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Abstract. Extending work leveraging program obfuscation to instan-
tiate random-oracle-based transforms (e.g., Hohenberger et al., EURO-
CRYPT 2014, Kalai el al., CRYPTO 2017), we show that, using ob-
fuscation and other assumptions, there exist standard-model hash func-
tions that suffice to instantiate the classical RO-model encryption trans-
forms OAEP (Bellare and Rogaway, EUROCRYPT 1994) and Fujisaki-
Okamoto (CRYPTO 1999, J. Cryptology 2013) for specific public-key
encryption (PKE) schemes to achieve IND-CCA security. Our result for
Fujisaki-Okamoto employs a simple modification to the scheme.
Our instantiations do not require much stronger assumptions on the base
schemes compared to their corresponding RO-model proofs. For exam-
ple, to instantiate low-exponent RSA-OAEP, the assumption we need on
RSA is sub-exponential partial one-wayness, matching the assumption
(partial one-wayness) on RSA needed by Fujisaki et al. (J. Cryptology
2004) in the RO model up to sub-exponentiality. For the part of Fujisaki-
Okamoto that upgrades public-key encryption satisfying indistinguisha-
bility against plaintext checking attack to IND-CCA, we again do not
require much stronger assumptions up to sub-exponentiality.
We obtain our hash functions in a unified way, extending a technique of
Brzuska and Mittelbach (ASIACRYPT 2014). We incorporate into their
technique: (1) extremely lossy functions (ELFs), a notion by Zhandry
(CRYPTO 2016), and (2) multi-bit auxiliary-input point function obfus-
cation (MB-AIPO). While MB-AIPO is impossible in general (Brzuska
and Mittelbach, ASIACRYPT 2014), we give plausible constructions for
the special cases we need, which may be of independent interest.

Keywords. Fujisaki-Okamoto, RSA-OAEP, Random Oracle, Standard
Model, Chosen-Ciphertext Security, Extremely Lossy Functions

1 Introduction

1.1 Background and Goal

The random oracle model and uninstantiability. The random oracle
(RO) model [10] is a popular paradigm for designing practical cryptographic
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schemes. The idea is that in the design and analysis of a scheme all parties are
assumed to have access to one or more oracles that implement independent ran-
dom functions (called ROs). The hope is that when the scheme is implemented
in practice, using cryptographic hashing in place of the ROs, then the scheme
retains security. (Replacing the ROs with some functions is said to “instanti-
ate” the scheme via these functions.) Unfortunately, this paradigm has been
shown to be false in a strong sense, starting with the work of Canetti, Goldreich,
and Halevi [28]. They exhibit schemes that are secure in the RO model but are
insecure when instantiated with any efficient function, let alone cryptographic
hashing. Such unfortunate schemes are called uninstantiable. Thus, it is crucial
to demonstrate instantiatiability of popular RO model schemes by giving effi-
cient functions that can provably replace their ROs. This not only gives us better
evidence of their security, but also provides insights into their security that were
previously obscured in the ROM. This insight can lead to tweaks that increase
their security and new design goals for cryptographic hashing.

Before proceeding, it should be clarified that our hash functions made to
replace ROs are not practically efficient. Thus, we do not propose that our hash
functions are actually used. Rather, their existence makes it more plausible that
the schemes we instantiate meet their goals when using cryptographic hashing.

RO model transforms. A particularly vexing case of uninstantiability con-
cerns transforms in the RO model; in other words, compilers that take one or
more “base schemes” (that may or may not use ROs) and output a “target
scheme” that uses ROs. We say that the transform “works” if for any secure
base schemes the output target scheme is secure (under the appropriate secu-
rity notions). The instantiated scheme should have the same security property,
so we refer to the transform as uninstantiable if for any standard-model hash
functions replacing the ROs, there exist secure base schemes such that the cor-
responding target scheme is insecure. This means the transform cannot “work”
in the standard model in general.

Our focus: Classical encryption transforms. We are concerned with
instantiability of two highly influential RO model transforms that output a
(public-key) encryption scheme, the Optimal Asymmetric Encryption Padding
(OAEP) trapdoor permutation-based transform [11] and the Fujisaki-Okamoto
(FO) hybrid-encryption transform [37]. These are considered two of the “crown
jewels” of the RO model, but their instantiability has not been established. In
fact, there exist uninstantiability results to some extent. Accordingly, the main
question we study is:

Do there exist standard-model hash functions that suffice to instantiate
IND-CCA2 secure OAEP and FO?

We briefly recall how these transforms work. OAEP takes a trapdoor permu-
tation (TDP) F (typically RSA) and produces a public-key encryption scheme
whose public key is an instance f of the TDP. It uses two ROs G,H and the
encryption algorithm has the form:

EOAEP
f (m; r) = f(s∥t) where s = G(r)⊕m∥0ζ and t = H(s)⊕ r ,
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where ζ ∈ N is a redundancy parameter.
FO uses a public-key encryption scheme and a symmetric-key encryption

scheme to produce a new public-key encryption scheme. We modify the original
encryption algorithm [37] by incorporating changes from Hofheinz, Hövelmanns,
and Kiltz [49] to obtain the form:

Ehypk(m; r) = Easypk (r;H(r))∥E syK(m) where K = G(r∥c1), c1 = Easypk (r;H(r)) ,

where Easy denotes the encryption algorithm of the starting public-key scheme
and E sy denotes the encryption algorithm of the starting symmetric-key scheme.

Instantiability results for OAEP and FO are challenging because there are
negative results known. Notably, Kiltz and Pietrzak [61] show a black-box sep-
aration for OAEP in the ideal TDP model, and Brzuska et al. [23] show the FO
transform to be uninstantiable, even assuming IND-CPA security of the base
PKE scheme. Further results about the schemes are discussed below.

1.2 Further Related Work and Open Questions

Attempts at instantiability of OAEP and FO. The question of instantia-
bility of OAEP and FO was posed by Canetti [26] and Boldyreva and Fischlin [18,
19]. The latter gave partial instantiations of variants of the transforms, where
only one of the ROs is instantiated. Kiltz et al. [60] showed IND-CPA security
of RSA-OAEP using lossiness of RSA, while Bellare, Hoang, and Keelveedhi [7]
showed RSA-OAEP is the same for public-key-independent messages assuming
the round functions meet their UCE notion. Cao et al. [29] gave partial instan-
tiations of RSA-OAEP, as well as full instantiations for some variants of it.

On the negative side, Brown [22] and Paillier and Villar [64] showed neg-
ative results for proving RSA-OAEP is IND-CCA secure in restricted models,
and Kiltz and Pietrzak [61] showed a general black-box impossibility result.
Their results do not contradict ours because we use non-blackbox assumptions.
Furthermore, they do not apply to TDP’s satisfying properties common-inputs
extractability (CIE) and second-inputs extractability (SIE). Shoup [70] exhib-
ited a black-box separation showing that a form of non-malleability for the TDP
is necessary. On the other hand, Fujisaki et al. [39] show that the seemingly
stronger assumption of partial one-wayness (POW) on the TDP is sufficient.

FO has evaded any positive results in the standard model, despite its grow-
ing importance. The assumptions needed by Brzuska et al. [23] were later re-
laxed by Goyal et al. [46]. We evade these results by exploiting the fact that
they do not apply when the PKE scheme is OW-PCA or lossy. Brzuska et
al. [23] actually show uninstantiability of the underlying “Encrypt-with-Hash”
(EwH) [6] portion of the transform, namely Easypk (r;H(r)). Thus, our main fo-

cus is on the “hybrid encryption” part of the transform Easypk (r)∥E syK(m) where

K = G(r∥c1), c1 = Easypk (r;H(r)). We also consider the first part by making other
assumptions on the base scheme. Concurrently, Zhandry [73] introduced a neg-
ative result for the FO transform when using random oracles in his augmented
random oracle model (AROM). We use structured hash functions instead.
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We have previously seen success in instantiating classical RO-based trans-
forms outside the encryption domain, such as the full-domain hash (FDH) sig-
nature scheme [50, 72] and Fiat-Shamir (e.g., [58]). In particular, we have seen
such lines of work first use obfuscation and later drop it (e.g, by Zhandry [72] in
the case of FDH); we are hopeful the same pattern will emerge for our results.

Results in the (Q)ROM. Results about the security of RSA-OAEP in the RO
model were shown in [11, 39, 70]. Ultimately, these works showed RSA-OAEP is
IND-CCA2 secure in the RO model assuming only one-wayness of RSA, but
with a loose security reduction.

The original security bound for FO is lossy. With the recent interest in post-
quantum cryptography and FO’s applications to it, there has been work on
getting tight reductions for FO and variants in the quantum RO model, e.g. [49,
51, 55, 56, 69], all of which are set in the ROM. Our security bound for the instan-
tiated FO is also lossy.4 An interesting question is whether “implicit rejection”
can help with this, as it does in the RO case.

1.3 Our Results

A unified paradigm. Our standard-model hash functions for OAEP and FO
are obtained via a unified paradigm that uses indistinguishability obfuscation
(iO) [3, 41] to obfuscate the composition of a punctured pseudorandom function
(PPRF) [21, 59, 68] and extremely lossy function (ELF) [72]. In our proofs, we
extend an idea of Brzuska and Mittelbach [25] to construct universal computa-
tional extractors [7]. In our extension, we utilize multi-bit auxiliary-input point
function obfuscation (MB-AIPO) [27], as well as ELFs.

ELFs and their applicability. To explain ELFs [72], we first recall the notion
of a lossy function, a trapdoor-less version of lossy trapdoor functions [65]. A
lossy function key can be generated in one of two modes, the injective or the
lossy mode, where the first induces an injective function and the second induces
a highly non-injective one. Furthermore, keys generated via these two modes
are indistinguishable to any efficient adversary. Note that the lossy function
image cannot be too small, else there would be a trivial distinguisher. ELFs
achieve much more lossiness by reversing the order of quantifiers. Namely, for an
ELF, for every adversary there exists an (adversary-dependent) indistinguishable
lossy key-generation mode. The induced function can even have an appropriate
polynomial -size image. Zhandry [72] constructs ELFs based on exponential DDH,
where the lossy mode depends on the run-time of the adversary.

We observe ELFs seem useful for “answering decryption queries” in a proof
of IND-CCA security. Indeed, a high-level strategy in the reduction could be,
on answering a decryption query, to iterate over all possible ELF outputs in the
lossy mode to see which one permits correct decryption. But there is a problem:

4 Looking ahead, we do not obtain a post-quantum secure instantiation of FO in this
work based on known realizations of our hash functions. Yet, clearly a classically
secure one is a step forward.
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the ELF output used in the challenge ciphertext would not look random to a
reduction running the IND-CCA adversary and simulating the decryption oracle
this way. This is because the reduction must be able to enumerate the entire lossy
ELF image. To solve this problem, we wrap the ELF into a higher-level program
that we obfuscate. This program outputs a special, truly random point on the
input used in forming the challenge ciphertext, and otherwise evaluates the ELF.

Results on OAEP. For simplicity, consider the case of public-key-independent
messages; we later explain how to deal with the public-key-dependent case. We
show that low-exponent RSA-OAEP is fully instanitiable under the same as-
sumption on the base scheme (RSA) used by Fujisaki et al. [38] in the RO model,
namely partial one-wayness. Here we instantiate G in OAEP as iO(ELF(PRFK(·)))
where iO is an indistinguishability obfuscator [3, 41], ELF is an injective-mode
ELF, and PRF is a puncturable pseudorandom function [21, 59, 68]. The PRF
key and ELF function are hardcoded into the obfuscated program. To instanti-
ate H we use a one-wayness extractor [52] with polynomial-length output (see
below). In the proof (and not in the construction), multi-bit point function ob-
fuscation with auxiliary input (MB-AIPO) is used.

Results on Fujisaki-Okamoto. We focus on the part of the transform from
OW-PCA to IND-CCA2 (cf. transform 3.2.2 of Hofheinz et al. [49]), which is not
subject to uninstantiability results. Moreover, we propose a modified version of
this part of the FO transform:

Ehypk(m; r) = Easypk (r; z)∥E syK(m∥r) where K = G(r∥Easypk (r; z)) .

Decryption recovers r from the asymmetric ciphertext, computes the symmetric
key with the hash function, and then decrypts the symmetric ciphertext m∥r′,
m is returned iff r = r′. Moreover, if the symmetric-key encryption is already
randomized and randomness-recovering, then r can safely be used as its coins as
there is no additional overhead (cf. Remark 3).

We show this modified part of the FO transform is fully instantiable under
suitable assumptions. To describe the assumptions, we introduce a new notion of
cryptography with “adaptive” auxiliary input. This refers to an adversary being
given auxiliary input that includes access to an oracle. Specifically, for our in-
stantiation we require MB-AIPO with adaptive auxiliary input where the input
point has the form r∗∥c∗1, the output point is K∗, and the auxiliary input has the
form (t, d, c∗, pk ′,m) where c∗ = c∗1∥c∗2 is an encryption of m. Furthermore, the
oracle provided to the adversary is either a public-key ciphertext validity checker
or, as a separate assumption, a symmetric-key ciphertext validity checker. Be-
yond this, we need that the public-key encryption scheme is sub-exponentially
OW-PCA and the symmetric-key encryption scheme is sub-exponentially secure
authenticated encryption [9]. Notably, we later show that our new ELF-based
MB-AIPO is secure for the adaptive auxiliary input needed, albeit for public-
key-independent messages.

New MB-AIPOs. We wish to justify the existence of MB-AIPOs for the dis-
tributions needed in the OAEP and FO instantiation proofs. This is challenging
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because in general MB-AIPO for computationally unpredictable auxiliary in-
put is likely impossible [24]. To circumvent this result for OAEP, we provide
a new and simple RSA-based MB-AIPO. The auxiliary input contains an RSA
ciphertext, and it is plausible this combination is secure. For FO, we show a new
MB-AIPO for statistically unpredictable auxiliary input (which is not subject to
the [24] result) based on ELFs that we further prove is sufficient for us when the
PKE scheme is lossy [8] and the one-time AE scheme is information-theoretic
and leakage-resilient in the sense of [2]. Of course, one can simply assume secu-
rity of our MB-AIPO wrt. the specific computationally unpredictable auxiliary
input needed. Then information-theoretic security of the AE and lossiness of the
PKE can be removed, which yields a more practical result.

Leveraging sub-exponential security assumptions. Finally, we leverage
sub-exponential security assumptions to handle public-key-dependent messages.
To see the reason, consider that the auxiliary information given to an MB-AIPO
adversary in our proofs should contain an encryption of the challenge message.
However, the challenge message depends on the obfuscation itself, the latter
being in the public key. Thus, we have to guess the message in the auxiliary
information. A generic argument to this effect would require sub-exponential
security assumptions on all of the primitives, whereas for us it is crucial to
avoid this assumption on ELFs, for which we do not know sub-exponentially
secure instantiations. Thus, we use a tailored argument at this step of the proof.
While we do not view sub-exponential assumptions as too devastating, it is an
important open problem to handle public-key-dependent messages without them.
Current techniques to remove sub-exponential iO [1] do not seem applicable to
our case, because the message is not hashed or fed through an obfuscation.

On the assumptions. Arguably, our assumptions are strong, but not unreason-
ably so. We note that new constructions of iO have recently emerged [43, 53, 54,
71] under safer assumptions. ELFs have been built from exponential DDH [72],
which is a common assumption on elliptic curves. To construct a sub-exponential
one-wayness extractor with polynomial output length, we can use diO with short
auxiliary input as per [13], which is stronger than iO but is plausibly satisfied
by the same constructions.5 (diO with short auxiliary input is weaker than full-
fledged diO, which is implausible [42].) Perhaps the most exotic assumption we
need are MB-AIPOs for specific auxiliary input distributions. However, we lend
plausibility by suggesting specific constructions.

2 Preliminaries

We overview notations and definitions used; some of which are taken from the
prior work of Cao et al. [29].

5 Unfortunately, for another construction of a one-wayness extractor with polynomial-
length output from ELFs due to Zhandry [72], it does not seem possible to set
parameters to get sub-exponential security.
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2.1 Notation and Conventions

For a probabilistic algorithm A, by y←$ A(x) we mean that A is executed on
input x and the output is assigned to y. We sometimes use y ← A(x; r) to make
A’s random coins explicit. We denote by Pr

[
A(x) = y : x←$ X

]
the probability

that A outputs y on input x when x is sampled according to X. We denote
by [A(x)] the set of possible outputs of A when run on input x. The security
parameter is denoted k ∈ N and 1k denotes the unary encoding of the security
parameter. Integer parameters often implicitly depend on k.

Unless otherwise specified, all algorithms must run in probabilistic polyno-
mial time (PPT) in k, and an algorithm’s run time includes that of any overlying
experiment as well as the size of its code.

The length of a string s is denoted |s|. We denote by s|ji the substring of s
from the i-th least significant bit (LSB) to the j-th most significant bit (MSB)
of s (inclusive), where 1 ≤ i ≤ j ≤ |s|. For convenience, we denote by s|ℓ = s|ℓ1
the ℓ LSBs of s and s|ℓ = s||s||s|−ℓ the ℓ MSBs of s, for 1 ≤ ℓ ≤ |s|. Vectors are

denoted in boldface, for example x. If x is a vector then |x| denotes the number of
components of x and x[i] denotes its i-th component, for 1 ≤ i ≤ |x|. Note that
we begin indexing at 1, not 0. For convenience, we extend algorithmic notation
to operate on each vector of inputs component-wise. For example, if A is an
algorithm and x,y are vectors then z←$ A(x,y) denotes that z[i]←$ A(x[i],y[i])
for all 1 ≤ i ≤ |x|. Unless otherwise specified, ε denotes the empty string. A
function f : N → [0, 1] is negligible if for every constant c and all but finitely
many k ∈ N we have f(k) < 1/kc.

Many games return a value like (b′ = b). This means that the boolean truth
value of the statement b′ = b is returned. Define the left-or-right selector function
as LR(x0, x1, b) = xb for x0, x1 ∈ {0, 1}∗ and b ∈ {0, 1}.

Indistinguishability. Let X = {Xk}k∈N and Y = {Yk}k∈N be distribution
ensembles. We say that X is computationally indistinguishable from Y, denoted
X ≈c Y, if for all PPT distinguishers D

|Pr [D(xk)⇒ 1 ]− Pr [D(Yk)⇒ 1 ]| ≤ negl(k)

We say that X is statistically indistinguishable from Y, denoted X ≈s Y, if for
all (even bounded) distinguishers D

|Pr [D(xk)⇒ 1 ]− Pr [D(Yk)⇒ 1 ]| ≤ negl(k) .

2.2 Encryption Schemes and Their Security

Symmetric-key encryption. A symmetric-key (or private key) encryption
scheme SE with message space Msg is a tuple of algorithms (K, E ,D). The key-
generation algorithm K on input 1k outputs a private key K. The encryption
algorithm E on inputs K and a message m ∈ Msg(1k) outputs a ciphertext c.
The deterministic decryption algorithm D on inputs K and ciphertext c outputs
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Game AEA,1
SE (k)

K←$K(1k)
b′←$ AEK(·),VK(·)(1k)

Return b′

Oracle EK(m)

c←$ EK(m)

Return c

Oracle VK(c)

m← DK(c)

If m = ⊥ return 0

Return 1

Game AEA,0
SE (k)

K←$K(1k)
b′←$ A$(·),⊥(·)(1k)

Return b′

Oracle $(m)

c←$ EK(m)

u←$ {0, 1}|c|

Return u

Oracle ⊥(c)
Return ⊥

Fig. 1: Games to define AE for private-key encryption.

a message m or ⊥. We require that for all K ∈ [K(1k)] and all m ∈ Msg(1k),
DK(EK(m)) = m with probability 1.

Authenticated encryption. Let SE = (K, E ,D) be a symmetric key encryp-
tion scheme. To define authenticated encryption [9], we give a combined defini-
tion of privacy and authenticity following Rogaway and Shrimpton [67]. Let A
be an adversary. For every k ∈ N, the experiments in Fig. 1 define the AE game.
Define the AE-advantage of A against SE as

Advae
SE,A(k) =

∣∣Pr [AEA,1
SE (k)⇒ 1

]
− Pr

[
AEA,0

SE (k)⇒ 1
]∣∣ .

We say that SE is AE-secure if Advae
SE,A(k) is negligible in k for all PPT A.

Public-key encryption. A public-key encryption scheme PKE is a tuple of
algorithms (Kg,Enc,Dec), with message space Msg and coin space Coins. The
key-generation algorithm Kg on input 1k outputs a public key pk and matching
secret key sk . The encryption algorithm Enc on inputs pk and a message m ∈
Msg(1k) outputs a ciphertext c. The deterministic decryption algorithm Dec
on inputs sk and ciphertext c outputs a message m or ⊥. We require that for
all (pk , sk) ∈ [Kg(1k)] and all m ∈ Msg(1k), Dec(sk , (Enc(pk ,m)) = m with
probability 1. When multiple primitives are being used, algorithms of PKE will
be denoted PKE.Kg, PKE.Enc, etc. to avoid confusion.

