for more general models of computation. One
general model of computation that we could hope to support is random access machines
(RAMs). There are many advantages to FE for RAMs, we will mention a couple of them
now and defer more when we formally define the primitive in the next section: firstly, the
parameters of the scheme do not grow with the worst-case time bound and moreover, the
decryption time is input-specific.

Despite its utility, the feasibility of collusion-resistant FE for RAMs had not been
explored in prior works. Prior works did make partial progress in this direction by
either considering weaker models of computation such as finite automata [2], Turing
machines [1, 6, 7, 34, 45] or in the single-key setting [36]∗. However, the problem of
constructing FE for RAMs was unanswered and has been one of the important open
problems in this area.

1.1 Contributions
We resolve this open problem; we give the first feasibility result of functional encryption
for RAMs. Before stating our result, we first elaborate on the definition of FE for RAMs.
A public-key functional encryption for RAMs consists of the following algorithms:

• The setup algorithm Setup that produces a public key pk and a master secret key
MSK. The runtime of the setup algorithm is polynomial in λ (security parameter)
and grows poly-logarithmically in the worst-case runtime bound T .

• The key generation algorithm KeyGen that takes as input MSK, a RAM program
P and outputs a functional key for P , denoted by skP . The running time of key
generation is only proportional to λ, the description size of P and grows poly-
logarithmically in T .

• The encryption procedure Enc takes as input MSK, database D and outputs a
ciphertext CT. The running time of the encryption procedure grows polynomially in
λ, |D| and poly-logarithmically in T .

• The decryption procedure Dec, modeled as a RAM program, takes as input ciphertext
CT, functional key skP and produces the output PD(). The runtime of decryption
should grow proportional only to t and λ, where t is the time to execute PD.

The security notion† for the above notion can be appropriately defined along the same
lines as (collusion-resistant) FE for circuits.

In terms of efficiency, FE for RAMs schemes enjoy better efficiency guarantees than
FE for circuits schemes in terms of both the running time of the key generation algorithm
as well as the running time of the decryption algorithm. We clarify this in Figure 1.

∗Note that the work of [36] also construct an FE for RAMs scheme in the bounded-key setting: however,
the decryption time of the bounded-key FE scheme grows polynomially in the database size and thus
doesn’t enjoy the sublinear decryption runtime property that we desire.
†The security notion we consider in this work is indistinguishability-based (IND-based) selective

security. We delve more on this when we formally define FE for RAMs in the technical sections.
‡A well-known technique for decreasing the running time from T to t is to issue log T decryption keys,

with the i-th one running in time at most 2i.

Prabhanjan Ananth , Kai-Min Chung , Xiong Fan and Luowen Qian 3

FE for Circuits Our work
RunTime(Setup) poly(λ) poly(λ)
RunTime(KeyGen) poly(λ, |P |, |D|,T) poly(λ, |P |)
RunTime(Enc) poly(λ, |D|) poly(λ, |D|)
RunTime(Dec) poly(λ, |D|, t)‡ poly(λ, t)

Figure 1: Comparison of efficiency guarantees of FE for circuits via naively simulating
RAM programs (that is, to issue a key for a program P and time bound T , generate a key
for a circuit that runs P for T time steps) and our work. We denote P to be the program
input to the key generation algorithm, D to be the database input to the encryption
algorithm and T to be the worst case running time of P . We denote t to be the running
time of P on D. Since, the typical setting of T is 2λ, we omit mentioning the dependence
on poly-log factors in T .

Main Result: Collusion-resistant FE for RAMs. We show how to generically transform
any (collusion-resistant) FE for circuits scheme into a (collusion-resistant) FE for RAMs
scheme. Our transformation additionally assumes the existence of public-key doubly-
efficient private information retrieval (PK-DEPIR) scheme, introduced independently by
the works of Boyle et al. [16] and Canetti et al. [21].

In more detail, we show the following.

Theorem 1 (Informal). There exists a collusion-resistant public-key FE scheme for RAMs
assuming the existence of:

• collusion-resistant public-key FE for circuits and,

• public-key doubly efficient PIR [16,21].

We note that the construction of public-key DEPIR is currently based on security of
VBB for specific class of circuits. However, we note that even demonstrating the feasibility
of FE for RAMs from any cryptographic assumption was wide open. Thus, we believe that
our work takes an important step towards establishing the feasibility of FE for RAMs. We
point out that a related primitive, FHE for RAMs [41], was also based on the assumption
of public-key DEPIR.

Our construction involves a novel combination of pebbling techniques [31], rewindable
ORAMs [41], and hybrid functional encryption techniques [3]. We only work in the selective
security setting, where the challenge message query needs to be declared by the adversary
even before looking at the public key.

Observe that the assumption of FE for circuits is inherent in Theorem 1 since FE for
RAMs imply FE for circuits. It is natural to ask whether the assumption of public-key
DEPIR is inherent. While we don’t answer this question, we still make a useful observation:
an FE for RAMs scheme implies a weaker notion, called secret-key DEPIR.

Theorem 2 (Informal). Assuming the existence of unbounded private-key FE for RAMs,
there exists a construction for unbounded secret-key DEPIR.

The works of Boyle et al, Canetti et al [16, 21] also proposed constructions for secret-key
doubly efficient PIR; while they are based on new cryptographic assumptions, a thorough
study of the assumptions was recently conducted by [15].

Intermediate Result: Succinct Garbled RAMs from Falsifiable Assumptions. Towards
proving our main result, we obtain a new construction¶ of succinct garbled RAMs [8,19,
¶In fact, we define a stronger version called succinct reusable garbled RAM; this notion implies succinct

garbled RAM.

4 Collusion-Resistant Functional Encryption for RAMs

20,23,46]. A succinct garbling scheme for RAMs consists of the following algorithms: (i)
Database encoding algorithm that encodes a database D in time poly(λ, |D|), (ii) RAM
garbling algorithm garbles a program P in time poly(λ, |P |) and, (iii) Evaluation algorithm
that takes as input garbling of D, garbling of a program P and outputs PD(), in time
polynomial in (λ, |P |, |D|, t), where t is the running time of PD().

It has two advantages over prior constructions: (i) first, it is arguably simpler than
existing constructions [4, 18, 19, 23] and, (ii) second, it is based on polynomially secure
functional encryption scheme for circuits (a falsifiable assumption) as opposed to existing
constructions which are based on indistinguishability obfuscation‖ schemes (a non falsifiable
assumption).

Formally, we prove the following.

Theorem 3 (Informal). There exists a succinct garbling scheme for RAMs assuming
polynomially secure (collusion-resistant) public-key functional encryption for circuits.

Bounded-Key FE for RAMs. Our techniques also extend naturally to the bounded-key
setting. In this setting, the adversary can only query an a priori bounded number of
functions in the security experiment. We show how to construct a bounded-key FE for
RAMs from standard assumptions; unfortunately, the resulting FE for RAMs scheme does
not enjoy the same efficiency properties as before. In particular, the algorithms run in
time polynomial in the worst case time bound. Nonetheless, this still performs better than
the bounded key FE for circuits scheme since the decryption time only grows with the
worst case time bound and in particular, does not explicitly depend on the size of the
database encrypted. Formally,

Theorem 4 (Informal). Assuming the existence of laconic oblivious transfer [24] and
public-key encryption, there exists a bounded-key public-key FE for RAMs scheme satisfying
the following efficiency properties:

• The time to compute setup is poly(λ,Q, |P |, T), where T is the worst case time bound
and Q is the collusion bound.

• The time to compute the key generation of a program P is poly(λ,Q, |P |, T).

• The time to compute the encryption of a database D is poly(λ,Q, |P |, |D|, T).

• The time to compute the decryption of a functional key associated with P and a
ciphertext of database D is poly(λ,Q, |P |, t), where t is the runtime of PD().

In comparison, a bounded key FE for circuits scheme has similar setup, key generation
and encryption runtimes except that the decryption time is polynomial in (λ,Q, |D|, |P |, t).
When t� |D|, our bounded key FE for RAMs scheme outperforms bounded key FE for
circuits schemes.

The primitive of laconic oblivious transfer can be instantiated using a host of well
studied assumptions (for example, computational Diffie-Helman (CDH), learning with
errors [17, 24]). Thus, we obtain different constructions of bounded-key FE for RAMs
based on standard assumptions.

Corollary 5 (Informal). Assuming X ∈ {CDH,LWE,Factoring}, there exists a bounded-
key public-key encryption scheme for RAMs.
‖In the technical sections, we use indistinguishability obfuscation for circuits with logarithmic inputs

to construct succinct reusable garbled RAMs. However, it has been shown [49] that iO for logarithmic
inputs is equivalent to collusion-resistant functional encryption for circuits.

Prabhanjan Ananth , Kai-Min Chung , Xiong Fan and Luowen Qian 5

Related Work. Goldreich and Ostrovsky [38] initiated the area of building cryptographic
primitives for RAM programs and since then, several works have proposed cryptographic
constructions for RAM computations: for example, garbling schemes [4,8,18–20,23,29,30],
secure multiparty computation for RAMs [28, 43], doubly-efficient private-information
retrieval [16,21], private anonymous data access [42] and fully homomorphic encryption for
RAMs [41]. Of particular interest to us is the work of Gentry et al. [36] which introduced
and constructed (single-input) functional encryption for RAMs in the single-key setting.
We view our work as continuing this exciting line of research.

2 Technical Overview
We present an overview of our construction.

Recap: Garbled RAMs. Towards building FE for RAMs, we first start with a weaker but
similar notion of FE for RAMs, popularly referred to as garbled RAMs [29,30,35] in the
literature. A garbled RAM allows for separately encoding a RAM program-database pair
(P,D) such that the encodings only leak the output PD() (here we assume the program
input is hardcoded in the program); computing both the encodings requires a private key
that is not revealed to the adversary. Notice that a garbled RAM scheme already implies
a one-time, secret key FE for RAM scheme; meaning that the adversary only gets to make
a single ciphertext query and a single functional key query in the security experiment.

Traditionally, the following two-step approach is employed to construct a garbled RAM
scheme:

• First construct a garbled RAM scheme in the UMA (unrestricted memory access)
setting; the setting where the memory access pattern is not hidden.

• To hide the access pattern, generically combine any garbled RAM scheme satifying
UMA security with an oblivious RAM scheme [38].

