
Hawk: Module LIP makes Lattice Signatures
Fast, Compact and Simple

Léo Ducas1,2 , Eamonn W. Postlethwaite1 , Ludo N. Pulles1 , and Wessel
van Woerden1

1 CWI, Cryptology Group, Amsterdam, the Netherlands
2 Mathematical Institute, Leiden University, Leiden, The Netherlands

Abstract. We propose the signature scheme Hawk, a concrete instan-
tiation of proposals to use the Lattice Isomorphism Problem (LIP) as a
foundation for cryptography that focuses on simplicity. This simplicity
stems from LIP, which allows the use of lattices such as Zn, leading to
signature algorithms with no floats, no rejection sampling, and compact
precomputed distributions. Such design features are desirable for con-
strained devices, and when computing signatures inside FHE or MPC.
The most significant change from recent LIP proposals is the use of mod-
ule lattices, reusing algorithms and ideas from NTRUSign and Falcon.
Its simplicity makes Hawk competitive. We provide cryptanalysis with
experimental evidence for the design of Hawk and implement two pa-
rameter sets, Hawk-512 and Hawk-1024. Signing using Hawk-512 and
Hawk-1024 is four times faster than Falcon on x86 architectures, pro-
duces signatures that are about 15% more compact, and is slightly more
secure against forgeries by lattice reduction attacks. When floating-points
are unavailable, Hawk signs 15 times faster than Falcon.
We provide a worst case to average case reduction for module LIP. For
certain parametrisations of Hawk this applies to secret key recovery and
we reduce signature forgery in the random oracle model to a new problem
called the one more short vector problem.
Keywords: Post-Quantum Cryptography, Signatures, Module Lattice
Isomorphism Problem, Concrete Design, Quadratic Forms.

1 Introduction

Background. Currently the most efficient lattice based signature scheme, and
more generally, one of the most efficient post-quantum signature schemes, is
Falcon [32]. Like its predecessor NTRUsign it has a hash-then-sign design,
but fixes the issue of signature transcript leakage [27] via Discrete Gaussian
Sampling (DGS) [19].

Since its introduction much progress has been made into making DGS more
efficient [12,11,18], in particular by exploiting ideal or module structures [28,14]
such as those of NTRU lattices. Nonetheless, DGS remains particularly difficult
to implement securely and efficiently, especially on constrained devices, and even
more so when side-channel attacks are a concern. In particular, DGS involves

https://orcid.org/0000-0003-2510-4829
https://orcid.org/0000-0003-2984-1332
https://orcid.org/0000-0002-8014-9221
https://orcid.org/0000-0002-5565-4015

2 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

high precision floating-point linear algebra and the evaluation of transcendental
functions. A decade of research has not provided an entirely satisfactory solution
to such issues.

Recently an idea emerged: use a simple lattice, maybe as simple as Zn [15,7].
More precisely, use a hidden rotation of it. The idea is to base security on the
problem of finding isometries between lattices, i.e. the Lattice Isomorphism Prob-
lem (LIP). While this is not only motivation for LIP based cryptography, it was
noted in [15] that this avoids the difficult DGS step above: sampling from the
Zn lattice is much easier.

This work. The work [15], introducing the LIP based cryptography framework,
mostly focused on theoretical and asymptotic results. In our work we give a
concrete instantiation of their approach, based on simple module lattices, to see
if it is practical and competitive. An attractive choice would be to consider the
most structured option, namely modules of rank one (ideal lattices) over number
fields, however this restricted version of LIP is known to be solvable in classical
polynomial time [20,24].

Instead we work with rank two modules, for which the LIP problem has
already received some cryptanalytic attention [33]. It was quickly noted that
NTRUsign signatures [22] were leaking the Gram matrix of the secret key;
recovering the secret key from this Gram matrix is precisely LIP. While the
NTRUsign scheme was ultimately broken, it was only by exploiting a stronger
form of leakage, not by solving LIP. In conclusion this module LIP problem
is plausibly hard and is clear and simple to state, and therefore appears as a
legitimate basis for cryptography.

We consider the ring R = Z[X]/(Xn + 1) for n a power of two, that is the
ring of integers for some power of two cyclotomic field. This ring is naturally
viewed as an orthogonal lattice. We must then generate a basis of R2 following
some distribution, which we achieve by mimicking NTRUsign key generation
and setting the modulus q = 1. This allows us to make use of efficient techniques
from the literature [22,29,32]. Following the ideas presented in [15] we are able
to show that sampling our keys in this manner gives a worst case to average case
reduction for module LIP. However, this reduction is limited to a large choice
of the parameter that determines the sampling of the public key. In Hawk we
make more aggressive choices based on heuristic and experimental cryptanalysis.

The original design of [15] hashed a message to {0, 1
q , . . . ,

q−1
q }

2n
for some

q = poly(n). Another optimisation we propose is to hash the message to a smaller
target space {0, 1

2}
2n to further simplify Gaussian sampling. For this variant we

provide a reduction in the programmable random oracle model to a new problem:
one more (approximate) SVP. This reduction also requires a specific choice of
parameters, and again Hawk makes more aggressive choices. This problem is
similar to the recently introduced one more inhomogenous short integer solution
problem [1] used to design blind signature schemes from lattices.

We also propose efficient encodings for the public key and signatures of our
scheme. Decoding the keys is cheap and recovering redundant parts is done ef-

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 3

[32] This work Gain [32] This work Gain
Falcon Hawk

(Falcon
Hawk

)
Falcon Hawk

(Falcon
Hawk

)
512 512 1024 1024

AVX2 KGen 7.95ms 4.25ms ×1.87 23.60ms 17.88ms ×1.32
Reference KGen 19.32ms 13.14ms ×1.47 54.65ms 41.39ms ×1.32

AVX2 Sign 193 µs 50µs × 3.9 382 µs 99µs × 3.9
Reference Sign 2449 µs 168 µs ×14.6 5273 µs 343 µs ×15.4

AVX2 Vf 50 µs 19µs ×2.63 99 µs 46µs ×2.15
Reference Vf 53 µs 178 µs ×0.30 105 µs 392 µs ×0.27

Secret key (bytes) 1281 1153 ×1.11 2305 2561 ×0.90
Public key (bytes) 897 1006± 6 ×0.89 1793 2329± 11 ×0.77
Signature (bytes) 652± 3 542± 4 ×1.21 1261± 4 1195± 6 ×1.05

Table 1: Performance of Falcon and Hawk for n = 512, 1024 on an Intel®
CoreTM i5-4590 @3.30GHz processor with TurboBoost disabled. Hawk was com-
piled with -O2 and Falcon with -O3. The Sign timings correspond to batch
usage; “Gain” is more favourable for Hawk in unbatched usage, see Section 5.4.

ficiently with a few number theoretic or fast Fourier transforms. Moreover, we
significantly compress the signature by dropping half of it, which is effectively
computationally free. Decompressing a signature uses Babai’s round-off algo-
rithm [4]. This decompression uses public data during verification, so it is not
a target for side-channel or statistical attacks and does not require masking. Its
use of rounding also allows us to avoid the need for high precision floats.

Performance and comparison. Following Falcon, we propose a reference im-
plementation and an AVX2 optimised implementation. The reference implemen-
tation makes no use of floating-points (though it emulates them during key
generation), whereas the AVX2 version uses floating-points.

On AVX2 CPUs, Hawk-512 outperforms Falcon-512 by a factor of about
2 for key generation and verification and a factor of 4 for signing. The situa-
tion is similar for Hawk-1024. Without floats, Hawk signs 15 times faster than
Falcon, because Hawk uses number theoretic transforms in signing while Fal-
con emulates floating-points. The verification contains a fast decompression that
uses fixed-point arithmetic but uses two number theoretic transforms making it
slightly slower than Falcon. Because the numbers are smaller in Hawk’s secret
key, key generation is faster with Hawk.

Regarding compactness, Hawk-512 signatures are about 110 bytes shorter,
but public keys about 110 bytes larger, than Falcon-512; this puts Hawk-512
on par for certificate chain applications, and should be advantageous for other
applications. Additionally, secret keys are 128 bytes smaller. In Hawk-1024 we
save a little on signatures, but our keys are larger.

4 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

We also note that Hawk resists forgery attacks a little better than Falcon.
This is a direct result of being able to use the secret key to efficiently sample
slightly smaller signatures in Z2n than is possible in an NTRU lattice.

The recent variant of Falcon named Mitaka [17] also aims to make the
signing procedure simpler and free from floating-point arithmetic. They achieve
this with some loss in the signing quality compared to Falcon which makes sig-
nature forgeries somewhat easier, but their floating-point implementation signs
twice as fast. In contrast, by using Z2n we obtain an even simpler sampler while
simultaneously improving the signing quality, efficiency and signature size.

Simplicity as a circuit. We claim that our signature scheme is simpler as a
circuit than Falcon and therefore expect the performance gap to be larger on
constrained architectures. In fact, we hope that Hawk or a variant of Hawk may
be simple enough to be implemented within a Fully Homomorphic Encryption
scheme for applications such as blind or threshold signatures [2]. It might also be
easier to mask against side-channel attacks, similarly to how the lack of floating-
points in the sampler simplifies the masking of MitakaZ [17, Sec. 7.3].

Implementation and source code. Our constant-time C implementation and aux-
iliary scripts are open source.1 Included is a SageMath implementation of Hawk.

Roadmap. Section 2 introduces some preliminaries. Section 3 introduces the
signature scheme Hawk. Section 4 details our concrete cryptanalytic model for
Hawk. Section 5 details the parameters for Hawk, its estimated security, and
explains implementation and performance details. Section 6 provides a worst
case to average case reduction for smLIP, the search module LIP problem that
underlies our key generation design. Throughout references to appendices can be
found in the full version of this report [16], where we provide more information
on formal reductions and our implementation.

1.1 Acknowledgments

The authors thank Nick Genise, Shane Gibbons, Thomas Prest, Noah Stephens-
Davidowitz and the anonymous reviewers for helpful discussions and useful feed-
back. W. van Woerden was supported by the ERC-ADG-ALGSTRONGCRYPTO
project (no. 740972). The research of L. Ducas and E.W. Postlethwaite was
supported by the European Union’s H2020 Programme under PROMETHEUS
project (grant 780701). L. Ducas and L.N. Pulles were supported by the ERC-
StG-ARTICULATE project (no. 947821).

2 Preliminaries

We use bold lowercase letters v to denote column vectors. Bold uppercase letters
B represent matrices, and BT is the transpose. For a real matrix B let B̃ denote
1 https://github.com/ludopulles/hawk-aux

https://github.com/ludopulles/hawk-aux

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 5

the related Gram–Schmidt matrix. Let [n] = {1, . . . , n} for n ∈ Z≥1. Let log
without subscript denote the natural logarithm.