Privacy of public-key encryption [45, 66]. Let PKE = (Kg,Enc,Dec) be a
public key encryption scheme and let A = (A1, A2) be an adversary. LetM be
a PPT algorithm that takes inputs 1k and a public key pk to return a message
m ∈ Msg(1k). For all k ∈ N and ATK ∈ {CPA, CCA1, CCA2}, the experiment
in Fig. 2 (left) defines the IND-ATK security game. The ind-atk advantage of A
against PKE is defined as

Advind-atk
PKE,A (k) = 2 · Pr

[
IND-ATKA

PKE(k)⇒ 1
]
− 1 .
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Game IND-ATKA
PKE(k)

b←$ {0, 1} ; (pk , sk)←$ Kg(1k)

(st,m0,m1)←$ A
O1(·)
1 (1k, pk)

c←$ Enc(pk ,mb)

b′←$ A
O2(·)
2 (st, pk , c)

Return (b = b′)

Game OW-PCAA
PKE(k)

(pk , sk)←$ Kg(1k)

m←$ Msg(1k) ; r←$ Coins(1k)

c← Enc(pk ,m; r)

m′←$ APCOsk (·,·)(pk , c)

If m = m′ then return 1

Else return 0

Fig. 2: Games to define IND-ATK (left) and OW-PCA (right) security for
public-key encryption.

If atk = cpa, then O1(·) = ε and O2(·) = ε. In this case, we say PKE is secure

against chosen-plaintext attack (IND-CPA) if Advind-cpa
PKE,A (k) is negligible in k for

all PPT A.
Similarly, if atk = cca1, then O1(·) = Dec(sk , ·), and O2(·) = ε; if atk = cca2,
then O1(·) = Dec(sk , ·), and O2(·) = Dec(sk , ·). In the case of cca2, A2 is not
allowed to ask O2 to decrypt c. We say that PKE is secure against non-adaptive
chosen-ciphertext attack or IND-CCA1 (resp. adaptive chosen-ciphertext attack
or IND-CCA2), if Advind-cca1

PKE,A (k) (resp. Advind-cca2
PKE,A (k)) is negligible in k for all

PPT A.

One-wayness under plaintext checking attack. Let PKE = (Kg,Enc,
Dec) be a public key encryption scheme. For every k ∈ N, the experiment in Fig. 2
(right) defines the OW-PCA security game. We say PKE is OW-PCA secure if
for any PPT adversary A

Advow-pca
PKE,A (k) = Pr

[
OW-PCAA

PKE(k)⇒ 1
]
,

is negligible in k. Here PCOsk (·, ·) is the plaintext-checking oracle that on input
(c,m) outputs 1 iff Dec(sk , c) = m. We say that PKE is sub-exponentially OW-
PCA if for every PPT A we have Advow-pca

PKE,A (k) = O(2−k
α

) for a constant 0 ≤
α ≤ 1.

2.3 Trapdoor Permutations and Their Security

Trapdoor permutations. A trapdoor permutation (TDP) family with do-
main T.Dom is a tuple of algorithms F = (Kg,Eval, Inv). Algorithm Kg on in-
put 1k outputs a pair (F, F−1), where F : T.Dom(k) → T.Dom(k). Algorithm
Eval on inputs a function F and x ∈ T.Dom(k) outputs y ∈ T.Dom(k). We of-
ten write F (x) instead of Eval(F, x). Algorithm Inv on inputs a function F−1

and y ∈ T.Dom(k) outputs x ∈ T.Dom(k). We often write F−1(y) instead of
Inv(F−1, y). We require that for any (F, F−1) ∈ [Kg(1k)] and any x ∈ T.Dom(k),
F−1(F (x)) = x.
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One-wayness. Let F = (Kg,Eval, Inv) be a trapdoor permutation family with
domain T.Dom. We say F is one-way if for every PPT inverter I

Advowf
F,I(k) = Pr

(F,F−1)←$ Kg(1k)
x←$ T.Dom(k)

[
x′ ← I(F, F (x))

x′ = x

]
≤ negl(k) .

Partial one-wayness [38]. Let F = (Kg,Eval, Inv) be a trapdoor permutation
family with domain T.Dom. We say F is (µ, µ+ ζ)-partial one way ((µ, µ+ ζ)-
POW) if for every PPT inverter I

Advpow
F,I (k) = Pr

(F,F−1)←$ Kg(1k)
x←$ T.Dom(k)

[
x′ ← I(F , F (x))

x′ = x|µ+ζ
µ

]
≤ negl(k) .

We additionally say that F is sub-exponentially (µ, µ+ ζ)-POW if for all PPT
inverters I and all k ∈ N, there exists some constant 0 < α < 1 such that the
advantage of I is bounded by O(2−k

α

). Fujisaki et al. [38] show that in the case
of RSA one-wayness implies partial one-wayness.

2.4 Algebraic Properties of RSA

We recall algebraic properties of RSA that hold in the low-exponent regime for
appropriate parameters. For generality of our results, we state them for abstract
TDPs. We adapt them from Cao et al. [29].

Second-input extractability. Informally, a TDP is SIE if there is an efficient
extractor that given a TDP function F , an image F (x), and some portion of the
preimage, can return the entire preimage. Formally: Let F = (Kg,Eval, Inv) be a
trapdoor permutation family with domain {0, 1}n. For 1 ≤ i ≤ j ≤ n, we say F
is (i, j)-second-input-extractable ((i, j)-SIE) if there exists an efficient extractor E
such that for every k ∈ N, every F ∈ [Kg(1k)], and every x ∈ {0, 1}n, extractor E
on inputs F, F (x), x|ji+1 outputs x. We often write ζ-SIE instead of (n−ζ, n)-SIE.

Common-inputs extractability. Informally, a TDP is CIE if there is an ef-
ficient extractor that on inputs an instance of the TDP family F , two image
points F (x1), F (x2), returns the preimages x1, x2 if a run of bits of both preim-
ages are equal. Formally: Let F = (Kg,Eval, Inv) be a trapdoor permutation
family with domain T.Dom. For 1 ≤ i ≤ j ≤ n, we say F is (i, j)-common-input-
extractable ((i, j)-CIE) if there exists an efficient extractor E such that for every
k ∈ N, every F ∈ [Kg(1k)], and every x1, x2 ∈ T.Dom, extractor E on inputs
F, F (x1), F (x2) outputs (x1, x2) if x1|ji+1 = x2|ji+1. We often write ζ-CIE instead
of (n− ζ, n)-CIE.

Parameters. Barthe et al. [4] show via the univariate Coppersmith algorithm
[31] that RSA is ζ-SIE and ζ-CIE for sufficiently large ζ. Specifically, they show
RSA is ζ1-SIE for ζ1 > n(e−1)/e, and ζ2-CIE for ζ2 > n(e2−1)/e2. Cao et al. [29]
show a generalization to runs of arbitrary consecutive bits using the (heuristic)
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bivariate Coppersmith algorithm [17, 31, 32]. Specifically, they show that RSA
is (i, j)-SIE for (j − i) > n(e − 1)/e, and (i, j)-CIE for (j − i) > n(e2 − 1)/e2,
assuming the bivariate Coppersmith algorithm is efficient. Although its efficiency
is heuristic, it works well in practice [16, 20, 35, 57].

2.5 Function Families and Associated Security Notions

Function families. A function family with domain F.Dom and range F.Rng
is a tuple of algorithms F = (KF , F ) that work as follows. Algorithm KF on
input a unary encoding of the security parameter 1k outputs a key KF . Deter-
ministic algorithm F on inputs KF and x ∈ F.Dom(k) outputs y ∈ F.Rng(k).
We alternatively write F as a function F : KF × F.Dom→ F.Rng.

One-wayness extractors. Let F : KF×F.Dom→ F.Rng be a function family.
We say F is a one-wayness extractor [52] if for any PPT adversary A and any
unpredictable distribution D we have

Advcdist
F,A,D = | Pr [A(KF , z, F (KF , x)) = 1 ]− Pr [A(KF , z, R) = 1 ] | ,

is negligible in k, where KF ←$KF (1
k), (z, x)←$ Dk, and R←$ F.Rng(k).

We additionally say that F is a sub-exponential one-wayness extractor if for
any PPT adversary A, any sub-exponentially unpredictable distribution D and
all k ∈ N, there exists some constant 0 < α < 1 such that the advantage of A is
bounded by O(2−k

α

).
We explain how to build a sub-exponential one-wayness extractor, which is

essentially a sub-exponentially secure universal hardcore function. The construc-
tion due to Bellare et al. [13] from diO + PPRFs has polynomial output length
as desired. The form of diO needed has short auxiliary input, evading impos-
sibility results of [42]. Moreover, the construction is sub-exponentially secure if
the underlying primitives are also. It is not clear how to make an alternative
construction from ELFs [72] sub-exponentially secure. However, it suffices for
public-key-independent messages in our results.

2.6 The OAEP Transform

Padding scheme. We define a general notion of a padding scheme following [11,
61]. For ν, ρ, µ ∈ N, the associated padding scheme is a triple of algorithms
PAD = (Π,PAD,PAD−1) defined as follows. Algorithm Π on input 1k outputs a
pair (π, π̂) where π : {0, 1}µ+ρ → {0, 1}ν and π̂ : {0, 1}ν → {0, 1}µ ∪ {⊥} such
that π is injective and for all m ∈ {0, 1}µ and r ∈ {0, 1}ρ we have π̂(π(m∥r)) =
m. Algorithm PAD on inputs π and m ∈ {0, 1}µ outputs y ∈ {0, 1}ν . Algorithm
PAD−1 on inputs a mapping π̂ and y ∈ {0, 1}ν outputs m ∈ {0, 1}µ or ⊥.
Padding-based encryption. Let PAD be a padding transform from domain
{0, 1}µ+ρ to range {0, 1}ν . Let F be a TDP with domain {0, 1}ν . The asso-
ciated padding-based encryption scheme is a triple of algorithms PAD[F ] =
(Kg,Enc,Dec) defined in Fig. 3.



12 Alice Murphy, Adam O’Neill, and Mohammad Zaheri

Kg(1k)

(π, π̂)←$ Π

(F, F−1)←$ Kg(1k)

pk ← (π, F )

sk ← (π̂, F−1)

Return (pk , sk)

Enc(pk ,m||r)
(π, F )← pk

y ← π(m||r)
c← F (y)

Return c

Dec(sk , c)

(π̂, F−1)← sk

y ← F−1(c)

m← π̂(y)

Return m

Fig. 3: Padding based encryption scheme PAD[F ] = (Kg,Enc,Dec).

Algorithm OAEP(KG,KH )(m∥r)
s← (m∥0ζ)⊕G(KG, r)

t← r⊕H(KH , s)

x← s∥t
Return x

Algorithm OAEP−1
(KG,KH )(x)

s∥t← x ; r ← t⊕H(KH , s)

m′ ← s⊕G(KG, r)

If m′|ζ = 0ζ then return m′|µ

Return ⊥

Fig. 4: OAEP padding scheme OAEP[G,H].

OAEP padding scheme. We recall the OAEP padding scheme [11]. Let mes-
sage length µ, randomness length ρ, and redundancy length ζ be integer parame-
ters, and ν = µ+ρ+ζ. Let G : KG×{0, 1}ρ → {0, 1}µ+ζ andH : KH×{0, 1}µ+ζ →
{0, 1}ρ be function families. The associated OAEP padding scheme is a triple
of algorithms OAEP[G,H] = (KOAEP,OAEP,OAEP

−1) defined as follows. On in-
put 1k, KOAEP returns (KG,KH) where KG←$KG(1

k) and KH ←$KH(1k), and
OAEP,OAEP−1 are as defined in Fig. 4.

OAEP encryption scheme. As in Fig. 3, we denote by OAEP[G,H,F ] =
(OAEP.Kg,OAEP.Enc,OAEP.Dec) the OAEP-based encryption scheme F-OAEP
with n = ν. We typically think of F as RSA, and all our results apply to this
case under suitable assumptions.

2.7 The Fujisaki-Okamoto Transform

The Fujisaki-Okamoto (FO) transformation [36, 37] is a technique to convert
weak public-key encryption schemes into strong ones which resist chosen-ciphertext
attack (i.e., are IND-CCA2 secure). Let SE = (K, E ,D) be a private-key encryp-
tion scheme and let PKE = (Kg,Enc,Dec) be a public-key encryption scheme.
Assume K(1k) outputs a key K ∈ {0, 1}k and PKE.Coins ⊆ PKE.Msg. Moreover,
let H : KH × H.Dom→ H.Rng and G : KG × PKE.Coins→ {0, 1}k be hash func-
tion families. The FO transform FO[H,G,PKE,SE] = (FO.Kg,FO.Enc,FO.Dec)
is defined in Fig. 5.

2.8 Program Obfuscation

Here we present three different types of obfuscation used in this paper. We start
by recalling the definition of indistinguishability obfuscation from [3, 41].
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FO.Kg(1k)

(pk′, sk′)←$ PKE.Kg(1k)

KH ←$KH(1k)

KG←$KG(1
k)

pk ← (pk′,KH ,KG)

sk ← (sk′,KH ,KG)

Return (pk , sk)

FO.Enc(pk ,m; r)

(pk′,KH ,KG)← pk

y ← H(KH , r)

c1 ← PKE.Enc(pk′, r; y)

K ← G(KG, r)

c2←$ E syK(m)

c← (c1, c2)

Return c

FO.Dec(sk , c)

(sk′,KH ,KG)← sk

r ← PKE.Dec(sk′, c1)

If r = ⊥ then return ⊥
c′1 ← PKE.Enc(pk ′, r;H(KH , r))

If c′1 ̸= c1 then return ⊥
K ← G(KG, r)

m← Dsy
K(c2)

Return m

Fig. 5: FO transform FO[H,G,PKE, SE] = (FO.Kg,FO.Enc,FO.Dec).

Indistinguishability obfuscation. A PPT algorithm iO is called an indis-
tinguishability obfuscator for a circuit ensemble C = {Ck}k∈N if the following
conditions hold:

– Correctness: For all security parameters k ∈ N, for all C ∈ Ck, and for all
inputs x, we have that

Pr
[
C ′(x) = C(x) : C ′←$ iO(1k, C)

]
= 1 .

– Security: For any PPT distinguisher D, for all pairs of circuits C0, C1 ∈ Ck
such that |C0| = |C1| and C0(x) = C1(x) on all inputs x, we have that

Advio
iO,D,C(k) = | Pr

[
D(1k, iO(1k, C0)) = 1

]
− Pr

[
D(1k, iO(1k, C1)) = 1

]
|

≤ negl(k) .

One can also represent security as a game that picks a random bit b and gives
the adversary, who can make exactly one query, oracle access to iO(LR(·, ·, b)).
Both circuits in the query must be the same size and functionally equivalent.

We additionally say that iO is a sub-exponentially indistinguishability obfus-
cator for a circuit ensemble C = {Ck}k∈N if for every PPT distinguisher D, for
all k ∈ N and for all pairs of functionally equivalent circuits C0, C1 ∈ Ck, there
exists some constant 0 < α < 1 such that the advantage of D is bounded by
O(2−k

α

).

We now formalize the definition of unpredictable distributions which are used
to define obfuscators for point functions.

Computationally unpredictable distribution. We call distribution en-
semble D = {Dk = (Zk, Xk)}k∈N, on tuples of strings, computationally unpre-
dictable (cup) if for every PPT algorithm A, we have

Pr
[
A(1k, z)⇒ x : (z, x)←$ Dk

]
≤ negl(k) .

We call it sub-exponentially unpredictable if there exists some constant 0 < α < 1
such that the above probability is bounded by O(2−k

α

).
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Statistically unpredictable distributions. We call distribution ensemble
D = {Dk = (Zk, Xk)}k∈N, on tuples of strings, statistically unpredictable (sup)
if for every (even unbounded) algorithm A, we have that

Pr
[
A(1k, z)⇒ x : (z, x)←$ Dk

]
≤ negl(k) .

Point obfuscation with auxiliary information. Although indistinguisha-
bility obfuscation applies to general circuits, we can also study obfuscation
schemes for particular classes of functions, such as point functions. A point
function px for some value x is defined as follows: px(x̃) = 1 iff x̃ = x and equals
⊥ otherwise.

We now give the definition of point function obfuscation following [15]. A
PPT algorithm AIPO is a point function obfuscator for the class of distributions
D = {Dk = (Zk, Xk)}k∈N, where Xk is the input point distribution and Zk is
the auxiliary information distribution, if the following conditions hold:

– Correctness: For all security parameters k ∈ N, for all (z, x)←$ Dk, AIPO
on input x outputs a polynomial-size circuit px that returns 1 on x and ⊥
everywhere else.

– Security: To distinguisher A we associate the experiment in Fig. 6, for every
k ∈ N. We require that for every PPT distinguisher A

Advaipo
AIPO,A,D(k) = 2 · Pr

[
AIPOD,A

AIPO(k)⇒ 1
]
− 1 ≤ negl(k) .

Sub-exponential security. We additionally say AIPO is a sub-exponentially
secure point obfuscator if for any sub-exponentially unpredictable distribution
ensemble {Dk = (Zk, Xk)}k∈N there exists some constant α > 0 such that for
every PPT A, and for all k ∈ N, the advantage of every PPT adversary A is
bounded by O(2−k

α

).

Auxiliary-input point obfuscation with multi-bit output. A multi-bit
point function px,y is similar to a regular point function px in that ⊥ is returned
for all inputs x′ ̸= x. But unlike px, which just returns a single bit 1 input x,
px,y returns the multi-bit string y.

A PPT algorithm MB-AIPO is a multi-bit point obfuscator for the distribu-
tion ensemble D = {Dk = (Zk, Xk, Yk)}k∈N, on triples of strings, if the following
conditions hold:

– Correctness: For all security parameters k ∈ N, for all (z, x, y)←$ Dk,
MB-AIPO on input x, y outputs a polynomial-size circuit that returns y on
x and ⊥ on all other inputs.

– Security: To distinguisher A, we associate the experiment in Fig. 6, for
every k ∈ N. We require that for every PPT distinguisher A,

Advmb-aipo
MB-AIPO,A,D(k) = 2 · Pr

[
MB-AIPOD,A

MB-AIPO(k)⇒ 1
]
− 1 ≤ negl(k) .
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Game AIPOD,A
AIPO(k)

b←$ {0, 1} ; (z, x0)←$ Dk

x1←$ {0, 1}|x0|

p←$ AIPO(xb)

b′←$ A(1k, z, p)

Return (b = b′)

Game MB-AIPOD,A
MB-AIPO(k)

b←$ {0, 1} ; (z, x, y0)←$ Dk

y1←$ {0, 1}|y0|

p←$ MB-AIPO(x, yb)

b′←$ A(1k, z, p)

Return (b = b′)

Fig. 6: Games to define AIPO (left) and MB-AIPO (right) security.

Game PRF-DISTA
PRF(k)

b←$ {0, 1} ; (S, st)←$ A1(1
k)

K←$ PRF.Kg(1k)

KS ←$ PRF.Punct(K,S)

y0 ← PRF.Eval(K,S)

y1←$ PRF.Rng(k)×|S|

b′←$ A2(st, S,KS ,yb)

Return (b = b′)

Fig. 7: Game to define PRF-DIST security.

We omit definitions of unpredictability and sub-exponential security in the con-
text of MB-AIPOs since they extend naturally from their AIPO counterparts.
Although we will note that in the case of MB-AIPO the unpredictable sam-
pling distribution has the form D = {Dk = (Zx, Xk, Yk)}k∈N where Yk repre-
sents the multi-bit output point. Unpredictability is defined the same way as
above, in particular, the attacker is not given the point sampled from Yk, nor
are they required to predict it. MB-AIPO for computationally unpredictable
auxiliary inputs is likely impossible in general [24]. Our choice is therefore to use
statistical unpredictability or assume MB-AIPO for a specific computationally
unpredictable auxiliary input.

2.9 Puncturable PRFs

A family of puncturable pseudorandom functions (PPRFs) [21, 59, 68] with do-
main PRF.Dom and range PRF.Rng is a tuple of algorithms PRF = (PRF.Kg,
PRF.Punct,PRF.Eval) that work as follows. Algorithm PRF.Kg on input 1k out-
puts a key K. Algorithm PRF.Eval takes as inputs a key K and x ∈ PRF.Dom(k)
and outputs y ∈ PRF.Rng(k). We often write PRFK(x) instead of PRF.Eval(K,x).
Additionally, there is a PPT puncturing algorithm PRF.Punct which on inputs a
key K and a polynomial-size set S ⊆ PRF.Dom(k), outputs a special, punctured
key KS . We say PRF is puncturable PRF if the following two properties hold:

– Functionality preserved under puncturing: For every PPT adversary
A = (A1, A2) such that adversary A1(1

k) outputs a polynomial-size set S ⊆
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PRF.Dom(k), it holds for all x ∈ PRF.Dom(k) where x /∈ S that

Pr[PRF.Eval(K,x) = PRF.Eval(KS , x) :

K←$ PRF.Kg(1k), KS ←$ PRF.Punct(K,S)] = 1 .

– Pseudorandom at punctured points: To attacker A = (A1, A2), we
associate the experiment in Fig. 7 for every k ∈ N. We require that for every
PPT adversary A = (A1, A2),

Advpprf
PRF,A(k) = 2 · Pr

[
PRF-DISTA

PRF(k)⇒ 1
]
− 1 ≤ negl(k) .

The works [21, 59, 68] construct PPRFs from one-way functions.

