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Abstract. Anonymity is an (abstract) security goal that is especially
important to threatened user groups. Therefore, widely deployed commu-
nication protocols implement various measures to hide different types of
information (i.e., metadata) about their users. Before actually defining
anonymity, we consider an attack vector about which targeted user groups
can feel concerned: continuous, temporary exposure of their secrets. Ex-
amples for this attack vector include intentionally planted viruses on
victims’ devices, as well as physical access when their users are detained.

Inspired by Signal’s Double-Ratchet Algorithm, Ratcheted (or Con-
tinuous) Key Exchange (RKE) is a novel class of protocols that increase
confidentiality and authenticity guarantees against temporary exposure
of user secrets. For this, an RKE regularly renews user secrets such that
the damage due to past and future exposures is minimized; this is called
Post-Compromise Security and Forward-Secrecy, respectively.

With this work, we are the first to leverage the strength of RKE
for achieving strong anonymity guarantees under temporary exposure of
user secrets. We extend existing definitions for RKE to capture attacks
that interrelate ciphertexts, seen on the network, with secrets, exposed
from users’ devices. Although, at first glance, strong authenticity (and
confidentiality) conflicts with strong anonymity, our anonymity definition
is as strong as possible without diminishing other goals.

We build strongly anonymity-, authenticity-, and confidentiality-
preserving RKE and, along the way, develop new tools with applicability
beyond our specific use-case: Updatable and Randomizable Signatures as
well as Updatable and Randomizable Public Key Encryption. For both
new primitives, we build efficient constructions.
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1 Introduction

Anonymity. Traditionally, anonymity means that participants of a session
cannot be identified. As we will argue below, this notion of anonymity is very
narrow. Furthermore, in the context of this work, it is not immediately clear what
the identity of a session participant actually is. The reason for this is that we
consider a modular protocol stack that consists of a Session Initialization Protocol
(SIP; e.g., an authenticated key exchange) and an independent, subsequent
Session Protocol (SP; e.g., a symmetric channel or a ratcheted key exchange).
According to this modular composition paradigm, only the SIP actually deals
with users and their identities, and groups them into session participants who
execute the subsequent SP. While the SP may assign different roles to its session
participants, the SP is (usually) agnostic about their identities. Thus, it cannot
reveal identities by definition. Nevertheless, the context of an SP session and the
role of its participant therein may suffice to identify the underlying identity.

Session Protocols. In this work, we focus on anonymity for SPs. Roughly,
we call an SP anonymity-preserving if its execution reveals nothing about its
context, including the session participants, the protocol session itself, the status
of a session, etc. We note that real-world deployment of an anonymity-preserving
SP requires more than that—e.g., an anonymous SIP, a delivery protocol that
transmits anonymous traffic across the Internet, or a mechanism that ensures a
large enough set of potential protocol users. While these external components
are outside the scope of our work, we mind the broader execution environment
of SPs to direct our definitions.

Exposure of Secrets. Intuitively, anonymity complements standard security
goals, such as confidentiality and authenticity, by requiring that publicly observable
context data (or metadata) remains hidden. More specifically, anonymity means
that ciphertexts on the network cannot be interrelated. In this work, we augment
this perspective by considering adversaries against anonymity who can expose
information that is secretly stored by the targeted users. Consequently, our notion
of anonymity requires that it is hard to interrelate these exposed user secrets
with publicly visible data.

Temporary exposure of user secrets is a realistic threat, especially against
cryptographic protocols with long-lasting sessions. The most prominent example
for this type of long-term protocols is secure messaging where sessions almost
never terminate and, hence, can last for several years. Therefore, anticipating the
exposure of participants’ locally stored secrets during the lifetime of a session is
advisable.

Ratcheted Key Exchange. Inspired by Signal’s Double-Ratchet Algo-
rithm [32], Ratcheted Key Exchange (RKE) is an SP primitive that provides
security in the presence of adversaries who can expose session participants’ local
secrets. The core idea of RKE is that the participants continuously establish new
symmetric session keys. Following the modular composition paradigm, these keys
can be used by another subsequent SP, for instance, to encrypt payload data
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symmetrically. While establishing session keys, the participants update and renew
all their local secrets to recover from potential past exposures (Post-Compromise
Security; PCS), and delete old secrets before a potential future exposure occurs
(Forward-Secrecy; FS). So far, RKE was only used for preserving secrecy and
authenticity of session keys under the exposure of secrets. In order to also achieve
strong anonymity under exposure of secrets, we are the first to take advantage of
RKE.

Examining RKE constructions, one may doubt that this secrecy- and authenti-
city-preserving primitive can be extended to also realize strong anonymity: On the
one hand, authenticity and anonymity generally tend to be incompatible security
goals. On the other hand, for continuously performing updates, participants
locally store structured information that is often encoded in sent and received
ciphertexts, or has traceable relations to the secrets stored by other session
participants. Avoiding this structure (and hiding all relations between sender
secrets, ciphertexts, and receiver secrets) is highly non-trivial.

We start with extending RKE syntactically to account for an environment
in which preserving anonymity is crucial. Then, we specify a security definition
that captures strong anonymity under exposure of secrets. This new definition is
compatible with strong secrecy and authenticity notions of RKE.

Flavors of RKE. To reduce complexity and maintain clarity, we consider unidi-
rectional RKE [5,8,34], which is a simple, natural notion of RKE that restricts
communication between two session participants, Alice and Bob, to flow only
from the former to the latter. We leave it an open, highly non-trivial4 prob-
lem for future work to extend our results to more complex bidirectional RKE
(e.g., [25,33,34]), RKE with immediate decryption (e.g., [3]), RKE in static groups
(e.g., [14]) and dynamic groups (e.g., [4, 9, 37]), resilient to concurrent operations
(e.g., [2, 10]), etc. In the full version of this paper [17], we take a look at the
“unidirectional core” of each two-party RKE construction from the literature and
present successful attacks against anonymity for all of them. We refrain from
also presenting (non-trivial) attacks against constructions from the group setting
without having a suitable anonymity definition that formally separates trivial
attacks from non-trivial ones.5

Further Related Work. The literature of anonymity-preserving cryptography
ranges from key-private public key encryption (e.g., [7, 23, 27]) to anonymous
signatures (e.g., [21, 41]) to privacy-preserving key exchange (e.g., [24, 38, 42])

4 Immediate extension and generalization of our results seems unlikely, given the
remarkable gap of complexity between non-anonymous unidirectional RKE and more
advanced non-anonymous types of RKE.

5 Note that all CGKA (or “group RKE”) constructions reveal structural information
like the group size via (publicly) sent ciphertexts. (Moreover, these constructions
let users store information about other members in the local user states, and most
constructions rely on an active server that participates in the protocol execution.)
However, without a formal, satisfiable anonymity definition, it is unclear which
information can theoretically be hidden, even by an ideal CGKA construction.
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to anonymous onion encryption (e.g., [15, 35]) and many other primitives. In
principle, our definitions are in line with these notions insofar that we require
indistinguishability of “everything that the adversary sees” for a real RKE
execution (i.e., ciphertexts and exposed user secrets) from independently sampled
equivalents. While some previous works furthermore cover non-cryptographic
properties such as anonymous delivery mechanisms (see, e.g., [15]), our work
abstracts these external components. To the best of our knowledge, anonymity
under (temporary and continuous) exposure of user secrets has not been formally
studied before.

Nevertheless, anonymity, privacy, and deniability is generally considered
relevant in the domain of secure messaging. For example, the Signal messenger
implements the Sealed Sender mechanism [39] to hide the identities of senders.
Yet, this mechanism is stateless and uses static long-term secrets, which means
that it is insecure under the exposure of receiver secrets. Besides this, several
attacks against the deployment of Sealed Sender [30,40] undermine its anonymity
guarantees. The Sealed Sender mechanism is related to instances of the Noise
protocol framework [18,31] that also claims to reach various notions of anonymity.
Yet, the established symmetric session key in a Noise protocol session is static,
which means that its exposure breaks anonymity, too. Finally, there is an ongoing
discussion about privacy and deniability in the MLS standardization initiative [6]
that is yet to be concluded.6 Related to this, Emura et al. [20] informally propose
changes to an early version of MLS by Cohn-Gordon et al. [14] in order to hide
the identities of group members. As mentioned above, this is a rather weak form
of anonymity. Finally, we note that none of our definitions requires deniability
and none of our constructions reaches deniability.

Contributions. Our main contributions are defining anonymity for Ratcheted
Key Exchange (RKE) and designing a construction that provably satisfies this
definition. However, we do not naïvely adopt and extend prior notions of RKE,
but we take a fresh look at this primitive, keeping in mind the overall execution
environment in which anonymity is important.

Along the way, we develop two new tools that we use to build our final RKE
construction. The first tool, Updatable and Randomizable Public Key Encryption
(urPKE), realizes anonymous PKE with randomizable encryption keys and up-
datable key pairs. We believe this has applications beyond our work, for example,
to Updatable PKE [4, 16, 26]. The second tool, Updatable and Randomizable
Signatures (urSIG), simultaneously provides strong anonymity and authenticity
guarantees. Roughly, it achieves strong unforgeability of signatures if the signing
key is uncorrupted. Furthermore, the signer can derive multiple signing keys
that work for the same verification key. However, it should be hard to derive
the verification key from a signing key and, beyond that, hard to distinguish
whether two signing keys correspond to the same verification key. Surprisingly,
both urPKE and urSIG can be built efficiently from cryptographic standard
components.
6 See the discussion thread initiated here: https://mailarchive.ietf.org/arch/msg/

mls/-1VF95d8od0lF_AFj2WMvk5SQXE/.

https://mailarchive.ietf.org/arch/msg/mls/-1VF95d8od0lF_AFj2WMvk5SQXE/
https://mailarchive.ietf.org/arch/msg/mls/-1VF95d8od0lF_AFj2WMvk5SQXE/
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Due to the page limit, we focus on anonymity of RKE and its building blocks
in the main body of this paper. All novel definitions, constructions, and proofs
regarding other security goals such as authenticity and secrecy (which are valuable
contributions), are summarized in the subsequent technical overview (Section 1.1).
The full details of these summarized results can be found in the full version [17].