The blueprint employed to construct a garbled RAM scheme in the UMA setting is
the following: to garble a RAM program P (associated with a step circuit C), database
D, generate T garbled circuits [54], where T is an upper bound on the running time of P .
The ith garbled circuit performs the “CPU circuit” which evaluates the ith time step of P .
The garbling of P consists of all T garbled circuits.

To evaluate a garbling of P on a suitably encoded database D, perform the following
operations for i = 1, . . . , T − 1: evaluate the ith garbled circuit to obtain output encodings
of the ith step of execution of PD. Next, we compute the recoding step that converts the
output encodings of the ith step into the wire labels for the (i+ 1)th garbled circuit; only
the recoding step involves the encoded database where we retrieve information and enforce
honest evaluation. The resulting wire labels will be used to evaluate the (i+ 1)th garbled
circuit.

The output of the T th garbled circuit is the output of execution of PD.
Recall that in the UMA setting, we do not hide memory access pattern, memory content,

or intermediate states. In order to achieve full security, we additionally need to compile
the original program with additional protection, usually this involves a specially crafted
oblivious RAM scheme to hide the access pattern, and a suitable secret key encryption to
hide the rest.

Towards FE for RAMs: Challenges. To leap from a toy case of FE for RAMs,
a.k.a. garbled RAMs, to building a full-fledged collusion-resistant public-key FE for RAMs
involves many hurdles. We start by highlighting two such challenges.

6 Collusion-Resistant Functional Encryption for RAMs

Challenge: Parallel∗∗ Reusability. Let the adversary receive as input, encryption of
a challenge database D∗ and functional keys skP1 , . . . , skPq

associated with RAM programs
P1, . . . , Pq. We can decrypt the same encryption of D∗ using the different functional keys
skP1 , . . . , skPq to obtain PD∗1 , . . . , PD

∗

q .
Typically, in the RAM setting, however, reusability has only been studied in the

sequential setting (also called persistent memory setting [35]) where P1 first acts on D∗
to obtain an updated database; P2 then acts upon the updated database and so on.
To construct FE for RAM, the notion of parallel reusability is required, where different
programs P1, . . . , Pq need to act upon the same initial database D∗.

Prior results show that some of the existing garbled RAMs are insecure in the parallel
reusability setting [42]††.

Challenge: Succinctness. Recall that we enforce stringent efficiency requirements
on FE for RAMs schemes: the parameters should neither grow with the database length
nor with the worst-case time bound, the decryption time should only grow proportional to
the input-specific running time and so on. Even for simpler primitives such as randomized
encodings, achieving succinctness has proven to be very challenging; for instance, the
constructions of succinct garbled RAMs by [19,23] are quite complex and involve heavy
tools.

Moreover, unlike weaker models, generic constructions of FE using succinct garbling
do not work in the RAM setting. For instance, in the setting of Turing machines, here is
an approach to obtain FE for Turing machines from FE for circuits: use FE for circuits to
generate a succinct garbling of the database encrypted and the TM associated with the
functional key. Such solutions would necessarily blow up the decryption time proportional
to the size of the database encrypted, even if the program only runs in sublinear time.

Known Tools. The above two challenges are not new and have presented themselves in
different contexts. We mention some of the relevant contexts below.

Succinct Garbling for RAMs [8, 19, 20, 23]: Succinct garbling schemes for RAMs
do solve the problem of succinctness but does not satisfy the parallel reusability property.
They either only allow the evaluation of one garbled program, or only allow evaluating
several programs sequentially in a stateful manner, while for functional encryption we
would like the program evaluation to be stateless.

FE for circuits [11,51,52]: As we mention in the introduction, FE schemes for circuits
do address the challenge of parallel reusability; functional keys associated with programs
P1, . . . , PQ can be used in parallel to decrypt an encryption of x. However they do not
achieve succinctness since the decryption time grows with the worst-case runtime of the
computation.

Rewindable ORAMs [42]: A recently introduced primitive, rewindable ORAM, allows
for rewinding the encoded database of the ORAM scheme to an earlier state. The security
property states that the access patterns generated even after rewinding the encoded
database should not reveal any information about the underlying database. This primitive
does address the challenge of parallel reusability, succinctness (only a small amount of secret
state needed to perform evaluation) but in itself is not useful since this gives an interactive
solution and hence needs to be used in conjunction with other (possibly non-interactive)
primitives.

††To be precise, [42] shows that traditional ORAM schemes are insecure in the parallel reusability
setting. This correspondingly means that the garbled RAMs schemes building upon these ORAM schemes
would correspondingly be insecure in the parallel setting.

Prabhanjan Ananth , Kai-Min Chung , Xiong Fan and Luowen Qian 7

2.1 Our Template
We show how to combine the techniques used to construct the above seemingly unrelated
tools to obtain a construction of FE for RAMs. As mentioned earlier, the current known
constructions of succinct garbling schemes for RAMs are difficult to work with. We will
first simplify (and improve!) these constructions before achieving our main result.

The template for the rest of the overview is as follows:

• We first tackle the challenge of succinctness. We present a new construction of a
garbled RAM (GRAM) scheme. This will serve as an alternative to existing schemes
which are significantly more complex and additionally assumes sub-exponentially
secure FE for circuits . Our scheme is simpler and only assumes polynomially-secure
FE for circuits.

• We upgrade this succinct GRAM scheme to satisfy parallel reusability; the same
garbled database can be evaluated upon by multiple garbled programs. We call
this succinct reusable GRAM. This notion would imply a single-ciphertext collusion-
resistant FE for RAMs in the secret-key setting. The adversary can only make
a single ciphertext query. One of the important tools we use to achieve parallel
reusability is rewindable ORAMs.
In the technical sections, we present the construction of succinct reusable GRAM
directly, instead of first presenting the non-reusable version and then upgrading it to
the reusable version. We present the upgrading step in this overview to explain the
construction better to the reader.

• Finally, we combine succinct reusable GRAMs with collusion-resistant FE for circuits
to obtain collusion-resistant FE for RAMs.

2.2 Starting Point: Simpler, Better and Modular Succinct GRAM
Our starting point is the following template introduced by [8] to construct succinct garbled
RAMs.

• We start with a non-succinct garbled RAM scheme, i.e. the parameters in the scheme
could grow proportional to the worst runtime bound T of the computation. However,
we still require that the evaluation runs in time proportional to the runtime of the
computation and in particular, could be independent of the database length. Such
a garbled scheme can be constructed from one-way functions [29–31], and these
constructions follow the two-step approach that we have outlined at the beginning of
the section.

• To go from a non-succinct to a succinct garbled RAM scheme, we need to reduce the
size of the garbled program to be independent of the worst case bound T . We achieve
this size reduction using program obfuscation‡‡. Specifically, we use obfuscation to
delegate the execution of the non-succinct program garbling procedure to the time of
evaluation. That is, to garble a program P via a succinct garbling scheme, compute
an obfuscated circuit that produces a non-succinct garbling of P .

To make the above high level approach work, we need to nail down the precise properties
that we need from the underlying non-succinct garbled RAM scheme. For starters, just
obfuscating the non-succinct garbling procedure would not work: the size of the obfuscated
circuit will be as large as the size of the non-succinct garbled program and thus, we didn’t
achieve size reduction.
‡‡A program obfuscation is a compiler that transforms a program P into a functionally equivalent

program that hides all the implementation details of the original program. In the technical sections, we
use a specific definition of obfuscation, called indistinguishability obfuscation.

8 Collusion-Resistant Functional Encryption for RAMs

Thus, we need to start with a non-succinct garbling scheme where the garbled program
can be decomposed into many components such that the obfuscated circuit produces one
component at at time. Even if we do this, arguing proof turns out to be tricky: a naive
approach to reduce to the security of the non-succinct garbling scheme involves hardwiring
the entire garbled program inside the obfuscated circuit but this again is not possible as it
violates succinctness.

Local Simulatability: These issues are not unique to our setting and have already been
encountered while designing succinct garbled RAMs with bounded space [8] or succinct
garbled Turing machines [6, 33]. They identified two main properties that are necessary
for the underlying non-succinct garbling scheme to satisfy.

• The program being garbled can be broken down into small components (say, of size
poly(λ, log T)) and each of these components can be garbled independently. This
property also helps in proving security of the succinct garbled Turing machine without
having to hardwire the entire garbled circuit inside the obfuscated circuit.

• The security proof of the non-succinct scheme should be argued in such a way that
only a “small" (say, poly(λ, log T)) subset of the garbled program components need
to be changed from one hybrid to the next hybrid.

We now revisit the template mentioned above and change the circuit being obfuscated to
output the (non-succinct) garbled program, one component at a time. On input i, the
obfuscated circuit outputs the ith component of the garbled program, instead of producing
the whole garbled program at once. To argue security, we carry out the hybrids of the
non-succinct garbling scheme by only hardwiring a small subset of components at a time.
By local simulatability, we are guaranteed that in each hybrid, the amount of hardwired
information is never too large and therefore we achieve succinctness.

Therefore, we have reduced the problem of constructing succinct GRAM to identify and
instantiate an appropriate non-succinct garbling scheme satisfying the above two properties.
This is where previous works fall short. Their instantiations yielded succinct garbling
schemes only for Turing machines [6,33] or succinct garbled RAMs with bounded space [8].

Non-Succinct Garbled RAMs with Local Simulatability§§: To construct (non-
succinct) garbled RAM satisfying the local simulatability property, we split the construction
into two parts: in the first part we construct a succinct garbled RAM with unprotected
memory access (UMA), where we forget about protecting memory contents, access patterns
and intermediate CPU states; in the second part, we bootstrap UMA-GRAM to fully
secure GRAM.

For the first step, we observe that the UMA-secure adaptive garbled RAM construction
of [31] already satisfies the local simulatability property. For the second part, previous
schemes usually employ an ORAM to hide the memory access pattern and an encryption
scheme to hide the memory content. However, these tools are not quite compatible with
the local simulatability property, therefore, their compatible versions of ORAM with strong
localized randomness, and timed encryption scheme – originally introduced by the same
paper [31] to construct adaptive garbled RAMs – are needed for the proof.

Timed encryption, at a high level, is an encryption scheme that allows issuing en-
cryption/decryption keys with growing power as the evaluation goes on, i.e. a key issued
at time t can decrypt anything that was encrypted under time t′ ≤ t, but any message
encrypted at a later time remains hidden. Using the tool of timed encryption allows us
to use a sequence of hybrids to remove the timed encryption keys one by one (and hence
allowing us to simulate each evaluation step locally), from the strongest (which is one

§§The terminology of local simulation is only introduced for the benefit of describing our techniques
and will be implicit in our security proof.