2.10 Extremely Lossy Functions

A family of extremely lossy functions (ELFs) ELF with domain ELF.Dom and
range ELF.Rng is a tuple of algorithms ELF = (ELF.IKg,ELF.LKg, ELF.Eval) that
work as follows. Algorithm ELF.IKg on input 1k outputs the description of a func-
tion f : ELF.Dom(k)→ ELF.Rng(k). Algorithm ELF.LKg on inputs 1k and poly-
nomial r outputs the description of a function f : ELF.Dom(k) → ELF.Rng(k).
Algorithm ELF.Eval on inputs a function f and x ∈ ELF.Dom(k) outputs y ∈
ELF.Rng(k). We often write f(x) instead of ELF.Eval(f, x). An ELF has the
following properties:

– Correctness: For f output by (1k), the function f is injective.
– Key-indistinguishability: For any polynomial p and inverse polynomial

function δ, there is a polynomial q such that, for any adversary A running
in time at most p, and any r ≥ q, we have that

| Pr[A(f)⇒ 1 : f ←$ ELF.IKg(1k)]−

Pr[A(f)⇒ 1 : f ←$ ELF.LKg(1k, r)] |< δ .

– Lossiness: for all polynomials r, over f ←$ ELF.LKg(1k, r) the function f
has image of at most r.

– Efficiently enumerable image: For any polynomial r, let f be an out-
put of ELF.LKg(1k, r). Then on inputs f, r and in time poly(|ELF.Dom|, r),
f([ELF.Dom]) can be output.

Zhandry gives a construction from the exponential DDH assumption.

3 Low-Exponent RSA-OAEP Instantiation

In this section, we show low-exponent (e.g., e = 3) RSA-OAEP is fully in-
stantiable using its algebraic properties described in Section 2.4. We leave the
instantiability of high-exponent RSA-OAEP for future work.
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ELF′.IKg(1k)

f ←$ ELF.IKg(1k)

K←$KPI(1
k)

Return (K, f)

ELF′.LKg(1k, r)

f ←$ ELF.LKg(1k, r)

K←$KPI(1
k)

Return (K, f)

ELF′.Eval(K, f, x)

y ← ELF.Eval(f, x)

Return PRG(PIK(y))

Fig. 8: Augmented ELF construction ELF′[PRG,PI,ELF] = (ELF′.IKg,
ELF′.LKg,ELF′.Eval).

Procedure KG(1
k)

K←$ PRF.Kg(1k)

f ←$ ELF.IKg(1k)

KG←$ iO(pad(s(k), f(PRFK(·))))
Return KG

Procedure G(KG, x)

CG←$ KG(1
k)

Return CG(x)

Fig. 9: The hash function family G.

3.1 Augmented ELFs

For convenience, we define a notion of augmented ELFs to make the evaluation
of the ELF in injective mode on a uniform input to be uniform on an appropriate
binary range. We will need this below. The idea is to compose the ELF, f , with
a pairwise-independent hash and pseudorandom generator, i.e. PRG(PIK(f(·))).
Namely, let ELF = (ELF.IKg,ELF.LKg,ELF.Eval) be an ELF, PI : KPI×{0, 1}n →
{0, 1}m be a function family such that m ≤ |ELF.Dom|−2 log(1/ϵ)+1 for negligi-
ble ϵ, and PRG : {0, 1}m → {0, 1}r be a function. Define the associated augmented
ELF ELF′[PRG,PI,ELF] = (ELF′.IKg,ELF′.LKg,ELF′.Eval) as in Fig. 8.

Proposition 1. Suppose ELF is a secure ELF, PI is pairwise-independent hash,
and PRG is a secure PRG. Then the associated augmented ELF ELF′[PRG,PI,ELF],
as defined in Fig. 8, is such that the output of the following experiment is com-
putationally indistinguishable from (f ′, z) where z ∈ {0, 1}r is independent and
uniform:

f ′←$ ELF′.IKg(1k) ; x←$ ELF.Dom(x) ; Return (f ′, f ′(x)) .

This follows by first applying the Leftover Hash Lemma [47] and then the security
of the PRG.

3.2 The Result

We will need MB-AIPO for the following distribution ensemble. We suggest using
our new RSA-based construction in the full version of Section 5; in particular,
this RSA-based obfuscator “plays well” with the auxiliary input in this case.
Define the distribution ensemble DOAEP = {DOAEPk }k∈N be as follows:
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Distribution DOAEPk

r∗←$ {0, 1}ρ ; z∗←$ {0, 1}µ+ζ

KH ←$KH(1k) ; (F, F−1)←$ Kg(1k)
m←$ {0, 1}µ
s∗ ← z∗⊕ (m∥0ζ) ; y∗ ← H(KH , s∗)
t∗ ← r∗⊕ y∗ ; c∗ ← F (s∗∥t∗)
L← (c∗,KH , F,m)
Return (L, r∗, z∗)

OAEP.Kg(1k)

KG←$KG(1
k)

KH ←$KH(1k)

(F, F−1)←$ Kg(1k)

pk ← (F,KG,KH)

sk ← (F−1,KG,KH)

Return (pk, sk)

OAEP.Enc(pk,m)

(F,KG,KH)← pk

r←$ {0, 1}ρ

z ← G(KG, r)

s← z ⊕ (m∥0ζ)
t← r ⊕H(KH , s)

c← F (s∥t)
Return c

OAEP.Dec(sk, c)

(F−1,KG,KH)← sk

s∥t← F−1(c)

r ← t⊕H(KH , s)

m′ ← s⊕G(KG, r)

If m′|ζ = 0ζ then return m′|µ

Return ⊥

Fig. 10: OAEP[G,H,F ] = (OAEP.Kg,OAEP.Enc,OAEP.Dec) where G is defined
in Fig. 9.

Theorem 1. Let n, µ, ζ, ρ be integer parameters. Let F be a family of trapdoor
permutations with domain {0, 1}n, where n = µ + ζ + ρ. Assume F is sub-
exponentially OW, (µ, µ+ ζ)-SIE, and (µ, µ+ ζ)-CIE. Assume ELF is a secure
augmented ELF with ELF.Rng = {0, 1}µ+ζ , PRF is a secure puncturable PRF
with PRF.Dom = {0, 1}ρ , iO is a sub-exponentially secure iO for P/poly, and
sub-exponential MB-AIPO for the distribution ensemble DOAEP exists. Let G :
KG × {0, 1}ρ → {0, 1}µ+ζ and H : KH × {0, 1}µ+ζ → {0, 1}ρ be hash function
families, where G is in Fig. 9 6 and H is a sub-exponentially secure one-wayness
extractor. Then OAEP[G,H,F ] = (OAEP.Kg,OAEP.Enc,OAEP.Dec), as defined
in Fig. 10, is IND-CCA2 secure.

The full proof can be found in the full version of the paper; below we present
a proof sketch. At a high-level, the idea is to change ELF to lossy mode so that
a simulator can answer decryption queries by exhaustively searching the lossy
image and using algebraic properties of RSA.
Game G1: This is the standard IND-CCA2 security game, shown in Fig. 11. G
is computed by the circuit C1[K, f ] = f(PRFK(·)) where f is in injective mode
and the PRF key K is not punctured. Note that in G1, z

∗ = G(KG, r
∗).

Game G2: The PRF key K is replaced with a key K∗ which is punctured at r∗

and the circuit C1 is switched to C2. C2 depends on an MB-AIPO of the point

6 Here the function pad(·.·) pads the circuit specified by the second argument to the
length specified by the first argument. Here we implicitly set s(k) to what is needed
in the proof; cf. [24].



Instantiability of Classical Random-Oracle-Model Encryption Transforms 19

Game G1(k)

b←$ {0, 1} ; K←$ PRF.Kg(1k)

r∗←$ {0, 1}ρ ; f ←$ ELF.IKg(1k)

x∗ ← PRFK(r∗) ; z∗ ← f(x∗)

KG←$ iO(pad(C1[K, f ]))

KH ←$KH(1k) ; (F, F−1)←$ Kg(1k)

pk ← (F,KH ,KG) ; sk ← (F−1,KH ,KG)

(st,m0,m1)←$ A
Dec(·)
1 (1k, pk)

s∗ ← z∗⊕ (mb∥0ζ) ; y∗ ← H(KH , s∗)

t∗ ← r∗⊕ y∗ ; c∗ ← F (s∗∥t∗)
b′←$ A

Dec(·)
2 (st, pk, c∗)

Return (b = b′)

Fig. 11: IND-CCA2 security game for OAEP with adversary A = (A1, A2).

function pr∗,z∗ so that on inputs not equal to r∗, f(PRFK∗(·)) is evaluated and on
input r∗, the obfuscated point function pr∗,z∗ is evaluated (and pr∗,z∗(r∗) = z∗).
The input-output behavior of the circuits in G1 and G2 are identical and they are
the same size (using padding), only their descriptions differ. Since the adversary
gets obfuscated versions of these circuits, games G1 and G2 are indistinguishable
by the security of iO.

Game G3: Previously, z
∗ was given by f(PRFK(r∗)). In G3, r

∗ is defined as
f(x∗) where x∗ is sampled randomly from the PRF range. This change is indis-
tinguishable by the pseudorandomness at punctured points of the puncturable
PRF.

Game G4: In G3 we had z∗ = f(x∗), where x∗ was random. In this game, z∗

is changed to a randomly sampled string from the range of G. This game is
indistinguishable from the previous because f is a secure augmented ELF.

Game G5: The circuit C2 now uses the un-punctured PRF key K instead of K∗,
the key punctured at r∗. Like the transition to G2, this update to C2 does not
change its input-output behavior and is therefore undetected due to iO security.

Game G6: By considering the running time of the IND-CCA adversary A,
the ELF is switched to lossy mode. This reduces the range of f(PRFK(·)) to
polynomial size. This game also updates A1’s decryption oracle to include a
“bad” flag which is silently set to true if A1 makes a decryption query c =
F (s∥(r ⊕ H(KH , s))), where s = z ⊕ (m∥0ζ), in which the last ζ bits of z
are equal to the last ζ bits of z∗. So the bad flag condition can be written as
z|ζ = z∗|ζ .

This flag does not change the input-output behavior of the decryption oracle.
Thus to bound the probability the switch from G5 to G6 is detected, we only
need to invoke indistinguishability of the ELF injective and lossy modes.

Game G7: We further update A1’s decryption oracle to return ⊥ if the bad
flag introduced in G6 is true. Hence G6 and G7 follow the “identical-until-bad”
of [12], allowing the game transition to be bounded by the probability bad is set.
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Let us consider what it means for bad to be set to true. As stated in G6, this
occurs when A1 queries their decryption oracle with a ciphertext c = F (s∥(r ⊕
H(KH , s))), where s = z ⊕ (m∥0ζ), such that z|ζ = z∗|ζ . A1 gets as input the
function F , the hash keys KH and KG. At this point, KG is the circuit described
in G3 under iO. The last ζ bits of z∗ are encoded in this circuit as the last ζ
bits of the MB-AIPO output point (since the output point is z∗). Hence the only
way A1 can obtain z∗ (with non-negligible probability) is by breaking MB-AIPO
security. So, the security of the MB-AIPO is used to bound the probability the
switch from G6 to G7 is detected.
Game G8: In this game both A1 and A2’s decryption oracles are changed to
decrypt using only the public key (F,KH ,KG) and no secret keys. These de-
cryption oracles have the same input-output behavior as the oracles in G7, and
hence their change is undetectable to the adversary. Decryption without the pri-
vate key is achieved by exploiting three properties: the polynomial-sized ELF
range, second-input extractability (SIE), common-inputs extractability (CIE),
which are algebraic properties of RSA defined by Barthe et al. [4] that hold due
to the Coppersmith algorithm [31]; we actually use generalizations due to Cao
et al. [29] that hold due to the bivariate Coppersmith algorithm [17, 31, 32].

First, note the polynomial ELF range allows z = f(PRFK(r)) to be found via
exhaustive search instead of by using F−1, unless z = z∗, the challenge point.
In G7, all valid ciphertexts were decrypted by A1’s oracles except for those with
z|ζ = z∗|ζ . In G8, with overwhelming probability, z∗ will not be in the lossy ELF
range and hence will not be found through exhaustively searching the range. So
if A1 makes a decryption query in G8 that cannot be decrypted using exhaustive
search, ⊥ is returned. But if A2 makes a valid query c in G7 with z|ζ = z∗|ζ ,
then their decryption oracle will decrypt. So to achieve this behavior in G8 we
run a CIE extractor on inputs F, c, c∗. The extractor returns s∥t and s∗∥t∗ if
z|ζ = z∗|ζ and ⊥ otherwise. If ⊥ is returned then the query was not a valid
ciphertext and ⊥ is returned by the oracle. If s∥t is returned then decryption
can be completed using the hash keys.
Game G9: In this final game the MB-AIPO output point in the circuit C2 is
switched from z∗ to random z (while z∗ is still used in the formation of s∗).
Since z is the MB-AIPO output point and z∗ was the output point in G8, the
security of MB-AIPO is used to bound the probability the adversary detects this
transition.

A2’s challenge ciphertext is c
∗ = F (s∗∥(r∗⊕H(KH , s∗))) where s∗ = z∗⊕ (mb

∥0ζ). At this point, z∗ is randomly sampled and is independent of r∗. Moreover,
KG given to A is independent of z∗. So mb is hidden in c∗ by z∗ acting as a
one-time-pad. So the challenge bit b is hidden and hence c∗ looks random to A2,
concluding the proof sketch.

4 Fujisaki-Okamoto Instantiation

Inspired by Hofheinz, Hövelmanns, and Kiltz [49], we take a modular approach
to instantiating FO. Our main contribution is to instantiate the part of the
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PKE transform from OW-PCA to IND-CCA. Here we need to assume the SE is
information-theoretic and leakage-resilient AE. Then we observe how to instan-
tiate a transform from OW-CPA to OW-PCA based on prior work assuming the
PKE is lossy. Composing these transforms provides an instantiation of FO under
the foregoing assumptions. As a point of comparison, Matsuda and Hanaoka [62]
also construct IND-CCA encryption from lossy encryption, but their construc-
tion follows a different blueprint than FO.

4.1 Cryptography with Adaptive Auxiliary Input

We define primitives in a setting where the adversary gets auxiliary information
depending on the secrets. Such a setting was considered by Dodis et al. [33]. We
further extend it to consider what we call adaptive auxiliary input, where the
adversary is given an oracle that depends on the secrets.

Adaptive distribution ensembles. An adaptive distribution ensemble is a
pair (O,D) where O is an oracle and D = {Dk = (Zk, Xk)}k∈N is a distribution
ensemble. We call (O,D) adaptive computationally unpredictable (acup) if for
every PPT algorithm A,

Pr
[
AO(z,x,·)(1k, z)⇒ x : (z, x)←$ Dk

]
≤ negl(k) .

We call it sub-exponentially unpredictable if there exists some constant 0 < α < 1
such that the above probability is bounded by O(2−k

α

). Adaptive statistically
unpredictable (asup) is defined similarly.

AE with adaptive auxiliary input. Let SE = (K, E ,D) be a private-key
encryption scheme and let A be an adversary. Let (O,D) be an adaptive dis-
tribution ensemble where O is an oracle and distribution ensemble D = {Dk =
(Zk,Kk)}k∈N is such that Kk is uniform on K(1k). For every k ∈ N, the ex-
periments in Fig. 12 define the AE-AUX game (where the code of O is elided).
Define the AE-AUX advantage of A against SE wrt. (O,D) as

Advae-aux
SE,A,O,D(k) =

∣∣Pr [AE-AUXA,1
SE,O,D(k)⇒ 1

]
−Pr

[
AE-AUXA,0

SE,O,D(k)⇒ 1
]∣∣ .

We say that SE is secure under AE-AUX wrt. (O,D) if Advae-aux
SE,A,O,D(k) is neg-

ligible in k for all PPT A.

Leakage-resilient AE. Leakage resilience [2] corresponds to the case in which
the oracle is empty (O = ε) and D is statistically unpredictable. We are not
aware if such a definition has appeared in the literature before. Leakage-resilient
AE has been studied, e.g., by Bartwell et al. [5], but they use the weaker “only
computation leaks” paradigm of Micali and Reyzin [63].

MB-AIPO with adaptive auxiliary input. MB-AIPOs with adaptive aux-
iliary input are similarly defined wrt. adaptive distribution ensembles, meaning
that in the MB-AIPO experiment (Fig. 6), A gets oracle O. We believe this
to be a natural progression of the notion, capturing the intuition that if the
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Game AE-AUXA,1
SE,D(k)

(w,K)←$ Dk

b′←$ AEK(·),VK(·),O(·)(1k, w)

Return b′

Oracle EK(m)

c←$ EK(m)

Return c

Oracle VK(c)

m← DK(c)

If m = ⊥ return 0

Return 1

Oracle O(w,K, ·)
. . .

Game AE-AUXA,0
SE,D(k)

(w,K)←$ Dk

b′←$ A$(·),⊥(·),O(·)(1k, w)

Return b′

Oracle $(m)

c←$ EK(m)

u←$ {0, 1}|c|

Return u

Oracle ⊥(c)
Return 0

Oracle O(w,K, ·)
. . .

Fig. 12: Games to define AE-AUX for private-key encryption.

input point is unpredictable relative to an oracle, the MB-AIPO is secure rel-
ative to the same oracle. The notions of acup-MB-AIPO and asup-MB-AIPO
are defined naturally. Note that in this work we only consider MB-AIPOs with
adaptive auxiliary input relative to specific adaptive distribution ensembles.

4.2 From OW-PCA to IND-CCA

Here we consider instantiability of the part of the Fujisaki-Okamoto (FO) trans-
form that upgrades OW-PCA to IND-CCA, as in Section 3.2.2 of [49]. In the full
version, we also consider insantiability of the part of the FO transform that up-
grades OW-CPA to OW-PCA, showing a positive result by making the stronger
assumption of lossiness [8] (compared to OW-CPA) on the base PKE scheme.
In fact, we show that by assuming lossiness of the base PKE scheme, we can
also construct an MB-AIPO from ELFs (mentioned in Section 5) that is secure
wrt. each of the three (adaptive) distribution ensembles required in Theorem 2.

We slightly tweak the part of the Fujisaki-Okamoto (FO) transform that up-
grades OW-PCA to IND-CCA, as in Section 3.2.2 of [49]. Note that this part
is not subject to an uninstantiability result. Here we encrypt m∥r instead of m
under the symmetric encryption scheme. Our version of this part of FO, which
we call FO, also differs from the original in that the symmetric key is set to
be the hash of r∥c1 (where c1 is the asymmetric ciphertext), instead of just
the hash of r, which is also done in [49]. Let SE = (Ksy, E sy,Dsy) and PKE =
(PKE.Kg,PKE.Enc,PKE.Dec) be private and public-key encryption schemes, re-
spectively. Let {0, 1}k and {0, 1}µ be the SE key-space and message-space, re-
spectively. Let G : KG × (PKE.Msg × PKE.Ctxt)→ {0, 1}k be the hash function
family as constructed in Fig. 14. FO[G,PKE,SE] = (FO.Kg,FO.Enc,FO.Dec) is
defined in Fig. 13.
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FO.Kg(1k)

(pk′, sk′)←$ PKE.Kg(1k)

KG←$KG(1
k)

pk ← (pk′,KG)

sk ← (sk′,KG)

Return (pk , sk)

FO.Enc(pk ,m; r)

(pk′,KG)← pk

z←$ PKE.Coins(1k)

c1 ← PKE.Enc(pk′, r; z)

K ← G(KG, r∥c1)
c2 ← E syK(m∥r)
c← (c1, c2)

Return c

FO.Dec(sk , c)

(c1, c2)← c ; (sk′,KG)← sk

r ← PKE.Dec(sk′, c1)

If r = ⊥ then return ⊥
K ← G(KG, r∥c1)
m∥r′ ← Dsy

K(c2)

If r = r′ then return m

Return ⊥

Fig. 13:Modified part of FO transform FO[G,PKE, SE] = (FO.Kg,FO.Enc,FO.Dec).

Procedure KG(1
k)

KPRF←$ PRF.Kg(1k)

f ←$ ELF.IKg(1k)

KG←$ iO(pad(s(k), f(PRFKPRF(·))))
Return KG

Procedure G(KG, x)

CG←$ KG(1
k)

Return CG(x)

Fig. 14: The hash function family G.

Theorem 2. Assume that ELF is a secure augmented ELF, PRF is a secure
puncturable PRF and iO is a sub-exponentially secure indistinguishability ob-
fuscator. Assume sub-exponentially secure MB-AIPO (1) for the adaptive dis-
tribution ensemble (PCOsk ′(·, ·),DFO1 ), (2) for adaptive distribution ensemble
(VK∗(·),DFO1 ), and (3) for the distribution D7 (Fig. 22). Moreover, assume PKE
is sub-exponentially OW-PCA and SE is sub-exponentially secure one-time AE.
Then if G is instantiated as in Fig. 14 7 , FO as defined in Fig. 13 is IND-CCA2
secure.

The full proof can be found in the full version of the paper; below we present a
proof sketch.

Game G1: We start with the standard IND-CCA2 security game with PPT
adversary A = (A1, A2), shown in Fig. 15, in which the hash function G is
given by iO(C1[K, f ]). Our goal in this game chain is to show that ciphertext
c∗2 = E syK∗(m∥r∗) looks uniformly random to any efficient adversary given the
corresponding public-key ciphertext c∗1 and KG. To do so, we again use our new
approach, incorporating an ELF and MB-AIPO into the technique of [25].