Lattices and quadratic forms. A full rank, n dimensional lattice Λ is a discrete
subgroup of Rn and is given by a basis B ∈ Rn×n of R-linearly independent
column vectors. A lattice defined by B is Λ(B) = {B · x : x ∈ Zn}. Denote
by λi(Λ) the ith minima of Λ. This is the smallest radius of a centred and
closed ball such that its intersection with Λ contains i linearly independent
vectors. Two bases B,B′ generate the same lattice if there exists a unimodular
matrix U ∈ GLn(Z) such that B ·U = B′. Two lattices Λ,Λ′ are isomorphic if
there exists an orthonormal transformation O ∈ On(R) such that O · Λ = Λ′.
Recovering this transformation is the Lattice Isomorphism Problem (LIP).

Definition 1 (Lattice Isomorphism Problem). Given two isomorphic lat-
tices Λ,Λ′, find O ∈ On(R) such that O · Λ = {O · v : v ∈ Λ} = Λ′.

If Λ,Λ′ are generated by B,B′ respectively, then they are isomorphic if there
exists an orthonormal transformation O ∈ On(R) and a unimodular matrix
U ∈ GLn(Z) such that O · B · U = B′. We can remove the real valued or-
thonormal transformation by moving to quadratic forms. A quadratic form is a
positive definite real symmetric matrix Q ∈ S>0

n (R). For any lattice basis B the
Gram matrix BTB, consisting of all pairwise inner products, is a quadratic form.
Conversely, given a quadratic form Q, Cholesky decomposition finds a basis BQ

such that BT
Q ·BQ = Q and BQ is an upper triangular matrix. Two quadratic

forms Q,Q′ ∈ S>0
n (R) are equivalent if there exists a unimodular U ∈ GLn(Z)

such that UT ·Q ·U = Q′. We have that two lattices are isomorphic if and only
if their Gram matrices are equivalent; this allows us to restate LIP.

Definition 2 (LIP, restated). Given two equivalent forms Q,Q′, find U ∈
GLn(Z) such that UT ·Q ·U = Q′.

The inner product with respect to Q ∈ S>0
n (R) is defined as ⟨ · , · ⟩Q : Rn ×

Rn → R, (x,y) 7→ xT ·Q · y. The norm with respect to Q ∈ S>0
n (R) is defined

as ∥x∥Q =
√
⟨x,x⟩Q. Note that for a basis B and vectors x,y ∈ Rn we have

⟨Bx,By⟩ = xTBTBy = ⟨x,y⟩BTB ,

and thus the geometry of Λ(B) is fully described by Q = BTB. Moving from lat-
tices to quadratic forms can be viewed as forgetting about the specific embedding
of the lattice in Rn, while maintaining all geometric information. Throughout
the paper we will talk about lattices and quadratic forms interchangeably.

Discrete Gaussian sampling and smoothing. Given a parameter σ ∈ R>0, we
define the Gaussian mass ρσ : Rn → R, x 7→ exp

(
−∥x∥2/2σ2

)
. For any c ∈ Rn

we denote the discrete Gaussian distribution on Λ + c with parameter σ by
DΛ+c,σ which assigns the probability ρσ (x) /

∑
y∈Λ+c ρσ (y) to a point x ∈ Λ+c,

and zero otherwise. We also define a Gaussian mass with respect to Q ∈ S>0
n (R)

6 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

as ρQ,σ : Rn → R,x 7→ exp
(
−∥x∥2Q/2σ2

)
. For any c ∈ Rn we denote the

discrete Gaussian distribution on Zn + c with respect to Q and parameter σ by
DQ,Zn+c,σ, which assigns a probability ρQ,σ (x) /

∑
y∈Zn+c ρQ,σ (y) to a point

x ∈ Zn + c, and zero otherwise. If c ∈ Zn we write DQ,σ. If Q = BT ·B, note
that DQ,Zn+c,σ(x) = B−1 · DΛ(B)+B·c,σ(B · x), as ρQ,σ(x) = ρσ(B · x). When
σ is large enough compared to the maximum length of a Gram–Schmidt basis
vector, we can efficiently sample a discrete Gaussian.

Lemma 1 ([8, Lem. 2.3], adapted). There is a PPT algorithm that on input
a quadratic form Q ∈ S>0

n (R), c ∈ Rn and parameter σ ≥
∥∥∥B̃Q

∥∥∥ · (1/π) ·√
log(2n+ 4)/2 outputs a sample according to DQ,Zn+c,σ.

A discrete Gaussian has a similar tail bound to a continuous Gaussian.

Lemma 2 ([6, Lem. 1.5(ii)]). For any lattice Λ ⊂ Rn, point c ∈ Rn and
τ ≥ 1, we have

Pr
x∼DΛ+c,σ

[
∥x∥ > τσ

√
n
]
≤ 2

ρσ (Λ)

ρσ (Λ+ c)
· τne−n

2 (τ
2−1).

Definition 3. Let Λ̂ denote the dual of Λ. For ε > 0 we define the smoothing
parameter ηε(Λ) as the smallest σ ∈ R>0 such that ρ1/(2πσ)

(
Λ̂ \ {0}

)
≤ ε.

Note that ηε is usually defined with respect to a width s =
√
2πσ. Here its value

is a factor
√
2π smaller than usual. If σ ≥ ηε(Λ) then DΛ+c,σ exhibits several

useful properties. For example, σ is close to the standard deviation of DΛ+c,σ,
with the closeness parametrised by ε, see [26, Lem. 4.3], and cosets have similar
weights. We may say σ is ‘above smoothing’ to refer to σ ≥ ηε(Λ) for some
implicit appropriate ε.

Lemma 3 ([26, Proof of Lem. 4.4]). For any lattice Λ ⊂ Rn, point c ∈ Rn,
and ε ∈ (0, 1), σ ≥ ηε(Λ), we have

(1− ε) ·
(√

2π · σ
)n

det(Λ)
≤ ρσ(Λ+ c) = ρQ,σ(Zn + c′) ≤ (1 + ε) ·

(√
2π · σ

)n
det(Λ)

,

where Q = BTB and c′ = B−1c for any basis B of Λ.

Module lattices and Hermitian forms. A number field K is an algebraic extension
of Q of finite degree n = [K : Q]. We write OK for the ring of integers of a general
number field. In this work, we consider the cyclotomic field K = Q (ζ2n) =
Q
(
e−2πi/2n

) ∼= Q[X]/(Xn+1) where n ≥ 2 is a power of two. This is a CM field
and has conductor m = 2n. Many of the facts below are not true for general
number fields. The ring of integers R ∼= Z[X]/(Xn+1) of K, or any ideal of it, is a
rank n lattice. Indeed, consider its image under the embedding σ : K→ Cn, x 7→
(σ1(x), . . . , σn(x)). Here σ1, σ2, . . . , σn are the n embeddings of K into C, ordered

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 7

such that σi+n/2 = σi for i ∈ [n/2] (for m ≥ 3 cyclotomic fields have no real
embeddings). The subset

{
(x1, . . . , xn) ∈ Cn : ∀i ∈ [n/2], xi+n/2 = xi

}
⊂ Cn is

isomorphic as an inner product space to Rn [25, Sec. 2.1]. We implicitly use
this isomorphism and write σ : K→ Rn. We also have the coefficient embedding
vec : K → Qn, a0 + a1X + · · · + an−1X

n−1 7→ (a0, a1, . . . , an−1)
T
, which is an

additive group isomorphism.
The algebraic norm and trace are given by N(x) =

∏n
i=1 σi(x) and Tr(x) =∑n

i=1 σi(x) for x ∈ K. Since the σi are ring homomorphisms the algebraic norm
is multiplicative and the trace is additive. If x ∈ R then N(x) ,Tr(x) ∈ Z. The
embeddings enable us to view K as an inner product space over Q by defining
⟨ · , · ⟩ : K×K→ Q as

⟨f, g⟩ = 1

n
·

n∑
i=1

σi(f) · σi(g).

We renormalise by 1
n as there is an isometry, up to a scaling factor of n, from

the complex embedding to the coefficient embedding, i.e. we have ⟨f, g⟩ =
⟨vec(f), vec(g)⟩ with the right hand inner product over Rn. This gives a (geomet-
ric) norm on K as ∥ · ∥ : K→ Q, f 7→

√
⟨f, f⟩, which agrees with the Euclidean

norm of vec(f). As K is a CM field, it has an automorphism · ∗ : K→ K that acts
as complex conjugation on its embeddings, which we call the adjoint operator. It
is the unique automorphism satisfying σi(x

∗) = σi(x) for all x ∈ K and i ∈ [n].
Therefore, we have ⟨f, g⟩ = Tr(f∗g) /n.

For any ℓ ∈ Z≥1, we define Kℓ =

ℓ times︷ ︸︸ ︷
K⊕ · · · ⊕K (and similarly Rℓ, which is

an R-module). Extend vec : Kℓ → Qnℓ in the natural way. We extend the inner
product and norm to vectors f ,g ∈ Kℓ by

⟨f ,g⟩ =
ℓ∑

i=1

⟨fi, gi⟩ and ∥f∥ =
√
⟨f , f⟩.

We write rot(f) =
(
vec(f), vec(Xf), . . . , vec(Xn−1f)

)
∈ Qn×n for f ∈ K, which

is a basis for the lattice σ(f) given by the (possibly fractional) ideal (f), and
extend this to matrices B ∈ Kk×ℓ in the natural way,

rot(B) =

rot(B11) · · · rot(B1ℓ)
...

. . .
...

rot(Bk1) · · · rot(Bkℓ)

 .

We now define a module lattice. Since R is the ring of integers of a number field,
it is a Dedekind domain and the notion of rank is well defined for R-modules.

Definition 4. Let M ⊂ Kk be an R-module of rank ℓ ≤ k and define the map
σ = (σ, . . . , σ) : Kk → Rnk, (x1, . . . , xk) 7→ (σ(x1), . . . , σ(xk)). The image σ(M)
is a rank nℓ lattice in Rnk which we call a module lattice.

8 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

We may refer to ‘the module lattice M ’ to mean σ(M). If B ∈ Kk×ℓ is a basis for
an R-module M then rot(B) ∈ Qnk×nℓ is a basis for the module lattice σ(M).
For B ∈ Kk×ℓ we write B∗ to denote the adjoint transpose, and given a vector
f ∈ Kℓ we write f∗ for the adjoint transpose row vector.

Definition 5. For ℓ ≥ 1, the set of Hermitian forms H>0
ℓ (K) consists of all

Q ∈ Kℓ×ℓ such that Q∗ = Q and Tr(v∗Qv) > 0 for all v ∈ Kℓ \ {0}.

Equivalently, Q is a Hermitian form whenever rot(Q) is a quadratic form.
For B ∈ Kℓ×ℓ the Gram matrix B∗B is a Hermitian form. Similar to the general
case, we define an inner product with respect to a Hermitian form Q as

⟨f ,g⟩Q =
1

n
· Tr(f∗Qg) and ∥f∥Q =

√
⟨f , f⟩Q.

Once again, observe that for any B we have ⟨Bf ,Bg⟩ = ⟨f ,g⟩B∗B and ∥Bf∥ =
∥f∥B∗B. We use the above to define a discrete Gaussian over Hermitian forms.
For some Q ∈ H>0

ℓ (K) and x ∈ Kℓ set DQ,σ(x) = Drot(Q),σ(vec(x)). Due to
our choice of K and the definition of our norm, this is equivalent to the natural
definition that follows from ρQ,σ : Kℓ → R, x 7→ exp(−∥x∥2Q/2σ2). Note that
the normalised trace satisfies ⟨1, z⟩ = Tr(z) /n, which evaluates a polynomial
z = z0 + z1X + · · ·+ zn−1X

n−1 to its constant coefficient z0.