Prabhanjan Ananth , Kai-Min Chung , Xiong Fan and Luowen Qian 9

hardwired in the last step circuit) to the weakest (which is the one hardwired in the first
step circuit).

Looking ahead, there is another more subtle issue for constructing succinct GRAM
that is not captured by local simulatability: in the succinct garbling scheme, we can
only use a very small amount of randomness in the simulator, as otherwise the size of
the simulated circuit will blow up and break succinctness. In particular, this means that
we cannot simply hardcode the timed encryption of 0. For this issue, we develop timed
encryption with pseudorandom ciphertexts, which is a timed encryption whose ciphertext
is indistinguishable from uniformly random bitstrings; and construct it from one-way
functions. Once we have that, we can simply use a PRF to generate all the simulated
ciphertexts in a succinct way.

We now move on to hiding access pattern in a local simulatable way. Strong localized
randomness property for ORAM, at a high level, simply requires that the randomness used
by ORAM is equipped with some structural properties that will allow us to equivocate
(and change) the randomness in a local way. For now, the ORAM with strong localized
randomness constructed in [31] suffices for succinct (non-resuable) garbled RAM.

2.3 Succinct Garbled RAM: Achieving Reusability
Succinct GRAM alone itself is not going to be sufficient to construct FE for RAMs.
Instead, it turns out to require the reusability property: given an encoding of a database
D and multiple garbled programs P̃1, . . . , P̃q, the adversary can recover the outputs
PD1 (), . . . , PDq () and moreover, the database encoding and the garbled programs do not
leak any information about D beyond the outputs that can be recovered. We call this
notion succinct reusable garbled RAM.

Note that this definition is different from the persistent memory setting [35]; the
programs sequentially evaluate on the databases as against the parallel execution that we
desire. In addition, we also require that the reusable GRAM also satisfies succinctness
properties as defined in a succinct GRAM scheme.

From Succinct GRAM to Succinct Reusable GRAM. To construct a succinct reusable
garbled RAM, again it is helpful to split things into two part: in the first part we construct
a succinct reusable garbled RAM with unprotected memory access (UMA), and in the
second part we use this UMA primitive to construct fully secure succinct reusable garbled
RAM. Note that in UMA setting, essentially all we are protecting is the program execution,
and we do not face much trouble in adapting the scheme above into the reusable setting.
Therefore, we focus on the full security setting and highlight the new challenges in the
reusability setting.

Challenges in Protecting Memory Content: To protect the content of the memory,
we need to include the encryption key into our garbled program. However, once we have
given out one garbled program, we can no longer invoke the security of the encryption
scheme to say that the adversary has no information about the underlying database, as
the garbled program contains a hardwired secret key. Indeed, the adversary can simply
read from the encrypted database by simply reading the output of the garbled program.
Therefore we need to remove the encryption keys in the hybrids very carefully. In the
non-reusable setting, it has been shown in prior work [31] that using timed encryption
fixes this issue. On a high level, their idea is to remove the encryption key one by one in
each hybrid, in particular, they would remove the encryption key from the last garbled
program (and write junk to the database instead) indistinguishably in the first hybrid,
and then move forward and remove the encryption key in the second last garbled program,
and so on. Essentially, timed encryption allows us to encrypt messages under a different
key in each time step, while the decryption key can only decrypt messages before the

10 Collusion-Resistant Functional Encryption for RAMs

current timestep but not after, which allows the hybrid argument to go through. However,
this security proof does not work in the reusable case: when we try to equivocate the
output/database writes and remove the encryption key, the adversary could in principle
still be able to distinguish the two distributions as the same timed encryption key still
appears in other garbled programs.

In order to tackle this issue, we employ a different time step labeling and also a different
hybrid strategy. In particular, instead of the time steps increasing in each garbled program,
each garbled program will use a shared global time counter. Note that this also makes
sense from the reusability point of view, as the evaluator can in principle evaluate garbled
programs on the garbled database in any order that he wishes.

Now suppose we want to remove the strongest encryption key in the last step circuit. We
can employ the following hybrid sequence: first, we use the security of UMA-GRAM to
change each last step circuit into a dummy circuit that directly outputs the output in all
garbled programs in parallel (to do it more carefully, we replace each garbled program
one by one and argue each change is indistinguishable) – this effectively removes all the
timed encryption keys that are used in the last time step; this allows us to do the next
step which is to change the encrypted CPU states and write data into garbage in parallel;
finally, we reverse the change of dummy circuit again in parallel. By doing so, we remove
the strongest timed encryption key in all garbled programs at once. We can repeat this
process for each remaining encryption keys until all encryption keys are removed from
garbled program, at which point we can replace the database with an empty database and
arrive at the simulated distribution.

Challenges in Protecting Memory Access Pattern: Another issue is that we
need to protect the database read/write patterns in a way that is compatible with succinct
UMA GRAM. Basically, we need to change each database read/write pattern without
hardwiring too much additional information, which would blow up the size of the garbled
program and break succinctness. This is further complicated by the fact that the adversary
can evaluate different programs on the same database in parallel and compare the results
to acquire additional information.

To resolve both these issues, we design a rewindable ORAM scheme satisfying strong
localized randomness property. The starting point of the construction is the plain
rewindable ORAM scheme given in [41], which consists of two parts: a read-only rewindable
ORAM and a read-write non-rewindable ORAM. The idea of the construction is that
the read-write ORAM will act as a read-write cache to the underlying database, which is
encoded in the read-only ORAM.

Given this beautiful construction, it is straightforward to construct a rewindable
ORAM scheme with strong localized randomness. In particular, we simply instantiate
the read-write ORAM with the ORAM with strong localized randomness property. The
access pattern in read-only ORAM is by definition locally sampled, and we can simulate
the access pattern in read-write ORAM locally by using the strong localized randomness
property of the read-write ORAM that we use.

2.4 Bootstrapping Step: From FE for Circuits to FE for RAMs
Once we construct a succinct reusable garbled RAM scheme, we show how to bootstrap a
FE for circuits scheme into a FE for RAMs scheme. Our transformation is inspired by a
similar transformation described in [26].

• To encrypt a database D, encode D using a succinct reusable GRAM scheme. Denote
the output by (D̃, sk). Encrypt sk using an FE for circuits scheme; call the resulting

Prabhanjan Ananth , Kai-Min Chung , Xiong Fan and Luowen Qian 11

ciphertext ct. Output the ciphertext of the FE for RAMs scheme, CT = (D̃, ct).

• To generate a functional key for a program P , generate a FE key for a circuit G
that takes as input a secret key sk and produces a garbling of the program P with
respect to sk; call the FE key SKG. Set the functional key for the FE for RAMs
scheme to be SKG.

• The decryption algorithm first recovers the garbled program P̃ by running the FE
decryption algorithm. It then runs the succinct GRAM evaluation of P̃ on D̃ to
obtain PD.

To argue security, we can use the hybrid functional encryption technique of [3, 22] to first
hardwire the garbled programs in the function keys and then invoke the reusable security
of the GRAM scheme to prove the indistinguishability security of the FE scheme.

2.5 Organization
We organize the technical sections of our paper as follows:

• In Section 3, we introduce our notations and preliminaries, with additional prelimi-
naries described in the full version.

• In Section 4, we present a construction of succinct reusable garbled RAM.
First, we present the definition of succinct reusable garbled RAM in section 5.1. Next,
in Section 5.2, we present a construction of succinct garbled RAM in the UMA setting.
In this step, we use pebbling techniques in conjunction with indistinguishability
obfuscation for inputs of logarithmic length (implied by functional encryption).
Finally, in Section 5.3, we show how to transform UMA-secure garbled RAM to fully
secure garbled RAM in the reusability setting. As a result, we obtain the construction
of succinct reusable garbled RAM. We use the tool of rewindable ORAM in this step.
The missing proofs in Section 5 are presented in the full version.

• In Section 6, we show how to combine (collusion-resistant) FE for circuits with
succinct reusable garbled RAM to achieve (collusion-resistant) FE for RAMs. The
missing proofs in Section 6 are presented in the full version. At last, we show
implication of FE for RAMs to secret-key DEPIR in the full version as well.

3 Preliminaries
We denote λ to be the security parameter. We denote the computational indistinguishability
of two distributions D1 and D2 by D1 ≈ D2. We use the abbreviation PPT to denote
probabilistic polynomial time algorithms. Additional preliminaries are presented in the
full version.

RAM model of computation. We recall the definition of RAM computations. A RAM
computation consists of a RAM program P and a database D. The representation size of
P is independent of the length of the database D. The program P has random access to
the database D. We denote the output to be PD In more detail, the computation proceeds
as follows.

The RAM program P is represented as a step-circuit C. It takes as input internal state
from the previous step, location to be read, value at that location and it outputs the new
state, location to be written into, value to be written and the next location to be read.
More formally, for every τ ∈ T , where T is an upper bound on the running time,

(stτ , rdτ ,wtτ ,wbτ)← C(stτ−1, rdτ−1, bτ)

12 Collusion-Resistant Functional Encryption for RAMs

where we have the following:

• stτ−1 denotes the state in the (τ − 1)th step and stτ denotes the state in the τ th step.

• rdτ−1 denotes the location to be read from, as output by the (τ − 1)th step.

• bτ denotes the bit at the location rdτ−1.

• rdτ denotes the location to be read from, in the τ th step.

• wtτ denotes the location to be written into in the τ th step.

• wbτ denotes the value to be written at τ -th step at the location wtτ .

Remark 1. (Additional Input) In the literature, when defining RAM programs, we also
additionally define an input x and the program in addition to having random access to D,
takes as input x, and outputs PD. Without loss of generality, we assume that the input x
is part of the database and hence we omit including this as an explicit input to P .

Remark 2. (Outputs) In this work, we only consider RAM programs with boolean outputs.
We can suitably extend the schemes we construct to handle multiple outputs at the cost of
blowing up the parameters proportional to the output length.

3.1 Puncturable PRF
Puncturable PRFs [12, 14, 44] are PRFs for which a key can be given out such that, it
allows evaluation of the PRF on all inputs, except for any polynomial-size set of inputs.
The following definition is adapted from [53].