1.1 Technical Overview

Unidirectional Ratcheted Key Exchange. Definitions and constructions
of Ratcheted Key Exchange (RKE) in the literature are highly complex. Since we
are the first to consider anonymity for this primitive, we want to focus on the
core challenges that arise due to the interplay of strong anonymity, confidentiality,
and authenticity. Furthermore, we present novel, insightful solutions for these
challenges. Thus, for didactic reasons, we condense the question of how to
define and construct anonymous RKE by considering the simplest variant of
this primitive—so called Unidirectional RKE (URKE) [5,8,34]. As we will see,
definitions and constructions of anonymous RKE become complex even for this
simple unidirectional variant.

An RKE session between two users begins with the initialization that produces
a secret state for each user RKE.init →$ (stS, stR). (In practice, this abstract
initialization can be instantiated by using an authenticated key exchange protocol.)
The users then continuously use their secret states to asynchronously send
ciphertexts to their partners. These ciphertexts establish fresh symmetric keys
(for the use in subsequent, higher layer SPs) and refresh the secrets in both users’
states. While a fully bidirectional RKE scheme allows both users to establish
new symmetric keys, a unidirectional RKE scheme assigns different roles to
the two users: only one user (Alice) sends ciphertexts to establish new keys
RKE.snd(stS, ad)→$ (stS, c, k) and the other user (Bob) receives these ciphertexts
to compute these (same) established keys RKE.rcv(stR, c, ad)→$ (stR, k). Either
way, secrets in both users’ states are continuously renewed by these operations.

Standard Security Goals. Secrecy and authenticity of established symmetric
keys for URKE have been studied in prior work [5, 8, 34]. These works extend
standard secrecy and authenticity notions by allowing the adversary to expose
the secret states of Alice and Bob before and after each of their send and receive
operations, respectively.

Key Secrecy. For secrecy of URKE [34], we require that all symmetric keys
established by Alice are indistinguishable from random keys unless Bob’s cor-
responding secret state was exposed earlier. More precisely, the symmetric key
established by Alice’s ik-th ciphertext must be secure, unless Bob’s secret state
was exposed already after successfully processing the first ix ciphertexts from
Alice, where ix < ik. By correctness, Bob’s (exposed) state after processing Alice’s
first ix ciphertexts can always be used to successfully process the subsequent
ik − ix ciphertexts from Alice and then compute the ik-th symmetric key. This
notion captures post-compromise security (PCS) and forward-secrecy (FS) on
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Alice’s side, since all her established symmetric keys must remain secure indepen-
dent of whether her secret state is ever exposed. It also captures a strong notion
of FS on Bob’s side, since exposures of his state must not impact the secrecy
of a key established with ciphertext ik under two conditions: (1) the exposures
occurred after Bob received ciphertext i′x, and ik ≤ i′x, or (2) Bob falsely accepted
an earlier ciphertext if , if < ik that was not sent by Alice and Bob was exposed
subsequently at point i′x, and if ≤ i′x. This requires that Bob’s state becomes
incompatible with Alice’s state immediately after accepting a forged ciphertext.

Authenticity. Authenticity for URKE [19] requires that Bob must not falsely
accept a ciphertext if , unless Alice’s matching secret state was exposed. More
precisely, after successfully accepting if − 1 ciphertexts from Alice, Bob must
reject the if-th ciphertext if it was not sent by Alice, unless Alice’s secret state
was exposed after sending the ix-th ciphertext, where ix = if − 1. We call such a
successful trivial ciphertext forgery a trivial impersonation.

Robustness and Recover Security. We consider two additional properties for
URKE: robustness and recover security. The former requires that Bob will
not change his state when rejecting a ciphertext. Thus, Bob can uphold his
communication with Alice even if he sometimes receives (and rejects) false
ciphertexts that did not result in a trivial impersonation. When considering
(receiver) anonymity, robustness is a valuable feature as it allows Bob to perform
“trial decryptions” to check if a ciphertext was meant for him or not. Furthermore,
consider a setting in which Bob is the receiver of many independent URKE
sessions. Due to (sender) anonymity, he may not know the sender of a ciphertext,
so he can “trial decrypt” the ciphertext with all of his receiver states until one of
them accepts. We conclude that robustness is a crucial property for anonymous
RKE. Recover security [19] requires that, whenever Bob falsely accepts a trivial
impersonation ciphertext, he will never again accept a ciphertext sent by Alice.
This ensures that an adversary who conducted a successful trivial impersonation
cannot hide this attack by letting Alice and Bob resume their communication.

For comprehensibility, we make the simplifying assumption that Alice always
samples “good” randomness for her send operations. While “bad” randomness
can be a realistic threat in some scenarios, we note that URKE under bad
randomness—beyond causing more complex definitions and constructions—must
rely on strong and inefficient HIBE-like building blocks as Balli et al. [5] prove.
We leave it an open problem to extend our results to stronger threat models.

Known Constructions. RKE constructions only achieving the above prop-
erties can be built from standard public key encryption (PKE) and one-time
signatures (OTS) [19,25, 34]. The idea is that Alice (1) generates fresh PKE key
pair (eki,dki) and OTS key pair (vki, ski) with every send operation i. She then
(2) encrypts the new decryption key dki with the prior encryption key eki−1, and
she (3) signs the resulting PKE ciphertext as well as the new verification key vki
with the prior signing key ski−1. The composed URKE ciphertext consists of PKE
ciphertext, new verification key, and signature. Alice deletes all prior values as well
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as the new decryption key dki and sends the composed URKE ciphertext to Bob,
who verifies the signature, decrypts the PKE ciphertext, and stores (dki, vki). An
additional hash-chain over the entire sent (resp. received) transcript maintains
consistency between Alice and Bob, and additional encrypted key material sent
from Alice to Bob establishes the symmetric session keys.

Shortcomings. To understand why the above construction does not provide
anonymity, note that standard (one-time) signatures can reveal the corresponding
verification key. Thus, it can be easy to link two subsequent URKE ciphertexts
by testing whether the signature contained in one ciphertext verifies under the
verification key contained in the other. (More detailed attacks against anonymity
of existing two-party RKE constructions are in the full version [17].) To overcome
this limitation, one could simply encrypt the verification key along with the
transmitted decryption key. This prevents adversaries who only see ciphertexts
transmitted on the network from linking these ciphertexts and, thereby, attribut-
ing them to the same URKE session. As we will argue next, this weak level of
anonymity is inadequate for settings in which ratcheted key exchange is deployed.

Defining (Strong) Anonymity. The main goal of ratcheted key exchange is
to continuously establish symmetric keys that remain secure even if the involved
users’ secret states are temporarily exposed earlier (PCS) and/or later (FS).
Hence, if temporary state exposure is considered a realistic threat against secrecy
of keys, it is also a realistic threat against anonymity. Consequently, we allow an
adversary against anonymity to expose both Alice’s and Bob’s states.

Ciphertext Anonymity. In a first attempt to define anonymity, we follow the
standard concept from the literature: We require that ciphertexts sent from
Alice to Bob cannot be distinguished from ciphertexts sent in an independent
URKE session from Clara to David, even if the adversary can expose Alice’s and
Bob’s secret states. In this preliminary notion that we call ciphertext anonymity,
adversaries can perform a trivial exposure that we have to forbid in order to
obtain a sound definition. Forbidding this attack, ciphertext anonymity requires
that Alice’s ic-th ciphertext must be indistinguishable from a ciphertext sent in
an independent URKE session, unless Bob’s secret state was exposed already after
successfully processing the first ix ciphertexts from Alice, where ix < ic. Note that
by authenticity, Bob’s (exposed) state after processing Alice’s first ix ciphertexts
can always be used to verify whether the subsequent ic − ix ciphertexts were
sent by Alice or by an independent user. This notion captures post-compromise
anonymity (PCA) and forward-anonymity (FA) on Alice’s side, since all her
ciphertexts must remain anonymous independent of whether her secret state is
ever exposed. It also captures a strong notion of FA on Bob’s side, since exposures
of his state must remain harmless for the anonymity of a ciphertext ic under two
conditions: (1) the exposures were conducted after Bob received ciphertext i′x,
and ic ≤ i′x, or (2) Alice was trivially impersonated towards Bob with an earlier
ciphertext if , and if < ic and Bob was exposed after ciphertext i′x, and if ≤ i′x.
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Full Anonymity. Our above description of ciphertext anonymity is not fully
formal and the attentive reader may have identified a gap. Consider an adversary
who exposes Alice’s state twice, once before seeing a ciphertext on the network
and once afterwards. By only checking if Alice’s state changed between these
exposures, the adversary can determine if the ciphertext was sent by Alice. (Note
that by authenticity, Alice’s state must change with every send operation whereas
the state does not change as long as Alice remains inactive.)

To mitigate the threat that Alice’s exposed URKE states reveal whether she
sent something, we extend the syntax of URKE by adding algorithm RKE.rr(stS)
→$ stS that (re-)randomizes her state on demand. Executing this algorithm
between two exposures, Alice’s state can be changed independent of whether she
sent a ciphertext. Thus, she can hide if she was the sender of a ciphertext that
the adversary observed.

Before specifying a corresponding (stronger) notion of anonymity, we present
another threat against anonymity. Consider an adversary who can observe all
URKE ciphertexts sent from Alice’s device. At some point, this adversary exposes
all secrets Alice stores on her device. If Alice has only one stored URKE state,
the adversary knows that all observed URKE ciphertexts were sent with this
state in the same single session. Since Alice may want to hide how many URKE
sessions are running on her device, and how many URKE ciphertexts are sent
in each of these sessions, she may want to set up “dummy” URKE states. This
scenario motivates that we require for anonymity that Alice’s and Bob’s secret
states must be indistinguishable from independent secret sender and receiver
states, respectively—beyond requiring that ciphertexts between Alice and Bob
must be indistinguishable from ciphertexts sent in an independent session.