Signature scheme. A signature scheme is a triple of PPT algorithms Π =
(KGen,Sign,Vf) such that Vf is deterministic. On input 1n, KGen outputs a
public and secret key (pk, sk). We assume n can be determined from either key.
On input sk and a message m from a message space that may depend on pk,
Sign outputs a signature sig. On input pk, a message m and a signature sig, Vf
outputs a bit b ∈ {0, 1}. We say sig is a valid signature on m if and only if b = 1.

In our practical cryptanalysis of Section 4 we discuss two types of forgery
an adversary may produce, strong and weak. A strong forgery is a signature on
a message for which an adversary does not know a signature, whereas a weak
forgery is a signature on a message for which an adversary may know signatures.
We call a signature scheme Π for which an adversary cannot produce a weak
forgery strongly unforgeable, and a signature scheme for which an adversary
cannot produce a strong forgery weakly unforgeable. In Appendix B of the full
version [16] we consider signature security in a formal game based model.

3 Scheme

In this section we present Hawk.2 We first give a version of Hawk that performs
no compression on its signatures for simplicity, we call this uncompressed Hawk.
We then introduce (compressed) Hawk and discuss how the security of Hawk
directly reduces to that of the uncompressed Hawk.

2 See https://github.com/ludopulles/hawk-aux/blob/main/code/hawk.sage.

https://github.com/ludopulles/hawk-aux/blob/main/code/hawk.sage

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 9

3.1 Uncompressed Hawk

The uncompressed version of our signature scheme is based on the scheme pre-
sented in [15, Sec. 6], but is adapted to number rings for efficiency. The scheme
uses the number ring R = Z[X]/(Xn + 1) with n ≥ 2 a power of two, the
ring of integers of the number field Q(ζ2n). We use the simplest rank 2 module
lattice, R2 ∼= Z2n. We implicitly move between R2 and Z2n via the coefficient
embedding. The secret key is some basis B ∈ SL2(R) where B (resp. rot(B)) gen-
erates R2 (resp. Z2n). In the context of [15, Sec. 6] this matrix represents a basis
transformation applied to the trivial basis I2(K) of R2. The public key is the
Hermitian form Q = B∗ ·B associated to the basis B. A signature for a message
m is generated by first hashing m and a salt r to a point h = (h0, h1)

T ∈ {0, 1}2n.
Applying the transformation B to 1

2h gives us a target 1
2B · h. We then sample

a short element x in the target’s coset R2+ 1
2B ·h via discrete Gaussian samples

on Z and Z + 1/2. By applying the inverse transformation B−1 we compute
the signature s = 1

2h ± B−1x ∈ R2. This is close to 1
2h with respect to ∥ · ∥Q,

and the sign is chosen to prevent weak forgeries, see Algorithm 2 and below.
See Figure 1 for a visualisation when n = 1. Verification checks if the distance∥∥ 1
2h− s

∥∥
Q

between s and 1
2h is not too large, which only requires the public

key Q = B∗B and not the secret key B. We have the following parameters:

1. σpk: controls the length of (f, g)T, the first basis vector of B,
2. σsec: controls the lower bound on the acceptable length of (f, g)T,
3. σsign: controls the length of of a short coset vector,
4. σver: controls the acceptable distance between signatures and halved hashes,
5. saltlen: controls the probability of hash collisions.

h

1
2
h

s

h− s

1
2
Bh

B

B−1 x

Fig. 1: Illustration of signing. First h is sampled (left), then B is applied, a short
lattice point x is sampled from a discrete Gaussian on Z2n + 1

2B · h (right).
Finally B−1 applied to x is subtracted from 1

2h to obtain a lattice point s close
to h/2 in ∥ · ∥Q. We then add h− 2s to ensure we satisfy sym-break(h1 − 2s1).

10 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

Algorithm 1 Key generation for Hawk: KGen(1n)
1: Sample f, g ∈ R with coefficients from DZ,σpk

2: q00 = f∗f + g∗g
3: if 2 | N(f) or 2 | N(g) or ∥(f, g)∥2 ≤ σ2

sec · 2n then
4: restart
5: (F,G)T ← TowerSolveIn,1(f, g) [29, Alg. 4], if ⊥, restart
6: (F,G)T ← (F,G)T − ffNPR

(
f∗F+g∗G

q00
,ffLDL∗

R(q00)
)
· (f, g)T [14]

7: B =

(
f F
g G

)
.

8: Q =

(
q00 q01
q10 q11

)
= B∗ ·B.

9: return (pk, sk) = (Q,B)

Algorithm 2 Signing for Hawk: SignB(m)

1: r← U({0, 1}saltlen)
2: h← H (m∥r)
3: t← B · h (mod 2)
4: x← DZ2n+ 1

2
t,σsign

5: if ∥x∥2 > σ2
ver · 2n then

6: restart (optional, see Section 5.3, § Failure checks.)
7: s = (s0, s1)

T = 1
2
h−B−1x (parse x ∈ R2 via vec−1.)

8: if sym-break(h1 − 2s1) is False then
9: s← h− s

10: return sig = (r, s)

Algorithm 3 Verification for Hawk: VfQ(m, sig)

1: (r, s)← sig
2: h← H (m∥r)
3: if s ∈ R2 and sym-break(h1 − 2s1) is True and

∥∥h
2
− s

∥∥2

Q
≤ σ2

ver · 2n then
4: return 1
5: else
6: return 0

For uncompressed Hawk we present KGen in Algorithm 1, Sign in Algo-
rithm 2 and Vf in Algorithm 3. The security parameter n is a power of two and
we assume the internal parameters can be computed from it. We use previous
work [29, Alg. 4] to generate the unimodular transformation B efficiently, by
sampling the first basis vector (f, g)

T, and then completing it (if possible) with
a second basis vector (F,G)

T such that detB = 1. We combine this with the
fast Babai reduction of [14] to obtain a shorter second basis vector (F,G)

T. In
KGen checks are performed prior to completing the basis B. In TowerSolveI [29]
it is necessary for N(f) or N(g) to be an odd integer. We require both to be odd
to use an optimised constant-time greatest common divisor algorithm, identical

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 11

to the Falcon reference implementation. Also, we require the squared norm of
(f, g)

T to be longer than σ2
sec · 2n for our concrete cryptanalysis, see Section 4.

Note that the signer has B−1 =

(
G −F
−g f

)
since fG− gF = detB = 1.

In Sign and Vf we check the condition sym-break(h1−2s1), which is required
for strong unforgeability. Without it sig′ = (r,h− s), which can be constructed
from public values, is another valid signature on m if sig = (r, s) is. Given e ∈ R,
we define sym-break(e) to be True if and only if e ̸= 0 and the first non zero
coefficient of vec(e) is positive. Checking this condition on h1−2s1 in Vf prevents
a weak forgery attack.

Signature correctness. Assume Sign is called with message m and outputs sig =
(r, s). First, note B−1x ∈ R2 + 1

2h and 1
2h± 1

2h ∈ R2, so s = 1
2h±B−1x ∈ R2.

Second, suppose sym-break(h1 − 2s1) is not satisfied during verification. By
lines 8 and 9 of Algorithm 2, this means sym-break(h1−2s1) and sym-break(2s1−
h1) are both False, therefore h1 = 2s1. Since h ∈ {0, 1}2n, this implies h1 = 0,
i.e. we have found a preimage of (h0, 0)

T for H. By choosing a preimage resistant
H or modelling it as a random oracle, this happens with negl(n) probability. We
allow this failure probability to simplify (compressed) Hawk.

The signing algorithm terminates only if the condition on line 5 is False.
Therefore ∥x∥2 ≤ σ2

ver ·2n. Thus during verification
∥∥h

2 − s
∥∥2
Q

=
∥∥B(

h
2 − s

)∥∥2 =

∥±x∥2 ≤ σ2
ver · 2n, with −x given by line 9 of Sign.

Storing pk and sk. We now consider how to efficiently store pk and sk, that is,

Q =

(
q00 q01
q10 q11

)
= B∗ ·B and B =

(
f F
g G

)
respectively. For B it is sufficient to only store f and g, but this requires the
computationally expensive recovery of F and G in Sign. We note that computing
F,G is the most expensive part of KGen. Instead, one stores f, g and F since G
can be recovered efficiently from fG− gF = 1. The coefficients of f, g and F are
small so we use a simple encoding with constant-time decoding for them.

For Q by construction we have q10 = q∗01 so one may simply drop q10. More-
over, since det(B) = 1 we have q00q11 − q01q10 = detQ = det(B∗) det(B) = 1,
therefore q11 can be dropped and reconstructed as q11 =

1+q∗01·q01
q00

. In addition,
q00 is self-adjoint and therefore only the first half of its coefficients need to be
encoded. More details are given in Section 5.2.

3.2 (Compressed) Hawk

Hawk is obtained by dropping s0 from a signature s = (s0, s1)
T in Sign and then

reconstructing it in Vf using public values Q and h. There is a probability that
s0 is not correctly recovered, but it is kept small by rejecting ‘bad’ key pairs in
KGen. In Vf, s0 is recovered by finding a value that makes 1

2h − (s0, s1)
T short

12 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

with respect to ∥ · ∥Q. Two ways to reconstruct s0 are Babai’s round-off algorithm
and Babai’s Nearest Plane algorithm [4]. Given that we work with respect to the
norm induced by Q, we must adapt one of these algorithms to quadratic forms.
Because of its simplicity and good performance, we use round-off for Hawk.
Specifically, we use the following to reconstruct s0.

s′0 =

⌈
h0

2
+

q01
q00

(
h1

2
− s1

)⌋
, (1)

where the rounding is coefficientwise and ⌈x⌋ = z for x ∈
(
z − 1

2 , z +
1
2

]
and

z ∈ Z. Hence Vf is adapted to read a signature sig = (r, s1) and reconstruct s′0
using (1), before setting s = (s′0, s1)

T. Observe that s′0 = s0 if and only if⌈
q00

(
h0

2 − s0
)
+ q01

(
h1

2 − s1
)

q00

⌋
= 0.

The fraction inside the rounding function can be rewritten using (q00, q01) =

(f∗, g∗) ·B and B ·
(
h
2 − s

)
= (x0, x1)

T as f∗x0+g∗x1

f∗f+g∗g . Thus, we certainly recover
the correct s0 from Q, h and s1 if

f∗x0 + g∗x1

f∗f + g∗g
∈
(
−1

2
,
1

2

)n

. (2)

Intuitively, when (f, g) is sampled such that the Euclidean norm of (f∗/q00, g
∗/q00)

is sufficiently small, this recovery works almost always. Note∥∥∥∥(f∗

q00
,
g∗

q00

)∥∥∥∥2 =
1

n
Tr

(
f∗f + g∗g

q200

)
=

1

n
Tr

(
q−1
00

)
= ⟨1, q−1

00 ⟩. (3)

Hence we choose a bound νdec such that decompression works almost always for
keys satisfying ⟨1, q−1

00 ⟩ < νdec. We provide a computation and value for νdec in
Section 5.1. In summary, Algorithms 1, 2 and 3 are changed as follows for Hawk.