Definition 1 (Puncturable PRF). A puncturable family of PRFs F mapping is given by
a typle of ppt algorithms (GenF ,EvalF ,PuncF) and a pair of computable functions n(·)
and m(·), satisfying the following conditions:

• Functionality preserved under puncturing: For every ppt adversary A such
that A(1λ) outputs a set S ⊆ {0, 1}n(λ), then for all x ∈ {0, 1}n(λ) where x /∈ S, we
have that

Pr[EvalF (K,x) = EvalF (KS , x) : K ← GenF (1λ),KS = PuncF (K,S)] = 1

• Pseudorandom at punctured points: Foe every ppt adversary (A1,A2) such
that A1(1λ) ouputs a set S ⊆ {0, 1}n(λ) and state σ, consider an experiment where
K ← GenF (1λ) and KS = PuncF (K,S). Then we have∣∣Pr[A2(σ,KS , S,EvalF (K,S)) = 1]− Pr[A2(σ,KS , S, Um(λ)·|S|) = 1]

∣∣ = negl(λ)

where EvalF (K,S) denotes the the concatenation of (EvalF (K,x1), . . . ,EvalF (K,xk)),
where S = {x1, . . . , xk} is the enumeration of the elements of S in lexicographic
order and U` denotes the uniform distribution over ` bits.

The GGM tree-based construction of PRFs [37] from one-way function are easily seen
to yield puncturable PRFS, as shown in [12,14,44]. Thus we have:

Theorem 6. If one-way functions exist, then for all efficiently computable functions n(λ)
and m(λ), there exists a puncturable PRF family that maps n(λ) bits to m(λ) bits.

Prabhanjan Ananth , Kai-Min Chung , Xiong Fan and Luowen Qian 13

3.2 Indistinguishability Obfuscation
The definition below is from [27].

Definition 2. A uniform ppt machine iO is called an Indistinguishability obfuscator for a
circuit class {Cλ}, if the following conditions are satisfied:

• For all security parameter λ, all circuit C ∈ Cλ, all input x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

• For all (not necessarily uniform) ppt adversaries (A0,A1), there exists a negligible
function α, such that the following holds: if Pr[∀x,C0(x) = C1(x) : (C0, C1, σ) ←
A0(1λ)] > 1− α(λ), then we have

|Pr[A1(σ, iO(λ,C0)) = 1]− Pr[A1(σ, iO(λ,C1)) = 1]| ≤ α(λ)

Theorem 7 ([48,49]). For every large enough security parameter λ, assuming 2nε-secure
functional encryption, there exists an ε-secure indistinguishability obfuscator for circuits
with input length n.

In particular, when n = log(λ) and ε is negligible in security parameter, iO for n-length
circuits, can be based on polynomially secure compact functional encryption.

3.3 Selective-Database Laconic Oblivious Transfer
The definition of laconic oblivious transfer is proposed in [24, 34]. The security notion we
need about laconic oblivious transfer is based on work [45].

A laconic oblivious transfer scheme LacOT consists of four algorithms (crsGen,Hash,
Send,Receive) with details as follows:

• crsGen(1λ) takes as input security parameter λ and outputs a common reference
string crs.

• Hash(crs, D) is a deterministic algorithm that takes as input the crs as well as a
database D ∈ {0, 1}∗, and outputs a hash value h and a state D̂.

• Send(crs, h, L,m0,m1) takes as input the crs, hash value h, a pair of messages
(m0,m1) and an index L ∈ N. It outputs a ciphertext c.

• ReceiveD̂(crs, c, L) is an algorithm with random access to a database D̂ that takes as
input the crs, a ciphertext c and an index L ∈ N. It outputs a message m.

The scheme LacOT satisfies the following correctness and security properties:

Correctness. We say the scheme LacOT is correct, if for all D ∈ {0, 1}∗ of size N =
poly(λ), all i ∈ [N] and all (m0,m1) ∈ {0, 1}p(λ), it holds that

Pr
[
ReceiveD̂(crs, c, L) = mD[L]

]
= 1

where crs← crsGen(1λ), (h, D̂)← Hash(crs, D) and c← Send(crs, h, L,m0,m1).

14 Collusion-Resistant Functional Encryption for RAMs

Selective-database adaptive-message sender privacy against semi-honest receivers.
There exists a ppt simulator Sim that satisfies the following:

|Pr[Exptsel
real(1λ) = 1]− Pr[Exptsel

sim(1λ) = 1]| ≤ negl(λ)

where the experiments Exptsel
real(1λ) and Exptsel

sim(1λ) are in Figure 2:

1. (D, st)← A(1λ)
2. crs← crsGen(1λ)
3. (h, D̂)← Hash(crs, D)
4. (L,m0,m1, st′)← A(st, crs)
5. e← Send(crs, h, L,m0,m1)
6. b′ ← A(crs, e, st′)

(a) Exptsel
real(1λ)

1. (D, st)← A(1λ)
2. crs← crsGen(1λ)
3. (L,m0,m1, st′) ←
A(st, crs)

4. e← Sim(crs, D, L,mD[L])
5. b′ ← A(crs, e, st′)

(b) Exptsel
sim(1λ)

Figure 2: Experiments associated with sender privacy for reads

where |D| = N = poly(λ), L ∈ [N] and m0,m1 ∈ {0, 1}p(λ).

Efficiency. We require that |h| is bounded by a fixed polynomial in λ, and being inde-
pendent of |D|. The runtime of algorithm Hash is |D| · poly(log |D|, λ), and the runtime of
Send and Receive are poly(log |D|, λ).

A variant of laconic OT that supports write operation is called updatable laconic OT,
defined in the following:

Definition 3 (Updatable laconic OT [24]). A laconic OT scheme LacOT is called updatable
if it supports the following two algorithms:

• ew ← SendWrite
(

crs, h, L, b, {mj,0,mj,1}|h|j=1

)
: On input the common reference string

crs, a hash value h, a location L ∈ [N], bit b ∈ {0, 1} and |h| pairs of messages
{mj,0,mj,1}|h|j=1, it outputs a ciphertext ew.

• {mj}|h|j=1 ← ReceiveWriteD̂ (crs, L, b, ew): On input the common reference string crs,
location L, a bit b ∈ {0, 1}, a ciphertext ew and random access to state D̂, it updates
the state D̂ (such that D[L] = b) and outputs messages {mj}|h|j=1.

We require an updatable laconic oblivious transfer to additionally satisfy the following
properties:

• Correctness of Writes: Let database D be of size at most N = poly(λ). Let D∗
be a database that is identical to D except that D∗[L] = b for bit b ∈ {0, 1}. For
any sequence of messages {mj,0,mj,1}j∈[λ] ∈ {0, 1}p(λ), it holds that

Pr[m′j = mj,d∗
j
,∀j ∈ [|h|] : {m′j}

|h|
j=1 ← ReceiveWriteD̂(crs, L, b, ew)] = 1

where crs ← crsGen(1λ), (d, D̂) ← Hash(crs, D), (d∗, D̂∗) ← Hash(crs, D∗), and we
have

ew ← SendWrite
(

crs, h, L, b, {mj,0,mj,1}|h|j=1

)
• Selective-database adaptive-message sender privacy against semi-honest
receivers with regard to writes: There exists a ppt simulator SimWrite satisfies
the following ∣∣Pr[Exptwrt

real(1λ) = 1]− Pr[Exptwrt
ideal(1λ) = 1]

∣∣ = negl(λ)

Prabhanjan Ananth , Kai-Min Chung , Xiong Fan and Luowen Qian 15

where experiments Exptwrt
real and Exptwrt

ideal are defined in Figure 3, where D∗ is identical
to D except D∗[L] = b.

• Efficiency. We require that the runtime of algorithms SendWrite and ReceiveWrite
are poly(log |D|, λ).

1. (D, st)← A(1λ)
2. crs← crsGen(1λ).
3. h = Hash(crs, D)
4. (L, b, {mj,0,mj,1}|h|j=1, st)← A(st, crs)
5.
6. e ← SendWrite(crs, h, L, b, {mj,0,

mj,1}|h|j=1)
7. b′ ← A(crs, e, st′).

(a) Exptwrt
real(1λ)

1. (D, st)← A(1λ)
2. crs← crsGen(1λ).
3. h = Hash(crs, D)
4. (L, b, {mj,0,mj,1}|h|j=1, st)← A(st, crs)
5. (h∗, D̂∗)← Hash(crs, D∗)
6. e← Sim(crs, D, L, b, {mj,h∗

j
}j∈[|h|])

7. b′ ← A(crs, e, st′).
(b) Exptwrt

ideal(1λ)

Figure 3: Experiments associated with sender privacy for writes
In [45], the authors show that selective-database laconic OT can be constructed from

weakly-selectively secure, single-key public-key functional encryption for circuits, i.e.

Theorem 8 ([45]). Assuming the existence of public-key functional encryption for circuits,
there exists selective-database laconic OT.

Theorem 9 ([17, 24]). Assuming the existence of laconic OT, there exists public-key
encryption.

4 Functional Encryption for RAMs
We define a public-key functional encryption scheme for RAM programs [36]. A public-key
FE for RAM programs consists of the probabilistic polynomial time (ppt) algorithms
Π = (Setup,Enc,KeyGen,Dec), defined as follows:

• Setup algorithm. Setup(1λ, T): On input security parameter λ, an upper bound
T on the running time of the RAM program, the setup algorithm outputs the master
secret key MSK and public key pk.

• Encryption algorithm. Enc(pk, D): On input public key pk and database D, the
encryption algorithm outputs the ciphertext CT.

• Key generation algorithm. KeyGen(MSK, P): On input master secret key MSK,
RAM program P , the key generation algorithm outputs the functional key skP .

• Decryption algorithm. DecCT(skP): On input a functional key skP and with
random access to ciphertext CT, the decryption algorithm (modeled as a RAM
program) outputs the result y.

Definition 4 (Correctness). A public-key functional encryption for RAMs scheme Π is
correct, if there exists a negligible negl(·) such that for any security parameter λ, any
database D, for any RAM program P , it holds that

Pr
[
DecCT (skP) = PD

]
= 1− negl(λ)

where (pk,MSK) ← Setup(1λ, T),CT ← Enc(pk, D), skP ← KeyGen(MSK, P) and the
probability is taken over the internal randomness of algorithms Setup, Enc and KeyGen.

16 Collusion-Resistant Functional Encryption for RAMs

Succinctness. Unlike the traditional functional encryption for circuits scheme, where
the parameters can grow with the worst case runtime of the computation, we require the
parameters in the functional encryption for RAMs schemes to have the following efficiency
guarantees.