In summary, we require that all secret states that an adversary exposes and
all ciphertexts that an adversary observes on a network must be indistinguishable
from independent secret states and ciphertexts, respectively, unless correctness,
secrecy, and authenticity impose conditions that inevitably allow for distinguishing
them. This notion of anonymity is extremely strong and its precise pseudo-code
definition is rather complex. However, the basic concept is relatively simple.

Security Experiment. An adversary A against anonymity plays a game in which it
has adaptive access to the following oracles: Snd, RR, Rcv, ExposeS , ExposeR. In-
ternally, these oracles execute Alice’s RKE.snd algorithm, outputting the resulting
ciphertext, Alice’s RKE.rr algorithm, Bob’s RKE.rcv algorithm, and expose Alice’s
and Bob’s current secret states stS and stR, respectively. Access to these oracles
is standard in the literature on RKE (except for oracle RR for the additional
RKE.rr algorithm). In addition, the adversary can adaptively query oracles that
depend on a challenge bit b that is randomly sampled at the beginning of the
game:
– ChallSnd equals oracle Snd iff b = 0; otherwise, it temporarily initializes a

new, independent URKE session with algorithm RKE.init, uses the temporary
sender to send a ciphertext with algorithm RKE.snd, and outputs this cipher-
text (the temporary URKE session is discarded immediately afterwards);
oracle Rcv silently ignores ciphertexts created by ChallSnd under b = 1
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– ChallExposeS equals oracle ExposeS iff b = 0; otherwise, it initializes a
new, independent session with algorithm RKE.init (as above) and outputs
the resulting secret sender state

– ChallExposeR equals oracle ExposeR iff b = 0; otherwise, it behaves as oracle
ChallExposeS under b = 1, except that it outputs the resulting temporary
secret receiver state

The adversary wins the game if it determines challenge bit b without performing
a trivial attack that inevitably reveals this challenge bit.

Identifying Trivial Attacks. To complete the above anonymity definition, all
attacks that trivially reveal the challenge bit have to be identified, detected, and
forbidden. Our aim is to detect these attacks as precisely as possible such that the
restrictions limit the adversary as little as possible (leading to a strong definition
of anonymity). Interestingly, one class of trivial attacks is particularly hard to
detect in a precise way for the anonymity game: trivial impersonations. To give a
simple, clarifying example for this, we consider the following adversarial schedule
of oracle queries: (1) ChallExposeS → stSb, (2) Rcv(c′), where c′ is crafted by
the adversary7, (3) ExposeR → stR.

We begin with the case b = 1, which means that the adversary plays in the
random world. In this world, exposed state stSb = stS1 is a random sender state
that corresponds to a hidden temporary receiver state independent of Bob’s
actual receiver state stR at step (1). Thus, by authenticity, Bob should not accept
any adversarially crafted ciphertext c′ in this case. Put differently, impersonating
Alice towards Bob is non-trivial for this adversarial behavior in the random
world. This means that Bob will reject c′ with high probability and the exposed
receiver state of Bob in step (3) remains stR, which is independent of the sender
state stS1 exposed in step (1).

In contrast, if b = 0, which means that the adversary plays in the real world,
exposed sender state stSb = stS0 corresponds to the real receiver state of Bob stR
at step (1). Hence, stS0 can be used to craft a valid ciphertext forgery c′ that
trivially impersonates Alice towards Bob. If the adversary, indeed, performs such
a trivial impersonation by executing RKE.snd(stS0)→$ (stS′, c′, k′) and querying
Rcv(c′), Bob will compute RKE.rcv(stR, c′)→ (stR′, k′).7 The state of Bob stR′
that is exposed in final step (3) corresponds to the state stS′ that the adversary
computed (in their head) during the impersonation. By authenticity, a pair of
corresponding states (stS′, stR′) can always be identified as such by sending with
the sender state and receiving the result with the receiver state.

Our full anonymity game must, consequently, forbid the final exposure in
step (3) because otherwise the adversary can determine the challenge bit from
the exposed state.

The presented trivial attack serves as the simplest example for multiple, more
complicated trivial impersonations that our game must detect, which we describe
in Section 4.2.
7 For simplicity, we ignore the associated data input ad here.



10 Benjamin Dowling, Eduard Hauck, Doreen Riepel, Paul Rösler

Main Components of Construction. At a first glance, our new URKE
construction that fulfills the above anonymity notion follows the design principle
of prior non-anonymous URKE constructions described earlier. That means
intuitively, in every send operation, Alice (1) generates new PKE and OTS key
pairs, (2) encrypts fresh secrets to Bob with which he can compute his matching
new PKE decryption key (and the symmetric session key), and she (3) signs
the resulting PKE ciphertext. Yet, the exact details of our construction are far
more sophisticated. We proceed with presenting the most important anonymity
requirements and the corresponding solutions implemented in our construction.

Hiding the Signature. Without presenting the full details of our anonymity
definition yet, we note that it imposes the following intuitive requirements:
(1) adversaries are allowed to see all (challenge) ciphertexts between sender and
receiver; (2) seen (challenge) ciphertexts must remain anonymous even if Alice’s
state was ever exposed by the adversary before; (3) the authenticity notion
presented above imposes the use of asymmetric authentication methods (i.e.,
signatures) from Alice to Bob. Thus, Alice must have a signing key stored in
her state (due to (3)) that is potentially known by the adversary (due to (2))
and, simultaneously, her ciphertexts must be authenticated by corresponding
signatures in an anonymous way (due to (1)+(2)+(3)). To ensure that the
adversary cannot link matching signing keys (from Alice’s exposed states) and
signatures (in the sent ciphertexts), our construction encrypts signatures. This
encryption of signatures is implemented deterministically with a symmetric key
that is encrypted in the PKE ciphertext. Thus, the signature remains confidential
while the signed ciphertext is determined before the signature is created, which
maintains authenticity and anonymity.

Randomizing Signing Keys Anonymously. The second property required by our
anonymity notion focuses on Alice’s sender states before and after executing
the RKE.rr algorithm. The two sender states of Alice, exposed before and after
executing the RKE.rr algorithm, respectively, must be indistinguishable from two
freshly generated, independent sender states. That means, an adversary must not
learn whether the signing keys, stored in both states of Alice, produce signatures
that are valid under the same verification key.8 For this, we introduce the new
notion of Updatable and Randomizable Signatures (urSIG) below.

Randomizing Encryption Keys Anonymously. Much like the relationship between
two signing keys must be hidden by state randomizations, two PKE encryption
keys, stored in Alice’s exposed states, should not be easily linked. Namely,
(a) encryption keys must look random, (b) there must be an routine that re-
randomizes them, and (c) it cannot be determined which ciphertexts were created
by them. For this, we introduce the new notion of Updatable and Randomizable
Public Key Encryption (urPKE) below.

8 Note that RKE.rr only randomizes Alice’s state without any interaction with Bob.
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Updatable and Randomizable Public Key Encryption. We start with
a high level overview of urPKE. As mentioned above, urPKE encryption keys
must look random, be re-randomizable, and look independent of the ciphertexts
that they produce. Our construction is based on ElGamal encryption. The
encryption key consists of ek← (gr, gxr), where r and x are random exponents
and x = dk is the decryption key. For re-randomizing the encryption key, we apply
the same random exponent r′ to both of its components (ekr

′

0 , ekr
′

1 ). Encryption of
messagem takes a random exponent s to create ciphertext c← (eks0,H(eks0, eks1)⊕
m). Decryption follows immediately via m← H(c0, c

dk
0 )⊕ c1.

This idea has applications beyond our specific use-case. For example, we
point out how our construction can be extended to realize anonymous Updatable
PKE [4,16,26] that is broadly used in the literature of RKE and secure messaging.

Updatable and Randomizable Signatures. The security requirements
for our new signature primitive urSIG are more challenging. Concretely, an
urSIG scheme must provide the following properties: (a) verification keys must
look random, (b) deriving the matching verification key from a signing key
must be hard, and, beyond this, (c) determining whether two signing keys can
produce signatures valid under the same (unknown) verification key must be
hard. While ostensibly related to Designated Verifier Signatures, urSIG is a novel,
incomparable primitive.

Construction Idea. Although the above requirements appear contradictory, we
provide a simple construction. The idea is based on Lamport signatures [28].
Intuitively, we start generating the signing key by sampling 2 · ` pre-images
sk′i,b, (i, b) ∈ [`] × {0, 1}. To derive the matching verification key, we apply a
one-way function on each pre-image vk′i,b ← f(sk′i,b). Finally, we generate a PKE
key pair (ek,dk) that allows ciphertext re-randomization. The final verification
key consists of the decryption key dk and all images vk′i,b. The final signing key
consists of the encrypted pre-images ski,b ← rPKE.enc(ek, sk′i,b). To re-randomize
Alice’s verification key, she re-randomizes each component ciphertext ski,b. The
signature of message m = (m1, . . . ,m`) consists of the respective signing key
components σ ← (sk1,m1 , . . . , sk`,m`

). To verify the signature, Bob decrypts each
component and applies the one-way function for comparison with his verification-
key component.

For strong unforgeability, we use a technique similar to the CHK transform [13,
29] by employing a strongly unforgeable OTS that signs the actual message. The
scheme above then signs the verification key of the strongly unforgeable OTS.

Shrinking Signatures. A drawback of this basic urSIG scheme is that it has
large verification keys and large signatures. To mitigate the latter, we instantiate
the above construction with a bilinear map e : G1 × G2 → GT , where G1 is
the ciphertext space of the PKE scheme and G2 and GT are chosen such that
they are of sufficient size. This allows for aggregation of signing key components
(sk1,m1 , . . . , sk`,m`

) to obtain a compact signature σ; this aggregation is inspired
by BLS signatures [11,12]. The full details of this construction are in Section 6.
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2 Preliminaries

We write h $← S to denote that the variable h is uniformly sampled from finite
set S. For integers N,M ∈ N, we define [N,M ] := {N,N + 1, . . . ,M} (which
is the empty set for M < N) and [N ] := [0, N − 1]. We use bold notation v to
denote vectors. We define ∪← > as the operation which appends > to the data
structure it was called upon. If the data structure is a set, then > is added to
the set. If the data structure is a vector then > is appended to the end.