1. In KGen, restart if ⟨1, q−1
00 ⟩ ≥ νdec.

2. In Sign, restart if x = (x0, x1)
T does not satisfy (2).

3. In Sign, return a signature as (r, s1) instead of (r, s) = (r, (s0, s1)
T
).

4. In Vf, given a signature (r, s1) reconstruct s′0 with (1) and set s = (s′0, s1)
T.

Given the above, a reconstructed signature is correct. In practice we choose
νdec such that (2) is also satisfied except with small probability and forego item
2. in the list, see Section 5.3.

Security relation to the uncompressed variant Note that an adversary that can
create a forgery (strong or weak) against Hawk can also create a forgery (strong
or weak) against uncompressed Hawk. Indeed, if sig = (r, s1) is a forgery against
Hawk then this implies sig = (r, (s′0, s1)

T
) is a forgery against uncompressed

Hawk. Only public quantities are required to recover s′0. Therefore, throughout
we consider the security of uncompressed Hawk. In Appendix B of the full
version [16] we further reduce the forgery security of uncompressed Hawk to an
assumption called the one more short vector problem, or omSVP.

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 13

4 Cryptanalysis

In this section we provide a concrete cryptanalysis of Hawk. Whereas the formal
security arguments we make in Section 6 and Appendix B of the full version [16]
increase our confidence in the design of Hawk, our results here aid us in choosing
parameter sets that are efficient. Throughout we consider uncompressed Hawk.
We consider recovering the secret key from public information and forging a new
signature given at most qs = 264 signatures. We report the various parameters,
probabilities and blocksizes output by our cryptanalysis in Table 2.

We express the constraints on various quantities in our scheme in terms of
Gaussian parameters σ•, even if they are not quantities sampled from a distri-
bution. This allows us to present necessary relationships between these quan-
tities as in Figure 2. In particular for x ← DZd,σ, with σ above smoothing,
E[∥x∥] ≈ σ

√
d [26, Sec. 4]. For example, the verification of signatures is de-

termined by a distance, say ℓ. Instead of referring to ℓ, we use the shorthand
σver = ℓ/

√
d.

σpk ≥ σsec ≥ σver ≥ σsign ≥ σsec

2

: required for security

: required for efficiency

Sec 4.1 (statistical)Sec 4.2 (cryptanalysis)

Sec 5.1 Sec 5.1 Sec 4.2Sec 4.3

Sec 4.3

σ2
sec + σ2

sign > σ2
ver

Fig. 2: A summary of the necessary relationships between the various σ•.

We stress that the relations of Figure 2 are necessary, under our experimental
analysis, conditions for security – any selection must also satisfy the concrete
cryptanalysis below. As a short introduction, σsign is our fundamental parameter,
and we select it first. It ensures that our scheme does not suffer from learning
attacks [27,13] if an adversary is given access to signature transcripts. We then
choose σpk which controls key generation in Algorithm 1. It must be large enough
that recovering the secret key is hard, and also that the cost of computing a
sufficiently good basis to aid with signature forgeries is hard. To this end we
heuristically estimate and verify experimentally σsec, a parameter that represents
the shortest a public basis can be before one recovers the secret key. Finally, σpk

14 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

and σver are chosen to ensure various rejection steps, in key generation and
signing respectively, do not occur too frequently, see Section 5.1. The condition
σ2
ver < σ2

sec + σ2
sign encodes the requirement for a good basis to not help with

signature forgeries.

4.1 Choosing σsign

We choose σsign large enough to avoid signatures leaking information about a
secret key. Following [32, Sec. 2.6], for security parameter λ in the face of an
adversary allowed qs signatures, it is enough to set

σsign ≥
1

π
·
√

log(4n(1 + 1/ε))

2
≥ ηε(Z2n),

for ε = 1/
√
qs · λ to lose a small constant number of bits of security. We note

that since we sample from Z2n we may use the orthogonal basis I2n(Z), and
thus the above inequality is also sufficient for efficient sampling via Lemma 1.
We ensure that, following the analysis of Falcon [32, Sec. 3.9.3], our proba-
bility distribution tables have a Rényi divergence at order 513 from their ideal
distributions of less than 1 + 2−79.3

4.2 Key Recovery

In Hawk, the problem of recovering the secret key B ∈ SL2(OK) from the public
key Q = B∗ · B is a (module) Lattice Isomorphism Problem. For the lattice
R2 ∼= Z2n it is equivalent to finding a U ∈ SL2(OK) such that U∗ ·Q ·U = I2(K),
i.e. reducing (any lattice basis corresponding to) Q to an orthonormal basis. As
mentioned in [15], all known algorithms to solve LIP for modules of rank at least
two require finding at least one shortest vector. Therefore we assume that the
best key recovery attack requires one to find a single shortest vector.

Unusual-SVP. The shortest vectors in R2 have length 1, which is a factor of order
Θ(
√
n) shorter than predicted by the Gaussian heuristic. Recovering such ‘unusu-

ally’ short vectors is easier than generic shortest vectors, and can be achieved by
running the BKZ lattice reduction algorithm with blocksize β much lower than
the full dimension 2n. Given that for current cryptanalysis there are no signifi-
cant speed-ups for solving the structured variant of this unusual-SVP, we treat
the problem by considering the unstructured version (i.e. as the form rot(Q) or
some rotation of Z2n). The problem of finding an unusually short vector has
received much cryptanalytic attention. This has lead to accurate estimates for
the required BKZ blocksize, see [3] for a survey. As an estimate, given that our
lattice has unit volume and we search for a vector of unit length, we require a
blocksize β such that √

β/d ≈ δ2β−d−1
β , (4)

3 See https://github.com/ludopulles/hawk-aux/blob/main/code/generate_C_
tables.sage.

https://github.com/ludopulles/hawk-aux/blob/main/code/generate_C_tables.sage
https://github.com/ludopulles/hawk-aux/blob/main/code/generate_C_tables.sage

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 15

where δβ ≈ (β/2πe)
1/2(β−1). Asymptotically this is satisfied for some β ∈

d/2+o(d). Concrete estimates also simulate the Gram–Schmidt profile, use prob-
abilistic models for the lengths of projected vectors and account for the presence
of multiple shortest vectors [9,5,10,30].

In Figure 3 we plot the estimate given by (4) where the o(d) term is con-
cretised to some constant, the estimate given by the leaky-LWE-estimator [10],
which applies the concrete improvements mentioned above, and experimental
data. These experiments apply the BKZ2.0 algorithm with lattice point enumer-
ation as implemented in [34] to the public form Q, reporting the BKZ block
size required to find a shortest vector. For dimensions which are not powers of
two, the experimental data uses a form sampled by [15, Alg. 1], the unstructured
generation procedure upon which our key generation is based. For some small
power of two dimensions we generate bases via Algorithm 1. We see that below
approximately dimension 80 instances can be solved with LLL reduction, and
that afterwards the required blocksize approximately increments by one when
the dimension increases by two, as (4) would suggest. We also see that above
approximately blocksize 70 the model of [10] appears especially accurate. We
therefore use this model to determine βkey in Table 2. We use a simple progres-
sive strategy where the blocksize increments by one after each tour, which we
expect to require a blocksize perhaps two or three larger than a more optimal
progressive strategy.

Decreasing σpk. For the experiments of Figure 3 we took a large σpk as an attempt
to find a ground truth. We would like to minimise σpk to minimise the size of
our keys and the complexity of computing with them, but without significantly
reducing security. To this end we perform a similar experiment where we fix a
set of dimensions and reduce forms of these dimensions using various σpk < 20.
The results of these experiments are presented in Figure 4. For σpk below a
certain threshold instances can be solved by LLL, then as σpk increases past this
threshold the instances become harder, before reaching an empirical “maximum
hardness” (at least with respect to these experiments) where further increases
in σpk appear to give no extra security.

When running BKZ one encounters shorter vectors as β grows. In a random
lattice of unit volume one expects to encounter vectors of length δd−1

β ∈ Θ(d)

when β = d/2 + o(d), but for Zd this is also the moment that a vector of
length 1 is found. In fact, the model of [10] predicts that we suddenly jump from
finding vectors of length ℓ0 = Θ(d) to finding a shortest vector of length 1. This
threshold behaviour was observed and discussed in [7, Sec. 6.2]. In our notation
the authors observe the threshold effect once vectors of length approximately√
d/2 are discovered. Our model and experiments suggest the threshold length

is Θ(d) but with a constant smaller than 1. We verified this behaviour for Zd

experimentally. In Figure 5 we plot σsec = ℓ0/
√
d where ℓ0 is the length of the

shortest basis vector after the penultimate tour concludes.
We see that for large enough dimensions the behaviour matches the unusual-

SVP predictions, and we obtain σsec = Θ(
√
d). For Table 2 we take σsec as the

output from the prediction of [10]. We assume the value σsec represents a lower

16 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

60 80 100 120 140 160 180 200 220 240 260
0

20

40

60

80

Lattice dimension d

Su
cc

es
sf

ul
bl

oc
ks

iz
e
β

Experimental average
Experimental average (structured)
Prediction of [10]
β = d/2 − C from (4)

We ran progressive BKZ (one tour per blocksize) over Zd using an input form generated
with σpk = 20 and report the average successful β that recovered a length one vector
over 40 instances. We used the BKZ simulator and probabilistic model of [10], account-
ing for the d target solutions. See BKZ_simulator.sage and exp_varying_n.sage at
https://github.com/ludopulles/hawk-aux.

Fig. 3: Blocksize required to recover a shortest vector via lattice reduction as a
function of dimension d.

bound for σpk such that our public forms exhibit maximum hardness. In practice
we take σpk > σsec and reject keys where the length of (f, g)

T is shorter than
ℓ0. If we allow shorter (f, g)

T then the public key may give information to an
adversary that she would not have unless she had already recovered the secret
key.

We note that the prediction of [10] in Figure 5 is inaccurate for d ≤ 180,
similarly (but more noticeably) to Figure 3. One can improve the accuracy of
estimates for these dimensions by using the geometric series assumption, and
performing several tours so that basis profiles match it, for small blocksizes (say
up to β = 20). Since our estimates converge in the range of feasible experiments,
we choose simplicity instead.

Note that even if the statistical arguments of Section 4.1 allow it, we can-
not take σsign < σsec/2. Indeed, 2 · (12h − s) ∈ Z2n and if σsign < σsec/2 then∥∥2 · (12h− s)

∥∥
Q

= 2∥x∥ ≈ 2σsign

√
d < σsec

√
d. Therefore, doubling a public

quantity given by a signature may describe a shorter lattice vector than those
seen just before secret key recovery.

https://github.com/ludopulles/hawk-aux

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 17

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

Standard deviation σ̃pk

Su
cc

es
sf

ul
bl

oc
ks

iz
e
β

d = 180

d = 170

d = 160

d = 150

d = 140

d = 130

d = 120

d = 110

We ran progressive BKZ (one tour per blocksize) over Zd using an input form gen-
erated with various σpk and report the average successful β that recovered a length
one vector over 80 instances. Note that the range of σpk includes values below smooth-
ing, for which the actual standard deviation σ̃pk can be significantly lower than the
Gaussian parameter σpk. See https://github.com/ludopulles/hawk-aux/blob/main/
code/exp_varying_sigma.sage.