Game G2: First, we change C1 to C2 in a manner that does not change the
input/output behavior. The PRF key KPRF is replaced with a key K∗PRF which
is punctured at r∗∥c∗1. C2 depends on an MB-AIPO of the point function with
input point r∗∥c∗1 and output point K∗. On inputs x ̸= r∗∥c∗1, G(KG, x) is
evaluated as f(PRFK∗

PRF
(x)). On inputs x = r∗∥c∗1, G(KG, x) is evaluated as the

MB-AIPO and hence outputs K∗. Therefore, this game is functionally equivalent

7 Here the function pad(·.·) pads the circuit specified by the second argument to the
length specified by the first argument. We implicitly set s(k) to what is needed in
the proof; cf. [24].
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Game G1(k)

KPRF←$ PRF.Kg(1k) ; f ←$ ELF.IKg(1k)

r∗←$ G.Dom(k) ; z∗←$ PKE.Coins(1k)

(pk′, sk′)←$ PKE.Kg(1k)

c∗1 ← PKE.Enc(pk′, r∗; z∗)

t∗ ← PRFKPRF(r
∗∥c∗1) ; K∗ ← f(t∗)

KG←$ iO(pad(C1[KPRF, f ]))

pk ← (pk′,KG) ; sk ← (sk′,KG)

b←$ {0, 1} ; (st,m0,m1)←$ A
Dec(·)
1 (1k, pk)

c∗2 ← E syK∗(mb∥r∗) ; c∗ ← (c∗1, c
∗
2)

b′←$ A
Dec(·)
2 (st, pk, c∗)

Return (b = b′)

Fig. 15: IND-CCA2 security game for FO with adversary A = (A1, A2).

to the previous game and the circuits in G1 and G2 are indistinguishable by the
security of iO.

Game G3: The symmetric encryption key and MB-AIPO output point is K∗,
where, previously, f(PRFKPRF

(r∗∥c∗1)) = K∗. In the third game, K∗ becomes
K∗ = f(t∗) where t∗ is sampled uniformly at random from the PRF range. This
change is indistinguishable by the security of the PRF at punctured points.

GameG4: Next,K∗, the symmetric encryption key and MB-AIPO output point,
is switched to random. This game is indistinguishable from the previous because
f is a secure augmented ELF.

GameG5: In this game the PRF key used in the obfuscated circuit C2 is switched
from K∗PRF (punctured at r∗∥c∗1) to KPRF which is unpunctured. In the previous
game when evaluated at r∗∥c∗1, C2 would return the output of the MB-AIPO at
this point, not the ELF PRF composition. As in the transition from G2 to G3,
the circuit input-output behavior in G5 is identical to that of G4. The difference
in circuit descriptions is indistinguishable by the security property of iO.

Game G6: By considering the running time of the IND-CCA adversary A, the
ELF is switched to lossy mode, shrinking the range of f(PRFKPRF

(·)) down to
polynomial size. Previously inG5, the symmetric encryption keyK∗ was sampled
randomly from the injective ELF range, so in G6 when K∗ is sampled from this
same range, with overwhelming probability this value of K∗ will not be in the
image of f(PRFKPRF

(·)).
At this point we introduce three flags to the FO decryption oracle to track A’s

nefarious activities. InG6 these flags, bad0, bad1, and bad2, are all “silent,” mean-
ing their states do not affect the behavior of the oracles. Using three game tran-
sitions, we show that the probability of each flag being set to true is negligible.
Since the transitions from Gi to Gi+1 for i ∈ {6, 7, 8} follow the “identical-until-
bad{0,1,2}” model of [12], the game transitions can be bounded by the probability
bad{0,1,2} is set.
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Game G7: In the first of these three transitions, A1’s decryption oracle is
changed so that it returns ⊥ when bad0 is true, which occurs when A1 makes a
decryption query c = (c1, c2) where the symmetric key computed in the decryp-
tion procedure, K = G(KG, r∥c1), is such that K = K∗. Recall from G6 that f
is in lossy mode and thus with high probability the only way the current hash
circuit could output the key K∗ is if the MB-AIPO input point r∗∥c∗1 was used
as input. In other words, if bad0 is set to true, then r∥c1 = r∗∥c∗1. Thus, the
probability bad0 is set to true is bounded by the security of MB-AIPO.
Game G8: This game continues from G7 and differs in A2’s decryption oracle,
which returns ⊥ when bad1 is set to true. This occurs when A2 makes a query
c = (c1, c2) where K = K∗ (as in G7) and c1 ̸= c∗1. This can only happen if
K∗ is in the image of f , which is in lossy mode. In this game K∗ is randomly
sampled from the injective ELF range and so with high probability will not be
in the polynomial-sized lossy ELF range, and hence w.h.p. bad1 will not be set
to true.
Game G9: This game continues from G8 and differs in A2’s decryption oracle,
which returns ⊥ when bad2 is set to true. This occurs when A2 makes a query
c = (c1, c2) where K = K∗ (as in G7), c1 = c∗1, c2 ̸= c∗2, and c2 is a valid
symmetric ciphertext. If bad2 is set to true, then A2 has found a valid symmetric
ciphertext different from their challenge (c2 ̸= c∗2). To set bad2, A2 must find a
valid symmetric ciphertext under the same key as the challenge key, K∗, hence
we bound the probability bad2 is true with an AE-AUX adversary.
Game G10: In this final game, the output point of the MB-AIPO in KG is
switched from the symmetric key K∗ to a uniformly random string K. The
challenge ciphertext is still formed using K∗ but the obfuscated output point in
the hash circuit K is now independent of the challenge ciphertext given to A.
The probability that A detects the transition from G9 to G10 is bounded by the
security of MB-AIPO.

Now that the K∗ is uniformly random and independent of the public key,
c∗2 looks uniformly random by virtue of the symmetric-key encryption scheme
being IND-CPA secure concluding the proof sketch.

5 New Auxiliary-Input Multi-Bit Point Function
Obfuscators and Applications

Recall that in both our OAEP and FO instantiations we need a point function
obfuscation with multi-bit output (MB-AIPO), for uniformly random input and
output points, that is secure wrt. certain auxiliary inputs, even though MB-
AIPO is impossible in general [24]. We first show how to obtain an MB-AIPO
for statistically unpredictable inputs (albeit only polynomially secure), as needed
for our FO instantiation, from ELFs. We then show that the MB-AIPO required
for the RSA-OAEP instantiation can be built from RSA itself under a strong yet
reasonable assumption on RSA. As far as we are aware, before our work there
was only one candidate MB-AIPO, due to Bitansky and Canetti [14].

The full section can be found in the full version of the paper.
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49. D. Hofheinz, K. Hövelmanns, and E. Kiltz. A modular analysis of the Fujisaki-
Okamoto transformation. In Y. Kalai and L. Reyzin, editors, TCC 2017, Part I,
volume 10677 of LNCS, pages 341–371. Springer, Heidelberg, Nov. 2017.

50. S. Hohenberger, A. Sahai, and B. Waters. Replacing a random oracle: Full domain
hash from indistinguishability obfuscation. In P. Q. Nguyen and E. Oswald, editors,
EUROCRYPT 2014, volume 8441 of LNCS, pages 201–220. Springer, Heidelberg,
May 2014.
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Supplementary Material

A Proof of Theorem 1

Remark 1. When F is RSA, for ζ ≥ k(e2 − 1)/e2 we have that (µ, µ + ζ)-SIE
and (µ, µ + ζ)-CIE hold under the assumption that the bivariate Coppersmith
algorithm [17, 30, 32] is efficient. Therefore, under this assumption, the assump-
tions on RSA are reduced to solely sub-exponential OW (which implies sub-
exponential POW) matching the result in the RO model by Fujisaki et al. [39]
up to sub-exponentiality. Although this could be viewed as “trading heuristics,”
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Games G1(k), G2(k)

b←$ {0, 1} ; K←$ PRF.Kg(1k)

r∗←$ {0, 1}ρ ; K∗←$ PRF.Punct(K, r∗)

f ←$ ELF.IKg(1k) ; x∗ ← PRFK(r∗)

z∗ ← f(x∗) ; p←$ MB-AIPO(r∗, z∗)

KG←$ iO(pad(C1[K, f ]))

KG←$ iO(C2[K∗, f, p])

KH ←$KH(1k) ; (F, F−1)←$ Kg(1k)

pk ← (F,KH ,KG) ; sk ← (F−1,KH ,KG)

(st,m0,m1)←$ A
Dec(·)
1 (1k, pk)

s∗ ← z∗⊕ (mb∥0ζ) ; y∗ ← H(KH , s∗)

t∗ ← r∗⊕ y∗ ; c∗ ← F (s∗∥t∗)
b′←$ A

Dec(·)
2 (st, pk, c∗)

Return (b = b′)

Games G3(k), G4(k)

b←$ {0, 1} ; K←$ PRF.Kg(1k)

r∗←$ {0, 1}ρ ; K∗←$ PRF.Punct(K, r∗)

f ←$ ELF.IKg(1k) ; x∗←$ PRF.Rng(k)

z∗ ← f(x∗) ; z∗←$ G.Rng(k)

p←$ MB-AIPO(r∗, z∗)

KG←$ iO(C2[K∗, f, p])

KH ←$KH(1k) ; (F, F−1)←$ Kg(1k)

pk ← (F,KH ,KG) ; sk ← (F−1,KH ,KG)

(st,m0,m1)←$ A
Dec(·)
1 (1k, pk)

s∗ ← z∗⊕ (mb∥0ζ) ; y∗ ← H(KH , s∗)

t∗ ← r∗⊕ y∗ ; c∗ ← F (s∗∥t∗)
b′←$ A

Dec(·)
2 (st, pk , c∗)

Return (b = b′)

Games G5(k), G6(k)

b←$ {0, 1};K←$ PRF.Kg(1k); r∗←$ {0, 1}ρ

z∗←$ G.Rng(k); p←$ MB-AIPO(r∗, z∗)

f ←$ ELF.IKg(1k) ; f ←$ ELF.LKg(1k)

KG←$ iO(C2[K, f, p])

KH ←$KH(1k) ; (F, F−1)←$ Kg(1k)

pk ← (F,KH ,KG) ; sk ← (F−1,KH ,KG)

(st,m0,m1)←$ A
Dec(·)
1 (1k, pk)

(st,m0,m1)←$ A
Dec′(G6,·)
1 (1k, pk)

s∗ ← z∗⊕ (mb∥0ζ) ; y∗ ← H(KH , s∗)

t∗ ← r∗⊕ y∗ ; c∗ ← F (s∗∥t∗)
b′←$ A

Dec(·)
2 (st, pk, c∗)

Return (b = b′)

Games G7(k), G8(k)

b←$ {0, 1};K←$ PRF.Kg(1k); r∗←$ {0, 1}ρ

z∗←$ G.Rng(k) ; p←$ MB-AIPO(r∗, z∗)

f ←$ ELF.LKg(1k) ; KG←$ iO(C2[K, f, p])

KH ←$KH(1k) ; (F, F−1)←$ Kg(1k)

pk ← (F,KH ,KG) ; sk ← (F−1,KH ,KG)

(st,m0,m1)←$ A
Dec′(G7,·)
1 (1k, pk)

(st,m0,m1)←$ A
Dec′′1 (·)
1 (1k, pk)

s∗ ← z∗⊕ (mb∥0ζ) ; y∗ ← H(KH , s∗)

t∗ ← r∗⊕ y∗ ; c∗ ← F (s∗∥t∗)
b′←$ A

Dec(·)
2 (st, pk, c∗)

b′←$ A
Dec′′2 (·)
2 (st, pk, c∗)

Return (b = b′)

Fig. 16: Games G1–G8 in the proof of Theorem 1. Uses procedures in Fig. 17.
The boxes highlight the difference between adjacent games in different
cells.

efficiency of an algorithm can be studied and hopefully proven. It is also sup-
ported experimentally. Indeed, the bivariate Coppersmith algorithm works well
in practice [16, 20, 35, 57]. Interestingly, this entire issue can be avoided if the
order of the messages bits and redundancy bits in OAEP are swapped.

Remark 2. We use sub-exponential assumptions when the challenge message de-
pends on the public-key (more precisely, when the message depends on the key
for hash function G). This is because the MB-AIPO auxiliary input should con-
tain the encrypted challenge message, but the latter depends on the public key.
To solve this, the MB-AIPO guess the challenge message to be able to properly
simulate the games. So we have an exponential security loss, which we compen-
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Game G9(k)

b←$ {0, 1} ; K←$ PRF.Kg(1k)

r∗←$ {0, 1}ρ ; z∗←$ G.Rng(k)

z←$ G.Rng(k) ; p←$ MB-AIPO(r∗, z)

f ←$ ELF.LKg(1k) ; KG←$ iO(C2[K, f, p])

KH ←$KH(1k) ; (F, F−1)←$ Kg(1k)

pk ← (F,KH ,KG) ; sk ← (F−1,KH ,KG)

(st,m0,m1)←$ A
Dec′′1 (·)
1 (1k, pk)

s∗ ← z∗⊕ (mb∥0ζ) ; y∗ ← H(KH , s∗)

t∗ ← r∗⊕ y∗ ; c∗ ← F (s∗∥t∗)
b′←$ A

Dec′′2 (·)
2 (st, pk, c∗)

Return (b = b′)

Circuit C1[K, f ](r)

Return f(PRFK(r))

Circuit C2[K, f, p](r)

If p(r) = ⊥ then return f(PRFK(r))

Return p(r)

Procedure Dec′(GX , c)

(F−1,KH ,KG)← sk ; s← F−1(c)|µ+ζ

t← F−1(c)|ρ ; r ← t⊕H(KH , s)

If s|ζ = z∗|ζ then

bad← true

If X = 7 then return ⊥
m′ ← s⊕G(KG, r)

If m′|ζ = 0ζ then return m′|µ

Else return ⊥

Procedure Dec′′flag(c)

(F,KH ,KG)← pk

For all z ∈ [f(·)] do
s∥t← Extsie(F, c, z|ζ)
r ← t⊕H(KH , s)

m← G(KG, r)⊕ s ; m← m|µ

If OAEP.Enc(pk ,m; r) = c then return m

If flag = 1 then return ⊥
(s∥t, s∗∥t∗)← Extcie(F, c, c

∗)

If F (s∥t) ̸= c ∨ F (s∗∥t∗) ̸= c∗ ∨ s|ζ ̸= s∗|ζ
then

Return ⊥
r ← t⊕H(KH , s)

m← G(KG, r)⊕ s ; m← m|µ

Return m

Fig. 17: Game G9 and related procedures for the proof of Theorem 1. The
boxes in G9 highlight the differences from G8.

sate for with sub-exponential security assumptions. In the case that messages do
not depend on the public key8 we can remove all sub-exponential assumptions.

Proof. We use that OW and (µ, µ+ζ)-SIE together imply (µ, µ+ζ)-POW (recall
POW means partial one-way). The proof of the latter implication is straightfor-
ward. Consider the games G1–G9 in Figures 16 and 17.

Game G1: This is the standard IND-CCA2 game. For contradiction, suppose
PPT adversary A = (A1, A2) runs in time v and wins game G1 with non-
negligible probability ϵ. Let δ be an inverse polynomial in k such that ϵ ≥ δ
infinitely often.

8 Which is called IND-CCA-KI in [60].
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Adversary D
iO(LR(·,·,d))
1 (1k)

r∗←$ {0, 1}ρ ; K←$ PRF.Kg(1k)

f ←$ ELF.IKg(1k) ; z∗ ← f(PRFK(r∗))

K∗←$ PRF.Punct(K, r∗)

p←$ MB-AIPO(r∗, z∗)

C1←$ C1[K, f ] ; C2←$ C2[K∗, f, p]

KH ←$KH(1k) ; (F, F−1)←$ Kg(1k)

KG ← iO(LR(C1, C2, d))

pk ← (F,KH ,KG); sk ← (F−1,KH ,KG)

b←$ {0, 1} ; (st,m0,m1)←$ A
Dec(·)
1 (1k, pk)

s∗ ← z∗⊕(mb∥0ζ) ; y∗ ← H(KH , s∗)

t∗ ← r∗⊕ y∗ ; c∗ ← F (s∗∥t∗)
b′←$ A

Dec(·)
2 (st, pk, c∗)

Return (b = b′)

Adversary D2(r
∗,K∗, x∗)

f ←$ ELF.IKg(1k) ; z∗ ← f(x∗)

p←$ MB-AIPO(r∗, z∗)

KG←$ iO(C2[K∗, f, p])

KH ←$KH(1k); (F, F−1)←$ Kg(1k)

pk ← (F,KH ,KG)

sk ← (F−1,KH ,KG) ; b←$ {0, 1}
(st,m0,m1)←$ A

Dec(·)
1 (1k, pk)

s∗ ← z∗⊕(mb∥0ζ) ; y∗ ← H(KH , s∗)

t∗ ← r∗⊕ y∗ ; c∗ ← F (s∗∥t∗)
b′←$ A

Dec(·)
2 (st, pk, c∗)

Return (b = b′)

Circuit C1[K, f ](r)

Return f(PRFK(r))

Circuit C2[K∗, f, p](r)

If p(r) = ⊥ then return f(PRFK∗(r))

Return p(r)

Procedure Dec(c)

m← Dec(sk, c)

Return m

Fig. 18: iO adversary D1 (left) and PRF adversary D2 (right) in the proof
of Theorem 1 (cf. G2 and G3).

Game G2: Game G2 is similar to game G1 except that the PRF key K is
punctured at r∗. Moreover, the hash key KG does not consist of an obfus-
cation of C1[K, f ], but rather of an obfuscation of the circuit C2[K∗, f, p].
Note that the two circuits are functionally equivalent and the same size
by pad. Therefore, considering an iO adversary D1 in Fig. 18, we get that
| Pr [G1 ⇒ 1 ]− Pr [G2 ⇒ 1 ] | ≤ Advio

iO,D1,C(k).
Game G3: Game G3 is similar to game G2 except that x∗ is chosen randomly

in PRF.Rng(k). Considering the adversary D2 attacking pseudorandom func-
tion PRF at the punctured points in Fig. 18, we get that |Pr [G2 ⇒ 1 ] −
Pr [G3 ⇒ 1 ]| ≤ Advpprf

PRF,D2
(k).

Game G4: Game G4 is similar to game G3 except that z∗ is chosen randomly
in {0, 1}µ+ζ . Recalling that ELF is augmented (cf. Section 3.1) and Proposi-
tion 1, consider the adversary D3 in Fig. 19 that distinguishes the output of
augmented ELF from random. We get that | Pr [G3 ⇒ 1 ]−Pr [G4 ⇒ 1 ] | is
less than advantage of adversary D3 and hence is negligible.

Game G5: Game G5 is similar to game G4 except that an obfuscation of circuit
C2[K, f, p] is used as the hash keyKG. Note that circuit C2[K, f, p] is identical
to circuit C2[K∗, f, p], except that it uses the original PRF key K instead of
the punctured key K∗. The two circuits are functionally equivalent and the
same size by pad. Therefore, considering the adversary D4 attacking iO, we
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Adversary D3(f, z
∗)

b←$ {0, 1} ; K←$ PRF.Kg(1k)

r∗←$ {0, 1}ρ ; K∗←$ PRF.Punct(K, r∗)

p←$ MB-AIPO(r∗, z∗)

KG←$ iO(C2[K∗, f, p])

KH ←$KH(1k) ; (F, F−1)←$ Kg(1k)

pk ← (F,KH ,KG); sk ← (F−1,KH ,KG)

(st,m0,m1)←$ A
Dec(·)
1 (1k, pk)

s∗ ← z∗⊕(mb∥0ζ) ; y∗ ← H(KH , s∗)

t∗ ← r∗ ⊕ y∗ ; c∗ ← F (s∗∥t∗)
b′←$ A

Dec(·)
2 (st, pk, c∗)

Return (b = b′)

Adversary D5(f)

b←$ {0, 1} ; r∗←$ {0, 1}ρ

z∗←$ G.Rng(k) ; p←$ MB-AIPO(r∗, z∗)

K←$ PRF.Kg(1k);KG←$ iO(C2[K, f, p])

KH ←$KH(1k) ; (F, F−1)←$ Kg(1k)

pk ← (F,KH ,KG)

sk ← (F−1,KH ,KG)

(st,m0,m1)←$ A
Dec(·)
1 (1k, pk)

s∗ ← z∗⊕(mb∥0ζ) ; y∗ ← H(KH , s∗)

t∗ ← r∗ ⊕ y∗ ; c∗ ← F (s∗∥t∗)
b′←$ A

Dec(·)
2 (st, pk, c∗)

Return (b = b′)

Circuit C1[K, f ](r)

Return f(PRFK(r))

Circuit C2[K∗, f, p](r)

If p(r) = ⊥ then return f(PRFK∗(r))

Return p(r)

Procedure Dec(c)

m← Dec(sk, c)

Return m

Fig. 19: ELF adversary D3 (left) and ELF adversary D5 (right) in the proof
of Theorem 1 (cf. G4 and G6).

get that |Pr [G4 ⇒ 1 ] − Pr [G5 ⇒ 1 ]| ≤ Advio
iO,D4,C(k). We omit the code

of adversary D4 due to its similarity to adversary D1 (Fig. 18).

Game G6: Game G6 is similar to game G5 except that we change ELF to
lossy mode. That is, we generate f ← ELF.LKg(1k, poly(v, 2/δ)), where
poly(v, 2/δ) is a polynomial in two variables.9 This means no adversary
running in time v can distinguish the mode of f with more than a δ/2
probability. Considering a standard ELF adversary D5, running in time v,
attacking the key-indistinguishability property of ELF in Fig. 19, we get
that |Pr [G5 ⇒ 1 ]− Pr [G6 ⇒ 1 ]| ≤ δ/2. A1’s decryption oracle changed to
Dec′(G6, ·), defined in Fig. 17 (left). This oracle silently sets a bad flag which
is used in the analysis of the G6 to G7 transition.