We write AB to denote that algorithm A has oracle access to algorithm B
during its execution. To make the randomness ω of an algorithm A on input x
explicit, we write A(x;ω). Note that in this notation, A is deterministic. For a
randomised algorithm A, we use the notation y ∈ A(x) to denote that y is a
possible output of A on input x.

Basic cryptographic assumptions and definitions used in our proofs are given
in the full version [17].

3 Ratcheted Key Exchange

Throughout this paper, we consider unidirectional communication, as defined
in several flavors in previous works [5, 8, 34]. Thus, messages flow from a fixed
sender to a fixed receiver; there is no communication from the receiver to the
sender. We now define the syntax and properties of unidirectional ratcheted key
exchange.

Syntax. A unidirectional ratcheted key exchange scheme RKE consists of four
algorithms RKE.init, RKE.snd, RKE.rcv and RKE.rr, where the algorithms are
defined as follows.

– (stS, stR) $← RKE.init returns a sender and receiver state.
– (stS, c, k) $← RKE.snd(stS, ad) on input a sender state stS and associated data

ad, outputs an updated sender state stS, a ciphertext c, and a key k.
– (stR, k)← RKE.rcv(stR, c, ad) on input a receiver state stR, a ciphertext c

and associated data ad, outputs an updated receiver state stR and a key k
or a failure symbol ⊥.

– stS $← RKE.rr(stS) on input a sender state stS, outputs an randomized sender
state stS.

The encapsulation space C and the key space K are defined via the support of
the RKE.snd algorithm. Let AD := {0, 1}∗ be the space of associated data.

State Randomization. All algorithms except RKE.rr are standard in the literature
of RKE. This new randomization algorithm is designed for settings in which the
sender wants strong anonymity. Assume Alice has at least one running RKE
session in which she sends periodically. To obfuscate both the number of running
RKE sessions and the number of real ciphertexts sent in each, Alice can generate
“dummy” RKE sender states. Whenever Alice executes RKE.snd with one of her
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states, she can re-randomize all remaining states via RKE.rr. Looking ahead, our
definition of anonymity requires that all sender states are indistinguishable from
a freshly generated sender state, ensuring that it is hard to identify the state
that was just used for sending.9

Basic Consistency Requirements. In the full version [17], we formally specify three
basic consistency notions for RKE: Robustness, Correctness, and Recover Security.
Robustness requires that whenever algorithm (stR′, k) ← RKE.rcv(stR, c, ad)
rejects a ciphertext c and associated data ad (and outputs k = ⊥), the output
receiver state stR′ must be unchanged (i.e., stR = stR′), which is crucial for
ensuring strong anonymity. Correctness requires that, as long as Bob only accepts
ciphertexts sent by Alice (i.e., accepts no forged messages from the attacker),
keys output by Bob match those output by Alice. Finally, recover security ensures
that it is hard to perform a trivial impersonation of Alice towards Bob without
being detected eventually. More concretely, whenever Bob computes a key that
does not match the corresponding key computed by Alice, Bob must never accept
another ciphertext from Alice.

3.1 Secrecy and Authenticity
We provide compact notions of key-indistinguishability and authenticity for RKE
in the full version [17]. In both games, the adversary can control the protocol
execution via oracles Snd, RR, Rcv that internally run the respective algorithms.
Furthermore, the adversary can expose the sender state and receiver state via
oracles ExposeS and ExposeR, respectively.

Secrecy. In game KIND, which models secrecy of session keys, the adversary can
additionally query ChallSnd. This oracle internally executes algorithm RKE.snd
and, depending on random challenge bit b, either outputs the computed key k (if
b = 0) or a uniformly random key k′ (if b = 1). To correctly guess the challenge
bit b, the adversary can query all oracles with two limitations. These limitations
depend on whether the receiver accepted a ciphertext (via Rcv) that was not sent
by the sender (via Snd resp. ChallSnd). If the receiver never accepted a malicious
ciphertext, we say the receiver is in sync. As long as the receiver is in sync,
querying ExposeR is only permitted if all ciphertexts output by ChallSnd were
given to Rcv in the same order. Otherwise, exposing the receiver would reveal
challenges still in transit. For the same reason, querying ChallSnd is forbidden if
the receiver was exposed while in sync.

Authenticity. In game AUTH, the adversary wins when the receiver accepts a
ciphertext (via Rcv) that was not sent by the sender (via Snd resp. ChallSnd).
The only restriction is that ExposeS must not have been queried after the
last ciphertext, accepted by the receiver in sync (in Rcv), was sent (via Snd
resp. ChallSnd). This condition rules out trivial impersonations.
9 A corresponding randomization algorithm for the receiver state is meaningless in the
unidirectional RKE setting since, as soon as Bob’s state is exposed, he cannot hope
for any security guarantees after that.
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4 Anonymous Ratcheted Key Exchange

In anonymous ratcheted key exchange, any interaction of a fixed RKE instance,
consisting of a fixed sender and receiver, should be indistinguishable from an
interaction of a fresh RKE instance which is sampled uniformly at random. This
includes not only the indistinguishability of ciphertexts and keys, but also the
internal states. We capture these core requirements for our anonymity security
experiment in so-called utopian games below.

As opposed to KIND and AUTH, there are far more trivial attacks that need to
be considered. We elaborate on how we model security such that we can identify
and prevent trivial attacks, and give a detailed security notion for anonymity in
this section. Following the approach of Rogaway and Zhang [36], we give the core
of our definition (which we call utopian games), ignoring trivial attacks for now.

Utopian Games. The definition of our utopian games U-ANONb is given in Fig. 1.
Our definitions are “real-or-random”-style and games are parameterized by a bit
b, where U-ANON0 denotes the real world execution, and in U-ANON1 all outputs
of challenge oracles are random. At the beginning of the game, U-ANONbRKE
samples the initial sender and receiver states and provides several oracles to the
adversary. As usual for RKE security, the adversary can control the message flow
and obtain internal states via oracles Snd, Rcv, RR, ExposeS and ExposeR.

Game U-ANONb
RKE(A)

00 (stS, stR) $← RKE.init
01 ceStR ← ⊥
02 b′ $← A
03 Stop with b′

Oracle Snd(ad)
04 (stS, c, k) $← RKE.snd(stS, ad)
05 Return (c, k)

Oracle Rcv(c, ad)
06 (stR, k)← RKE.rcv(stR, c, ad)
07 Return Jk 6= ⊥K :

Oracle RR
08 stS $← RKE.rr(stS)
09 Return

Oracle ChallSnd(ad)
10 If b = 0:
11 (stS, c, k) $← RKE.snd(stS, ad)
12 If b = 1:
13 (stS′,_) $← RKE.init
14 (_, c, k) $← RKE.snd(stS′, ad)
15 Return (c, k)

Oracle ExposeS

16 Return stS

Oracle ChallExposeS

17 If b = 0:
18 Return stS
19 (stS′, ceStR) $← RKE.init
20 Return stS′

Oracle ExposeR

21 Return stR

Oracle ChallExposeR

22 If b = 0:
23 Return stR
24 (_, stR′) $← RKE.init
25 Return stR′

Fig. 1. Utopian games U-ANONb for anonymity, where b ∈ {0, 1} and RKE is a ratcheted
key exchange scheme.

The remaining oracles provide the adversary with some challenge depending
on b. We define three different challenge oracles:
– ChallSnd models indistiguishability of ciphertexts and keys. It should be hard

to distinguish if the ciphertexts and keys are produced by running RKE.snd
on the real sender state (U-ANON0) or a random sender state (U-ANON1).

– ChallExposeS models indistinguishability of sender states. In U-ANON0 this
oracle outputs the real sender state, whereas in U-ANON1 it outputs a random
sender state. At this point, we store the corresponding receiver state in an
additional variable ceStR which we require later to define trivial attacks.
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– ChallExposeR models indistinguishability of receiver states and is defined as
in ChallExposeS , only it instead outputs the real receiver state (U-ANON0)
or a random receiver state (U-ANON1).

4.1 Anonymity Definition
In this section, we show how to extend the utopian games to a full anonymity
security notion for RKE (cf. Fig. 2). Since identifying trivial attacks is quite
involved and needs a lot of additional book-keeping, the subsequent text aims to
give an in-depth description of our game-based definition on a syntactical level. It
provides the framework to prevent trivial attacks and should help the reader to
understand how all the tracing logic works. Apart from that, the security game
ANONbRKE basically builds upon the logic of the corresponding utopian game
U-ANONb. A more high-level perspective and, in particular, descriptions of the
actual trivial attacks are given in the subsequent Section 4.2.

For comprehensibility, we assume that an RKE scheme, analyzed with our
anonymity notion, offers recover security, correctness, as well as authenticity. It is
notable that an adversary breaking authenticity also trivially breaks anonymity
(cf. the full version [17]).

Execution Model. Depending on the bit b, game ANONbRKE either simulates the
real world as captured in utopian game U-ANON0

RKE or the random world as
captured in utopian game U-ANON1

RKE (cf. Fig. 1). In the following, we will
write U-ANON0 and U-ANON1 for brevity. Hence, ANONb runs the utopian
game U-ANONb as a subroutine and we allow access to all oracles. For example,
we denote oracle access by U-ANONb.Snd(ad), which will run a send query in
U-ANONb on input ad. We also allow access to internal variables. For example,
we write U-ANONb.stR to access the current receiver state in U-ANONb.

To ensure that the game ANONb can identify trivial attacks, we also need to
observe what would have happened if we had run the same sequence of queries in
the other utopian game 1− b. We will explain this in more detail in Section 4.2.
First, we introduce additional book-keeping variables and describe our oracles.