Fig. 4: Blocksize required to recover a shortest vector via lattice reduction as a
function of the standard deviation σ̃pk.

4.3 Signature Forgery

Strong Forgery. We consider the general problem of forging a signature for some
unsigned message. Specifically, given a target 1

2h for some h ∈ {0, 1}2n, return
an s ∈ Z2n such that

∥∥ 1
2h− s

∥∥
Q
≤ σver

√
d. We use the heuristic that solving

such an approximate CVP instance is at least as hard as solving an approximate
SVP instance with the same approximation factor over the same lattice. we
determine the expected blocksize β using the BKZ simulator [10] such that our
first basis vector has norm less than σver

√
d, and report it as βforge in Table 2.

Note that since we use the BKZ simulator of [10] to estimate both βkey and
βforge, if σver = σsec then βkey = βforge. Our approach mandates that σver ≤ σsec.
We make this design decision because in our model it means an adversary should
not be able to produce a strong forgery unless the secret key is recovered. Indeed,
when σver ≤ σsec our assumption on approximate CVP says forging a signature
is as hard as finding a vector as short as those found just before key recovery.

Weak Forgery. We consider a weak forgery attack consisting of adding a short
lattice vector to an existing signature for some message, and hoping that it

https://github.com/ludopulles/hawk-aux/blob/main/code/exp_varying_sigma.sage
https://github.com/ludopulles/hawk-aux/blob/main/code/exp_varying_sigma.sage

18 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

120 140 160 180 200 220 240

0.6

0.7

Lattice dimension d

σ
se
c

Experimental average
Experimental average (structured)
Prediction of [10]

0.04 ·
√
d + 0.14

We ran progressive BKZ (one tour per blocksize) over Zd using an input form gen-
erated with σpk = 20 and report the average σsec determined by the shortest basis
vector in the penultimate BKZ tour over 40 instances. See exp_varying_n.sage and
predict_varying_n.sage at https://github.com/ludopulles/hawk-aux.

Fig. 5: Shortest basis vector length before the recovery of a length one vector,
given in terms of σsec.

remains a valid signature for the same message. This vector might come from
the public key, or from lattice reduction effort on it. Its length is assumed to
be at least ℓ0 = σsec ·

√
d, see Section 4.2. We give arbitrarily many such length

ℓ0 vectors to the adversary for free. We estimate the probability the attack
succeeds, i.e. that ∥x+ v∥2 ≤ d · σ2

ver for x ← DZ2n,σsign
and v of length ℓ0.4

If x were sampled from a spherical continuous Gaussian, then considering any
such v would give the same distribution of squared lengths. We examine the
distribution of ∥x+ v∥2 for two “extremal” choices of v; the first has all its
weight in one coordinate, v = (⌊ℓ0⌋, 0, . . . , 0), and the second is as balanced as
possible, e.g. v = (1, . . . , 1, 2, . . . , 2) for ∥v∥ = ⌊ℓ0⌋. Note that the distribution
of ∥x+ v∥2 is invariant under signed permutations of v. We report our estimate
for the success probability of this attack as Pr[weak forgery] in Table 2.

This attack implies the requirement σ2
ver < σ2

sec + σ2
sign. Even if a vector from

a reduced public key is orthogonal to a given signature, then if σ2
ver ≥ σ2

sec+σ2
sign

adding it will likely be sufficient for a weak forgery.

Comparison with Falcon. Falcon uses a different cryptanalytic model to
determine the blocksizes reported in Table 2. Our model makes use of recent
improvements [10] and enjoys the experimental evidence above. The unusually
short vectors in Zd are a factor about 1.17 shorter than the NTRU lattice of
Falcon, after appropriate renormalisation, and thus key recovery for Hawk
will be slightly easier than Falcon in either model. On the other hand, our
verification bound σver is a factor about 1.15 (Hawk-512) to 1.06 (Hawk-1024)
4 See fail_and_forge_probability at https://github.com/ludopulles/hawk-aux/
blob/main/code/find_params.sage.

https://github.com/ludopulles/hawk-aux
https://github.com/ludopulles/hawk-aux/blob/main/code/find_params.sage
https://github.com/ludopulles/hawk-aux/blob/main/code/find_params.sage

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 19

shorter than Falcon after renormalisation, and thus obtaining strong forgeries
is slightly harder than in Falcon in either model. In both Hawk-512 and Fal-
con-512 key recovery is harder than signature forgery, and thus hardening the
latter, as we do, gives a slightly more secure scheme overall. For Hawk-1024 and
Falcon-1024 key recovery is easier than signature forgery, and in the Falcon
model we obtain a slightly less secure scheme overall. See Appendix D of the
full version [16] for more detail on Falcon’s security methodology, and a com-
parison to Hawk under it. We also argue there that part of the key recovery
methodology of Falcon is overconservative.

5 Parameters and Performance

In Table 2 we list parameters and the output of our concrete cryptanalysis for
Hawk.5 Section 5.1 explains how these parameters were chosen. We explain the
encoding used for public keys and signatures, and the simple encoding used for
secret keys, in Section 5.2. In Section 5.3 we explain the design choices made in
our constant-time implementation of Hawk, written in C. Finally, Section 5.4
contains the details behind Table 1. More details can be found in Appendix C
of the full version [16].

5.1 Parameter Selection

In Hawk we set saltlen = λ+log2 qs, where qs = 264 is the limit on the signature
transcript size. The probability of a hash collision is then less than qs · 2−λ [32,
Section 2.2.2]. Allowing saltlen to depend on λ implies one must know λ before
computing H(m∥r), which is commonly the case. For simplicity Falcon choose
a fixed salt length of 320 bits. This is not optimal for λ = 128. Here Hawk-512
saves 16 bytes on signatures, though this saving is also available to Falcon-512.

The value of σpk for Hawk-512 listed in Table 2 is such that the probability of
∥(f, g)∥2 > σ2

sec · 2n is greater than 99.5% for f, g both with odd algebraic norm
and sampled as in KGen. For Hawk-1024, the probability that ∥(f, g)∥2 > σ2

sec·2n
holds for similar f, g is greater than 80%.

There are two failures that may occur during signing in Hawk. Firstly, ∥x∥2
may be too large. Secondly, (2) may be violated, i.e. decompressing sig = (r, s1)
may return s′0 ̸= s0, the original first component of the signature. We choose
parameters σver and νdec to make such failures unlikely.

For Hawk-512, x is too large with a probability of around 2−22, determined
by convolving the necessary distributions together.6 To obtain a strict upper
bound on this probability one can use a looser tail bound analysis via Lemma 2
and Lemma 3, with ε = 1/

√
qsλ and τ = σver/σsign, which gives 2−17. Similarly

5 See https://github.com/ludopulles/hawk-aux/blob/main/code/find_params.
sage.

6 See fail_and_forge_probabilities at https://github.com/ludopulles/
hawk-aux/blob/main/code/find_params.sage.

https://github.com/ludopulles/hawk-aux/blob/main/code/find_params.sage
https://github.com/ludopulles/hawk-aux/blob/main/code/find_params.sage
https://github.com/ludopulles/hawk-aux/blob/main/code/find_params.sage
https://github.com/ludopulles/hawk-aux/blob/main/code/find_params.sage

20 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

for Hawk-1024, x is too large with a probability of around 2−128 and the tail
bound gives a probability of at most 2−121.

Given a fixed secret key sk = B, we provide a heuristic upper bound on the
probability of decompression (1) giving s′0 ̸= s0, which is upper bounded by the
probability that (2) does not hold. This also upper bounds the probability a
compressed signature is correct although s0 ̸= s′0. Heuristically, we assume that
x0, x1 are independently sampled from a normal distribution on Rn with mean 0
and standard deviation σsign. Following Section 3.2 the decompression succeeds
if f∗x0+g∗x1

q00
∈ (− 1

2 ,
1
2)

n. Since B is fixed, each coefficient is normally distributed
with mean 0 and variance ∥(f∗/q00, g

∗/q00)∥2 · σ2
sign = ⟨1, q−1

00 ⟩ · σ2
sign, using (3).

Hence the probability that one of the n coefficients is not in the interval (− 1
2 ,

1
2)

is erfc
(

1
2/

(√
2 · ⟨1, 1/q00⟩ · σsign

))
, where erfc is the complementary error func-

tion. By a union bound, the probability that decompression fails is heuristically
bounded from above by n · erfc

(
1/(

√
8 · ⟨1, 1/q00⟩ · σsign)

)
. By rejecting keys for

which ⟨1, q−1
00 ⟩ ≥ νdec, decompression fails for any B heuristically with probabil-

ity at most n · erfc
(
1/

(√
8νdec · σsign

))
.

Taking νdec = 1/1000 in Hawk-512 this upper bound is 2−105. This condition
on (f, g) in KGen fails in about 9% of cases. We empirically determined this by
sampling f and g with odd algebraic norm 100,000 times. Combining this with
the small probability that ∥(f, g)∥ is too small, one can efficiently sample (f, g)
until all requirements, before TowerSolveI is invoked, are met.

In Hawk-1024 we take νdec = 1/3000 and decompression fails on a signa-
ture with probability less than 2−315 for a key satisfying ⟨1, q−1

00 ⟩ < νdec. This
condition fails in about 0.9% of the cases during sampling of (f, g) inside KGen.

Parametrisations for formal reductions. The parameters above are determined
by concrete cryptanalysis and do not follow our formal reductions. In Section 6
we give a worst case to average case reduction for smLIP, and in Appendix A
of the full version [16] show how it applies to the KGen of Hawk. For this
reduction to be efficient σpk must grow exponentially in n. We discuss this in
final paragraph of Section 6. In Appendix B of the full version [16] we reduce
the strong signature forgery security of Hawk’s design to omSVP. To ensure
the parametrisation of the omSVP problem we reduce to is not easy we require
σver <

√
2σsign and 2σsign < σpk. The existence of plausibly hard parametrisations

of omSVP encourages us that there is no inherent flaw in our design. We take
σpk smaller than this requirement and discuss this further in Appendix B of the
full version [16].

5.2 Encoding

In Hawk both the secret key and x in Sign are sampled from a discrete Gaussian.
As a consequence, the coefficients of the public key and the signature roughly
follow a normal distribution. Therefore, it is beneficial to use the Golomb–Rice
coding [21]. This encoding is used for the signatures in Falcon [32].