Game G7: Game G7 is similar to game G6 except that A1’s decryption oracle
Dec′(G7, ·) returns ⊥ after bad is set, as defined in Fig. 17 (left). Games
G6 and G7 are identical-until-bad, and so by the fundamental lemma of
game-playing [12], we have |Pr [G6 ⇒ 1 ]−Pr [G7 ⇒ 1 ]| ≤ Pr [G6 sets bad ].
bad is set when A1 makes a decryption query c with the same “preimage
redundancy bits,” s|ζ , as the preimage of c∗. In other words, A1 makes a
query c = F (s∥r ⊕ H(KH , s)) where s = z ⊕ (m∥0ζ) such that the ζ least
significant bits of z equal the ζ LSB of z∗ (i.e. z|ζ = z∗|ζ).

9 The argument poly(v, 2/δ) is omitted from the G6 pseudo code in Fig. 16 due to its
dependence on the adversary run-time, v.
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Distribution Samp(1k)

r∗←$ {0, 1}ρ ; z∗←$ G.Rng(k)

KH ←$KH(1k) ; (F, F−1)←$ Kg(1k)

m←$ {0, 1}µ ; s∗ ← z∗⊕ (m∥0ζ)
y∗ ← H(KH , s∗) ; t∗ ← r∗⊕ y∗

c∗ ← F (s∗∥t∗) ; L← (c∗,KH , F )

Return (L, r∗, z∗)

Adversary D6(1
k, L, p)

f ←$ ELF.LKg(1k)

K←$ PRF.Kg(1k) ; (c∗,KH , F )← L

KG←$ iO(C2[K, f, p])

pk ← (F,KH ,KG) ; b
′ ← 0

Run A
DecD6

(·)
1 (1k, pk)

Return b′

Procedure DecD6(c)

(F,KH ,KG)← pk

For all z ∈ [f(·)] do
s∥t← Extsie(F, c, z|ζ) ; r ← t⊕H(KH , s)

m← G(KG, r)⊕ s ; m′ ← m|µ

If OAEP.Enc(pk ,m′; r) = c then return m′

(s∗∥t∗, s∥t)← Extcie(F, c
∗, c)

If (F (s∗∥t∗) = c∗) ∧ (F (s∥t) = c) ∧ (s∗|ζ = s|ζ) then b′ ← 1

Return ⊥

Fig. 20: Distribution Samp (left), MB-AIPO adversary D6 (right), and the
decryption oracle simulated by D6 in the proof of Theorem 1 (cf. G7).

A1’s input includes the MB-AIPO with output point z∗. So, to bound the
probability bad is set, consider the MB-AIPO adversary D6 and associated
distribution Samp in Fig. 20. (Note that Samp is a restriction of DOAEP , not
an additional assumption on the MB-AIPO.) To simulate the decryption
oracle for A, D6 uses DecD6(·) shown in Fig. 20 (bottom). In this simulated
decryption oracle, the polynomial-size of the lossy range of ELF is exploited.
D6 can iterate over the whole range of f and check if each possible value of
z works to decrypt. We claim that

Pr [G6 sets bad ] ≤ Advmb-aipo
MB-AIPO,D6,Samp(k) + qd/2

ζ ,

where qd is the number of decryption queries A1 makes. To see this by a
standard conditioning argument let’s write

Advmb-aipo
MB-AIPO,D6,Samp(k)

= |Pr
[
MB-AIPOSamp,D6,1

MB-AIPO (k)⇒ 1
]
− Pr

[
MB-AIPOSamp,D6,0

MB-AIPO (k)⇒ 1
]
| ,

where the third superscript d ∈ {0, 1} on the RHS terms indicates the chal-
lenge bit b is fixed to d in the game. We next claim

Pr
[
MB-AIPOSamp,D6,1

MB-AIPO (k)⇒ 1
]
≥ Pr [G6 sets bad ] .

Indeed, for any execution of A in G6 that sets bad, the same coin sequence
will also cause D6 to return b′ = 1. Finally

Pr
[
MB-AIPOSamp,D6,0

MB-AIPO (k)⇒ 1
]
≤ qd/2

ζ .
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This is because z∗|ζ is random and independent of A1’s view. Each query
thus causes bad to be set with probability 2−ζ , and we take a union bound
across queries.

Game G8: Game G8 is similar to game G7 except that A’s decryption oracles
are changed to Dec′′flag(·) for flag ∈ {1, 2} given to Aflag=1 and Aflag=2 respec-
tively, as defined in Fig. 17 (bottom right). We claim that Pr [G7 ⇒ 1 ] =
Pr [G8 ⇒ 1 ] and show this by arguing that the respective decryption ora-
cles have the same input-output behavior. Unlike the previous decryption
oracles, Dec′′flag(·) decrypts using the public key, not the private key, by run-

ning in more time than the adversary A. Dec′′flag(·) exhaustively searches over
all points in the polynomial-size range of the lossy-mode ELF and runs the
second-input extractor Extsie for F . Recall that on inputs F, c = F (s∥t), and
(s∥t)|µ+ζ

µ , Extsie returns s∥t.
If no message m is found via exhaustive search that encrypts to the input
ciphertext and flag = 1 (indicating A1 is making queries), then Dec′′1 (·)
returns ⊥. Hence, decryption oracles Dec′′1(·) and Dec′(G7, ·) have identical
input-output behavior.
Next A2’s interaction with the oracle is considered. If no message is found
via exhaustive search and flag = 2 (indicating A2 is making queries), the
procedure runs the common-inputs extractor Extcie on the input ciphertext
c and challenge ciphertext c∗ to decrypt the former. Recall that on inputs
F, c = F (s∥t) and c∗ = F (s∗∥t∗), Extcie returns s∥t and s∗∥t∗ if (s∥t)|µ+ζ

µ =

(s∗∥t∗)|µ+ζ
µ . This final equality can be rewritten as s|ζ = s∗|ζ .10 If the CIE

extractor also fails to produce the decryption of c, Dec′′2(·) returns ⊥. This
means A2’s query was not a valid ciphertext and so the decryption oracle
Dec(·) in G7 would have also returned ⊥. On the other hand, if Extcie outputs
preimages of c and c∗ such that s|ζ = s∗|ζ , then Dec′′2(·) can output the
decryption m, just as Dec(·) would have in G7. So, Dec

′′
2(·) and Dec(·) also

have identical input-output behavior. Now we can conclude Pr [G7 ⇒ 1 ] =
Pr [G8 ⇒ 1 ] as desired.

Game G9: Game G9 is similar to game G8 except that the hash keyKG consists
of an obfuscation of the circuit C2[K, f, p], where p has random output point
z, instead of z∗ (but the challenge c∗ still depends on z∗). Circuits C2[K, f, p]
and C2[K, f, p] only differ only on the single point where p(r) is not equal to
⊥, that is, r∗. The difference in the outcome of games G8 and G9 is bounded
by the security of the MB-AIPO. Consider distribution Samp and MB-AIPO
adversary D8 in Fig. 21.
We start by showing that Samp is a sub-exponentially unpredictable dis-
tribution. Assume that there exists an adversary that outputs r∗ on input
L = (c∗,KH , F,m) with probability greater than δ. Then we can construct a
distinguisher against H with advantage more than δ. However, we know that
H is a sub-exponential one-wayness extractor and F is sub-exponentially
(µ, µ + ζ)-POW. Hence, δ ≤ 2−k

α

for some 0 < α < 1. Thus, Samp is

10 Or written as z|ζ = z∗|ζ , since s = z ⊕ (m∥0ζ) and hence the last ζ bits of s are
equal to the last ζ bits of z, i.e., s|ζ = z|ζ .
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Distribution Samp(1k)

r∗←$ {0, 1}ρ ; z∗←$ G.Rng(k)

KH ←$KH(1k) ; (F, F−1)←$ Kg(1k)

m←$ {0, 1}µ

s∗ ← z∗⊕ (m∥0ζ) ; y∗ ← H(KH , s∗)

t∗ ← r∗⊕ y∗ ; c∗ ← F (s∗∥t∗)
L← (c∗,KH , F,m)

Return (L, r∗, z∗)

Adversary D8(1
k, L, p)

f ←$ ELF.LKg(1k);K←$ PRF.Kg(1k)

(c∗,KH , F,m)← L

KG←$ iO(C2[K, f, p])

pk ← (F,KH ,KG) ; b←$ {0, 1}
(st,m0,m1)←$ A

Dec′′1 (·)
1 (1k, pk)

If mb ̸= m then b′←$ {0, 1}
Else b′←$ A

Dec′′2 (·)
2 (st, pk, c∗)

Return (b = b′)

Fig. 21: Distribution Samp (left) and MB-AIPO adversary D8 (right) in the
proof of Theorem 1 (cf. Game G9).

sub-exponentially unpredictable. Next, consider adversaryD8 attacking MB-
AIPO obfuscator in Fig. 21. We get that

|Pr [G8 ⇒ 1 ]− Pr [G9 ⇒ 1 ]| ≤ 2µ ·Advmb-aipo
MB-AIPO,D8,Samp(k) .

The loss factor of 2µ in the advantage arises from Samp guessing the chal-
lenge message for A. This is needed because the auxiliary input for MB-AIPO
cannot depend on the challenge obfuscation. However, A selects challenge
messages after seeing the public key, which contains this challenge obfusca-
tion. To make up for this, we use sub-exponential assumptions. Let αiO be
the security constant of the iO and let MB-AIPO be sub-exponentially se-
cure with parameter αiO. Then when iO is initialized with parameter greater
than (µ+ k)1/αiO , we get that |Pr [G8 ⇒ 1 ]− Pr [G9 ⇒ 1 ]| ≤ 2−k.

Observe that adversary A running in time v wins in game G9 with probability
at least δ/2−negl(k). This quantity is at least δ/3 infinitely often, and is therefore
non-negligible.

However, we know that ciphertext c∗ in game G9 is independent of bit b.
Therefore, advantage of adversary A winning in game G9 is zero, contradicting
our initial assumption. Hence, no PPT adversary can win game G1 with non-
negligible probability. This completes the proof of Theorem 1.

B Proof of Theorem 2

Remark 3. If SE is randomized and randomness-recovering (meaning the decryp-
tor recovers the same coins used by the encryptor), then in FO.Enc, E syK(m∥r)
can be safely changed to E syK(m; r) and our modified transform introduces no
additional overhead. Essentially the same proof works as the game hops are un-
affected.

Remark 4. We comment on the existence of MB-AIPO secure wrt. the above
auxiliary input distributions. Distribution D7 (Fig. 22) is unconditionally sub-
exponentially statistically unpredictable, so any sup-MB-AIPO will meet the cor-
responding requirement. We argue in Section B.1 that if PKE is sub-exponentially
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lossy, then the oracle PCOsk ′(·, ·) can be eliminated in (PCOsk ′(·, ·),DFO1 ), and
we show in Section C.3 that under this assumption DFO1 is also sub-exponentially
statistically unpredictable. In Section 5 we give a new ELF-based sup-MB-AIPO
construction that we show in Section C.3 is secure wrt. (VK∗(·),DFO1 ) under
appropriate assumptions that make DFO1 statistically unpredictable. Unfortu-
nately, it is not known to be sub-exponentially secure (but nevertheless suffices
for public-key-independent messages); for that, we conjecture one can use the
MB-AIPO of Bitansky and Canetti [14] under a sub-exponential version of their
assumption.

Remark 5. As in the RSA-OAEP instantiation, in our FO instantiation one can
remove all sub-exponential assumptions at the price of only handling public-key-
independent message security.

Fig. 22 defines the distributions DFO1 = {DFO1,k }k∈N and D7 = {D7,k}k∈N
that will be needed for the proof.

Distribution DFO
1,k

r∗←$ G.Dom(k) ; z∗←$ PKE.Coins(1k)

K∗←$ {0, 1}k ; m←$ {0, 1}µ

(pk′, sk′)←$ PKE.Kg(1k)

c∗1 ← PKE.Enc(pk′, r∗; z∗)

c∗2←$ E syK∗(m∥r∗) ; c∗ ← (c∗1, c
∗
2)

aux ← (c∗, pk′,m)

Return (aux, r∗∥c∗1,K∗)

Distribution D7,k

K∗←$ {0, 1}k ; t←$ {0, 1}k

d← ⟨t,K∗⟩ ; r∗←$ G.Dom(k)

z∗←$ PKE.Coins(1k)

(pk′, sk′)←$ PKE.Kg(1k)

c∗1 ← PKE.Enc(pk′, r∗; z∗)

aux ← (t, d, pk′, sk′)

Return (aux , r∗∥c∗1,K∗)

Fig. 22: MB-AIPO distributions DFO
1 = {DFO

1,k }k∈N and D7 = {D7,k}k∈N.

Proof. Consider games G1–G10 in Fig. 23 and Fig. 24.

Game G1: This is the standard IND-CCA2 game. Suppose PPT adversary A =
(A1, A2) runs in time v and wins game G1 with non-negligible probability ϵ.
Let δ be an inverse polynomial in k such that ϵ ≥ δ infinitely often.

Game G2: GameG2 is similar to gameG1 except that we puncture the PRF key
KPRF at r∗∥c∗1. Moreover, the hash key KG does not consist of an obfuscation
of C1[KPRF, f ], but rather of an obfuscation of the circuit C2[K∗PRF, f, p]. Here,
p is the MB-AIPO obfuscation of the multi-bit point function pr∗∥c∗1 , K∗

and thus, p(x) outputs K∗ if and only if x = r∗∥c∗1. The two circuits are
functionally equivalent and the same size by pad. Therefore, considering the
iO adversary D1 in Fig. 25 (left) we get |Pr [G1 ⇒ 1 ] − Pr [G2 ⇒ 1 ]| ≤
Advio

iO,D1,C(k).
Game G3: Game G3 is similar to game G2 except that t∗ is chosen randomly

from PRF.Rng(k). Considering the adversary D2 attacking pseudorandom
function PRF at the punctured points in Fig. 25 (right), we get that |Pr [G2 ⇒ 1 ]−
Pr [G3 ⇒ 1 ]| ≤ Advpprf

PRF,D2
(k).
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Games G1(k), G2(k)

KPRF←$ PRF.Kg(1k) ; f ←$ ELF.IKg(1k)

r∗←$ G.Dom(k) ; z∗←$ PKE.Coins(1k)

(pk′, sk′)←$ PKE.Kg(1k)

c∗1 ← PKE.Enc(pk′, r∗; z∗)

t∗ ← PRFKPRF(r
∗∥c∗1) ; K∗ ← f(t∗)

K∗
PRF←$ PRF.Punct(KPRF, r

∗∥c∗1)
p←$ MB-AIPO(r∗∥c∗1,K∗)

KG←$ iO(pad(C1[KPRF, f ]))

KG←$ iO(C2[K∗
PRF, f, p])

pk ← (pk′,KG) ; sk ← (sk′,KG)

b←$ {0, 1} ; (st,m0,m1)←$ A
Dec(·)
1 (1k, pk)

c∗2 ← E syK∗(mb∥r∗) ; c∗ ← (c∗1, c
∗
2)

b′←$ A
Dec(·)
2 (st, pk, c∗)

Return (b = b′)

Games G3(k), G4(k)

KPRF←$ PRF.Kg(1k) ; f ←$ ELF.IKg(1k)

r∗←$ G.Dom(k) ; z∗←$ PKE.Coins(1k)

(pk′, sk′)←$ PKE.Kg(1k)

c∗1 ← PKE.Enc(pk′, r∗; z∗)

t∗←$ PRF.Rng(k) ; K∗ ← f(t∗)

K∗←$ {0, 1}k

K∗
PRF←$ PRF.Punct(KPRF, r

∗∥c∗1)
p←$ MB-AIPO(r∗∥c∗1,K∗)

KG←$ iO(C2[K∗
PRF, f, p])

pk ← (pk′,KG) ; sk ← (sk′,KG)

b←$ {0, 1}; (st,m0,m1)←$ A
Dec(·)
1 (1k, pk)

c∗2 ← E syK∗(mb∥r∗) ; c∗ ← (c∗1, c
∗
2)

b′←$ A
Dec(·)
2 (st, pk, c∗)

Return (b = b′)

Games G5(k), G6(k)

KPRF←$ PRF.Kg(1k) ; f ←$ ELF.IKg(1k)

f ←$ ELF.LKg(1k) ; z∗←$ PKE.Coins(1k)

r∗←$ G.Dom(k) ; (pk′, sk′)←$ PKE.Kg(1k)

c∗1 ← PKE.Enc(pk′, r∗; z∗) ; K∗←$ {0, 1}k

p←$ MB-AIPO(r∗∥c∗1,K∗)

KG←$ iO(C2[KPRF, f, p])

pk ← (pk′,KG) ; sk ← (sk′,KG)

b←$ {0, 1} ; (st,m0,m1)←$ A
Dec(·)
1 (1k, pk)

(st,m0,m1)←$ A
Dec′1(G6,·)
1 (1k, pk)

c2 ← E syK∗(mb∥r∗) ; c∗ ← (c∗1, c
∗
2)

b′←$ A
Dec(·)
2 (st, pk , c∗)

b′←$ A
Dec′2(G6,·)
2 (st, pk , c∗)

Return (b = b′)

Games G7(k), G8(k)

KPRF←$ PRF.Kg(1k) ; f ←$ ELF.LKg(1k)

r∗←$ G.Dom(k) ; z∗←$ PKE.Coins(1k)

(pk′, sk′)←$ PKE.Kg(1k)

c∗1 ← PKE.Enc(pk′, r∗; z∗) ; K∗←$ {0, 1}k

p←$ MB-AIPO(r∗∥c∗1,K∗)

KG←$ iO(C2[KPRF, f, p]) ; pk ← (pk′,KG)

sk ← (sk′,KG) ; b←$ {0, 1}
(st,m0,m1)←$ A

Dec′1(G7,·)
1 (1k, pk)

(st,m0,m1)←$ A
Dec′1(G8,·)
1 (1k, pk)

c2 ← E syK∗(mb∥r∗) ; c∗ ← (c∗1, c
∗
2)

b′←$ A
Dec′2(G7,·)
2 (st, pk, c∗)

b′←$ A
Dec′2(G8,·)
2 (st, pk, c∗)

Return (b = b′)

Circuit C1[KPRF, f ](x)

Return f(PRFKPRF(x))

Circuit C2[KPRF, f, p](x)

If p(x) = ⊥ then return f(PRFKPRF(x))

Return p(x)

Fig. 23: Games G1–G8 in the proof of Theorem 2. The boxes highlight the
difference between adjacent games in different cells.

Game G4: Game G4 is similar to game G3 except that K∗ is chosen randomly
from {0, 1}k. By Proposition 1 (since ELF is augmented, cf. Section 3.1), we
get that |Pr [G3 ⇒ 1 ]− Pr [G4 ⇒ 1 ]| is negligible.

Game G5: Game G5 is similar to game G4 except that an obfuscation of circuit
C2[KPRF, f, p] is used as the hash key KG, instead of C2[K∗PRF, f, p], where
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Games G9(k), G10(k)

KPRF←$ PRF.Kg(1k)

f ←$ ELF.LKg(1k)

r∗←$ G.Dom(k)

z∗←$ PKE.Coins(1k)

(pk′, sk′)←$ PKE.Kg(1k)

c∗1 ← PKE.Enc(pk′, r∗; z∗)

K∗←$ {0, 1}k

p←$ MB-AIPO(r∗∥c∗1,K∗)

K←$ {0, 1}k

p←$ MB-AIPO(r∗∥c∗1,K)

KG←$ iO(C2[KPRF, f, p])

KG←$ iO(C2[KPRF, f, p])

pk ← (pk′,KG) ; sk ← (sk′,KG)

b←$ {0, 1}
(st,m0,m1)←$ A

Dec′1(G9,·)
1 (1k, pk)

c∗2 ← E syK∗(mb∥r∗) ; c∗ ← (c∗1, c
∗
2)

b′←$ A
Dec′2(G9,·)
2 (st, pk, c∗)

Return (b = b′)

Procedure Dec′1(GX , c = (c1, c2))

(sk′,KG)← sk ; r ← PKE.Dec(sk′, c1)

If r = ⊥ then return ⊥
K ← G(KG, r∥c1)
If K = K∗ then

bad0 ← true

If (X ≥ 7) then return ⊥
m∥r′ ← Dsy

K(c2)

If r = r′ then return m

Return ⊥

Procedure Dec′2(GX , c = (c1, c2))

(sk′,KG)← sk ; r ← PKE.Dec(sk′, c1)

If r = ⊥ then return ⊥
K ← G(KG, r∥c1)
If (K = K∗) ∧ (c1 ̸= c∗1) then

bad1 ← true

If X ≥ 8 then return ⊥
m∥r′ ← Dsy

K(c2)

If (K = K∗)∧ (c2 ̸= c∗2)∧ (m ̸= ⊥) then
bad2 ← true

If X ≥ 9 then return ⊥
If r = r′ then return m

Return ⊥

Fig. 24: Games G9, G10 and bad flag decryption oracles for games G6 −G10 in
the proof of Theorem 2. Boxes in G9 highlight the differences from G8.