Send Queries. Oracles Snd and ChallSnd take as input a string ad which it
forwards to utopian game U-ANONb to compute a ciphertext and key (c, k). All
tuples (c, ad) are stored in a list cad. Additionally, we have counters (s0, s1) to
keep track of the number of ciphertexts sent in game U-ANONb and the number
of ciphertexts that would have been sent in U-ANON1−b. On a Snd query, we
increment both counters. Since Snd results in updated sender states, we already
store the corresponding updated receiver state in a list stR by running the
RKE.rcv algorithm locally (line 47). Note that the first entry of stR at position
0 is set to the initial receiver state U-ANONb.stR when the game is initialized
(line 05). We additionally store the current counter value s0 in a set c.

On a ChallSnd query, we only increment s0 because the real sender state
is not used in U-ANON1. Thus, we also only need to store the corresponding
receiver state in case b = 0 (line 54). The value of the counter s0 is additionally
stored in the challenge set cc.
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Game ANONb
RKE(A)

00 U-ANONb ← U-ANONb
RKE

01 For d ∈ {0, 1} :
02 (sd, rd)← (0, 0)
03 impd ← fal
04 (stR, cstR, cad)← ([·], [·], [·])
05 stR[0]← U-ANONb.stR
06 (c, cc, rcvd)← (∅, ∅, ∅)
07 (xS, cxS)← (∅, [·])
08 (xS, cxS, xR, cxR)← (fal, fal, fal, fal)
09 b′ $← A
10 Stop with b′

Oracle RR
11 U-ANONb.RR
12 · (xS, cxS)← (fal, fal)
13 Return

Oracle ExposeS

14 . If cxS = tru : Require (s0,_) /∈ cxS
15 . If xS = tru ∧ (s0, s1) /∈ xS :
16 . Require (_, s1) /∈ xS
17 � If imp0 = imp1 = fal :
18 � Require cxR = fal

19 stS← U-ANONb.ExposeS

20 xS ∪← {(s0, s1)}
21 · xS← tru
22 Return stS

Oracle ExposeR

23 i Require unique = tru
24 / Require cxR = fal
25 � Require imp0 = imp1
26 If imp0 = imp1 = fal :
27 ⊕ For all ŝ ∈ cc require ŝ ≤ r0
28 � Require (r0,_) /∈ cxS

29 stR ← U-ANONb.ExposeR

30 · xR ← tru
31 Return stR

Oracle ChallExposeS

32 . If xS = tru ∨ cxS = tru :
33 . Require (s0,_) /∈ cxS ∧ (s0,_) /∈ xS
34 � If imp0 = imp1 = fal :
35 � Require xR = cxR = fal

36 stSb ← U-ANONb.ChallExposeS

37 i If b = 0: cstR.append(stR[s0])
38 i If b = 1: cstR.append(U-ANON1.ceStR)
39 cxS.append((s0, s1))
40 · cxS← tru
41 Return stSb

Oracle Snd(ad)
42 ⊕ If imp0 = imp1 = fal: Require cxR = fal

43 (c, k) $← U-ANONb.Snd(ad)
44 cad.append(c, ad)
45 c ∪← {s0}
46 s0

+← 1, s1
+← 1

47 i (stR[sb],_)← RKE.rcv(stR[sb − 1], c, ad)
48 Return (c, k)

Oracle ChallSnd(ad)
49 ⊕ If imp0 = fal : Require xR = cxR = fal

50 (cb, kb) $← U-ANONb.ChallSnd(ad)
51 cad.append(cb, ad)
52 cc ∪← {s0}
53 s0

+← 1
54 i If b = 0: (stR[s0],_)← RKE.rcv(stR[s0 − 1], c0, ad)
55 Return (cb, kb)

Oracle Rcv(c, ad)
56 succb ← U-ANONb.Rcv(c, ad)
57 If ∃r̂ ≥ min(r0, r1) s.t. (c, ad) = cad[r̂]
58 If b = 0:
59 r′1 ← min(c \ rcvd)
60 succ1 ← ¬imp1 ∧ Jr′1 = r̂K
61 If succ1 : rcvd ∪← {r̂}
62 If b = 1: succ0 ← ¬imp0 ∧ Jr0 = r̂K
63 If succ1−b : r1−b

+← 1
64 i Else: //check for impersonations
65 i Let S ⊆ xS s.t. (_, r1) ∈ xS
66 i If |S| > 1 ∧ (r0,_) ∈ S : unique← fal
67 i For (r̂0, r̂1) ∈ S
68 i If RKE.rcv(stR[r̂b], c, ad) 6= (_,⊥) :
69 i imp0 ← imp0 ∨ Jr0 = r̂0K
70 i imp1 ← tru
71 i If imp1−b : r1−b

+← 1
72 i I ← {i | cxS[i] = (r̂0, r̂1) s.t. r̂b = rb}
73 i For i ∈ I :
74 i If RKE.rcv(cstR[i], c, ad) 6= (_,⊥) :
75 i imp0 ← imp0 ∨ Jr0 = r̂0K, where r̂0 = cxS[i][0]
76 i If imp1−b : r1−b

+← 1
77 If succb : rb

+← 1
78 Return

Oracle ChallExposeR

79 / Require xR = cxR = fal
80 � Require (r0,_) /∈ xS ∧ (r0,_) /∈ cxS
81 � Require imp0 = fal
82 ⊕ If imp1 = fal : Require s0 = r0

83 stRb ← U-ANONb.ChallExposeR

84 · cxR ← tru
85 Return stRb

Fig. 2. Full anonymity games ANONb for b ∈ {0, 1}, where lines in dashed boxes disallow
trivial attacks. We further distinguish between different trivial attacks (cf. Section 4.2):
Lines marked with⊕ are due to correctness relations, those marked with . , / are due
to state equality relations on sender resp. receiver side, those marked with � are due to
matching state relations, and i indicates an impersonation requirement.
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Exposures and Randomizations. Oracles ExposeS and ExposeR forward queries
to the utopian game and output the real sender state stS (resp. receiver state
stR). Additionally, the current sender counters (s0, s1) are added to a set xS.
We use boolean flags xS resp. xR to indicate that the sender resp. receiver was
exposed.

Challenge exposures are handled similarly, however now we use a list cxS
to store tuples (s0, s1) of a query to ChallExposeS . Thus, we have another list
cstR to additionally store the corresponding receiver state of the exposed sender
state. When b = 0, we simply copy the state stored in stR and for b = 1, we store
the receiver state U-ANON1.ceStR (belonging to the randomly chosen sender
state stS1). We use boolean flags cxS resp. cxR to register a challenge sender
resp. receiver exposure.

A randomization query via RR will reset the sender flags to fal, thus modeling
post-compromise anonymity on the sender’s side. Note that we do not need to
track the time of a receiver exposure. Once exposed, all subsequent updated
states can be computed locally by the adversary.

Before describing Rcv behaviour, we want to highlight the importance of
impersonations. We use boolean flags imp0, imp1 to indicate an impersonation
in U-ANON0 or U-ANON1. Both are initialized to fal and will be set to tru if a
sequence of queries leads to an impersonation in the corresponding utopian game.
Note that sequences of queries may lead to impersonations in both, none or one
utopian game(s).10 Thus, we need track whether an impersonation would have
happened. While it is easy to check the impersonation state of the simulated
game U-ANONb, i.e., the value of impb, it is more involved to determine imp1−b.
We will explain how this can be done below.

Receive Queries. Oracle Rcv advances receiver states. Since the adversary only
sees ciphertexts of U-ANONb, we first forward the adversary’s query (c, ad) to
U-ANONb. Similarly to the counters (s0, s1), we use counters (r0, r1) to track the
number of successfully received ciphertexts in games U-ANON0 and U-ANON1.
For U-ANON1−b, we can determine these numbers from the sequence of queries.
We introduce another book-keeping set rcvd, which stores the counter values
of send queries stored in c that have been successfully received in U-ANON1,
allowing us to keep track of which tuples stored in cad have been processed
by U-ANON1. Now, independent of whether this ciphertext has been received
successfully, we proceed in three steps.

Check for in-order-receive (lines 57-63). If the adversary intends to
receive a ciphertext output by Snd or ChallSnd (which we check by comparing
the query to the list cad) we need to decide if this query would have been
accepted in U-ANON1−b. Let r̂ be the index in cad such that the tuple stored
in cad[r̂] matches the adversary’s query. If b = 0, we need to decide whether
10 An impersonation may occur in one of the games when sender and receiver states are

not updated simultaneously. The sequence of oracle calls ChallSnd, ExposeS with a
subsequent impersonation attempt issued to Rcv will only impersonate U-ANON1,
since in U-ANON0 the challenge ciphertext needs to be received first.
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this query would lead to a successful receive in U-ANON1. At this point, we
only care about ciphertexts from Snd since challenge ciphertexts in U-ANON1
are produced by a random state. We denote the index of the next ciphertext
in cad that belongs to a send query by r′1. Note that we can compute r′1 using
sets c and rcvd. We say that U-ANON1 accepts this ciphertext if r̂ = r′1 and
we will add r̂ to rcvd. If b = 1, it is easy to decide whether a ciphertext would
have been accepted in U-ANON0, since we only need to compare r̂ with r0. Since
any ciphertext stored in cad should not be accepted after an impersonation, the
statements in lines 60, 62 will always evaluate to false.