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 21

Hawk-256 Hawk-512 Hawk-1024

Targeted security Challenge NIST-1 NIST-5

Dimension d = 2n 512 1024 2048
Bit security λ 64 128 256

Transcript size limit qs 232 264 264

Signature Std. dev. σsign 1.010 1.278 1.299
Verif. Std. dev. σver 1.040 1.425 1.572

Key Recov. Std. dev. σsec 1.042 1.425 1.974
Key Gen. Std. dev. σpk 1.1 1.5 2

Salt Length (bits) 112 192 320

log2(Pr[sign fail]) −2 −22 −128

Key Recov. (BKZ) βkey 211 452 940
Strong Forgery (BKZ) βforge 211 452 1009

log2(Pr[weak forgery]) −83 −143 −683
Table 2: Parameter sets and their estimated security are given. The dimension,
bit security and transcript size are used to determine σsign. Other standard de-
viations are determined in Section 4. We then estimate the probability that a
signature fails for being too long. The estimated required blocksizes β for BKZ
reduction to achieve key recovery and signature forgery are then given. Finally,
we give the estimated probability of finding a weak forgery via the attack in
Section 4.3.

For the coding, we use an altered absolute value | · |′ : Z→ [0,∞), x 7→ x for
x ≥ 0 and x 7→ −x − 1 for x < 0. The map that sends x to its sign and |x|′
gives a bijection Z → {0, 1} × Z≥0. Given a quantity that is sampled from a
discrete Gaussian distribution with (an above smoothing) parameter σ, take an
integer k close to log2(σ). To encode a value x ∈ Z, first output the sign of x and
the lowest k bits of |x|′ in binary. Then output ⌊|x|′/2k⌋ in unary, i.e. ⌊|x|′/2k⌋
zeros followed by a one. Note that Falcon uses | · | where we use | · |′, but their
decoding fails when negative zero is encountered to ensure unique encodings [32,
Section 3.11.2]. An advantage of this altered absolute value is that it sometimes
saves one bit and is easy to implement: |x|′ is the XOR of x and -(x >> 15)
when x has 16 bits.

We use the Golomb–Rice coding on pk and s1. In particular, for pk the
coefficients of q01 and coefficients 1 up to and including n/2 − 1 of q00 are
encoded, with k = 9 and k = 5 respectively for Hawk-512 and k = 10 and k = 6
for Hawk-1024. The constant coefficient of q00 is output with 16 bits as its size
is much larger than the other coefficients. The second half of q00 can be deduced
from its self-adjointedness. For s1 we use k = 8 and k = 9 in our implementation
for Hawk-512 and Hawk-1024 respectively.

For the secret key, we note the sampler in our implementation of Hawk-512
generates coefficients for f and g with an absolute value at most 13 < 24, we
encode these with 5 bits, one of which is the sign. For the remaining polynomial

22 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

F of the secret key, we encode with one byte per coefficient (recall G can be
reconstructed). We use this simple encoding and decoding for our secret key as
it is constant-time. Hawk-1024 requires 6 bits for coefficients of f and g since
the sampler generates values of absolute value at most 18 < 25.

5.3 Implementation Details

We implemented Hawk-512 and Hawk-1024 in the C programming language,
together with an AVX2 optimised implementation. Due to the many algorithmic
similarities between Hawk and Falcon, we were able to reuse a significant
portion of the public implementation of Falcon. The code for key generation
and signing is isochronous; all is constant-time except the encoding of the public
quantities pk and sig. Verification is trivially isochronous as it only uses public
information.

Babai reduction. In KGen we perform another reduction step to make (F,G)
T

smaller than the output of TowerSolveI. TowerSolveI returns an element (F,G)
T

whose projection onto the module lattice M = (f, g)
T · R, i.e. the rank n real

lattice with basis C = rot((f, g)T), lies in the fundamental parallelepiped defined
by C. If this projection is uniformly distributed here, the expectation of its
squared norm is n

12 · 2nσ2
pk. However, line 6 in Alg. 1 implies the projection

of (F,G)
T onto M lies in the fundamental domain generated by the Gram–

Schmidt orthogonalisation of the rotations of (f, g)T in bit reversed order. By [31,

Lemma 6.9], the ith vector has an expected norm of
√

2n+1−i
2n ·∥(f, g)∥ for i ∈ [n].

Therefore, the expected squared norm of a point sampled uniformly from this
fundamental domain will be

1

12
· (3n+ 1)n/2

2n
· 2nσ2

pk =
3n+ 1

48
· 2nσ2

pk ≤
n

12
· 2nσ2

pk.

We observe that the squared norm of (F,G) is reduced by a factor of 4/3 by
line 6 of Algorithm 1. This shrinks the Hawk-512 public key size from 1027
bytes on average to 1006.

Sampling and pseudorandomness. We use the SHAKE256 extendable output
function to seed a pseudorandom number generator (PRNG) based on ChaCha20
during sampling in KGen and Sign. As the Gaussian parameters used in the
scheme are fixed, DGS can be performed efficiently with precomputed prob-
ability tables and this PRNG. KGen uses a sampler that requires 64 bits of
randomness. For sampling in Sign we implement DGS for Z+ 1

2 t with t ∈ {0, 1}
that is constant-time over input t and that uses 80 bits of randomness, sufficient
for Section 4.1. This sampler uses a reverse cumulative distribution table scaled
by a factor of 278 similar to [32, Section 3.9.3]. Almost half of the time of Sign
is spent on sampling.

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 23

Fast polynomial arithmetic. We want all computations to be performed in time
O(n log n). Addition of two polynomials in R = Z[X]/(Xn + 1) is in O(n), but
naïve multiplication in R requires O(n2) integer multiplications. There are two
ways to achieve O(n log n) via the specific structure of the used number ring.
First, one can use the fast Fourier transform (fft) to perform a multiplication
in O(n log n). Alternatively, one can perform multiplications with the number
theoretic transform ntt, which works with a (sufficiently large) prime modulus
p ≡ 1 (mod 2n) and an element ω ∈ F×

p of order 2n. Then, as F×
p is a cyclic

group of order p − 1 the ntt computes f(ωi) ∈ R for all i ∈ (Z/2nZ)× in
time O(n log n). When polynomials are transformed with the fft or ntt, mul-
tiplication is coefficientwise. We only use ntt in the reference implementation.
Multiplications in R could also be implemented with Karatsuba or Toom–Cook
style multiplication. For certain applications such as masking this may have com-
parable performance for the given parameters. We leave the trade-off between
masking techniques and alternative multiplication methods as future work.

For the ntt, multiplying two polynomials a(X), b(X) requires p to be twice
larger than the absolute value of any coefficient of a(X), b(X) or a(X)·b(X). This
allows one to recover the correct result in Z via the inverse transformation. In
Hawk-512 and Hawk-1024, p = 12289 is sufficient for signing. In the reference
implementation we use p = 216 + 1 since this Fermat prime allows a faster
multiplication procedure than using Montgomery reduction with p = 12289.
Signing using p = 216 + 1 is 17% faster than using p = 12289. If one wants to
reduce memory usage from 15kB to 8kB for Hawk-512, one can safely use the
prime p = 18433 such that values fit in the 16 bits instead of 32.

By demanding coefficients of s and Q are within 6 standard deviations of
their means, we can bound the integer ∥h− 2s∥Q by a product of two 31 bit
primes. Hence, in the reference implementation of Vf, we can compute the norm
of a signature by computing it with the ntt modulo these two primes.

The fft in our implementation uses double precision floating-point numbers
(double). When a processor has a floating-point unit and AVX2 support, this
fft is much faster than the ntt, but also requires more RAM.

Divisions and signature decompression. During decoding we require a polyno-
mial division in K to recover G = (1 + gF)/f and q11 = (1 + q10q01)/q00. Since
these exact divisions have output in R, they can be computed with either the
fft or ntt, by performing a division coefficientwise in the transformed domain.
In KGen, it should be checked that all ntt coefficients of f and q00 are nonzero.

The signature decompression requires a division with rounding to the closest
integral point in R, which can be done efficiently with the fft. One can do this
with fixed-point arithmetic: it is highly unlikely that the numerical error yields
an incorrect rounding. Especially, when we require that the quantity in (2) has
to be in (−0.49, 0.49)n, an absolute error of 0.01 is tolerated.

Failure checks. By default we catch invalid signatures before they are issued. The
first failure check is line 5 of Algorithm 2. A decompression may also output an
incorrect s′0 ̸= s0. To catch this we could check with fft if (2) holds, and restart

24 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

Falcon-512 Hawk-512
(Falcon

Hawk

)
Falcon-1024 Hawk-1024

(Falcon
Hawk

)
AVX2 Sign 320 µs 58 µs ×5.5 656µs 114 µs ×5.8

Ref. Sign 5427 µs 168 µs ×32 11868µs 343 µs ×35

Table 3: Performance of dynamic signing for Falcon and Hawk on same PC
with same compilation flags as in Table 1.

if not. We remove this decompression check, because it is extremely unlikely that
it restarts over the lifetime of a key (see Section 5.1).

Omitting the first check might be necessary when implementing Hawk as a
circuit inside an FHE scheme, where while loops are impractical. This comes at
the cost of a rare but non negligible probability (see Section 5.1) of an invalid
signature, which might be mitigated by reparametrising the scheme.

In contrast to Falcon, we sample a new salt whenever Sign restarts as we do
not see how reusing the same target can be made compatible with the security
argument of [19]. Reusing the salt may lead to a statistical leak for Falcon,
though it may be hard to exploit as failures in signing are rare. Nevertheless, we
choose to be cautious when it comes to statistical leaks.

5.4 Performance

We report on the performance of our implementation of Hawk-512 and compare
it to that of Falcon-512 in Table 1. Hawk was compiled with the gcc com-
piler (version 12.1.0) and compilation flag -O2 (and -mavx2 for AVX2), as -O3
actually made the performance worse. The code for Falcon was taken from the
‘Extra’ folder in the Round 3 submission package https://falcon-sign.info/
falcon-round3.zip, and was compiled with the same gcc but had compilation
flags -O3 -march=native.

Memory usage. The reference implementation of Hawk-512 uses 24kB, 15kB
and 18kB of RAM for KGen, Sign and Vf respectively, versus 16kB, 40kB and
4kB for Falcon-512 respectively. Hawk requires more RAM for KGen compared
to Falcon to execute line 6 of Algorithm 1. RAM usage of Falcon’s KeyGen
is more than reported on https://falcon-sign.info as we took the RAM
usage of the API functions, which takes sizes of decoded keys into account. The
AVX2 optimised implementation of Hawk requires 27kB and 24kB for Sign
and Vf respectively, prioritising speed over memory usage. For Hawk-1024 and
Falcon-1024 memory usage roughly doubles.

Batched vs. dynamic signing. For consistency with the Falcon report [32], Ta-
ble 1 reports signing speeds for batched usage, that is, after some precomputation
expanding the secret key (called expand_seckey). If one needs to start from the
secret key without expanding it, the performance of Falcon is significantly
affected while the precomputation is much lighter for Hawk. The timings for
dynamic signing are given in Table 3.

https://falcon-sign.info/falcon-round3.zip
https://falcon-sign.info/falcon-round3.zip
https://falcon-sign.info

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 25

6 Module LIP Self Reduction

In this section we give a worst to average case reduction for the search module
LIP problem, which underlies secret key recovery in Hawk. The average case
distribution we give does not match Algorithm 1 exactly, as it does not include
some conditions which may cause a restart. We also replace TowerSolveI, which
‘completes’ f and g into a basis with determinant one via F and G, with Hermite-
Solve. HermiteSolve fails if and only if it is impossible to complete a particular
f, g. We show that the distribution of public keys output by Algorithm 1 after
the above changes enjoys a worst to average case reduction. In Appendix A of
the full version [16] we discuss the unaltered public key distribution of Hawk
and show that the reduction is still applicable to Hawk.