Definition 5 (Succinctness). A public-key functional encryption for RAMs scheme
(Setup,Enc,KeyGen,Dec) satisfies succinctness if the following properties hold:

• Setup(1λ, T) runs in time poly(λ, log(T)).

• Enc(pk, D) runs in time poly(λ, log(T), |D|).

• KeyGen(MSK, P) runs in time poly(λ, log(T), |P |).

• DecCT(skP) runs in time poly(λ, T).

Remark 3 (Input-Specific Runtime). An astute reader would notice that we only require
the decryption time to grow with the worst case time bound, and not with input-specific
runtime. Luckily, there is a simple generic transformation that shows how to modify a
scheme with worst-case time bound into a scheme that has input-specific runtime: we
encourage the reader to refer to [39] for a description of this transformation.

Security. Our security notion is modeled along the same lines as FE for circuits. We
only focus on selective security in this work.

Definition 6 (Selective security). A public-key FE for RAMs scheme Π is selectively
secure if for any ppt adversary A, there exists a negligible function negl(·) such that

Advpfe
Π,A(1λ) =

∣∣∣Pr[Exptpfe
Π,A(1λ, 0) = 1]− Pr[Exptpfe

Π,A(1λ, 1) = 1]
∣∣∣ ≤ negl(λ)

for any sufficiently large security parameters λ, where Exptpfe
Π,A(1λ, b) is defined via the

following experiment:

1. Setup phase: The challenger computes (pk,MSK)← Setup(1λ, T).

2. Challenge phase: On input 1λ, the adversary submits (D0, D1), and the challenger
replies with pk and CT← Enc(pk, Db).

3. Query phase: The adversary adaptively queries the challenger with any RAM pro-
gram P such that PD0 = PD1 . The challenger replies with skP ← KeyGen(MSK, P).

4. Output phase: The adversary outputs guess b′, which is defined as the output of
the experiment.

5 Succinct Reusable Garbled RAM
We first start with the definition of succinct reusable garbled RAM. This will be followed by
the construction of succinct UMA-secure reusable GRAM. Finally, we give a transformation
from UMA security to full security.

5.1 Syntax and Security Definition
A succinct reusable garbled RAM scheme consists of PPT algorithms GRAM = (GrbDB,GProg,
GEval), with details as follows:

Prabhanjan Ananth , Kai-Min Chung , Xiong Fan and Luowen Qian 17

• GrbDB(1λ, D, T, 1Q): On input security parameter λ, time upper bound T , collusion
upper bound Q, a database D, output the garbled database encoding D̂ along with
secret key sk.

• GrbProg(sk, P): On input secret key sk, and a RAM program P , output the garbled
program P̂ .

• GEvalD̂
(
P̂
)
: On input garbled program P̂ , database encoding D̂, output y.

Correctness. For correctness, we require that for any program P , any database D, we
have that

Pr
[
GEvalD̂

(
P̂
)

= PD()
]

= 1

where (D̂, sk)← GrbDB(1λ, T,D), and P̂ ← GrbProg(sk, P).

Succinctness. We define succinctness property of garbled RAM. In the definition below,
we note the dependence of log T is implicit since log T is at most the security parameter.

Definition 7 (Weak succinctness). A garbled RAM scheme GRAM = (GrbDB,GrbProg,
GEval) satisfies the weak succinctness property if the following holds:

• GrbDB(1λ, T, 1Q, D) runs in time poly (λ, log T,Q, |D|).

• GrbProg(sk, P) runs in time poly(λ, T, logQ, log |D|, |P |).

• GEvalD̂
(
P̂
)
runs in time poly(λ, t, |P |, logQ, log |D|).

Definition 8 (Succinctness). A garbled RAM scheme GRAM = (GrbDB,GrbProg,GEval)
satisfies (full) succinctness property if the following holds:

• It satisfies the weak succinctness;

• GrbProg(sk, P) runs in time poly(λ, log T, logQ, log |D|, |P |), instead of T .

Reusable Security. We define a notion of reusable security that will be compatible with
the security definition of FE for RAMs.

To define reusable security, we first describe the experiment below.

ExptA(1λ, b):

• A submits two databases D0 and D1, a collusion bound Q (or ⊥ for unbounded
GRAM scheme), and a running time bound encoded in unary 1T .

• The challenger responds back with database encoding D̂b.

• Proceeding adaptively, A submits RAM programs P0, P1. The challenger checks that
PD0

0 () = PD1
1 () and each program executes for the same number of time steps. It

also checks that |D0| = |D1|. If both the checks fail, it aborts; otherwise, it sends the
garbled program P̂b and garbled input x̂b. A repeats this step for Q = poly(λ) times.

• A outputs b′. The output of the experiment is b′.

Definition 9 ((Indistinguishability) reusability). A garbled RAM scheme (GrbDB,GrbProg,
Eval) satisfies (indistinguishability) reusability property if the following holds for every ppt
adversary A: ∣∣∣Pr[0← ExptA(1λ, 0)]− Pr[0← ExptA(1λ, 1)]

∣∣∣ ≤ negl(λ)

18 Collusion-Resistant Functional Encryption for RAMs

Remark 4. Our construction actually satisfies a stronger security of simulation security,
where simulated version of GrbDB only takes as input (1λ, 1|D|), and the simulated version
of GrbProg only takes as input (sk, 1|P |, y). Note that for this definition, simulation security
is in fact equivalent to indistinguishability security¶¶.

Unbounded Reusability. Ideally, we would like the garbled database encoding to be
reusable by a priori unbounded number of garbled programs. We capture this in the formal
definition below.

Definition 10 (Unbounded reusability). In addition to succinctness, a succinct gar-
bled RAM scheme satisfies unbounded reusability, if the algorithm GrbDB takes Q = ⊥
and all algorithms run in time independent of Q, for example, GrbDB runs in time
poly (λ, log T, |D|).

5.2 Succinct UMA Reusable GRAM
To construct succinct reusable GRAM, we start by constructing a succinct garbled RAM
scheme that only satisfies a weaker notion of reusable security, which we call UMA security.

UMA security. UMA security is defined similar as the indistinguishability security above,
except that the challenger in addition to checking PD0

0 () = PD1
1 (), she also checks that

D0 = D1, and every step circuits in PD0
0 (), PD1

1 () at the same time step output the exact
same output.

Ingredients. We use the following ingredients in our construction:

• Selective-database updatable laconic oblivious transfer (crsGen,Hash,Send,SendWrite,
Receive,ReceiveWrite).

• A puncturable PRF (PRF.Gen,PRF.Eval,PRF.Punc).

• Indistinguishability obfuscation iO for circuits with log-sized inputs.

Construction. We construct Π = (GrbDB,GrbProg,GEval) as follows:

• GrbDB(1λ, D, 1Q, Tmax): On input security parameter λ, database D and running
time upper bound Tmax, it does the following:

1. Sample crs← crsGen(1λ) and compute (d, D̂) = Hash(crs, D)

2. Output D̂ as garbled database and (d, crs, Q, Tmax) as the secret key sk.

• GrbProg (sk, P): On input secret key sk and program P , it does:

1. Sample a PRF key K ← PRF.Gen(1λ).
2. For each step τ ∈ [2, T], k ∈ [λ+n+1] and b ∈ {0, 1}, let labτk,b = PRFK(τ ||k||b).
3. We use {labτk,b} to denote {labτk,b}k∈[λ+n+1],b∈{0,1}.

4. Output P̂ = (iO(PG[P, crs,K, d]), {lab1
k,dk
}k∈[λ], {lab1

k+λ,0}k∈[n+1]), where PG
is described in Figure 4.
Note: we pad the circuit PG such that its size is |P | · poly(λ, log |D|, log T) bits.
This will become clear later in the security proof.

¶¶In general these two notions are not equivalent: in our setting, they are equivalent since we only
consider programs with boolean outputs.

Prabhanjan Ananth , Kai-Min Chung , Xiong Fan and Luowen Qian 19

Program generator circuit PG

Hardwired values: the program P , the CRS string crs, the PRF key K, the
initial digest d
Input: step number τ
(a) Compute CCPU ← P (τ). That is, P on input time step τ outputs the step

circuit CCPU.
(b) Output GarbleCkt

(
1λ, C

[
CCPU, crs, τ, {labτ+1

k,b }
]
, {labτk,b}; PRFK(τ)

)
,

where the circuit C is described in Figure 5.

Figure 4: Description of program generator circuit PG

Step circuit C

Hardwired values: A step circuit CCPU, the CRS string crs, the step number
τ and a set of labels {labk,b}
Input: A digest d, state st and read value rv.
(a) Compute (st′, op, addr,wb) = CCPU(st, rv).
(b) If st′ is in abort state, reset labk,b = b for k ∈ [λ+ 1, λ+ n] and b ∈ {0, 1}.
(c) If op = write, compute ew ← SendWrite

(
crs, d, addr,wb, {labk,b}k∈[λ],b∈{0,1}

)
.

Output (
op, addr, ew,wb, {labk,st′[k−λ]}i∈[n],k∈[λ+1,λ+n], labn+λ+1,0

)
(d) Otherwise, compute e← Send

(
crs, d, addr, {labλ+n+1,b}b∈{0,1}

)
. Output(

op, addr, {labk,dk
}k∈[λ], {labk,st′[k−λ]}k∈[λ+1,λ+n], e

)
Figure 5: Description of step circuit C

• GEvalD̂
(
P̂
)
: With random access to D̂ and on input garbled program P̂ ,

1. Extract l̃ab← {lab1
k,xk
}k∈[λ+n+1] from the garbled program

2. For τ from 1 to T ,

– Invoke the iO program on τ to obtain Ĉτ .

– Compute
(
op, addr, A, {labk}k∈[λ+1,λ+n], B

)
= EvalCkt

(
Ĉτ , l̃ab

)
.

– If the labels corresponding to st are in plain-text, abort the loop
– If op = write, parse A as (ew,wb) and B as {labk}k∈[λ+1,λ+n]. Compute
{labk}k∈[λ] ← ReceiveWriteD̂(crs, addr,wb, ew).

– Otherwise, parse A as {labk}k∈[λ+n] and B as e. Compute labλ+n+1 ←
ReceiveD̂(crs, addr, e).

– Let l̃ab← {labk,xk
}k∈[λ+n+N]

3. Output {labk}k∈[λ+1,λ+n].

20 Collusion-Resistant Functional Encryption for RAMs

Correctness. We can prove the correctnss of our construction using an inductive argument
that for each step τ , the state st and databases are updated correctly at the end of execution
of step circuit. The base case is τ = 0. For τ 6= 0, observe that if op = write, then algorithm
Eval updates the database Dj and its associated digest, where Dj is the corresponding
database for write location addr. Otherwise, if op = read, the labels recovered in Eval step
2 correspond to the value in the location addr as requested.