Check for impersonations after ExposeS (lines 65-71). We know that an
exposed sender state can lead to an impersonation, depending on when exposure
occurred and which ciphertexts have been received. Since we require authenticity,
an impersonation can only occur after an exposed sender state. Thus, in U-ANON1
an impersonation will only be successful if the counter value r1 is in the set xS.
We add all the relevant tuples to a set S. Ignore line 66 for now. We iterate
over all entries (r̂0, r̂1) ∈ S and use stR[r̂b] to check if the ciphertext decrypts
under that state. If so, this may be an impersonation, which we will decide next.
Since we always have r̂1 = r1, a successful decryption implies an impersonation
in U-ANON1, so we set imp1 to tru. If r̂0 = r0, then we had an impersonation
in U-ANON0 as well. By RECOV security, once a sender is impersonated, the
receiver will no longer accept their ciphertexts. Thus once imp0 ← tru, imp0
will always be tru independent of the counter comparison, which is captured by
the “or” statement in line 69. The result of this check will be the same in both
games ANON0 and ANON1, unless the case in line 66 happens. For an example
of a sequence of queries triggering this case, we refer to the full version [17]. Note
that if there exist multiple entries such that (r̂0, r̂1) in S, but r0 6= r̂0 for all,
then imp0 will always be set to the same value.

Check for impersonations after ChallExposeS (lines 72-76). Imperson-
ation can also occur using the sender state output by ChallExposeS . Similarly to
the previous step, we first identify relevant entries in the list cxS. In particular,
we look for all entries (r̂0, r̂1), where r̂b = rb. Since cxS is a list and we stored
the corresponding receiver states at the same position in list cstR, we need to
find the position of the tuples (r̂0, r̂1) and store these indices in a set I. This
structure is needed, since entries in cxS are not necessarily unique.11 Now we
proceed as in the previous step. An impersonation in U-ANON0 has occurred
if the counter r̂0 in cxS equals the current counter r0. Note that in U-ANON1,
there will not be an impersonation since the real receiver state should accept a
ciphertext output by a random sender state. Again, the outcome is the same for
both games ANONb. For b = 0, this can be observed by the fact that I maps to
indices where r̂0 = r0 and thus cstR[i] = cstR[j] for all i, j ∈ I and the check

11 Imagine a sequence of queries ChallExposeS , RR, ChallExposeS . In this case, the
sender counters s0, s1 do not change. Also the receiver states appended to cstR0 are
the same, but the (random) receiver states appended to cstR1 are different, which is
crucial for identifying impersonations.



Strongly Anonymous Ratcheted Key Exchange 19

only depends on the successful decryption using the current state. For b = 1,
since all entries in cstR contain different receiver states, there will be at most
one state that decrypts the ciphertext. Thus, r̂0 is uniquely defined and imp0 is
only set to tru if r̂0 = r0 (or if it has already been tru before).
We will increase the counter r1−b if the impersonation was successful. At the
very end, we will also increase counter rb if the query was accepted in the first
place. This concludes the description of Rcv.

4.2 Identifying Trivial Attacks

If we ignore trivial attacks, the adversary easily distinguishes ANON0 from
ANON1, since relations between outputs differ between games. We group these
relations into four categories: ability to decrypt, state equality, matching states,
and impersonations. In our pseudocode, we indicate restrictions on the adversary
with a symbol corresponding to a relation group. We briefly explain the relations
below, and we provide justification for all requirements in the full version [17].

Ability to Decrypt (marked with ⊕). Our correctness definition captures that a
ciphertext computed with the sender state can always be decrypted with the
corresponding receiver state. Due to this, lines marked with (⊕) trace sequences
of oracle queries that allow an adversary to determine if a given ciphertext
decrypts successfully under an exposed receiver state in one game but not the
other, revealing the bit b.

Equality of States (marked with . , / ). For both sender ( . ) and receiver (/ )
exposures, our anonymity game allows the direct exposure of a real state and
challenge exposures which will output either a real or random state. Depending
on the sequence of queries, the output of two subsequent calls to ExposeS or
ChallExposeS may inevitably be the same in ANON0 but not in ANON1, which
we detect with the marked code lines to prevent that this inconsistency trivially
reveals bit b.

Matching States (marked with � ). We also consider sequences of queries that
may expose one party and challenge-expose the other. It is easy to see that the
adversary can test whether two such states are linked (which leaks bit b) by
creating a ciphertext with the exposed sender state and trial-decrypt with the
receiver state.

Impersonations (marked with i ). As argued earlier, it is crucial to determine
whether a sequence of queries leads to an impersonation in any of the games
ANON0 and ANON1. Only then, we can detect whether the relations above lead
to a trivial attack. However, sometimes it is not possible to uniquely determine
the impersonation status in game ANON1−b. Whenever this is the case, we need
to disallow receiver exposures since the receiver’s state leaks whether the imper-
sonation attempt was successful.

Finally, we formalise the advantage of an adversary against RKE anonymity.
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Definition 1. Consider the games ANONb for b ∈ {0, 1} in Fig. 2. We define
the advantage of an adversary A against anonymity of a ratcheted key exchange
scheme RKE as

AdvANON
A,RKE :=

∣∣Pr[ANON0
RKE(A)⇒ 1]− Pr[ANON1

RKE(A)⇒ 1]
∣∣ .

5 Updatable and Randomizable PKE

We construct two types of PKE with related properties: a randomizable PKE
scheme (rPKE) and an updatable and randomizable PKE scheme (urPKE).
An rPKE scheme is used in the updatable and randomizable signature scheme
(cf. Section 6.2) and urPKE is a direct building block in the overall construction
of ratcheted key exchange (cf. Section 7).

5.1 Randomizable PKE

In the following, we define the syntax and properties of an rPKE scheme.

Syntax. A randomizable public-key encryption scheme rPKE consists of four
algorithms rPKE.gen, rPKE.enc, rPKE.dec, rPKE.rr, which are defined as follows:

– (ek,dk) $← rPKE.gen outputs an encryption key and a decryption key.
– c $← rPKE.enc(ek,m) takes an ek, message m and returns an encryption c.
– m← rPKE.dec(dk, c) takes dk, c and outputs the decrypted message m.
– (ek, c) $← rPKE.rr(ek, c) returns randomized ek and c.

Compared to a standard public-key encryption scheme, the additional feature
lies in the rPKE.rr algorithm that allows to (re-)randomize encryption keys
and ciphertexts while preserving correctness. More formally, we require that
for all (ek,dk) ∈ rPKE.gen,m ∈ M, for random c $← rPKE.enc(ek,m) and for
an arbitrary number of randomizations (ek, c) $← rPKE.rr(ek, c), we have that
rPKE.dec(dk, c) = m.

We want to use an rPKE scheme as building block of the signature scheme in
Section 6. For this, we will need some additional properties that we define below.

Homomorphic Property. An rPKE scheme is called homomorphic if for an arbi-
trary but fixed public key (ek,_) ∈ rPKE.gen, there exists a group homomorphism
rPKE.enc : (M,⊗) × (R,⊕) 7→ (C,⊗), where M, R, C are message space, ran-
domness space and ciphertext space of the rPKE and ⊕,⊗ are the corresponding
group operations. More explicitly,

rPKE.enc(ek,m1; r1)⊗ rPKE.enc(ek,m2; r2) = rPKE.enc(ek,m1 ⊗m2; r1 ⊕ r2) ,

where r1, r2 ∈ R and ⊗ is taken component-wise.

Further, we want randomizations to be (computationally) indistinguishable, which
we capture in the following definition.



Strongly Anonymous Ratcheted Key Exchange 21

Definition 2 (IND-R). Let rPKE be a randomizable public key encryption scheme.
We require that a pair of encryption key and ciphertext that has been random-
ized via rPKE.rr is indistinguishable from a freshly generated encryption key
and ciphertext. More formally, we define the advantage of a distinguisher D for
arbitrary 2` ∈ Zp, (m0, . . . ,m2`) ∈M2` as

AdvIND-R
D,rPKE :=

∣∣Pr[D(ek, c0, . . . , c`, ek′, c′0, . . . , c′`)⇒ 1]

− Pr[D(ek, c0, . . . , c`, êk, ĉ0, . . . , ĉ`)⇒ 1]
∣∣ ,

where (ek,_) $← rPKE.gen, ci $← rPKE.enc(ek,mi), (ek′, c′0, . . . , c′`)← rPKE.rr(ek,
c0, . . . , c`), (êk,_) $← rPKE.gen, ĉ0, . . . , ĉ`

$← rPKE.enc(ek,m`+1, . . . ,m2`).

Construction. In Fig. 3, we construct an rPKE scheme based on the ElGamal
KEM and PKE scheme. Thus, we denote the corresponding scheme by rPKEEG.
An encryption key basically consists of an ElGamal encapsulation and KEM
key. The encryption and randomization algorithms then use the homomorphic
property of ElGamal.

Proc rPKE.gen
00 x, r $← Zp

01 dk← x
02 ek← (gr, gxr)
03 Return (ek, dk)

Proc rPKE.enc(ek,m)
04 Parse ek as (ek0, ek1)
05 s $← Zp

06 c0 ← eks
0

07 c1 ← eks
1 ·m

08 Return (c0, c1)

Proc rPKE.dec(dk, c)
09 Parse c as (c0, c1)
10 m← c1 · c−dk

0
11 Return m

Proc rPKE.rr(ek, c0, . . . , c`)
12 Parse ek as (ek0, ek1)
13 r′ $← Zp

14 ek′ ← (ekr′
0 , ekr′

1 )
15 For i ∈ [`] :
16 Parse ci as (c0

i , c
1
i )

17 s′i
$← Zp

18 c′i ← (c0
i · eks′i

0 , c
1
i · eks′i

1 )
19 Return (ek′, c′0, . . . , c′`)

Fig. 3. Randomizable PKE scheme rPKEEG.

Lemma 1. Scheme rPKEEG is homomorphic. Furthermore, it satisfies indistin-
guishability of randomizations under the DDH assumption. In particular, for any
adversary A, there exists an adversary B against DDH such that

AdvIND-R
A,rPKEEG

≤ AdvDDH
B,G .

5.2 Updatable and Randomizable PKE

In this section, we introduce the primitive of an updatable and randomizable
PKE, which will be used in our construction of ratcheted key exchange. The
syntax is similar to that of rPKE, but it extends it with the ability to update
the key pair. We briefly sketch the differences below.