KPRF is the original key and K∗PRF is punctured at r∗∥c∗1 . The two circuits
are functionally equivalent since they both output f(PRFKPRF

(x)) when x ̸=
r∗∥c∗1, and output K∗ otherwise. Therefore, considering the iO adversary D4,
we get that |Pr [G4 ⇒ 1 ]− Pr [G5 ⇒ 1 ]| ≤ Advio

iO,D4,C(k). A description of
adversary D4 is omitted due to its similarity to D1 (Fig. 25, left).

Game G6: Game G6 is similar to game G5 except that ELF is switched to lossy
mode. That is, we generate f ←$ ELF.LKg(1k, poly(v, 2/δ)), where poly(v,
2/δ) is a polynomial in two variables. This means no adversary running
in time v can distinguish the mode of f with more than a δ/2 probability.
Considering a standard ELF adversaryD5 attacking lossiness of ELF running
in time v, we get that |Pr [G5 ⇒ 1 ] − Pr [G6 ⇒ 1 ]| ≤ δ/2. In Figure 23
the second input to ELF.LKg is omitted since poly(v, 2/δ) depends on the
adversary’s running time, v.

Game G6 also introduces flags bad0, bad1, and bad2 to the decryption oracles
(Fig. 24, right) which do not affect the output of G6. These flags are used to
analyze later game transitions. Let c̄ = (c̄1, c̄2) be a decryption query made
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Adversary D
iO(LR(·,·,d))
1 (1k)

KPRF←$ PRF.Kg(1k) ; f ←$ ELF.IKg(1k)

r∗←$ G.Dom(k) ; z∗←$ PKE.Coins(1k)

(pk′, sk′)←$ PKE.Kg(1k)

c∗1 ← PKE.Enc(pk′, r∗; z∗)

t∗ ← PRFKPRF(r
∗∥c∗1) ; K∗ ← f(t∗)

K∗
PRF←$ PRF.Punct(KPRF, r

∗∥c∗1)
p←$ MB-AIPO(r∗∥c∗1,K∗)

C′←$ pad(C1[KPRF, f ]) ; C′′←$ C2[K∗
PRF, f, p]

KG ← iO(LR(C′, C′′))

pk ← (pk′,KG) ; sk ← (sk′,KG)

b←$ {0, 1} ; (st,m0,m1)←$ A
Dec(·)
1 (1k, pk)

c∗2 ← E syK∗(mb∥r∗) ; c∗ ← (c∗1, c
∗
2)

b′←$ A
Dec(·)
2 (st, pk, c∗)

Return (b = b′)

Adversary D2(r
∗∥c∗1,K∗

PRF, t
∗)

f ←$ ELF.IKg(1k) ; K∗ ← f(t∗)

p←$ MB-AIPO(r∗∥c∗1,K∗)

KG←$ iO(C2[K∗
PRF, f, p])

(pk′, sk′)←$ PKE.Kg(1k)

pk ← (pk′,KG) ; sk ← (sk′,KG)

b←$ {0, 1}
(st,m0,m1)←$ A

Dec(·)
1 (1k, pk)

c∗2 ← E syK∗(mb∥r∗) ; c∗ ← (c∗1, c
∗
2)

b′←$ A
Dec(·)
2 (st, pk, c∗)

Return (b = b′)

Circuit C1[KPRF, f ](x)

Return f(PRFKPRF(x))

Circuit C2[K∗
PRF, f, p](x)

If p(x) = ⊥ then return f(PRFK∗
PRF

(x))

Return p(x)

Procedure Dec(c)

m← FO.Dec(sk, c)

Return m

Fig. 25: iO adversary D1 (left) and punctured PRF adversary D2 (right)
(cf. Theorem 2, games G2, G3 resp.).

to A’s oracle. Moreover, let K be the symmetric-key generated during the
decryption process of c (which could be ⊥). Game G6 sets. . .

• Flag bad0 when A1 makes a decryption query such that K = K∗.

• Flag bad1 when A2 makes a decryption query such that K = K∗ and
c1 ̸= c∗1.

• Flag bad2 when A2 makes a decryption query such thatK = K∗, c1 = c∗1,
c2 ̸= c∗2, and c2 is a valid ciphertext.

Game G7: Game G7 is similar to game G6 except that in G7 oracle Dec′1(G7, c)
returns ⊥ after bad0 is set. As G6, G7 are identical-until-bad0, by the funda-
mental lemma of game-playing [12], we have Pr [G6 ⇒ 1 ] ≤ Pr [G7 ⇒ 1 ] +
Pr [G6 sets bad0 ]. bad0 being set indicates that A1 was able to find K∗.
The only information on K∗ A1 gets is KG, which depends on p, which is
an MB-AIPO with output point K∗. In Fig. 26, we construct an MB-AIPO
adversary B7 for which we claim that

Pr [G6 sets bad0 ] ≤ Advmb-aipo
MB-AIPO,B7,D7

(k) + qd/2
k .
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Distribution D7,k

K∗←$ {0, 1}k ; t←$ {0, 1}k

d← ⟨t,K∗⟩ ; r∗←$ G.Dom(k)

z∗←$ PKE.Coins(1k)

(pk′, sk′)←$ PKE.Kg(1k)

c∗1 ← PKE.Enc(pk′, r∗; z∗)

aux ← (t, d, pk′, sk′)

Return (aux , r∗∥c∗1,K∗)

Adversary B7(1
k, aux , p)

(t, d, pk′, sk′)← aux

f ←$ ELF.LKg(1k) ; b′ ← 0

KPRF←$ PRF.Kg(1k)

KG←$ iO(C2[KPRF, f, p])

pk ← (pk ′,KG) ; sk ← (sk′,KG)

(st,m0,m1)←$ A
DecB7

(·)
1 (1k, pk)

Return b′

Procedure DecB7(c = (c1, c2))

r ← PKE.Dec(sk′, c1)

If p(r∥c1) = ⊥ then return FO.Dec(sk, c)

K ← p(r∥c1)
If ⟨ t,K ⟩ = d then b′ ← 1

Return ⊥
Fig. 26: MB-AIPO adversary B7, its simulated decryption oracle DecB7 , and
associated distribution D7 = {D7,k}k∈N (cf. Theorem 2, game G7).

Adversary B7 does not run A2 since only A1 has the ability to set bad0. To
justify the claim, first write

Advmb-aipo
MB-AIPO,B7,D7

(k) = |Pr
[
MB-AIPOD7,B7,1

MB-AIPO(k)⇒ 1
]
−

Pr
[
MB-AIPOD7,B7,0

MB-AIPO(k)⇒ 1
]
| ,

where the 0 and 1 superscripts represent the games with random and real
MB-AIPO challenges, respectively. Observe that

Pr
[
MB-AIPOD7,B7,1

MB-AIPO(k)⇒ 1
]
= Pr [G6 sets bad0 ] .

This is because both events occur if and only if A1 obtains K∗ from KG. In
the random challenge case, A1 gets no information on K∗ so,

Pr
[
MB-AIPOD7,B7,0

MB-AIPO(k)⇒ 1
]
≤ qd/2

k

where qd bounds A1’s number of decryption queries. Rearranging yields the
claim. Note that the MB-AIPO distribution D7 (Fig. 26, left) is statistically
unpredictable.

Game G8: GameG8 is similar to gameG7 except that inG8 A1 andA2 have up-
dated decryption oracles Dec′flag(G8, ·) where flag ∈ {1, 2} (shown in Fig. 24,

right). Dec′1(G8, ·) is the same as Dec′1(G7, ·), but Dec′2(G8, c) returns ⊥ when
bad1 is set. As G7, G8 are identical-until-bad1, by the fundamental lemma of
game-playing [12] we have Pr [G7 ⇒ 1 ] ≤ Pr [G8 ⇒ 1 ] + Pr [G7 sets bad1 ].
We claim that

Pr [G7 sets bad1 ] ≤
poly(v, 2/δ)

2k
.
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To see this, note that for a bad1 decryption query (c1 ̸= c∗1, c2) with K = K∗,
we have

iO(C2[KPRF, f, p])(r∥c1) = f(PRFKPRF
(r∥c1)) = K∗ ,

where f ←$ ELF.LKg(1k, poly(v, 2/δ)) and r ← PKE.Dec(sk ′, c1). Since K∗

is sampled independently and uniformly at random from the injective ELF
range, the probabilityK∗ is in the lossy ELF range is at most poly(v, 2/δ)/2k,
giving us the claim.

Game G9: Game G9 is similar to game G8 except that Dec′2(G9, ·) returns ⊥
when bad2 is set (shown in Fig. 24, right). As G8, G9 are identical-until-bad2,
by the fundamental lemma of game-playing [12] we have |Pr [G8 ⇒ 1 ] −
Pr [G9 ⇒ 1 ]| ≤ Pr [G8 sets bad2 ]. bad2 being set indicates that A2 has
found a valid symmetric key ciphertext under K∗ not equal to the challenge
symmetric ciphertext, c∗2.
So, consider the AE-AUX adversary B9 wrt. (PCOsk ′(·, ·),DFO2 ) in Fig. 27.
In this game B9 has, in additional to its usual two oracles, access to the
PCOsk′(·, ·) oracle11 and the auxiliary information given by the distribution
DFO2 (Fig. 27). It follows from the theorem assumptions that SE is secure wrt.
(PCOsk′(·, ·),DFO2 ) (proven in Lemma 1). Note that B9’s decryption oracle
DecB9

uses O2(·) (either the verification oracle VK(·) or ⊥(·) depending on

the game world) to determine if bad2 would have been set in G8. B9 does
not use oracle O1(·) because SE is only one-time AE. c∗2 and m are in aux
given as input to B9. This takes the place of one O1(·) query.
Recall the advantage definition,

Advae-aux
SE,B9,DFO

2 ,PCOsk′
(k) =

∣∣Pr [AE-AUXB9,1

SE,DFO
2 ,PCOsk′

(k)⇒ 1
]
−

Pr
[
AE-AUXB9,0

SE,DFO
2 ,PCOsk′

(k)⇒ 1
]∣∣ ,

where the 0 and 1 superscripts represent the games in which B9 has random
(i.e. $(·),⊥(·)) and real (i.e. EK∗(·),VK∗(·)) oracles, respectively.
Consider a G8 coin sequence on which bad2 gets set. When B9’s game is run
on the corresponding coin sequence, and when m = mb, B9 then correctly
guesses the challenge bit b. If m ̸= mb, then B9 outputs 0. Since m ∈ {0, 1}µ
is random and independent of the view of A, we have

Pr [G8 sets bad2 ] ≤ 2µ ·Advae-aux
SE,B9,DFO

2 ,PCOsk′
(k) .

We compensate for the 2µ factor using sub-exponential assumptions.
Game G10: Game G10 is similar to game G9 except that the hash key KG

consists of an obfuscation of the circuit C2[KPRF, f, p], where p has random
output point K, instead of K∗. K∗ is still used as the symmetric encryption
key. Circuits C2[KPRF, f, p] and C2[KPRF, f, p] only differ on the single point

11 Recall PCOsk′(·, ·) is a plaintext-checking oracle that on input (c,m) outputs 1 iff
PKE.Dec(sk′, c) = m.
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Adv B
O1(·),O2(·),PCOsk′ (·,·)
9 (1k, aux)

(p, c∗1, c
∗
2, pk

′,m)← aux

KPRF←$ PRF.Kg(1k)

f ←$ ELF.LKg(1k)

KG←$ iO(C2[KPRF, f, p])

pk ← (pk′,KG) ; b←$ {0, 1}
(st,m0,m1)←$ A

Dec
B9

(1,·)
1 (1k, pk)

If m ̸= mb then return 0

c∗ ← (c∗1, c
∗
2) ; win← 0

Run A
Dec

B9
(2,·)

2 (st, pk, c∗)

Return win

Distribution DFO
2,k

K∗←$ {0, 1}k ; r∗←$ G.Dom(k)

z∗←$ PKE.Coins(1k)

(pk′, sk′)←$ PKE.Kg(1k)

c∗1 ← PKE.Enc(pk′, r∗; z∗)

p←$ MB-AIPO(r∗∥c∗1,K∗)

m←$ {0, 1}µ ; c∗2 ← E syK∗(m∥r∗)
aux ← (p, c∗1, c

∗
2, pk

′,m)

Return (aux ,K∗)

Procedure DecB9
(flag, c = (c1, c2))

If flag = 2 ∧ c2 ̸= c∗2 then

d← O2(c2)

If d = 1 then win← 1

For all K ∈ [f(·)] do
m∥r ← Dsy

K(c2)

If m∥r ̸= ⊥ ∧ PCOsk′(c1, r) = 1 ∧ G(KG, r||c1) = K then

Return m

Return ⊥

Fig. 27: AE-AUX with adaptive auxiliary-input adversary B9 (top left), de-
cryption oracle (bottom), and auxiliary information distribution DFO

2 =
{DFO

2,k }k∈N (top right) (cf. Theorem 2, game G9).

where p(x) ̸= ⊥. We bound the difference between games G9 and G10 by the
security of the MB-AIPO. Consider the MB-AIPO adversary D9 wrt. adap-
tive auxiliary input distribution (PCOsk′(·, ·),DFO1 ) in Fig. 28. We claim

|Pr [G9 ⇒ 1 ]− Pr [G10 ⇒ 1 ]| ≤ 2µ ·Advmb-aipo
MB-AIPO,D9,PCOsk′ ,DFO

1
(k) .

To justify this, we write

Advmb-aipo
MB-AIPO,D9,PCOsk′ ,DFO

1
(k) = |Pr

[
MB-AIPO

PCOsk′ ,DFO
1 ,D9,1

MB-AIPO (k)⇒ 1
]
−

Pr
[
MB-AIPO

PCOsk′ ,DFO
1 ,D9,0

MB-AIPO (k)⇒ 1
]
| ,

where the 0 and 1 superscripts represent the games with random (i.e. p) and
real (i.e. p) MB-AIPO challenges, respectively. Now observe

Pr
[
MB-AIPO

PCOsk′ ,DFO
1 ,D9,1

MB-AIPO (k)⇒ 1
]
= 1/2µ · Pr [G9 ⇒ 1 ] .

To see this, consider running MB-AIPO
PCOsk′ ,DFO

1 ,D9,1
MB-AIPO (k) and G9 over the

same sequence of coins. On a coin sequence where the challenge message
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Distribution DFO
1,k

r∗←$ G.Dom(k) ; z∗←$ Coins(1k)

K∗←$ {0, 1}k ; m←$ {0, 1}µ

(pk′, sk′)←$ PKE.Kg(1k)

c∗1 ← PKE.Enc(pk′, r∗; z∗)

c∗2 ← E syK∗(m∥r∗) ; c∗ ← (c∗1, c
∗
2)

aux ← (c∗, pk′,m)

Return (aux, r∗∥c∗1,K∗)

Adversary D
PCOsk′ (·,·)
9 (1k, aux , p)

KPRF←$ PRF.Kg(1k) ; f ←$ ELF.LKg(1k)

(c∗, pk′,m)← aux

KG←$ iO(C2[KPRF, f, p])

pk ← (pk ′,KG) ; b←$ {0, 1}
(st,m0,m1)←$ A

DecSim(·)
1 (1k, pk)

If mb ̸= m then b′←$ {0, 1}
Else b′←$ A

DecSim(·)
2 (st, pk, c∗)

Return (b = b′)

Procedure DecSim(c = (c1, c2))

For all K ∈ [f(·)] do
m∥r ← Dsy

K(c2)

If m∥r ̸= ⊥ ∧ PCOsk′(c1, r) = 1 ∧G(KG, r∥c1) = K then

Return m

Return ⊥

Fig. 28: MB-AIPO adversary D9, associated distribution DFO
1 = {DFO

1,k }k∈N,
and simulated decryption oracle DecSim (cf. Theorem 2, game G10).

chosen by DFO1,k is correct (m = mb), A’s view is the same in both G9

and in MB-AIPO
PCOsk′ ,DFO

1 ,D9,1
MB-AIPO (k). The factor of 2−µ is present because

Pr [m = mb | m←$ {0, 1}µ ] = 2−µ where mb is one of the two messages
output by A1. A similar argument yields

Pr
[
MB-AIPO

PCOsk′ ,DFO
1 ,D9,0

MB-AIPO (k)⇒ 1
]
= 1/2µ · Pr [G10 ⇒ 1 ] .

To make up for the 2µ factor we use sub-exponential assumptions. In par-
ticular, since MB-AIPO is sub-exponentially secure with parameter αiO (let
αiO be the security constant of the iO) when iO is initialized with parameter
greater than (µ+ k)1/αiO , we get that |Pr [G9 ⇒ 1 ]− Pr [G10 ⇒ 1 ]| ≤ 2−k.

Adversary A running in time v wins in game G10 with probability at least
δ/2− negl(k). This quantity is at least δ/3 infinitely often, and is therefore non-
negligible. However, considering the SE IND-CPA12 adversary D10, we obtain
that Pr [G10 ⇒ 1 ] ≤ Advind-cpa

SE,D10
(k). We omit the construction of D10 and note

that since c∗1, c
∗
2 look independent of each other to A in game G10 it is straight

forward to construct. Therefore, we have that δ/3 ≤ Advind-cpa
SE,D10

(k). Since SE is

assumed to be IND-CCA secure (and hence IND-CPA secure), Advind-cpa
SE,D10

(k) is
negligible, which is a contradiction. Hence, there are no PPT adversaries that
can win game G1 with non-negligible probability.
To complete the proof we prove the following lemma (invoked in game G9 above).

12 SE is assumed to be AE, implying it is IND-CCA secure, which in turn implies it is
also IND-CPA secure.



46 Alice Murphy, Adam O’Neill, and Mohammad Zaheri

Adv BVK∗ (·)(1k, aux , p)

win← 0 ; (c∗1, c
∗
2, pk

′,m)← aux

L← (p, c∗1, c
∗
2, pk

′,m)

Run AEK∗ (·),sim-VK∗ (·),PCOsk′ (·,·)(1k, L)

Return win

Procedure Sim-VK∗(c)

If VK∗(c) = 1 ∧ c ̸= c∗2 then

win← 1

Return VK∗(c)

Distribution DFO
1,k

r∗←$ G.Dom(k) ; K∗←$ {0, 1}k

m←$ {0, 1}µ ; (pk′, sk′)←$ LPKE.Kg(1k)

c∗1←$ LPKE.Enc(pk′, r∗)

c∗2←$ E syK∗(m∥r∗) ; c∗ ← (c∗1, c
∗
2)

aux ← (c∗, pk′,m)

Return (aux, r∗∥c∗1,K∗)

Distribution DFO
2,k

K∗←$ {0, 1}k ; r∗←$ G.Dom(k)

z∗←$ PKE.Coins(1k)

(pk′, sk′)←$ PKE.Kg(1k)

c∗1 ← PKE.Enc(pk′, r∗; z∗)

p←$ MB-AIPO(r∗∥c∗1,K∗)

m←$ {0, 1}µ ; c∗2 ← E syK∗(m∥r∗)
aux ← (p, c∗1, c

∗
2, pk

′,m)

Return (aux ,K∗)

Fig. 29: MB-AIPO adversary B and the simulated VK∗ oracle for running A
(cf. Lemma 1).

Lemma 1. Let SE be sub-exponentially secure AE, and let MB-AIPO be a sub-
exponentially secure MB-AIPO wrt. adaptive distribution ensemble (VK∗(·),DFO1 ).
Then SE is sub-exponentially secure AE-AUX wrt. (PCOsk′(·, ·),DFO2 ).

Proof. The idea is to show that the adaptive auxiliary information looks random
to an AE-AUX adversary A and hence does not significantly increase its advan-
tage. In order to do so, we give an MB-AIPO adversary B in Fig. 29 wrt. (VK∗(·),
DFO1 ) that runs A. When p←$ MB-AIPO(r∗∥c∗1,K), the auxiliary information is
independent of the symmetric key K∗. Hence, there is an AE adversary B′ such
that

Advae-aux
SE,A,PCOsk′ (k) ≤ Advae

SE,B′(k) +Advmb-aipo
MB-AIPO,B,VK∗ ,D(k) .

B.1 From Lossy to OW-PCA

In the proof of Theorem 2 we assumed OW-PCA is satisfied by PKE. How-
ever, this may not be the case for a candidate PKE scheme. The step missing
in Fig. 13 vs. the original is Encrypt-with-Hash EwH[PKE,H] [6], which converts
a randomized PKE scheme PKE into a deterministic one by using the hash H
on the message as the encryption coins. See [49, Section 3.1].

Unfortunately, scheme EwH[PKE,H] is uninstantiable [23] for IND-CPA se-
cure PKE, in that there exists an IND-CPA PKE such that for every choice of
H, EwH[PKE,H] is insecure. Thus, in order to instantiate it, we need to make
assumptions on PKE that do not follow from IND-CPA.

Instantiating EwH. Interestingly, Hemenway and Ostrovsky [48, Corollary 2]
show that EwH[PKE,H], where PKE is lossy and H is a pairwise independent
hash, is a sufficiently lossy TDF [65] to be OW-CPA. The result requires that the
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PKE messages are ω(log k)-bits longer than the coins. We further need to assume
sub-exponential indistinguishability and sub-exponential lossiness of PKE, which
can be built from a variety of sub-exponential assumptions.

Claim. Let LPKE = (Kg,Kg′,Enc,Dec) be a lossy encryption scheme and let H
be a pairwise independent hash. Then PKE = EwH[LPKE,H] is OW-PCA.