Succinctness.

1. By the efficiency of laconic OT, GrbDB runs in time poly(λ, |D|) + logQ+ log Tmax.

2. By the efficiency of indistinguishability obfuscation, GrbProg runs in time poly(λ, log T,
log |D|, |P |).

3. Finally, GEval runs in time t · poly(λ, log T, log |D|, |P |), as it will abort execution
once the new state is in abort state.

We now prove that the above scheme is secure.

Theorem 10. Assuming the security of selective-database updatable laconic oblivious
transfer, puncturable PRF and iO with log-sized inputs, there exists a succinct (unbounded)
reusable garbled RAM scheme satisfying UMA security.

The crux of the proof is to show that the above construction satisfies reusable security.
Consider a PPT adversary A. Let A submit Q program pairs (P1,0, P1,1), . . . , (PQ,0, PQ,1).
We employ a standard hybrid argument.

Hybprogk : In this hybrid, the challenger generates the database encoding D̂ honestly. For
i ≤ k − 1, it generates the garbled program P̂i,0 and for i ≥ k, it generates the garbled
program to be P̂i,1.

If we show that Hybprogk ≈c Hybprogk+1 , for any k ∈ {1, . . . , Q − 1} then this implies that
Hybprog0 ≈c HybprogQ+1; thus proving that the scheme satisfies reusability security. Due to the
space limit, we only describe a sketch here. The full proof is presented in the full version.

Instantiation. Combining the above theorem with the FE-based iO construction [48, 49]
and FE-based laconic OT construction [45], we arrive at the following corollary.

Corollary 11. Assuming the existence of public-key functional encryption for circuits,
there exists a succinct (unbounded) garbled RAM scheme satisfying UMA security.

Bounded-key setting. For the bounded-key setting, since we only aim for the weak
succinctness, we can consider the same construction as before except that we can instantiate
iO with an inefficient iO scheme, i.e., a scheme that outputs the truth table of the circuit
being obfuscated. Note that since we only consider iO for logarithmic inputs, the size of
the truth table is still polynomial in λ. As a result, the running time of GrbProg is now
T · poly(λ, log T, log |D|, |P |). Thus, we have the following theorem.

Theorem 12. Assuming the existence of selective-database updatable laconic oblivious
transfer, there exists a weakly-succinct (unbounded) garbled RAM scheme satisfying UMA
security.

Prabhanjan Ananth , Kai-Min Chung , Xiong Fan and Luowen Qian 21

5.3 Succinct Reusable GRAM: From UMA to Full Security
In this section, we will present the construction of (fully) succinct reusable garbled RAM.
We present a transformation that converts a succinct reusable garbled RAM with UMA
security into a succinct reusable garbled RAM scheme with full security. While such UMA
to full security setting have been known in the past, they have not been studied in the
(parallel) reusable setting, which is the focus of our work.

One of the main ingredients in our construction is an initial-state rewindable ORAM
scheme satisfying strong localized randomness property. We start by presenting a con-
struction of this.

5.3.1 Rewindable ORAM with Strong Localized Randomness

Alternate Formulation of ORAMs. Before we recall the definition of strong localized
randomness, we first consider an alternate (equivalent) definition of ORAM schemes. We
consider a pair of PPT algorithms (OData,OProg).

Algorithm OData(1λ, D) takes as input security parameter λ, database D ∈ {0, 1}N and
outputs the oblivious databaseD∗ and some client key ck. Algorithm OProg(1λ, 1logN , 1T , P,
ck) takes as input security parameter λ, memory size N , runtime T , a RAM program P ,
and the client key ck, and outputs a compiled program P ∗, which is a RAM program that
instead operates on D∗.

Strong Localized Randomness. The additional property we need from ORAM is called
strong localized property from an ORAM scheme. The definition we use here is based
on [31] and is stronger than the original definition.

Let D ∈ {0, 1}N be any database and (P, x) be any program/input pair. Let the step
circuits of P ∗ be indicated by {CτCPU}τ∈[T ′] and R be the contents of the random tape
used in the execution.

Definition 11 (Strong localized randomness). We say that an ORAM scheme has strong
localized randomness property if for any sequence of memory accesses of length T , there
exists a sequence of efficiently computable values 1 = τ1 < τ2 < · · · < τm = T ′ + 1, where
τt − τt−1 ≤ poly(logN) for all t ∈ [2,m], such that

1. For every j ∈ [m− 1], there exists an interval Ij of size poly(logN,λ), such that for
any τ ∈ [τj , τj+1], the random tape accessed by CτCPU is given by RIj

.

2. For every j, j′ ∈ [m− 1] and j 6= j′, it holds that Ij ∩ Ij′ = ∅.

3. There exists a PPT procedure CkSim that takes as input (τk, τk+1, ck) and outputs
ck′. It has the following guarantee: there exists a PPT algorithm that takes as input
τi for i 6= k, ck′, RIi and outputs the correct (real world) memory access pattern.
Furthermore, the following security guarantee is satisfied. ∀j ∈ [m], ∃k < j, the
following distributions are computationally indistinguishable:

• R\Ik∪Ij
(where R\Ik∪Ij

denotes the content of random tape except in positions
Ik ∪ Ij), ck′ := CkSim(τk, τk+1, ck), the memory accesses for τ ∈ [τk, τk+1)∗∗∗
and the memory accesses for τ ∈ [τj , τj+1).
• R\Ik∪Ij

, ck′ := CkSim(τk, τk+1, ck) and the memory accesses for τ ∈ [τk, τk+1)
and uniformly random memory accesses (with the same length as the memory
accesses for τ ∈ [τj , τj+1)).

Theorem 13 (ORAM with strong localized randomness [31]). Assuming one-way functions,
there exists ORAM with strong localized randomness property.
∗∗∗[τk, τk+1) denotes the contents of the random tape starting from τ thk position to (τk+1 −1)th position.

22 Collusion-Resistant Functional Encryption for RAMs

We remark that even though the definition of strong localized randomness in [31] does
not talk about CkSim, they implicitly constructed such a simulator at the end of Appendix
B, and their proof in Appendix D.1 implicitly relied on the fact that such simulation is
possible.

Our Construction. We present our construction of ISR-ORAM with strong localized
randomness property.

Theorem 14. Assuming the existence of ORAM with strong localized randomness and
(unbounded) PK-DEPIR, there exists unbounded ISR-ORAM with strong localized random-
ness.

Proof. The proof is done via two steps. First, we construct an ORAM with initially-
empty database and strong localized randomness property, from an ORAM with strong
localized randomness property; next, we add the ISR property to the construction via
using PK-DEPIR.

From Large Initial DB to Empty Initial DB. To prove the theorem, first we build an
ORAM with initially-empty database and strong localized randomness from ORAM with
only strong localized randomness property. The requirements for ORAM with an initially-
empty database are essentially the same as ordinary ORAM, except that we restrict the
scheme to having an empty database at the beginning and allow the size of the database
to grow as the number of operations increase. (On the other hand, traditional ORAM
works on a fixed-size database who is given in its entirety at the beginning.) Furthermore,
it needs to be able to achieve this without knowing an upper bound on the number of
operations a priori.

The construction is as follows:

1. Initialize an ORAM D of length C; (at the beginning take C to be any constant, say
1)

2. Read/write to the ORAM until ORAM program has performed over C writes;

3. Reinitialize another ORAM D′ of length 2C and copy data from D to D′;

4. Discard D and take D′ to be the new D, return to 2.

Despite possibly running in time linear in the size of the entire database for a single write,
this construction will only have amortized cost constant times the original read/write
amortized cost. This is because every time we are expanding the database from size S to
2S, while this costs O(S) operations, it means that we have performed S/2 operations since
the last expansion. Therefore, we can average the cost of this expansion into each operation,
and thus on average the cost for each operation is independent of S. On the other hand,
strong localized randomness property follows naturally as we are using an ORAM with
strong localized randomness as our building block. Finally, since by construction the
expansion only depends on the running time/the number of writes, the security properties
are preserved.

Generically Achieving Initial-State Rewindable Property. Next, we recall the construc-
tion of ISR-ORAM. The idea is that we will have a read-only ORAM instantiated by
PK-DEPIR and another read-write (initially-empty) ORAM “cache" instantiated by the
actual ORAM. The overall client state will consists of (ck, k), where ck is the client state
for the initially-empty ORAM, and k is the (public) key for the PK-DEPIR. Whenever we
do a read, we read from both databases and return the cached result if cache read results
in a hit. For writes, we simply write directly to the cache.

Prabhanjan Ananth , Kai-Min Chung , Xiong Fan and Luowen Qian 23

To construct unbounded ISR-ORAM with SLR, we simply change the construction
above to use the initially-empty ORAM with SLR instead of initially-empty ORAM. Note
that the construction has the efficiency we desire as argued above.

We now argue that it satisfies the strong localized randomness property. The first two
properties follow naturally, as there are only two places where we use randomness; for the
ORAM, this follows as we are using an ORAM with strong localized randomness property;
for the DEPIR, this follows as the randomness used by DEPIR is freshly sampled for every
access and therefore independent of everything else. To argue the third property, CkSim
simulates ck by calling the underlying CkSim of ORAM with SLR, and output the public
key k for the PK-DEPIR as is. Using SLR of the initially-empty ORAM, the memory
access pattern for ISR-ORAM is indistinguishable from random; and by the security of
PK-DEPIR (where the distinguisher gets access to the key), the memory access pattern
for PK-DEPIR is indistinguishable from random.

Finally, it is apparent that for this construction, if we start with ORAM without SLR
instead of ORAM with SLR, and PK-DEPIR instead of B-bounded SK-DEPIR, we will
end up with B-bounded ISR-ORAM without SLR property by the same argument.

We are now ready to present the construction of succinct reusable GRAM in the full
security setting.

Ingredients. We use the following cryptographic tools:

• Unbounded ISR-ORAM scheme (OData,OProg) with strong localized randomness
(Section 5.3.1).

• UMA-secure reusable garbled RAM scheme (Section 5.2).

• Puncturable PRF [12,14,44] (PRF.Gen,PRF.Eval,PRF.Punc).