Syntax. An updatable and randomizable public-key encryption scheme urPKE
consists of six algorithms urPKE.gen, urPKE.enc, urPKE.dec, urPKE.rr, urPKE.nextDk
and urPKE.nextEk, where the first three algorithms are defined as for rPKE and
the remaining ones follow the syntax:
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– ek $← urPKE.rr(ek) outputs a randomized encryption key ek.
– dk← urPKE.nextDk(dk, r) updates the decryption key with randomness r.
– ek← urPKE.nextEk(ek, r) updates the encryption key with randomness r.

Note that the main difference to rPKE is that the randomization algorithm
urPKE.rr randomizes only the encryption key.

We now require the following additional properties.

Instance Independence. We say a urPKE scheme is instance-independent if for
uniformly chosen randomness r and any key pair (ek,dk) in the support of
urPKE.gen, the two distributions (urPKE.nextEk(ek, r), urPKE.nextDk(dk, r)) and
(ek′,dk′) $← urPKE.gen are the same.

Indistinguishability of Randomizations. Similar to rPKE, we require for IND-R (for-
mally defined in the full version [17]) security that an encryption key that has been
randomized is indistinguishable from a freshly generated encryption key. In par-
ticular, the two distributions (ek, ek1) and (ek, ek2), where (ek,_) $← urPKE.gen,
ek1 ← urPKE.rr(ek), (ek2,_) $← urPKE.gen should be (computationally) indistin-
guishable under chosen ciphertext attacks.

Ciphertext Anonymity. For ciphertext anonymity of urPKE we require that
ciphertexts generated by a particular (and possibly exposed) encryption key are
indistinguishable from ciphertexts generated by a freshly chosen encryption key
under chosen ciphertext attacks. We provide a more fine-grained game-based
definition in the full version [17].

Construction. We construct an updatable and randomizable PKE scheme
based on hashed ElGamal, which was first proven to be IND-C secure in [1].
The construction is also similar to the secretly key-updatable encryption scheme
of [26], thus we will only sketch it here. We give the full scheme in the full
version [17], including the proofs of the properties mentioned above.

Algorithms urPKE.gen, urPKE.enc, urPKE.dec follow the ideas from rPKE, only
that they hash the ElGamal KEM key used for encryption. Since the ciphertext
does not need to be randomized, urPKE.rr can still be performed in the same way
as the randomization of the encryption key in rPKE.rr. Algorithms urPKE.nextDk
and urPKE.nextEk asynchronously update the decryption and encryption key by
exponentiation with some uniformly chosen randomness.

6 Updatable and Randomizable One-Time Signatures

In this section we introduce our new signature primitive, namely updatable
and randomizable one-time signatures. The property of updatability refers to
asynchronous updates of the signing and verification keys. Randomizability refers
to the randomization of signing keys. These will be crucial to provide anonymity
guarantees of our ratcheted key exchange scheme.
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Challenges. The main technical difficulty in designing the signature scheme lies
in maintaining unforgeability while achieving randomizability of signing keys.
More specifically, randomization must be implemented in a way such that both
the original signing key and one of its randomized versions produce signatures
that are unforgeable (if neither of both signing keys is corrupted); furthermore,
signatures from both signing keys must verify under the same single verification
key. Simultaneously, seeing the original and the randomized signing key should
be indistinguishable from seeing two independently sampled signing keys. (Note
that, by unforgeability, two independent signing keys will not produce signatures
valid under the same verification key.)

We conjecture that updatability of a signature scheme is easy for most alge-
braic signature schemes. Unforgeability usually reduces to hardness of inverting
some one-way function mapping from signing keys to verification keys. So it must
be hard to invert verification keys to get valid signing keys. Our randomization
requirements, intuitively, demand this for the opposite direction, too: obtaining
verification keys from signing keys must be hard. Strictly speaking, we require
an even stronger property: Without having the verification key, signing keys and
their signatures look random, independent of whether they correspond to the
same verification key. This might seem contradictory or, at least, very strong.

Outline. As a warm-up, we start with a definition and construction of updatable
one-time signatures in Section 6.1. Then, we will extend the construction to
updatable and randomizable one-time signatures in Section 6.2. To achieve
randomizability, we use the ElGamal-based rPKE scheme introduced in Section 5.

6.1 Warm-Up: Updatable Signatures

Syntax. An updatable signature scheme uSIG consists of five algorithms uSIG.gen,
uSIG.sig, uSIG.vfy, uSIG.nextSk, uSIG.nextVk. LetM be the message space and
R be the randomness space. Then the algorithms are defined as follows:

– (vk, sk) $← uSIG.gen generates a verification key vk and signing key sk.
– σ $← uSIG.sig(sk,m) takes sk and a message m and returns a signature σ.
– {0, 1} ← uSIG.vfy(vk,m, σ) takes vk, m and σ and returns a bit indicating

whether σ is a valid signature for m.
– sk← uSIG.nextSk(sk, r) asynchronously updates sk with randomness r.
– vk← uSIG.nextVk(vk, r) asynchronously updates vk with randomness r.

Correctness. Apart from the standard correctness requirement, we require that
updates yield valid verification and signing keys. More formally, we require the
following:

(1) ∀(sk, vk) ∈ uSIG.gen,m ∈M :

Pr[uSIG.vfy(vk, σ,m) = 1 | σ $← uSIG(sk,m)] = 1

(2) ∀(sk, vk) ∈ uSIG.gen, r ∈ R :

(uSIG.nextSk(sk, r), uSIG.nextVk(vk, r)) ∈ uSIG.gen
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Intuition Updatability. At the core of our construction lies a slight variation
of Lamport one time signature scheme, where signing keys are group elements.
To shrink the size of signatures and to mitigate the lack of updateability we
instantiate the hash function with a hash function fulfilling one-wayness and the
homomorphic property. By one-wayness the unforgeability property of Lamport
signature scheme is unchanged and by the homomorphic property we can i)
optimize the signature length to a single element in the target group ii) update
signing and verification key.

To achieve this we use pairings. Let G be a pairing group with bilinear map
e : G1 ×G2 → GT . By the XDH assumption, DDH is hard in group G1 and CDH
is hard in groups G1 and G2. For fixed g2 ∈ G2, we then set H(h) := e(h, g2).
Clearly the homomorphic property of H follows from bilinearity of the pairing,

e(m1, g2) · e(m2, g2) = e(m1 ·m2, g2) .

By the FAPI-2 Assumption [22], H is a one way function.

Construction. Our construction of an updatable one-time signature scheme
is given in Fig. 4. It follows the idea of the one-time Lamport signature scheme,
where we replace the hash function of the original scheme with a Type-II pairing.
Thus, let G be a pairing group and H : {0, 1}∗ → {0, 1}` a hash function.
Secret keys consist of 2` group elements in G1 and verification keys consist of 2`
group elements in GT . For the signature generation, we borrow the approach of
aggregated BLS signatures [11,12]. Additionally following the “Hash-and-Sign”
approach, we first hash the message using H and then interpret the hash value
bit-wise. For the ith bit we choose the ith element of the signing key depending
on the bit value. The signature σ will then be the product of ` group elements.
Verification uses the pairing to compute e(σ, g2) and compares the result to the
product of the respective ` target group elements.

The idea for updating the signing and verification key is that we can multiply
each group element of the signing key ski,b with another group element Ri,b.
Verification keys can be updated by multiplying the respective target group
element with e(Ri,b, g2).

In the full version [17] we prove one-time existential unforgeability of the
scheme.

6.2 Extension to Updatable and Randomizable Signatures

Syntax. An updatable and randomizable signature scheme urSIG shares the
syntax of an updatable signature scheme, i.e., the algorithms urSIG.gen, urSIG.sig,
urSIG.vfy, urSIG.nextSk, urSIG.nextVk are defined analogously. Additionally, there
is a sixth algorithm urSIG.rr, which is defined as follows

– sk $← urSIG.rr(sk) randomizes the signing key sk.

Correctness. We extend correctness requirements (1), (2) from the previous
section by the following: We require that for all (vk, sk) ∈ urSIG.gen, m ∈ M,
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Proc uSIG.gen
00 For b ∈ {0, 1}, i ∈ [`] :
01 xi,b

$← Zp

02 sk←
(
g

x0,0
1 , . . . , g

x`−1,0
1

g
x0,1
1 , . . . , g

x`−1,1
1

)
03 vk←

(
e(gx0,0

1 , g2), . . . , e(gx`−1,0
1 , g2)

e(gx0,1
1 , g2), . . . , e(gx`−1,1

1 , g2)

)
04 Return (vk, sk)

Proc uSIG.nextSk(sk, R ∈ G2×`
1 )

05 For b ∈ {0, 1}, i ∈ [`] :
06 ski,b ← ski,b ·Ri,b

07 Return sk

Proc uSIG.sig(sk,m)
08 Parse (h0, . . . , h`−1)← H(m) as bits

09 σ ←
∏

i∈[`] ski,hi = g

∑
xi,hi

1
10 Return σ ∈ G1

Proc uSIG.vfy(vk,m, σ)
11 Parse (h0, . . . , h`−1)← H(m) as bits

12 Return e(σ, g2) =
∏`−1

i=0 vki,hi = e(g
∑

xi,hi
1 , g2)

Proc uSIG.nextVk(vk, R ∈ G2×`
1 )

13 For b ∈ {0, 1}, i ∈ [`] :
14 vki,b ← vki,b · e(Ri,b, g2)
15 Return vk

Fig. 4. Updatable one-time signature scheme uSIG for a pairing group G = (p,G1,G2,
GT , e, g1, g2), where H : {0, 1}∗ 7→ {0, 1}` is a hash function.

an arbitrary number of randomizations resulting in an randomized signing key
sk $← urSIG.rr(sk), a signature σ $← urSIG.sig(sk,m) still verifies correctly.

Below we define a similar security property as for randomizable PKE schemes,
which will be needed in the anonymity proof of our ratcheted key exchange
scheme.

In the full version [17] define additional security properties that are needed
for authenticity and recover security.