Throughout we are concerned with asymptotic security, in contrast to the
main body of the paper where we find efficient parameters that are supported
by concrete cryptanalysis. In particular, the choice of σpk required to make the
reduction efficient is larger than is chosen in our parametrisations for Hawk.

6.1 Module Lattice Isomorphism Problem

Here we introduce a generalisation of the Lattice Isomorphism Problem (LIP) to
module lattices. Given the Hermitian inner product, the correct generalisation
of orthonormal transformations for the module version is to that of unitary
matrices. To avoid confusion with U, which is often used for U ∈ GLℓ(OK) in
lattice based cryptography, we will use O ∈ Uℓ(KR) = {O ∈ Kℓ×ℓ

R : O∗ · O =
Iℓ(K)} for unitary matrices.

Definition 6 (Module Lattice Isomorphism Problem). Given two OK-
modules M,M ′ ⊂ Kℓ find O ∈ Uℓ(KR) such that O·M = {O·m : m ∈M} = M ′.

Moving to Hermitian forms, the natural translation becomes equivalence under
the action of GLℓ(OK). However, for simplicity we restrict ourselves to equiv-
alence under the action of SLℓ(OK), and we denote the equivalence class by
[Q]sl = {U∗ ·Q ·U : U ∈ SL2(OK)}. Throughout we implicitly restrict to K that
are CM fields, e.g. all cyclotomic fields. Using (generalisations of) the Gentry–
Szydlo algorithm [20,24,23], solving LIP under both actions is equivalent for
such fields. We can now define the worst case module LIP variant. Note that our
worst case and average case problems are within a particular class.

Definition 7 (Worst case smLIP). Given K and Q ∈ H>0
ℓ (K) an instance

of wc−smLIPQ
K,ℓ, the worst case search module Lattice Isomorphism Problem, is

given by Q and any Q′ ∈ [Q]sl. A solution is U ∈ SLℓ(OK) such that Q′ =
U∗QU.

We now define an average case version of smLIP relevant to Hawk. It is
less general than the worst case version in that we implicitly fix ℓ = 2 and
consider only power of two cyclotomics with conductor m = 2κ = 2n for K. We
define our average case distribution for any class [Q]sl, but note that the average

26 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

case distribution over [I2(K)]sl relates to our key generation in Algorithm 1.
Finally, we define our average case distribution ACσ([Q]sl,K) algorithmically, see
Algorithm 6. This algorithm takes as input a particular form Q and a parameter
σ that controls an internal discrete Gaussian sampling procedure, and outputs
a sample from [Q]sl. One can think of σ = σpk in the case of Hawk.

A subroutine of Algorithm 6 must ‘complete’ a vector (f, g)
T ∈ O2

K, if possi-
ble, into a basis Y ∈ O2×2

K with second column (F,G)
T and determinant one. To

perform this operation we define a subroutine called HermiteSolve. This is an al-
gorithm that outputs ⊥ if and only if the particular vector cannot be completed,
and otherwise outputs such a completion.

We also define a procedure Reduce with respect to the form Q. This is a
simpler, but less efficient, version of ffNP used in Algorithm 1. It serves two
purposes; from a theoretical perspective it ensures that the distribution is well
defined, i.e. that the distribution of the output form is independent of the input
form being used to sample, and from a practical perspective it ensures the second
column of the completed basis is relatively short.

Algorithm 4 HermiteSolve (K, f, g): completing f, g if possible.
Require: Conductor m = 2κ cyclotomic K, f, g ∈ OK
Ensure: Completion F,G ∈ OK such that det(Y) = 1 if it exists, else ⊥
1: Let X = (rot(f) rot(g))
2: Find U ∈ GL2n(Z) such that X ·U is in Hermite Normal Form
3: if X ·U ̸= (In(Z) 0) then return ⊥
4: Let (vec(G) −vec(F))T be the first column of U return F,G

Algorithm 4 uses the Hermite Normal Form over the integers. If there exist
F,G such that fG − gF = 1 in OK, i.e. such that det(Y) = 1, then the ideal
(f, g) = OK, and this is equivalent to the Hermite Normal Form of (rot(f) rot(g))
being (In(Z) 0) ∈ Zn×2n. One can then check that setting F,G as in Algorithm 4
satisfies fG − gF = 1. Given F,G we use Algorithm 5 to find a short, and
canonical with respect to Q, pair FQ, GQ that also satisfy fGQ − gFQ = 1.
Note that in Algorithm 5 we require a rounding function that partitions R,
i.e. ⌈ · ⌋ : R → Z that rounds a + 1/2 to a + 1 so the preimage of integer a is
[a− 1/2, a+ 1/2). This rounding is applied coefficientwise.

Algorithm 5 Reduce (Q, f, g, F,G): reduction of F,G by Q and (f, g).

Require: Conductor m = 2κ cyclotomic K, f, g, F,G ∈ OK, Q ∈ H>0
2 (K)

Ensure: Canonical FQ, GQ reduced with respect to Q and (f, g)

1: Let x = (f, g)T, y = (F,G)T, and ν =
⌈

x∗·Q·y
x∗·Q·x

⌋
∈ OK

2: Let FQ = F − νf , GQ = G− νg return FQ, GQ

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 27

Algorithm 6 acσ (Q,K): sampling from ACσ([Q]sl,K).

Require: Conductor m = 2κ cyclotomic K, Q ∈ H>0
2 (K)

Ensure: R ∈ [Q]sl and Y ∈ SL2(OK) such that R = Y∗ ·Q ·Y
1: Parse y1 ← DQ,σ as y1 = (f, g)T ∈ O2

K
2: if HermiteSolve(K, f, g) returns ⊥ then
3: restart
4: else F,G← HermiteSolve(K, f, g)

5: Let y2 = (FQ GQ)T for FQ, GQ ← Reduce(Q, f, g, F,G)
6: Let Y = (y1 y2) and R = Y∗ ·Q ·Y return (R,Y)

The following lemma ensures that a sample R ∈ [Q]sl output by Algorithm 6
only depends on the class [Q]sl, and not on the input representative Q. As a
result the distribution ACσ([Q]sl,K) is well defined. We can then define our
average case module LIP.

Lemma 4. For any power of two cyclotomic K, Q ∈ H>0
2 (K), Q′ ∈ [Q]sl and

σ > 0 the distributions of (R, ·) ← acσ (Q,K) and (R′, ·) ← acσ (Q
′,K) are

equal.

Proof. For Q′ ∈ [Q]sl there exists a U ∈ SL2(OK) such that Q′ = U∗ ·Q ·U. It
is sufficient to show that for any Y created during acσ(Q,K), Y′ = U−1 ·Y is
created within acσ(Q

′,K) with the same probability. Having shown this, since
Y∗ · Q · Y = (Y′)

∗ · Q′ · Y′, the two distributions are equal. Firstly, letting
y′
1 = U−1 · y1 we see that ρQ′,σ(y

′
1) = ρQ,σ(y1). Given that the normalisation

constant for a given σ will be equal over all forms in [Q], the probability of
sampling y′

1 ← DQ′,σ is equal to the probability of sampling y1 ← DQ,σ.
We must now show that, after completing y′

1 to y′
2 via Algorithm 4 and then

reducing it with respect to y′
1 and Q′ using Algorithm 5, we have y′

2 = U−1 ·y2.
This is precisely the statement that Y′ = U−1 ·Y. Note that Algorithm 4 finds
a solution if one exists. Since U−1 · y2 is such a solution, Algorithm 4 succeeds.

We parse y′
1 = (f ′ g′)

T and y′
2 = (F ′ G′)

T so that f ′G′ − g′F ′ = 1. For
fixed (f ′, g′), any F̃ , G̃ such that f ′G̃− g′F̃ = 1 are of the form F̃ = F ′ + λ · f ′,
G̃ = G′ + λ · g′ for some λ ∈ OK. For example, one has

f ′ · (G′ − G̃) = g′ · (F ′ − F̃)⇒ G′ − G̃ = g′ ·
(
G′ · (F ′ − F̃)− F ′ · (G′ − G̃)

)
⇒ λ = −

(
G′ · (F ′ − F̃)− F ′ · (G′ − G̃)

)
,

with the same λ for the F ′− F̃ case. If we let ỹ = U−1 ·y2 it is therefore enough
to show that ỹ is the unique reduced completion of y′

1 into Y′ ∈ SL2(OK), i.e. y′
2.

We have⌈
y′∗
1 ·Q′ · ỹ

y′∗
1 ·Q′ · y′

1

⌋
=

⌈
(U−1 · y1)

∗ ·Q′ · (U−1 · y2)

(U−1 · y1)
∗ ·Q′ · (U−1 · y1)

⌋
=

⌈
y∗
1 ·Q · y2

y∗
1 ·Q · y1

⌋
= 0,

since y2 is reduced with respect to y1 and Q by the construction of Y in
acs(Q,K). Therefore ỹ is reduced with respect to y′

1 and Q′.

28 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

Definition 8 (Average case smLIP). Given some power of two cyclotomic K
and Q ∈ H>0

2 (K) an instance of ac−smLIPQ
K,σ, the average case search module

Lattice Isomorphism Problem, is given by Q and an element Q′ ∈ [Q]sl sampled
from ACσ([Q]sl,K). A solution is U ∈ SL2(OK) such that Q′ = U∗ ·Q ·U.

We expect the problem to become harder as the parameter σ increases. In
fact, following [15], if σ is large enough we have equivalence with the correspond-
ing worst case problem, assuming that HermiteSolve does not fail too often.

Lemma 5 (Worst case to average case). Given a machine that can solve
ac−smLIPQ

K,σ in time T with probability ε > 0, for σ ≥ 2Θ(n) · λ2n([rot(Q)]),
one may solve wc−smLIPQ

K,ℓ in expected time T + Esamples · poly(n, log σ) with
probability ε. Here Esamples(n, σ) ≥ 1 is the expected number of times (f g)

T is
(re)sampled in Algorithm 6.

Proof. As input we receive Q ∈ H>0
2 (K) and some Q′ ∈ [Q]sl. By first LLL re-

ducing Q (by considering rot(Q) ∈ Q2n×2n) we can sample efficiently from DQ,σ

via Lemma 1, and thus we can sample (Q′′,U′′)← acσ (Q,K) in time Esamples ·
poly(n, σ) by Algorithm 6. The sample Q′′ is distributed as ACσ([Q]sl,K), and
we have Q′′ = U′′∗QU′′. We now have an average case instance between Q′ and
Q′′, which the machine can solve in time T with probability ε. On success we
obtain some U′ such that Q′′ = U′∗Q′U′, and U = U′′(U′)

−1 gives a solution
to the worst case instance, i.e. Q′ = U∗QU.