Proof. Consider the OW-PCA adversary A against PKE in Fig. 30, we argue
its advantage is negligible. First we switch the PCA oracle to a “public” mode,
which uses pk instead of sk : PCO′pk (m, c) returns 1 iff Enc(pk ,m; r′) = c for

some r′ ∈ Coins(1k). (The oracle can be eliminated at this point.) Next, LPKE is
switched to lossy mode. If A’s advantage changes, we can build a corresponding
distinguisher against LPKE: On input pk, the distinguisher simulates the PCA
game for A given the input pk. In the final game we know that by Hemenway-
Ostrovsky [48] PKE is a lossy TDF and hence OW-PCA advantage is small (the
PCO oracle uses pk , so it does not affect this step). ⊓⊔

Games G1(k), G2(k)

(pk , sk)←$ Kg(1k)

m←$ Msg(1k) ; r←$ Coins(1k)

c← Enc(pk ,m; r)

m′←$ APCOsk (·,·)(pk , c)

m′←$ APCO′
pk (·,·)(pk , c)

If m = m′ then return 1

Else return 0

Game G3(k)

pk ←$ Kg′(1k)

m←$ Msg(1k) ; r←$ Coins(1k)

c← Enc(pk ,m; r)

m′←$ APCO′
pk (·,·)(pk , c)

If m = m′ then return 1

Else return 0

Fig. 30: Game chain for the above claim.

Getting OW-PCA with public checkability. Observe that any instan-
tiation of EwH that is OW-CPA is also OW-PCA. Intuitively, this is because
of “re-encrypt on decryption.” Namely, given (pk ,K, c,m) anyone can deter-
mine whether or not Enc(pk ,m;HK(m)) = c, which can be seen as identical
to the check made by Dec′(sk , c). In other words, the PCOsk ′(·, ·) oracle can be
publicly computed in an equivalent way, which we call public checkability. OW-
PCA with public checkability allows us to eliminate the PCOsk ′(·, ·) oracle from
(PCOsk ′(·, ·),DFO1 ) in Theorem 2 when PKE is lossy. That is, the distribution
ensemble is no longer adaptive.
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C New Auxiliary-Input Multi-Bit Point Function
Obfuscators and Applications

C.1 Canonical Point Function Obfuscators

Canonical AIPO. We define a special kind of AIPO called canonical13, which
is specified by a triple of algorithms AIPO = (AIPO.Kg,AIPO.Obf,AIPO.Ver).
Algorithm AIPO.Kg on input 1k returns a key K. Algorithm AIPO.Obf on inputs
K,x returns c. Algorithm AIPO.Ver on inputs K, c, x′ returns a bit b. We call
AIPO.Ver trivial if it returns AIPO.Obf(K,x′) = c, in which case we usually omit
it. For correctness, we additionally require that for all k ∈ N, AIPO.Ver(K, c, x′)
returns 1 when x′ = x and returns ⊥ otherwise, for all possible outcomes of
K←$ AIPO.Kg(1k) and c← AIPO.Obf(K,x).

This formalism is loosely taken from [26]. One can think of c as the “obfus-
cated program” which can be run on x′ via AIPO.Ver with K. Moreover, a fresh
key K must be generated for each run of AIPO.Obf.

Canonical MB-AIPO. A canonical MB-AIPO is similarly defined by a triple of
algorithmsMB-AIPO = (MB-AIPO.Kg,MB-AIPO.Obf,MB-AIPO.Ver). Algorithm
MB-AIPO.Kg takes as input 1k and outputs a key K. MB-AIPO.Obf takes as in-
puts K,x, y returns c. Algorithm MB-AIPO.Ver on inputs K, c, x′ returns y or ⊥.
For correctness, we additionally require that for all k ∈ N,MB-AIPO.Ver(K, c, x′)
returns y when x′ = x and returns ⊥ otherwise, for all possible outcomes of
(z, x, y)←$ Dk, K←$ MB-AIPO.Kg(1k), and c← MB-AIPO.Obf(K,x, y).

C.2 MB-AIPO from ELFs

Our construction is based on a sup-AIPO of Zhandry and a slight variant of the
Correlated Cooked Leftover Hash Lemma, so we first provide these.

Zhandry’s AIPO. Let ELF be an ELF with domain ELF.Dom(k), where k is
the security parameter. Let H be a family of pairwise independent hash func-
tions with H : KH × {0, 1}n → ELF.Dom(k), where |{0, 1}n|2/|ELF.Dom(k)| is
negligible. It then follows with overwhelming probability that for all KH ∈ KH ,
H(KH , ·) is injective. With this hash function, we recreate a construction due to
Zhandry [72]14 as the canonical AIPO sAIPO[H,ELF] = (sAIPO.Kg, sAIPO.Obf,
sAIPO.Ver) in Figure 31. Note that we will often write f(H(KH , x)) instead of
sAIPO.Obf(x,KH , f).

13 Which are, in essence, just a different type of notation to express AIPOs.
14 Specifically, construction 4.3 in [72].
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sAIPO.Kg(1k)

KH ←$KH(1k)

f ←$ ELF.IKg(1k)

Return (KH , f)

sAIPO.Obf(KH , f, x)

c← f(H(KH , x))

Return c

sAIPO.Ver(KH , f, c, x′)

c′ ← sAIPO.Obf(KH , f, x′)

If c′ = c then return 1

Else return ⊥

Fig. 31: Point function obfuscator sAIPO[H,ELF] = (sAIPO.Kg,
sAIPO.Obf, sAIPO.Ver).

A crooked leftover hash lemma for correlated sources. Fuller et
al. [40] prove a generalization of the crooked leftover hash lemma [34] to corre-
lated sources. We present a modified version of this lemma that extends it to
multiple functions:

Lemma 2. Let H : K × D → R be a 2τ -wise function for t > 0, and let
F = (f1, . . . , fτ ) be a tuple of functions, where fi : R → Si for 1 ≤ i ≤ τ . Let
X = (X1, . . . , Xτ ) where the Xi’s are random variables over D with min-entropy
H∞(Xi) ≥ µ for all 1 ≤ i ≤ τ and Pr [Xi = Xj ] = 0 for all 1 ≤ i ̸= j ≤ τ .
Then

∆((K,F(H(K,X))), (K,F(U))) ≤ 1

2

√
τ2 (maxi |Si|)τ

2µ
,

where K←$K and U = (U1, ..., Uτ ) where the Ui’s are all uniform and inde-
pendent over R. Here the functions in F operate in order on the corresponding
components.

The proof of Lemma 2 is omitted due to its similarity to the original proof
in [40], which only differs from the above bound in that |S|τ takes the place
of maxi |Si|τ . This change is a result of allowing each function f1, . . . , fτ to be
a different function with a different co-domain (in [40] these functions were all
equal, f1 = · · · = fτ ).

Our construction. To define our MB-AIPO we use a modification of the
transformation due to Canetti-Dakdouk [27] that builds an MB-AIPO from an
AIPO.

Let ELF be an ELF and let H : KH × {0, 1}n → ELF.Dom be a family of
(2t + 2)-wise independent hash functions indexed by keys in KH . In Figure 32
we define our sup-MB-AIPO as the canonical MB-AIPO sMB-AIPO[H,ELF] =
(sMB-AIPO.Kg, sMB-AIPO.Obf, sMB-AIPO.Ver). On input 1k algorithm sMB-AIPO.
Kg returns KH ←$KH(1k). Algorithm sMB-AIPO.Obf on inputs (KH , x, y, φ)
returns a pair (f , c); vs. the syntax in Section C.1, we introduce an additional
“mode” input bit φ to specify the ELF mode of operation in the proof of se-
curity. Algorithm sMB-AIPO.Ver on inputs (KH , (f , c), x′) returns the string y
or ⊥. We ensure that each AIPO building the sequence is an obfuscation of a
different point function. This additional requirement is in place to ensure the
conditions of Lemma 2 are met so it may be used in the proof of security.

Theorem 3. Let D = {Dk = (Zk, Xk, Yk)}k∈N ∈ Dsup. Let ELF be a secure
ELF and let H : KH × {0, 1}n → ELF.Dom be (2t + 2)-wise independent.
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sMB-AIPO.Obf(KH , x, y, φ)

t← |y|
For i from 1 to t do

f inj
i ←$ ELF.IKg(1k) ; f los

i ←$ ELF.LKg(1k, r)

If y[i] = 1 then

xi,y ← x+ i ; ci ← fφ
i (H(KH , xi,y))

Else

xi,y←$ {0, 1}n

While ∃ j ∈ [1, i− 1] such that xi,y = xj,y do

While ∃ j ∈ [1, t+1] such that xi,y = x+ j do

xi,y←$ {0, 1}n

ci ← fφ
i (H(KH , xi,y))

f inj
t+1←$ ELF.IKg(1k) ; f los

t+1←$ ELF.LKg(1k, r)

xt+1,y ← x+ t+ 1 ; ct+1 ← fφ
t+1(H(KH , xt+1,y))

c← [c1, . . . , ct+1] ; f ← [fφ
1 , . . . , f

φ
t+1]

Return (f , c)

sMB-AIPO.Ver(KH , (f , c), x′)

(fφ
1 , . . . , f

φ
t+1)← f

(c1, . . . , ct+1)← c

If fφ
t+1(H(KH , x′ + t + 1)) ̸= ct+1

then

Return ⊥
Else

For i from 1 to t do

If fφ
i (H(KH , x′ + i)) = ci

then yi ← 1

Else yi ← 0

y ← y1, . . . , yt

Return y

Fig. 32: Construction sMB-AIPO[H,ELF] = (sMB-AIPO.Kg, sMB-AIPO.Obf,
sMB-AIPO.Ver). sMB-AIPO.Kg returns K←$KH(1k) on input 1k.

Then, sMB-AIPO[H,ELF] = (sMB-AIPO.Kg, sMB-AIPO.Obf, sMB-AIPO.Ver) de-
fined in Fig. 32 is a secure canonical MB-AIPO for D when H∞(Xk) ≥ 2 log[t+
1]+(t+1) log[maxi |Si|]−2 log ϵ−2, where ϵ is negligible in the security parameter
k.

Remark 6. Our MB-AIPO construction is similar to the Canetti-Dakdouk (CD)
transform [27] applied to the sup-AIPO of Zhandry [72], except that we use the
same hash key for each AIPO instead of a fresh one, and we have to ensure
each hash input is distinct. It may also be possible to analyze the MB-AIPO
construction actually obtained by applying the CD transform to Zhandry’s sup-
AIPO, which uses a fresh pairwise independent hash key for each AIPO, by
modifying and proving a correlated CLHL accordingly. (It does not work to
treat the underlying AIPO as a black-box in the analysis.) However, we chose
our MB-AIPO to be most compatible with the existing correlated CLHL.

Proof. In this proof we often refer to sAIPO[H,ELF] and sMB-AIPO[H,ELF] sim-
ply as sAIPO and sMB-AIPO, respectively, since the definitions of H and ELF
remain unchanged throughout.

For the sake of contradiction, suppose a PPT MB-AIPO adversary A runs
in time v and distinguishes between the distributions

(1k, z, f inj
1 (H(KH , x1,y)), . . . , f

inj
t+1(H(KH , xt+1,y)))

and (1k, z, f inj
1 (u1), . . . , f

inj
t+1(ut+1))
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Game G1(k)

b←$ {0, 1} ; (z, x, y0)←$ Dk

y1←$ {0, 1}|y0|

KH ←$ sMB-AIPO.Kg(1k)

(f , c)←$ sMB-AIPO.Obf(KH , x, yb, inj)

b′←$ A(1k, z,KH , f , c)

Return (b = b′)

Games G2.i(k) for 1 ≤ i ≤ t+ 1

b←$ {0, 1} ; (z, x, y0)←$ Dk

y1←$ {0, 1}|y0| ; KH ←$ sMB-AIPO.Kg(1k)

(f , c)←$ sMB-AIPO.Obf(KH , x, yb, inj)

(f los, clos)←$ sMB-AIPO.Obf(KH , x, yb, los)

For j from 1 to i do

f [j]← f los[j] ; c[j]← clos[j]

b′←$ A(1k, z,KH , f , c)

Return (b = b′)

Game G3(k)

b←$ {0, 1} ; (z, x, y0)←$ Dk

y1←$ {0, 1}|y0|

KH ←$ sMB-AIPO.Kg(1k)

(f , c)←$ sMB-AIPO.Obf(KH , x, yb, los)

(f los
1 , . . . , f los

t+1)← f

For j from 1 to t+ 1 do

uj ←$ ELF.Dom(k) ; c[j]← f los
j (uj)

b′←$ A(1k, z,KH , f , c)

Return (b = b′)

Games G4.i(k) for 1 ≤ i ≤ t+ 1

b←$ {0, 1} ; (z, x, y0)←$ Dk

y1←$ {0, 1}|y0| ; KH ←$ sMB-AIPO.Kg(1k)

(f , c)←$ sMB-AIPO.Obf(KH , x, yb, inj)

(f los, clos)←$ sMB-AIPO.Obf(KH , x, yb, los)

(f inj
1 , . . . , f inj

t+1)← f ; (f los
1 , . . . , f los

t+1)← f los

For j from 1 to i do

uj ←$ ELF.Dom(k) ; c[j]← f inj
j (uj)

For j from i+ 1 to t+ 1 do

uj ←$ ELF.Dom(k)

c[j]← f los
j (uj) ; f [j]← f los

j

b′←$ A(1k, z,KH , f , c)

Return (b = b′)

Fig. 33: Game chain for the proof of Theorem 3.

with non-negligible advantage at least ϵ, for all k ∈ N,KH ←$ sMB-AIPO.Kg(1k),
(z, x, y)←$ Dk, and fi←$ ELF.IKg(1k) and ui←$ ELF.Dom(k) for all 1 ≤ i ≤
|y|+1. This means there exists an inverse polynomial in the security parameter,
δ, such that ϵ ≥ δ infinitely often. We now describe the game chain in Fig. 33
where A is a PPT MB-AIPO adversary.

Game G1: This is the standard MB-AIPO security game.

Games G2.i for 1 ≤ i ≤ t+ 1: Game G2.i is similar to game G1 except that the
first i ELFs in f are in lossy mode and the first i strings in c were computed
using these lossy-mode ELFs. Note that G2.t+1 is the game in which the MB-
AIPO given to A is generated with all ELFs in lossy mode. The lossy mode
ELFs are generated via ELF.LKg(1k, poly(v, δ/(3t+3))) where poly(v, δ/(3t+
3)) is a polynomial chosen such that an ELF adversary running in time v
cannot distinguish between ELFs generated from ELF.LKg(1k, poly(v, δ/(3t+
3))) vs. ELF.IKg(1k) except with probability less than δ/(3t+ 3).

We can bound the difference in A’s distinguishing advantage between games
G2.i−1 and G2.i for 1 ≤ i ≤ t + 1 (where we let G2.0 = G1) with an
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ELF adversary, B running in time v, as shown in Figure 34. Hence, we
get |Pr [G2.i−1 ⇒ 1 ]− Pr [G2.i ⇒ 1 ]| < δ/(3t+ 3).

Adversary B(1k, fi)

b←$ {0, 1} ; (z, x, y0)←$ Dk

y1←$ {0, 1}|y0| ; KH ←$ sMB-AIPO.Kg(1k)

(f , c)←$ sMB-AIPO.Obf(KH , x, yb, inj)

(f los, clos)←$ sMB-AIPO.Obf(KH , x, yb, los)

For j from 1 to i− 1 do

f [j]← f los[j] ; c[j]← clos[j]

f [i]← fi ; c[i]← fi(H(KH , xi,yb))

b′←$ A(1k, z,KH , f , c)

Return (b = b′)

Fig. 34: ELF adversary B running MB-AIPO adversary A in the proof of
Theorem 3 (cf. G2.i).

Game G3: G3 is similar to game G2.t+1 except all AIPOs in the sequence have
been switched to a version of sAIPO without the hash function and the inputs
have all been switched to random. By the Crooked LHL for correlated sources
(Lemma 2) we know that

∆( (KH ,(f los
1 (H(KH , x1,yb

)), . . . , f los
t+1(H(KH , xt+1,yb

)))) ,

(KH , (f los
1 (u1), . . . , f

los
t+1(ut+1))) ) ≤

1

2

√
(t+ 1)2 (maxi |Si|)t+1

2µ
,

where µ = 2 log[t+1]+(t+1) log[maxi |Si|]−2 log ϵ−2. Hence G2.t+1 and G3

are indistinguishable except with probability 1
2

√
(t+ 1)2 (maxi |Si|)t+1 2−µ,

which is negligible in k. We then may write |Pr [G2.t+1 ⇒ 1 ]−Pr [G3 ⇒ 1 ]| ≤
negl(k).

Games G4.i for 1 ≤ i ≤ t+ 1: Game G4.i is similar to game G3 except that the
first i elements in the MB-AIPO sequence where generated in injective mode
instead of lossy mode. By a similar argument as in Figure 34 used for G2.i,
we get that for 1 ≤ i ≤ t+1, |Pr [G4.i−1 ⇒ 1 ]−Pr [G4.i ⇒ 1 ]| < δ/(3t+3)
(where we let G4.0 = G3).
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Putting the game chain together gives

|Pr [G1 ⇒ 1 ]− Pr [G3 ⇒ 1 ]| =

|Pr [G1 ⇒ 1 ]− Pr [G2.1 ⇒ 1 ]|+ |Pr [G2.1 ⇒ 1 ]− Pr [G2.2 ⇒ 1 ]|+ . . .

+ |Pr [G2.t+1 ⇒ 1 ]− Pr [G3 ⇒ 1 ]|+ |Pr [G3 ⇒ 1 ]− Pr [G4.1 ⇒ 1 ]| +

· · ·+ |Pr [G4.t ⇒ 1 ]− Pr [G4.t+1 ⇒ 1 ]|

<
(t+ 1)δ

3t+ 3
+ negl(k) +

(t+ 1)δ

3t+ 3

<
2δ

3
+ negl(k) .

Since negl(k) < δ/3, the RHS of the above inequality is strictly less than δ,
meaning ϵ < δ, contradicting our initial assumption about the adversary.

C.3 Application of the ELF-based MB-AIPO to Fujisaki-Okamoto

We show that under suitable assumptions, our ELF-based-MB-AIPO is secure
wrt. the first and second adaptive auxiliary inputs that we require in Theorem 2;
the third is statistically unpredictable so it directly follows from Theorem 3.
Note that the above is not sub-exponential security and only suffices for public-
key-independent messages. To achieve sub-exponential security, we conjecture
the prior MB-AIPO of Bitansky and Canetti [14] suffices under sub-exponential
security of their assumption.

Security wrt. the first adaptive auxiliary input. We argued in Sec-
tion B.1 that we can remove oracle PCOsk ′(·, ·) by assuming PKE is lossy. We
therefore concentrate on showing DFO1 is statistically unpredictable. It suffices
to show the distribution ensemble is indistinguishable from statistically a unpre-
dictable distribution.

Proposition 2. Suppose LPKE is lossy and SE is one-time information-theoretic
AE. Then there exists DFO′

1 ∈ Dsup such that DFO1 ≈c DFO
′

1 .

Proof. We recall the distribution

Distribution DFO1,k

r∗←$ G.Dom(k) ; K∗←$ {0, 1}k
m←$ {0, 1}µ ; (pk′, sk′)←$ LPKE.Kg(1k)
c∗1←$ LPKE.Enc(pk′, r∗)
c∗2←$ E syK∗(m∥r∗) ; c∗ ← (c∗1, c

∗
2)

aux ← (c∗, pk′,m)
Return (aux, r∗∥c∗1,K∗)

Let DFO′

1 be like DFO1 except pk′ is generated in lossy mode. We need to show
that there is a computationally indistinguishable DFO′

1 such that for any un-
bounded predictor P , Pr

[
P (1k, aux)⇒ r∗∥c∗1

]
(over the coins for sampling from
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DFO′

1 and those of P ) is negligibly small. Observe that c∗1 is given in aux so we
focus on the probability of P outputting r∗.

Consider a game chain where: In game H0, P gets aux as in DFO′

1 . In game
H1 we change c∗1 to an encryption of the zero string of length |r∗| rather than
an encryption of r∗. Finally, in game H2 we change c∗2 to an encryption of m∥0
rather than m∥r∗. Note that in H2, P has no information on r∗ so,

Pr [H2 ⇒ 1 ] = 1/|G.Dom(k)| .

It remains to argue that

|Pr [Hi ⇒ 1 ]− Pr [Hi+1 ⇒ 1 ]|

is negligible for i ∈ {0, 1}. For i = 0, let A = (A1, A2) be the IND-CPA
adversary against LPKE that works as follows. On inputs 1k, pk′, A1 outputs
m0 = r∗,m1 = 0 where r∗←$ G.Dom(k). A2 is then given pk′,m0,m1, c1←$

LPKE.Enc(pk′,mb). A2 samples K∗←$ {0, 1}k,m←$ {0, 1}µ and computes c2
←$ E syK∗(m∥m0). Finally, A2 runs the predictor P (1k, ((c1, c2), pk

′,m)).
When b = 0, A simulatesH0 for the predictor and when b = 1, A simulatesH1

for the predictor. If P returnsm0∥c1, then A2 outputs b
′ = 0. If P returnsm1∥c1,

then A2 outputs b′ = 1. Thus |Pr [H0 ⇒ 1 ] − Pr [H1 ⇒ 1 ]| ≤ Advind-cpa
LPKE,A(k).