Definition 3 (Indistinguishability of Randomizations). Let urSIG be a an
updatable and randomizable signature scheme. We require that a signing key that
has been randomized using urSIG.rr is indistinguishable from a freshly generated
signing key. More formally, we define the advantage of a distinguisher D as

AdvIND-R
D,urSIG := |Pr[D(sk, sk0)⇒ 1]− Pr[D(sk, sk1)⇒ 1]| ,

where the probability is taken over (sk, vk) $← urSIG.gen, sk0 ← urSIG.rr(sk) and
(sk1,_) $← urSIG.gen and the internal randomness of D.

Our Construction. In Fig. 5 we extend the updatable signature scheme in
Fig. 4 by the randomizable PKE in Fig. 3 to get an updatable and randomizable
one-time signature scheme.

Recall that signing keys in our updatable one-time signature scheme are
group elements. In order to achieve signing key randomization, the idea is to
encrypt those signing keys with ElGamal. However, this means that the ElGamal
encryption key must be part of the overall signing key and thus in turn be
randomized as well. Therefore, we do not use plain ElGamal encryption, but our
randomizable PKE encryption scheme rPKEEG.

Finally, to achieve strong unforgeability we use the CHK transformation [13,29]
using a strongly unforgeable signature.



26 Benjamin Dowling, Eduard Hauck, Doreen Riepel, Paul Rösler

Proc urSIG.gen
00 (ek, dk)← rPKE.gen
01 (vk′, sk′)← uSIG.gen
02 For b ∈ {0, 1}, i ∈ [`] :
03 (sk(r)

i,b , sk
(x)
i,b )← rPKE.enc(ek,m = sk′i,b)

04 sk(r) ←
(

sk(r)
0,0, . . . , sk(r)

`−1,0
sk(r)

0,1, . . . , sk(r)
`−1,1

)
=
(
gr0,0 , . . . , gr`−1,0

gr0,1 , . . . , gr`−1,1

)
05 sk(x) ←

(
sk(x)

0,0 , . . . , sk(x)
`−1,0

sk(x)
0,1 , . . . , sk(x)

`−1,1

)
=
(
gr0,0dkgx0,0 , . . . , gr`−1,0dkgx`−1,0

gr0,1dkgx0,1 , . . . , gr`−1,1dkgx`−1,1

)
06 vk← (vk′, dk); sk← (ek, (sk(r)

i,b , sk
(x)
i,b ))

07 Return (vk, sk)

Proc urSIG.sig(sk,m)
08 σr ← uSIG.sig(sk(r),m) =

∏
gri,hi

09 σx ← uSIG.sig(sk(x),m)
=
∏
gri,hi

dkgxi,hi

10 Return (σr, σx)

Proc urSIG.rr(sk)
11 Return rPKE.rr(sk)

Proc urSIG.vfy(vk,m, σ)
12 Parse (vk′,dk)← vk
13 σ′ ← rPKE.dec(dk, σ)=

∏
gxi,hi

14 Return uSIG.vfy(vk′, σ′,m)

Proc urSIG.nextSk(sk, r)
15 Return uSIG.nextSk(sk, r)

Proc urSIG.nextVk(vk, r)
16 Return uSIG.nextVk(vk, r)

Fig. 5. Our updatable and randomizable one-time signature scheme urSIG[rPKE, uSIG].

7 Construction of Anonymous RKE

Our construction of anonymous unidirectional RKE in Figure 6 elegantly arises
from the two primitives presented in the last sections, urPKE and urSIG. Beyond
this, we use a hash function (modeled as a random oracle) and a pseudorandom
generator (PRG).

Proc RKE.init
00 (ek, dk) $← urPKE.gen
01 (vk, sk) $← urSIG.gen
02 stS← (ek, sk)
03 stR ← (dk, vk)
04 Return (stS, stR)

Proc RKE.snd(stS, ad)
05 (ek, sk)← stS
06 kH, kS

$← K
07 (vknext, sknext)← urSIG.gen
08 curPKE

$← urPKE.enc(ek, (kH, kS , vknext))
09 σ $← urSIG.sig(sk, (curPKE, ad))
10 c← (curPKE, σ ⊕ PRG(kS))
11 (k, rurPKE, rurSIG)← H(kH, c, ad)
12 sk← urSIG.nextSk(sknext, rurSIG)
13 ek← urPKE.nextEk(ek, rurPKE)
14 stS← (ek, sk)
15 Return (stS, k, c)

Proc RKE.rr(stS)
16 (ek, sk)← stS
17 ek $← urPKE.rr(ek)
18 sk $← urSIG.rr(sk)
19 stS← (ek, sk)
20 Return stS

Proc RKE.rcv(stR, c, ad)
21 k ← ⊥
22 (dk, vk)← stR
23 (curPKE, σ

′)← c
24 (kH, kS , vknext)← urPKE.dec(dk, curPKE)
25 Require (kH, kS , vknext) 6= ⊥
26 If urSIG.vfy(vk, (curPKE, ad), σ′ ⊕ PRG(kS))
27 (k, rurPKE, rurSIG)← H(kH, c, ad)
28 vk← urSIG.nextVk(vknext, rurSIG)
29 dk← urPKE.nextDk(dk, rurPKE)
30 stR ← (dk, vk)
31 Return (stR, k)

Fig. 6. Construction of our RKE scheme RKE[urPKE, urSIG,H,PRG].
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Construction. On initialization, a urPKE key pair and a urSIG key pair is
generated, both of which are split between Alice’s and Bob’s state. Randomization
of Alice’s state works componentwise. When sending, Alice (1) generates a fresh
signature key pair, (2) encrypts the new verification key as well as random
symmetric keys, and (3) signs the resulting ciphertext with her prior signing key.
(4) The signature is encrypted with one of the encrypted symmetric keys. Using
the random oracle on input of the other symmetric key, the composed ciphertext,
and the associated data string, Alice (5) derives the final session key as well as
two pseudorandom strings which update her two state components (encryption
key and signing key). Bob performs the corresponding decryption, verification,
hash evaluation, and key updates when receiving.

Consistency and Authenticity. By the correctness properties of urPKE and urSIG,
this URKE construction is correct, too. The construction provides robustness
since Bob either accepts with an actual session key (if decryption and verification
succeed) or his state remains unchanged. We formally prove recover security of
this construction in the full version [17]. On an intuitive level, each fresh signing
key is “entangled” with the ciphertext that transmits it via the key update in
line 12. This means that Bob will only accept signatures from a signing key if
he received the corresponding verification key with the originally transmitted
ciphertext. Based on unforgeability of the urSIG scheme and collision resistance
of the random oracle, this mechanism maintains recover security. Authenticity
similarly follows from the signature scheme’s unforgeability, which we prove in
the full version [17].

Secrecy. In the presence of a passive adversary, the secrecy of session keys
follows directly from the confidentiality of the urPKE scheme. In case of a
trivial impersonation—which, by authenticity, is the only successful way to let
Bob accept a forged ciphertext—, we need the consistency guarantees of the
urSIG scheme and the hash function to prove that Bob’s state immediately
diverges incompatibly from Alice’s state. We prove this informal claim in the full
version [17].

Anonymity. Below we establish our main theorem, namely anonymity of our
RKE construction. Additionally, we provide theorems and proofs for robustness,
recover security, authenticity and key indistinguishability in the full version [17].

Theorem 1 (Anonymity of RKE[urPKE, urSIG,H,PRG]). Let H : {0, 1}∗ →
{0, 1}λ be a random oracle. Let urPKE be an updatable and randomizable PKE
scheme. Let urSIG be an updatable and randomizable one-time signature scheme.
Let PRG be a pseudorandom generator. We show that RKE[urPKE, urSIG,H,PRG]
is secure with respect to ANON, such that

AdvANON
RKE ≤ (qS + qCS) · AdvANON

urPKE + qCS · Adv.PRG

+ (qCE + qCS) · (AdvIND-R
urSIG + AdvIND-R

urPKEEG
) + 1

2λ .
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where qS, qCS, and qCE are the number of queries to oracles Snd, ChallSnd, and
ChallExposeS, respectively.

We provide a proof sketch below and defer the full proof to the full version [17].

Proof (Sketch). Conceptually, the proof consists of three steps. First we show on
the sender side that after calls to oracles Snd and ChallSnd, the sender states
are statistically independent from prior ones. Similarly, after successful calls to
oracle Rcv, the receiver state is statistically independent from prior ones. The
forward anonymity and post-compromise anonymity guarantees follow from this
state independence. We prove this independence via (qS + qCS) applications of
the instance independence of urPKE.

In the second step, we replace all outputs of challenge oracles in the real world
with independently sampled values. We get this for free for oracle ChallExposeR,
since, by definition of our trivial attack detection and instance independence,
the adversary may call oracle ChallExposeR only on receiver states which are
statistically independent from any other oracle output. To replace the output
of oracle ChallSnd with random, we employ two hybrid arguments. In the first
hybrid argument, we show that the adversary cannot distinguish whether we
replaced challenge ciphertexts curPKE with random ciphertexts, implying a loss
factor of (qS + qCS) · AdvANON

urPKE. In the second hybrid argument, we replace all
outputs of the PRG in oracle ChallSnd with random, implying a loss factor
of qCS · AdvPRG. To replace the outputs of oracle ChallExposeS with uniform
random values, we again give two hybrid arguments. Here we loose a total factor
of qCE · (AdvIND-R

urSIG + AdvIND-R
urPKEEG

). Finally, in the third step of the proof, we show
that the adversary cannot distinguish how often the sender state was advanced.
Recall that oracle ChallSnd is the only oracle which updates the sender state
depending on bit b. In order for the adversary to see a difference in updated
sender states, the adversary must expose the sender prior to and after a call
to oracle ChallSnd. By definition of the trivial attacks, the adversary must call
oracle RR before exposing the sender a second time. Using a hybrid argument,
we replace the sender state after a call to RR by uniform random values in
both worlds. Thus the adversary learns with both sender state exposures two
independent distributions of sender states, which implies a total loss factor of
qCS · (AdvIND-R

urSIG + AdvIND-R
urPKEEG

).
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