Following the same argument as [15, Lem 3.10] we may reduce σ in the reduction
at the expense of an additive loss from the cost of stronger lattice reduction. In
Appendix A of the full version [16] we give a heuristic explanation and matching
experimental evidence for why HermiteSolve fails with probability around 1

4 ,
which gives Esamples ≈ 4

3 , and thus the reduction above is in fact efficient.

References

1. Agrawal, S., Kirshanova, E., Stehle, D., Yadav, A.: Practical, round-optimal
lattice-based blind signatures. Cryptology ePrint Archive, Paper 2021/1565 (2021),
https://eprint.iacr.org/2021/1565

2. Agrawal, S., Stehle, D., Yadav, A.: Round-optimal lattice-based threshold signa-
tures, revisited. Cryptology ePrint Archive, Paper 2022/634 (2022). https://doi.
org/10.4230/LIPIcs.ICALP.2022.41, https://eprint.iacr.org/2022/634

3. Albrecht, M.R., Ducas, L.: Lattice Attacks on NTRU and LWE: A History of
Refinements, pp. 15–40. London Mathematical Society Lecture Note Series, Cam-
bridge University Press (2021). https://doi.org/10.1017/9781108854207.004

4. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6(1), 1–13 (1986)

5. Bai, S., Stehlé, D., Wen, W.: Measuring, simulating and exploiting the head con-
cavity phenomenon in BKZ. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018,
Part I. LNCS, vol. 11272, pp. 369–404. Springer, Heidelberg (Dec 2018). https:
//doi.org/10.1007/978-3-030-03326-2_13

https://eprint.iacr.org/2021/1565
https://doi.org/10.4230/LIPIcs.ICALP.2022.41
https://doi.org/10.4230/LIPIcs.ICALP.2022.41
https://doi.org/10.4230/LIPIcs.ICALP.2022.41
https://doi.org/10.4230/LIPIcs.ICALP.2022.41
https://eprint.iacr.org/2022/634
https://doi.org/10.1017/9781108854207.004
https://doi.org/10.1017/9781108854207.004
https://doi.org/10.1007/978-3-030-03326-2_13
https://doi.org/10.1007/978-3-030-03326-2_13
https://doi.org/10.1007/978-3-030-03326-2_13
https://doi.org/10.1007/978-3-030-03326-2_13

Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple 29

6. Banaszczyk, W.: New bounds in some transference theorems in the geometry of
numbers. Mathematische Annalen 296(1), 625–635 (1993)

7. Bennett, H., Ganju, A., Peetathawatchai, P., Stephens-Davidowitz, N.: Just how
hard are rotations of Zn? algorithms and cryptography with the simplest lattice.
Cryptology ePrint Archive, Report 2021/1548 (2021), https://eprint.iacr.org/
2021/1548

8. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th
ACM STOC. pp. 575–584. ACM Press (Jun 2013). https://doi.org/10.1145/
2488608.2488680

9. Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (Dec 2011). https://doi.org/10.1007/978-3-642-25385-0_1

10. Dachman-Soled, D., Ducas, L., Gong, H., Rossi, M.: LWE with side information:
Attacks and concrete security estimation. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 329–358. Springer, Heidelberg (Aug
2020). https://doi.org/10.1007/978-3-030-56880-1_12

11. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I.
LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (Aug 2013). https://doi.org/
10.1007/978-3-642-40041-4_3

12. Ducas, L., Nguyen, P.Q.: Faster Gaussian lattice sampling using lazy floating-
point arithmetic. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS,
vol. 7658, pp. 415–432. Springer, Heidelberg (Dec 2012). https://doi.org/10.
1007/978-3-642-34961-4_26

13. Ducas, L., Nguyen, P.Q.: Learning a zonotope and more: Cryptanalysis of
NTRUSign countermeasures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 433–450. Springer, Heidelberg (Dec 2012). https://doi.
org/10.1007/978-3-642-34961-4_27

14. Ducas, L., Prest, T.: Fast Fourier orthogonalization. In: Proceedings of the ACM on
International Symposium on Symbolic and Algebraic Computation. pp. 191–198.
ISSAC ’16, Association for Computing Machinery, New York, NY, USA (2016).
https://doi.org/10.1145/2930889.2930923

15. Ducas, L., van Woerden, W.P.J.: On the lattice isomorphism problem, quadratic
forms, remarkable lattices, and cryptography. In: Dunkelman, O., Dziembowski,
S. (eds.) EUROCRYPT 2022, Part III. LNCS, vol. 13277, pp. 643–673. Springer,
Heidelberg (May / Jun 2022). https://doi.org/10.1007/978-3-031-07082-2_23

16. Ducas, L., Postlethwaite, E.W., Pulles, L.N., van Woerden, W.: Hawk: Module
LIP makes lattice signatures fast, compact and simple. Cryptology ePrint Archive,
Paper 2022/1155 (2022), https://eprint.iacr.org/2022/1155

17. Espitau, T., Fouque, P.A., Gérard, F., Rossi, M., Takahashi, A., Tibouchi, M.,
Wallet, A., Yu, Y.: Mitaka: A simpler, parallelizable, maskable variant of falcon.
In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part III. LNCS,
vol. 13277, pp. 222–253. Springer, Heidelberg (May / Jun 2022). https://doi.
org/10.1007/978-3-031-07082-2_9

18. Genise, N., Micciancio, D.: Faster Gaussian sampling for trapdoor lattices with
arbitrary modulus. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part I.
LNCS, vol. 10820, pp. 174–203. Springer, Heidelberg (Apr / May 2018). https:
//doi.org/10.1007/978-3-319-78381-9_7

https://eprint.iacr.org/2021/1548
https://eprint.iacr.org/2021/1548
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1145/2488608.2488680
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1007/978-3-030-56880-1_12
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-34961-4_26
https://doi.org/10.1007/978-3-642-34961-4_26
https://doi.org/10.1007/978-3-642-34961-4_26
https://doi.org/10.1007/978-3-642-34961-4_26
https://doi.org/10.1007/978-3-642-34961-4_27
https://doi.org/10.1007/978-3-642-34961-4_27
https://doi.org/10.1007/978-3-642-34961-4_27
https://doi.org/10.1007/978-3-642-34961-4_27
https://doi.org/10.1145/2930889.2930923
https://doi.org/10.1145/2930889.2930923
https://doi.org/10.1007/978-3-031-07082-2_23
https://doi.org/10.1007/978-3-031-07082-2_23
https://eprint.iacr.org/2022/1155
https://doi.org/10.1007/978-3-031-07082-2_9
https://doi.org/10.1007/978-3-031-07082-2_9
https://doi.org/10.1007/978-3-031-07082-2_9
https://doi.org/10.1007/978-3-031-07082-2_9
https://doi.org/10.1007/978-3-319-78381-9_7
https://doi.org/10.1007/978-3-319-78381-9_7
https://doi.org/10.1007/978-3-319-78381-9_7
https://doi.org/10.1007/978-3-319-78381-9_7

30 Léo Ducas, Eamonn W. Postlethwaite, Ludo N. Pulles, Wessel van Woerden

19. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and
new cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th
ACM STOC. pp. 197–206. ACM Press (May 2008). https://doi.org/10.1145/
1374376.1374407

20. Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer,
Heidelberg (Apr / May 2002). https://doi.org/10.1007/3-540-46035-7_20

21. Golomb, S.: Run-length encodings (corresp.). IEEE Transactions on Information
Theory 12(3), 399–401 (1966). https://doi.org/10.1109/TIT.1966.1053907

22. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSIGN: Digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-
RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (Apr 2003).
https://doi.org/10.1007/3-540-36563-X_9

23. Kirchner, P.: Algorithms on ideal over complex multiplication order. Cryptology
ePrint Archive, Report 2016/220 (2016), https://eprint.iacr.org/2016/220

24. Lenstra Jr., H.W., Silverberg, A.: Lattices with symmetry. Journal of Cryptology
30(3), 760–804 (Jul 2017). https://doi.org/10.1007/s00145-016-9235-7

25. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with
errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 1–23. Springer, Heidelberg (May / Jun 2010). https://doi.org/10.1007/
978-3-642-13190-5_1

26. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAM Journal on Computing 37(1), 267–302 (2007). https://doi.org/
10.1137/S0097539705447360

27. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: Cryptanalysis of GGH and
NTRU signatures. Journal of Cryptology 22(2), 139–160 (Apr 2009). https://
doi.org/10.1007/s00145-008-9031-0

28. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (Aug 2010).
https://doi.org/10.1007/978-3-642-14623-7_5

29. Pornin, T., Prest, T.: More efficient algorithms for the NTRU key generation us-
ing the field norm. In: Lin, D., Sako, K. (eds.) PKC 2019, Part II. LNCS, vol.
11443, pp. 504–533. Springer, Heidelberg (Apr 2019). https://doi.org/10.1007/
978-3-030-17259-6_17

30. Postlethwaite, E.W., Virdia, F.: On the success probability of solving
unique SVP via BKZ. In: Garay, J. (ed.) PKC 2021, Part I. LNCS, vol.
12710, pp. 68–98. Springer, Heidelberg (May 2021). https://doi.org/10.1007/
978-3-030-75245-3_4

31. Prest, T.: Gaussian sampling in lattice-based cryptography. Ph.D. thesis, Ecole
normale supérieure-ENS PARIS (2015)

32. Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: FALCON. Tech. rep., National
Institute of Standards and Technology (2020), available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-3-submissions

33. Szydlo, M.: Hypercubic lattice reduction and analysis of GGH and NTRU sig-
natures. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 433–448.
Springer, Heidelberg (May 2003). https://doi.org/10.1007/3-540-39200-9_27

34. development team, T.F.: fpylll, a Python wraper for the fplll lattice reduction
library, Version: 0.5.6 (2021), https://github.com/fplll/fpylll, available at
https://github.com/fplll/fpylll

https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/3-540-46035-7_20
https://doi.org/10.1007/3-540-46035-7_20
https://doi.org/10.1109/TIT.1966.1053907
https://doi.org/10.1109/TIT.1966.1053907
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/3-540-36563-X_9
https://eprint.iacr.org/2016/220
https://doi.org/10.1007/s00145-016-9235-7
https://doi.org/10.1007/s00145-016-9235-7
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1007/s00145-008-9031-0
https://doi.org/10.1007/s00145-008-9031-0
https://doi.org/10.1007/s00145-008-9031-0
https://doi.org/10.1007/s00145-008-9031-0
https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1007/978-3-030-17259-6_17
https://doi.org/10.1007/978-3-030-17259-6_17
https://doi.org/10.1007/978-3-030-17259-6_17
https://doi.org/10.1007/978-3-030-17259-6_17
https://doi.org/10.1007/978-3-030-75245-3_4
https://doi.org/10.1007/978-3-030-75245-3_4
https://doi.org/10.1007/978-3-030-75245-3_4
https://doi.org/10.1007/978-3-030-75245-3_4
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/3-540-39200-9_27
https://doi.org/10.1007/3-540-39200-9_27
https://github.com/fplll/fpylll
https://github.com/fplll/fpylll

	Hawk: Module LIP makes Lattice Signatures Fast, Compact and Simple