Note that LPKE is lossy and hence this quantity is negligible.
Case i = 1 represents the probability of detecting the change from c∗2←$

E syK∗(m∥r∗) to c2←$ E syK∗(m∥0). This probability is bounded using the information-
theoretic IND-CPA security of SE. Let A be an IND-CPA adversary against SE.
A generates r∗←$ G.Dom(k),m←$ {0, 1}µ, and c1←$ LPKE.Enc(pk′, 0). A runs
their IND-CPA game oracle E syK∗(LR(·, ·, b)) on the two inputs m0 = m∥r∗ and
m1 = m∥0, and gets a ciphertext c′2 = E syK∗(mb∥r∗) in return. A then runs the
predictor P (1k, ((c1, c

′
2), pk

′.m)).
When b = 0, A simulates H1 for the predictor and when b = 1, A simulates

H2 for the predictor. If P returns m∥r∗, then A outputs b′ = 0. If P returns

m∥0, then A outputs b′ = 1. Thus |Pr [H1 ⇒ 1 ]−Pr [H2 ⇒ 1 ]| ≤ Advind-cpa
SE,A (k),

which is negligible by security of SE, completing the proof.

Security wrt. the second adaptive auxiliary input. We now establish
that our ELF-based sup-MB-AIPO is secure wrt. the second auxiliary input
under appropriate assumptions. Before our main theorem we start with the fol-
lowing lemma.

Lemma 3. Let LPKE = (Kg,Kg′,Enc,Dec) be a lossy PKE scheme. Let SE
be information-theoretic one-time AE. Let ELF be an ELF and let H : KH ×
{0, 1}n → ELF.Dom be a family of (2t + 2)-wise independent hash functions.
Let sMB-AIPO[H,ELF] = (sMB-AIPO.Kg, sMB-AIPO.Obf, sMB-AIPO.Ver) be the
sup-MB-AIPO constructed in Section C.2. Let v be a polynomial in k. Consider
the two distribution ensembles D0 = {D0

k}k∈N and D1 = {D1
k}k∈N defined below.

Then D0 ≈s D1.
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Distribution D0
k

r∗←$ G.Dom(k) ; m←$ {0, 1}µ

K0←$ {0, 1}k ; K1←$ {0, 1}k

pk′←$ LPKE.Kg′(1k)

c∗1←$ LPKE.Enc(pk′, r∗)

c∗2←$ E syK1
(m∥r∗) ; c∗ ← (c∗1, c

∗
2)

KH ←$ sMB-AIPO.Kg(1k)

(f los
′
, clos

′
)←$ sMB-AIPO.Obf

los(v)
KH

(r∗∥c∗1,K0)

Return (c∗, f los
′
, clos

′
,KH , pk′,m)

Distribution D1
k

r∗←$ G.Dom(k) ; m←$ {0, 1}µ

K1←$ {0, 1}k

pk′←$ LPKE.Kg′(1k)

c∗1←$ LPKE.Enc(pk′, r∗)

c∗2←$ E syK1
(m∥r∗) ; c∗ ← (c∗1, c

∗
2)

KH ←$ sMB-AIPO.Kg(1k)

(f los, clos)←$ sMB-AIPO.Obf
los(v)
KH

(r∗∥c∗1,K1)

Return (c∗,KH , f los, clos, pk′,m)

Proof. Let D be an unbounded distinguisher for D0,D1. We invoke the remain-
der of the proof of Theorem 3, following switching all instances of ELF to the
appropriate lossy mode, with auxiliary input (c∗, pk′,m), which we show be-
low to be statistically unpredictable. Further, note this remainder of the above-
mentioned proof is statistical as desired.

To complete the proof, we need to show that for any unbounded predictor
P ′,

Pr
[
P ′(1k, (c∗1∥c∗2, pk′,m))⇒ K1

]
is negligible. To show this, first note that by information-theoretic security of
SE we have that,

|Pr
[
P ′(1k, (c∗1∥c∗2, pk′,m))⇒ K1

]
− Pr

[
P ′(1k, (c∗1∥$, pk′,m))⇒ K1

]
|

is negligible, where $ is a random string of length |c∗2|. Since pk′ is a lossy key,

|Pr
[
P ′(1k, (c∗1∥$, pk′,m))⇒ K1

]
− Pr

[
P ′(1k, (c0∥$, pk′,m))⇒ K1

]
|

is negligible, where c0 is an encryption under pk ′ of a fixed message. At this
point, the auxiliary information contains no information on K1, completing the
proof.

Theorem 4. Let LPKE = (Kg,Kg′,Enc,Dec) be a secure lossy PKE scheme. Let
SE be a zero-time information-theoretic leakage-resilient AE scheme. Let ELF be
an ELF and let H : KH×{0, 1}n → ELF.Dom be a family of (2k+2)-wise indepen-
dent hash functions. Let sMB-AIPO[H,ELF] = (sMB-AIPO.Kg, sMB-AIPO.Obf,
sMB-AIPO.Ver) be the corresponding sup-MB-AIPO constructed in Section C.2.
Then sMB-AIPO is secure MB-AIPO wrt. adaptive auxiliary input (VK1

(·),DFO1 ).

Remark 7. It seems unusual that the AE is zero-time in the above theorem, but
the leakage provides the adversary with a ciphertext in this case.

Proof. Consider the game chain in Fig. 37.
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Game G1: This is the standard MB-AIPO security game wrt. (VK1(·),DFO1 ).
For contradiction, suppose a PPT MB-AIPO adversary A runs in time v
and wins game G1 with non-negligible probability ϵ. Let δ be an inverse
polynomial in the security parameter such that ϵ ≥ δ infinitely often.

Games G2.i for 1 ≤ i ≤ k + 1: Game G2.i is similar to game G1 except that
the first i ELFs in the MB-AIPO construction are switched to lossy mode.
Each of the k+ 1 ELFs in the MB-AIPO construction are switched to lossy
mode one at a time. Note that G2.k+1 is the game in which the MB-AIPO
given to A is generated with all ELFs in lossy mode. The lossy-mode ELFs
are generated via ELF.LKg(1k, poly(v, δ/(k+1))) where poly(v, δ/(k+1)) is a
polynomial chosen such that an ELF adversary running in time v cannot dis-
tinguish between the ELF lossy and injective modes except with probability
less than δ/(k + 1).
Consider the ELF adversary in Fig. 35 running the MB-AIPO adversary to
determine if their challenge ELF, fi, is in injective or lossy mode. Hence,
|Pr [G2.i−1 ⇒ 1 ]− Pr [G2.i ⇒ 1 ]| < δ/(k + 1) (letting G2.0 = G1).

Adversary B(1k, fi)

m←$ {0, 1}µ ; r∗←$ G.Dom(k)

K1←$ {0, 1}k ; K0←$ {0, 1}k

(pk′, sk′)←$ LPKE.Kg(1k) ; c∗1←$ LPKE.Enc(pk′, r∗)

c∗2←$ E syK1
(m∥r∗) ; c∗ ← (c∗1, c

∗
2)

aux ← (c∗, pk′,m)

KH ←$ sMB-AIPO.Kg(1k)

(f , c)←$ sMB-AIPO.Obf injKH
(m∥r∗,K1)

(f los, clos)←$ sMB-AIPO.Obf
los(v)
KH

(m∥r∗,K1)

For j from 1 to i− 1 do f [j]← f los[j] ; c[j]← clos[j]

f [i]← fi ; c[i]← fi(H(KH ,m∥r∗i,K1
))

b′←$ AVK1
(·)(1k, aux ,KH , f , c)

Return (b = b′)

Fig. 35: ELF adversary B running MB-AIPO adversary A in the proof of
Theorem 4 (cf. G2.i).

Game G3: G3 is similar to G2.k+1 except the public key encryption scheme is
switched to lossy mode. By assumption on the lossy encryption scheme, the
distinguishing probability of the injective and lossy keys is negligible. So,
|Pr [G2.k+1 ⇒ 1 ]− Pr [G3 ⇒ 1 ]| is negligible.

Game G4: Next, the symmetric-key ciphertext c∗2 is switched to a random c2
of length |c∗2| and the MB-AIPO adversary’s verification oracle is changed
to ⊥(·), which outputs ⊥ on all inputs. To bound the probability this switch
is detected, we use AE with leakage consisting of (c∗,KH , f los, clos, pk′,m).
Consider such an adversary B1 in Fig. 36. (Here B1’s oracles (O1,O2) are
either (E∗K1

(·),VK1
(·)) or ($(·),⊥(·)).)
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To invoke leakage-resilient AE security, we must prove that the leakage is
statistically unpredictable. In particular, we must prove that

Pr
[
P (1k, (c∗,KH , f los, clos, pk′,m))⇒ K1

]
is negligible for any unbounded predictor P . It suffices to prove

(c∗,KH , f los, clos, pk′,m) ≈s (c
∗,KH , f los

′
, clos

′
, pk′,m)

where (f los
′
, clos

′
)←$ sMB-AIPO.Obf losKH

(r∗∥c∗1,K0), which is shown in Lemma 3.
Hence we have |Pr [G4 ⇒ 1 ]− Pr [G3.t+1 ⇒ 1 ]| ≤ Advae-aux

SE,B1,D0(k).

Adv B
O1(·),O2(·)
1 (1k, (c∗,KH , f los, clos, pk′,m))

aux ← (c∗, pk′,m)

b′←$ A(1k, aux , (KH , f los, clos))

Return (b = b′)

Distribution D1
k

r∗←$ G.Dom(k) ; m←$ {0, 1}µ

K1←$ {0, 1}k

pk′←$ LPKE.Kg′(1k)

c∗1←$ LPKE.Enc(pk′, r∗)

c∗2←$ E syK1
(m∥r∗) ; c∗ ← (c∗1, c

∗
2)

KH ←$ sMB-AIPO.Kg(1k)

(f los, clos)←$ sMB-AIPO.Obf
los(v)
KH

(r∗∥c∗1,K1)

Return (c∗,KH , f los, clos, pk′,m)

Fig. 36: AE-AUX adversary in the proof of Theorem 4, game G4.

Game G5: G5 is similar to G4 except the point function obfuscation (f los, clos)

←$ sMB-AIPO.Obf
los(v)
KH

(r∗∥c∗1,K1) is changed to the obfuscation (f los, clos)

←$ sMB-AIPO.Obf
los(v)
KH

(r∗∥c∗1,K0), where K0 is independent and random.
For this transition, we invoke sup-MB-AIPO security of sMB-AIPO wrt. (c∗,
pk ′,m). To do so, we argue that for any unbounded predictor P ,

Pr
[
P (1k, (c∗1∥c2, pk′,m))⇒ K1

]
is negligible. Consider changing c∗1 in P ’s input to c1, a LPKE encryption of
a fixed message under pk ′. It is easy to see that

|Pr
[
P (1k, (c∗1∥c2, pk′,m))⇒ K1

]
− Pr

[
P (1k, (c1∥c2, pk′,m))⇒ K1

]
|

is negligible by the lossiness of LPKE. Now P ’s input contains no information
on K1. Therefore, |Pr [G5 ⇒ 1 ] − Pr [G4 ⇒ 1 ]| ≤ Advmb-aipo

sMB-AIPO,A,DFO
1

(k),

which is negligible by the security of sMB-AIPO.

We can complete the proof by “reversing” the game chain.

C.4 MB-AIPO from Low-Exponent RSA and its Application to
Low-Exponent RSA-OAEP

We show that TDPs (such as low-exponent RSA) that satisfy SIE can be used to
implement a multi-bit point function obfuscator. When used in our RSA-OAEP
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Game G1(k)

m←$ {0, 1}µ ; r∗←$ G.Dom(k)

K1←$ {0, 1}k ; K0←$ {0, 1}k

(pk′, sk′)←$ LPKE.Kg(1k)

c∗1←$ LPKE.Enc(pk′, r∗)

c∗2←$ E syK1
(m∥r∗) ; c∗ ← (c∗1, c

∗
2)

aux ← (c∗, pk′,m)

KH ←$ sMB-AIPO.Kg(1k)

(f , c)←$ sMB-AIPO.Obf injKH
(r∗∥c∗1,K1)

b′←$ AVK1
(·)(1k, aux ,KH , f , c)

Return (b′ = 1)

Games G2.i(k) for 1 ≤ i ≤ k + 1

m←$ {0, 1}µ ; r∗←$ G.Dom(k)

K1←$ {0, 1}k ; K0←$ {0, 1}k

(pk′, sk′)←$ LPKE.Kg(1k)

c∗1←$ LPKE.Enc(pk′, r∗)

c∗2←$ E syK1
(m∥r∗) ; c∗ ← (c∗1, c

∗
2)

aux ← (c∗, pk′,m)

KH ←$ sMB-AIPO.Kg(1k)

(f , c)←$ sMB-AIPO.Obf injKH
(r∗∥c∗1,K1)

(f los, clos)←$ sMB-AIPO.Obf
los(v)
KH

(r∗∥c∗1,K1)

For j from 1 to i do

f [j]← f los[j] ; c[j]← clos[j]

b′←$ AVK1
(·)(1k, aux ,KH , f , c)

Return (b′ = 1)

Game G3(k)

m←$ {0, 1}µ ; r∗←$ G.Dom(k)

K1←$ {0, 1}k ; K0←$ {0, 1}k

pk′←$ LPKE.Kg′(1k)

c∗1←$ LPKE.Enc(pk′, r∗)

c∗2←$ E syK1
(m∥r∗) ; c∗ ← (c∗1, c

∗
2)

aux ← (c∗, pk′,m)

KH ←$ sMB-AIPO.Kg(1k)

(f los, clos)←$ sMB-AIPO.Obf
los(v)
KH

(r∗∥c∗1,K1)

b′←$ AVK1
(·)(1k, aux ,KH , f , c)

Return (b′ = 1)

Games G4(k), G5(k)

m←$ {0, 1}µ ; r∗←$ G.Dom(k)

K1←$ {0, 1}k ; K0←$ {0, 1}k

pk′←$ LPKE.Kg′(1k)

c∗1←$ LPKE.Enc(pk′, r∗)

c∗2←$ E syK1
(m∥r∗) ; c2←$ {0, 1}|c

∗
2 |

c∗ ← (c∗1, c2) ; aux ← (c∗, pk′,m)

KH ←$ sMB-AIPO.Kg(1k)

(f los, clos)←$ sMB-AIPO.Obf
los(v)
KH

(r∗∥c∗1,K0)

(f los, clos)←$ sMB-AIPO.Obf
los(v)
KH

(r∗∥c∗1,K1)

b′←$ A⊥(·)(1k, aux ,KH , f los, clos)

Return (b′ = 0)

Return (b′ = 1)

Fig. 37: Game chain for the proof of Theorem 4.

instantiation, it “plays nicely” with the auxiliary input we need for the the MB-
AIPO, the latter already containing a similar RSA-OAEP ciphertext. We take
this as evidence that MB-AIPO for such distributions exists.

Basic RSA-based construction. For concreteness, we use the RSA function
here rather than a general TDP. Consider the RSA parameter generator RSAgen
that on input 1k outputs (N, p, q, 3, d) where |N | = k. Recall from Section 2.4
that RSAgen is unconditionally (2k/3)-SIE; let Ext denote the corresponding
SIE extractor. Given RSAgen, in Figure 38 we define a canonical MB-AIPO
MB-AIPO[RSAgen] = (MB-AIPO.Kg,MB-AIPO.Obf,MB-AIPO.Ver) for a distri-
bution D = {Dk = (Zk, Xk, Yk)}k∈N where Xk is uniform on {0, 1}2k/3 and Yk is
uniform on {0, 1}k/3, for all k ∈ N. Here Zk denotes the distribution on the aux-
iliary input. The reason why the order of x and y are switched in the argument
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to RSA is because of how we will use it in conjunction with our RSA-OAEP
instantiation. As an aside, if there is no auxiliary input, it is easy to see that
the presented MB-AIPO is secure — under a stronger definition where the ad-
versary gets either the output point or a random one — assuming the function
hcfk/3(x) = x|k/3 for x ∈ Z∗N is hardcore. Indeed, in the absence of auxiliary in-
put, a uniform output distribution makes the standard security notion vacuous.
However, since we do have auxiliary input in our application, we do not pursue
such a definition further.

Enhanced construction. The major problem with the basic RSA-based MB-
AIPO in our application is that in RSA-OAEP r∗ ∈ {0, 1}ρ is the input point
and z∗ ∈ {0, 1}µ+ζ is the output point for the MB-AIPO, and the latter is longer.
It is tempting to try to get a result for the opposite regime (long r∗, short z∗),
but this runs into the problem that we need (µ, µ+ ζ)-SIE for the instantiation,
so z∗ must be long. To address this, we process z∗ in “chunks.” Namely, given
RSAgen, again in Figure 38 (bottom) we define a canonical enhanced MB-AIPO
MB-AIPO∗[RSAgen] = (MB-AIPO∗.Kg,MB-AIPO∗.Obf,MB-AIPO∗.Ver) for a dis-
tribution D = {Dk = (Zk, Xk, Yk)}k∈N where Xk is uniform on {0, 1}k/3 and Yk

is uniform on {0, 1}2k/3. Note that the modulus N for a “chunk” is such 7k/9.
meaning to use this MB-AIPO one needs a correspondingly larger modulus size
for the same security level.

Security of the enhanced construction. Security of the enhanced RSA-
based MB-AIPO is a question of composability. Namely, for q ∈ N we say

MB-AIPO is q-same-input-point (q-SIP) composable for D = {Dk = (Xk, Y
(1)
k ,

. . . , Y
(q)
k , Zk)}k∈N if for any PPT distinguisher A, the associated advantage

Advcomp
MB-AIPO,A,D(k) = 2 · Pr

[
SIP-COMPD,A,q

MB-AIPO(k)⇒ 1
]
− 1 ,

is negligible in k, where the experiment is defined in Figure 39. We next reduce
security of the enhanced RSA-based MB-AIPO to SIP-composability of the basic
RSA-based MB-AIPO.

Proposition 3. Suppose MB-AIPO[RSAgen] is 6-SIP composable for D = {Dk

= (Xk, Y
(1)
k , . . . , Y

(6)
k , Zk)}k∈N where Xk ∈ {0, 1}k/3, Y (i)

k ∈ {0, 1}k/9 ∀i ∈ [6]
are all uniform and independent. Then MB-AIPO∗[RSAgen] is secure for D∗ =
{D∗k = (Xk, Yk, Zk)}k∈N where Xk is uniform on {0, 1}2k/3 and Yk is indepen-
dent and uniform on {0, 1}k/3.

We conjecture:

Conjecture 1. MB-AIPO[RSAgen] is 6-SIP-composable for the above distribution
where Zk is as in DOAEP . Thus, by Proposition 3 MB-AIPO∗[RSAgen] is secure
for DOAEP .

To reason about this, recall DOAEP :
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MB-AIPO.Kg(1k):

(N, p, q, 3, d)←$ RSAgen(1k)

Return N

MB-AIPO.Obf(N, x, y):

c← (y∥x)3 mod N

Return c

MB-AIPO.Ver(N, x′, c):

y′ ← Ext(N, c, x′)

If (y′∥x′)3 mod N = c then

Return y′

Else return ⊥

MB-AIPO∗.Kg(1k):

Return ⊥
MB-AIPO∗.Obf(⊥, x, y):
o← k/9

For i = 1 to 6 do

y′ ← y|i+o
i

(N, p, q, 3, d)←$ RSAgen(17k/9)

c← (y′∥x)e mod N

c.append(c,N)

i← i+ o

MB-AIPO∗.Ver(⊥, x′, (c,N)):

(c1, N1 . . . , c6, N6)← c

If for all i = 1 to 6

MB-AIPO.Ver(Ni, x
′, ci)⇒ 1

Then return 1

Else return 0

Fig. 38: MB-AIPO construction MB-AIPO[RSAgen].

Game SIP-COMPD,A
MB-AIPO(k)

b←$ {0, 1} ; (x, y1 . . . , yq, z)←$ Dk

If b = 0 then yi←$ {0, 1}|yi| ∀i ∈ [q]

pi←$ MB-AIPO(x, yi) ∀i ∈ [q]

b′←$ A(p1, . . . , pq, z)

Return (b = b′)

Fig. 39: Game to define SIP-COMP security.

Distribution DOAEPk

r∗←$ {0, 1}ρ ; z∗←$ {0, 1}µ+ζ

KH ←$KH(1k) ; (F, F−1)←$ Kg(1k)
m←$ {0, 1}µ
s∗ ← z∗⊕ (m∥0ζ) ; y∗ ← H(KH , s∗)
t∗ ← r∗⊕ y∗ ; c∗ ← F (s∗∥t∗)
t←$ {0, 1}µ+ζ ; d← ⟨ t, z∗⟩
L← (t, d, c∗,KH , F,m)
Return (L, r∗, z∗)

We expand out the terms the adversary is given in this case:

L = (t, d, c∗,KH , F,m, c1, . . . , c6)

where c∗ is the RSA-OAEP encryption for m modulo |N | = k using r∗ and z∗

appropriately and c1, . . . , c6 are (z∗i ||r∗)3 mod Ni for i = 1 to 6 where z∗i are
the “chunks” of z∗ of length |N |/9 and |Ni| = 7|N |/9. It suffices to argue that
z∗ is hard to recover from

L′ = (c∗,KH , F,m, c1, . . . , c6)
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because then we can replace d with an independent random bit by the Goldreich-
Levin [44]. That z∗ is hard to recover from L seems to us a reasonable conjecture
about RSA; it is also reasonable to conjecture sub-exponential security.