• Timed encryption scheme [31] (TE.KeyGen,TE.Enc,TE.Dec,TE.Constrain). Let M
be the output length of TE.Enc when encrypting single bit messages.

Construction. We describe the succinct reusable (fully-secure) GRAM (GrbDB,GrbProg,
GEval) below:

• GrbDB(1λ, D, 1Q, Tmax): On input security parameter λ, database D and running
time upper bound Tmax,

1. Sample K ← TE.KeyGen(1λ).
2. For i ∈ [N], compute D′[i]← TE.Enc(K, 0λ, D[i]).
3. Compute (D∗, ck)← OData(1λ, D′).

4. Run UGRAM.GrbDB(1λ, D∗, T ′(Tmax)) to obtain (sk, D̂), where T ′(·) is a poly-
nomial corresponding to the running time blow-up of using the ORAM scheme.

5. Output D̂ as garbled memory and (sk,K, ck) as secret key SK.

• GrbProg(SK, P): On input secret key SK = (sk,K, ck) and a program P ,

1. Generate a puncturable PRF key K ′ ← PRF.Gen(1λ).
2. Compute P ∗ ← OProg(1λ, N, 1T , P, ck), where P ∗ runs in time T ′.
3. Construct a RAM program P ′ such that on input τ ∈ [T ′], do

(a) Compute K[τ]← TE.Constrain(K, τ).
(b) Let τ1, . . . , τm be the sequence of values guaranteed by the strong localized

randomness property of the ORAM scheme.

24 Collusion-Resistant Functional Encryption for RAMs

(c) Let j ∈ [m − 1] such that τ ∈ [τj , τj+1) and CP
∗

CPU ← P ∗(τ). Output
CτCPU = SCτ [CP∗CPU, τ,K[τ], Ij ,K ′]. The circuit SC is described in figure 6.

Note: We need to pad the program P ′ such that the total size is |P |·poly(λ, logD,
log T) bits.

4. Compute and output P̂ ← UGRAM.GProg(sk, P ′).

Step circuit SCτ
Hardwired values: A circuit CCPU, step number τ , constrained key K[τ], interval
Ij , and the key K ′.
Input: A Ciphertext cCPU and a encrypted data X.
(a) Compute decryption as rv = TE.Dec(K[τ], X) and st = TE.Dec(K[τ], cCPU).
(b) Compute RIj = PRF.Eval(K ′, Ij).
(c) Compute (st′, op, addr′,wb) = CCPU(st, rv;RIj

).
(d) If τ = T ′, then output c′CPU = st′. Else, compute c′CPU ← TE.Enc(K[τ], st′).
(e) Else if op = write, compute X ′ ← TE.Enc(K[τ], τ,wb). Output

(c′CPU, op, addr, X ′).
(f) Else if op = read, output (c′CPU, op, addr,⊥)

Figure 6: Description of step circuit CτCPU[τ, Ij ,K[τ],K ′]

• GEvalD̂(P̂): With random access to garbled database D̂ and input P̂ , it computes
and outputs y = UGRAM.GEvalD̂(P̂).

Theorem 15. Assuming the existence of public-key functional encryption for circuits and
unbounded PK-DEPIR, there exists a succinct reusable garbled RAM scheme.

Due to the space constraints, we present the proof in the full version.

Bounded Setting. We observe that our techniques can be adapted to get bounded
reusable garbled RAM albeit satisfying the weaker succinctness property.

Theorem 16. Assuming the existence of selective-database updatable laconic oblivious
transfer, there exists a weakly-succinct bounded reusable garbled RAM scheme.

Proof. To put our construction to the Q-bounded-key setting, we implement the following
changes for the construction above:

1. UGRAM is replaced by the weakly-succinct reusable UMA GRAM we constructed in
Theorem 12;

2. Unbounded ISR-ORAM with strong localized randomness property is replaced with
(Q ·Tmax)-bounded ISR-ORAM without strong localized randomness property, which
can be constructed from one way functions, as we show in Theorem 14.

Even though we lose the strong localized randomness property, since we only need weak
succinctness, we can get around the issue by hardwiring all the randomness for the program.
Furthermore, as we will only generate at most Q · Tmax queries to ISR-ORAM, intuitively,
we can simply invoke the security proof above to argue security for the new construction.
We present the full proof also in the full version.

Prabhanjan Ananth , Kai-Min Chung , Xiong Fan and Luowen Qian 25

6 Collusion-Resistant Public-Key FE: from Circuits to RAMs
In this part, we show how to construct public-key FE for RAMs from public-key FE for
circuits. We use the following tools:

• Public-key FE scheme for circuits scheme F̃E.

• Succinct reusable garbled RAM scheme GRAM, where the length of randomness used
in algorithm GRAM.GrbProg is `1, the length of garbled program is `2 and the length
of garbling key is λ.

• Pseudorandom function PRF1 : K × {0, 1}λ → {0, 1}`1 , and PRF2 : K × {0, 1}λ →
{0, 1}`2 where K is the space of keys of size λ.

We construct public-key functional encryption for RAMs scheme FE = (Setup,Enc,KeyGen,
Dec) as follows:

• Setup(1λ, T): On input security parameter λ and upper time bound T ,

1. Compute (F̃E.MSK, F̃E.pk)← F̃E.Setup(1λ).

2. Output MSK = F̃E.MSK, pk = F̃E.pk.

• Enc(pk, D): On input public key pk = F̃E.pk and database D,

1. Run the garbling database algorithm,

(D̂,GRAM.sk)← GRAM.GrbDB(1λ, D, T)

2. Choose a random PRF key K1 from PRF key space K.
3. Compute F̃E.CT← F̃E.Enc

(
pk, (GRAM.sk,K1, 0λ, 0)

)
.

4. Output ciphertext as CT =
(
D̂, F̃E.CT

)
.

• KeyGen(MSK, P): On input master secret key MSK = (F̃E.MSK, T), a RAM program
P ,

1. Sample random string τ ← {0, 1}λ, and r ← {0, 1}`2 .

2. Compute F̃E.skP ← F̃E.KeyGen(F̃E.MSK, C[P, r, τ]) for circuit C[P, r, τ] as de-
scribed in Figure 7.

3. Output skP = F̃E.skP .

C [P, r, τ] (GRAM.sk,K1,K2, β)

Hardwired Values: RAM program P , random strings τ and r.
Input: (GRAM.sk,K1,K2, τ, β).
If β = 1, then output r ⊕ PRF2(K2, τ).
Else β = 0,
(a) Run GRAM.GrbProg(sk, P ; PRF1(K1, τ)) to obtain P̂ .
(b) Output garbled program P̂ .

Figure 7: Description of circuit C [P, r, τ] (GRAM.sk,K1,K2, β)

26 Collusion-Resistant Functional Encryption for RAMs

• DecCT (skP): On input secret key skP and random access to ciphertext CT, the
decryption algorithm does:

1. Parse the functional key skP as F̃E.skP .
2. Parse the ciphertext CT as (D̂, F̃E.CT).

3. Compute P̂ = F̃E.Dec
(

F̃E.skP , F̃E.CT
)
.

4. Compute and output y ← GRAM.GEval
(
P̂ , D̂

)
.

Correctness. For any RAM program P , database D, let CT← Enc(pk, D), and skP ←
KeyGen(MSK, P), where (pk,MSK) are generated as above. Parse CT as (D̂, F̃E.CT), and
skP = F̃E.skP . The correctness of F̃E guarantees that P̂ = GRAM.GrbProg(GRAM.sk, P ;
PRF(K, τ)), where P̂ = Dec (skP ,CT). By the correctness of pseudorandom function PRF
and FE scheme F̃E, it follows that the output of GEval

(
P̂ , D̂

)
= PD().

Succinctness. We analyze the succinctness property of the construction as follows:

• Setup(1λ, T) runs in time poly(λ, log(T)): first observe that F̃E.Setup(1λ) runs in time
poly(λ, log(s)), where s denotes the size of supported circuits. Now we determine an
upper bound for s. By the succinctness of GRAM, GrbProg(sk, ·; PRF1(K1, τ)) can be
represented by a circuit of size at most poly(λ, log(T), |P |); thus, |C| = poly(λ, log(T),
|P |). Thus, s = poly(λ, log(T), |P |).

• Enc(pk, D) runs in time poly(λ, log(T), |D|): we first note that F̃E.Enc (pk,GRAM.sk)
runs in time poly(λ, log(s)), while GRAM.GrbDB(1λ, D, T) runs in time poly(λ,
log(T), |D|).

• KeyGen(MSK, P) runs in time poly(λ, log(T), |P |): F̃E.KeyGen(F̃E.MSK, C [P, r, τ]
(GRAM.sk,K1,K2, β)) runs in time poly(λ, s) and from the first bullet, s = poly(λ, log(T),
|P |).

• DecCT(skP) runs in time poly(λ, T): the runtime of F̃E.Dec(F̃E.skP , F̃E.CT) is poly(λ, log(T),
|P |). Moreover, from the succinctness of GRAM, the runtime of GEval

(
P̂ , D̂

)
is

poly(λ, t), where t is the time taken to execute PD().

Theorem 17. If F̃E is a public-key functional encryption for circuits satisfying indis-
tinguishability security, GRAM is a succinct reusable garbled RAM scheme and PRF is a
secure pseudorandom function, then the FE for RAMs construction FE described above is
selectively secure.

Proof. We describe the hybrids below; in the first hybrid Hyb0,b, the challenger uses
challenge bit b $←− {0, 1} to generate the ciphertexts and in the final hybrids Hyb4, all the
parameters in the system computationally hide b.

Hyb0,b: This correspondes to the real experiment. The challenger computes the following: (i)
(pk,MSK)← Setup(1λ, T), (ii) CTb ← Enc(MSK, Db), and (iii) {skP ← KeyGen(MSK, P)}.
It sends public key, functional keys and challenge ciphertext to A.

Hyb1,b: In this hybird, we change how the functional keys are generated for each query.
The challenger chooses a key K2 from K for PRF2 and computes (D̂b,GRAM.skb) ←
GRAM.GrbDB(1λ, T,Db) at the very beginning, then for each query Pi, where i ∈ [Q]

Prabhanjan Ananth , Kai-Min Chung , Xiong Fan and Luowen Qian 27

1. Sample a random string τ ← {0, 1}λ.

2. Compute P̂ = GRAM.GrbProg(GRAM.skb, P ; PRF1(K1, τ)).

3. Set r = P̂ ⊕ PRF2(K2, τ).

4. Compute and output functional key skP = F̃E.KeyGen(MSK, C[P, r, τ]).

The indistinguishability argument of hybrid Hyb0,b and Hyb1,b is based on the pseudoran-
dom property of PRF2(K2, τ), which is not used in any other place, and the randomness
of string τ .

Hyb2,b: In this hybrid, we set the F̃E.CT part in challenge ciphertext as

F̃E.Enc
(
pk, (0λ, 0λ,K2, 1)

)
The indistinguishability between hybrid Hyb1,b and Hyb2,b is based on the indistinguisha-
bility security of FE scheme F̃E, since

C [P, r, τ] (GRAM.sk,K1, 0λ, 0) = C [P, r, τ] (0λ, 0λ,K2, 1)

where r, τ are generated as described in hybrid Hyb2,b.

Hyb3,b: In this hybird, we change how the hardwired value τ is generated in each functional
key query. Instead of computing P̂ = GRAM.GrbProg(sk, P ; PRF1(K1, τ)), we compute
P̂ = GRAM.GrbProg(sk, P ;u), where u ∈ {0, 1}`1 is a random string.

The indistinguishability of Hyb2,b and Hyb3,b follows from the security of pseudorandom
function PRF1 using key K1, which is not used anywhere else except for computing
hardwired value τ .

The indistinguishability of Hyb3,0 and Hyb3,1 follows the reusable security of garbled
RAM scheme GRAM and query restraint PD0 = PD1 for program P .

Acknowledgement
We than Shota Yamada and anonymous ASIACRYPT 2022 reviewers for improving our
work. Luowen Qian is supported by DARPA under Agreement No. HR00112020023.

References
[1] Shweta Agrawal and Monosij Maitra. FE and iO for turing machines from minimal

assumptions. In Theory of Cryptography Conference, pages 473–512, 2018.

[2] Shweta Agrawal and Ishaan Preet Singh. Reusable garbled deterministic finite
automata from learning with errors. In ICALP. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2017.

[3] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From se-
lective to adaptive security in functional encryption. In Annual Cryptology Conference,
pages 657–677, 2015.

[4] Prabhanjan Ananth, Yu-Chi Chen, Kai-Min Chung, Huijia Lin, and Wei-Kai Lin.
Delegating ram computations with adaptive soundness and privacy. In Theory of
Cryptography Conference, pages 3–30. Springer, 2016.

28 Collusion-Resistant Functional Encryption for RAMs

[5] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact
functional encryption. In Annual Cryptology Conference, pages 308–326, 2015.

[6] Prabhanjan Ananth and Alex Lombardi. Succinct garbling schemes from functional
encryption through a local simulation paradigm. In TCC, pages 455–472, 2018.

[7] Prabhanjan Ananth and Amit Sahai. Functional encryption for turing machines. In
Theory of Cryptography Conference, pages 125–153, 2016.

[8] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Siddartha Telang. Succinct
randomized encodings and their applications. In STOC, 2015.

[9] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of
finding a nash equilibrium. In FOCS’15, pages 1480–1498. IEEE, 2015.

[10] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. Journal of the ACM (JACM), 65(6):39, 2018.

[11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In Theory of Cryptography, pages 253–273. Springer, 2011.

[12] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their
applications. In Advances in Cryptology-ASIACRYPT 2013, pages 280–300. Springer,
2013.

[13] Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivious parallel ram and applications.
In Theory of Cryptography Conference, pages 175–204. Springer, 2016.

[14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudo-
random functions. In Public-Key Cryptography–PKC 2014, pages 501–519. Springer,
2014.

[15] Elette Boyle, Justin Holmgren, and Mor Weiss. Permuted puzzles and cryptographic
hardness. In TCC, 2019.

[16] Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wootters. Can we access a database
both locally and privately? In TCC, pages 662–693, 2017.

[17] Zvika Brakerski, Alex Lombardi, Gil Segev, and Vinod Vaikuntanathan. Anonymous
IBE, leakage resilience and circular security from new assumptions. In EUROCRYPT,
pages 535–564, 2018.

[18] Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova. Adaptive succinct
garbled ram or: How to delegate your database. In Theory of Cryptography Conference,
pages 61–90. Springer, 2016.

[19] Ran Canetti and Justin Holmgren. Fully succinct garbled RAM. In ITCS, pages
169–178. ACM, 2016.

[20] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Indistin-
guishability obfuscation of iterated circuits and RAM programs. In STOC, 2015.

[21] Ran Canetti, Justin Holmgren, and Silas Richelson. Towards doubly efficient private
information retrieval. In TCC, pages 694–726, 2017.

[22] Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer Paneth, and
Giuseppe Persiano. On the achievability of simulation-based security for functional
encryption. In Advances in Cryptology - CRYPTO 2013, pages 519–535, 2013.

Prabhanjan Ananth , Kai-Min Chung , Xiong Fan and Luowen Qian 29

[23] Yu-Chi Chen, Sherman S. M. Chow, Kai-Min Chung, Russell W. F. Lai, Wei-Kai
Lin, and Hong-Sheng Zhou. Cryptography for parallel RAM from indistinguishability
obfuscation. In Madhu Sudan, editor, ITCS, pages 179–190. ACM, 2016.

[24] Chongwon Cho, Nico Döttling, Sanjam Garg, Divya Gupta, Peihan Miao, and Antigoni
Polychroniadou. Laconic oblivious transfer and its applications. In Annual Interna-
tional Cryptology Conference, pages 33–65, 2017.

[25] Kai-Min Chung and Luowen Qian. Adaptively secure garbling schemes for parallel
computations. In Dennis Hofheinz and Alon Rosen, editors, TCC, 2019.

[26] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
MPC from indistinguishability obfuscation. In TCC, pages 74–94, 2014.

[27] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS 2013, pages 40–49, 2013.

[28] Sanjam Garg, Divya Gupta, Peihan Miao, and Omkant Pandey. Secure multiparty
ram computation in constant rounds. In TCC, pages 491–520, 2016.

[29] Sanjam Garg, Steve Lu, and Rafail Ostrovsky. Black-box garbled RAM. In Venkatesan
Guruswami, editor, FOCS, pages 210–229. IEEE, 2015.

[30] Sanjam Garg, Steve Lu, Rafail Ostrovsky, and Alessandra Scafuro. Garbled RAM
from one-way functions. In STOC’15, pages 449–458. ACM, 2015.

[31] Sanjam Garg, Rafail Ostrovsky, and Akshayaram Srinivasan. Adaptive garbled ram
from laconic oblivious transfer. In CRYPTO, pages 515–544, 2018.

[32] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the crypto-
graphic hardness of finding a nash equilibrium. In Annual International Cryptology
Conference, pages 579–604, 2016.

[33] Sanjam Garg and Akshayaram Srinivasan. A simple construction of iO for Turing
machines. In TCC, pages 425–454, 2018.

[34] Sanjam Garg and Akshayaram Srinivasan. Adaptively secure garbling with near
optimal online complexity. In EUROCRYPT, pages 535–565, 2018.

[35] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel
Wichs. Garbled RAM revisited. In EUROCRYPT, pages 405–422, 2014.

[36] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourcing private
RAM computation. In FOCS, pages 404–413, 2014.

[37] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. Journal of the ACM (JACM), 33(4):792–807, 1986.

[38] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
RAMs. Journal of the ACM (JACM), 43(3):431–473, 1996.

[39] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
STOC’13., pages 555–564, 2013.

[40] Rishab Goyal, Sam Kim, Nathan Manohar, Brent Waters, and David J Wu. Wa-
termarking public-key cryptographic primitives. In Annual International Cryptology
Conference, pages 367–398, 2019.

30 Collusion-Resistant Functional Encryption for RAMs

[41] Ariel Hamlin, Justin Holmgren, Mor Weiss, and Daniel Wichs. On the plausibility of
fully homomorphic encryption for rams. In CRYPTO, 2019.

[42] Ariel Hamlin, Rafail Ostrovsky, Mor Weiss, and Daniel Wichs. Private anonymous
data access. In EUROCRYPT, pages 244–273, 2019.

[43] Marcel Keller and Avishay Yanai. Efficient maliciously secure multiparty computation
for ram. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 91–124. Springer, 2018.

[44] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security, pages 669–684.
ACM, 2013.

[45] Fuyuki Kitagawa, Ryo Nishimaki, Keisuke Tanaka, and Takashi Yamakawa. Adap-
tively secure and succinct functional encryption: Improving security and efficiency,
simultaneously. In CRYPTO, pages 521–551, 2019.

[46] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability
obfuscation for turing machines with unbounded memory. In STOC, 2015.

[47] Lucas Kowalczyk, Tal Malkin, Jonathan Ullman, and Daniel Wichs. Hardness of
non-interactive differential privacy from one-way functions. In Annual International
Cryptology Conference, pages 437–466, 2018.

[48] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear maps
and block-wise local prgs. In CRYPTO, pages 630–660, 2017.

[49] Qipeng Liu and Mark Zhandry. Decomposable obfuscation: a framework for building
applications of obfuscation from polynomial hardness. In Theory of Cryptography
Conference, pages 138–169. Springer, 2017.

[50] Steve Lu and Rafail Ostrovsky. Black-box parallel garbled RAM. In CRYPTO, 2017.

[51] Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint
Archive, 2010:556, 2010.

[52] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Advances in
Cryptology - EUROCRYPT 2005, pages 457–473, 2005.

[53] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: de-
niable encryption, and more. In David B. Shmoys, editor, Symposium on The-
ory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014,
pages 475–484. ACM, 2014. URL: http://doi.acm.org/10.1145/2591796.2591825,
doi:10.1145/2591796.2591825.

[54] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
FOCS, pages 162–167, 1986.

http://doi.acm.org/10.1145/2591796.2591825
http://dx.doi.org/10.1145/2591796.2591825

	Introduction
	Contributions

	Technical Overview
	Our Template
	Starting Point: Simpler, Better and Modular Succinct GRAM
	Succinct Garbled RAM: Achieving Reusability
	Bootstrapping Step: From FE for Circuits to FE for RAMs
	Organization

	Preliminaries
	Puncturable PRF
	Indistinguishability Obfuscation
	Selective-Database Laconic Oblivious Transfer

	Functional Encryption for RAMs
	Succinct Reusable Garbled RAM
	Syntax and Security Definition
	Succinct UMA Reusable GRAM
	Succinct Reusable GRAM: From UMA to Full Security

	Collusion-Resistant Public-Key FE: from Circuits to RAMs

