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Abstract. A comparison of two encrypted numbers is an important
operation needed in many machine learning applications, for example,
decision tree or neural network inference/training. An efficient instanti-
ation of this operation in the context of fully homomorphic encryption
(FHE) can be challenging, especially when a relatively high precision
is sought. The conventional FHE way of evaluating the comparison op-
eration, which is based on the sign function evaluation using FHEW/
TFHE bootstrapping (often referred in literature as programmable boot-
strapping), can only support very small precision (practically limited to
4-5 bits or so). For higher precision, the runtime complexity scales lin-
early with the ciphertext (plaintext) modulus (i.e., exponentially with
the modulus bit size). We propose sign function evaluation algorithms
that scale logarithmically with the ciphertext (plaintext) modulus, en-
abling the support of large-precision comparison in practice. Our sign
evaluation algorithms are based on an iterative use of homomorphic floor
function algorithms, which are also derived in our work. Further, we gen-
eralize our procedures for floor function evaluation to arbitrary function
evaluation, which can be used to support both small plaintext moduli
(directly) and larger plaintext moduli (by using a homomorphic digit
decomposition algorithm, also suggested in our work). We implement all
these algorithms using the PALISADE lattice cryptography library, in-
troducing several implementation-specific optimizations along the way,
and discuss our experimental results.

1 Introduction

The ability to compare two encrypted numbers is required in many real-world
applications, and often these applications need to combine comparisons with
arithmetic operations, such as additions or multiplications (e.g., neural network
or decision tree inference/training [3,28]). The main non-interactive method for
performing these computations in a privacy-preserving manner is fully homo-
morphic encryption (FHE), a powerful cryptographic primitive that enables per-
forming computations over encrypted data without having access to the secret
key.

⋆ This work was funded primarily by Duality Technologies. This material is partially
based upon work supported by the Defense Advanced Research Projects Agency
(DARPA) under Agreement No. HR00112090102.



2 Zeyu Liu, Daniele Micciancio, and Yuriy Polyakov

The FHE schemes are generally broken down into three classes: the FHEW/
TFHE schemes for evaluating boolean circuits, which are best suited for compar-
isons and decision diagram computations [19,16,29]; Brakerski-Gentry-Vaikuntanathan
(BGV) and Brakerski/Fan-Vercauten (BFV) schemes for evaluating modular
arithmetic over finite fields, which are also often applied for small-integer com-
putations [10,9,20]; and Cheon-Kim-Kim-Song (CKKS) scheme for approximate
computations over real and complex numbers [14].

One of the open challenges is that although the CKKS scheme can efficiently
support additions, multiplications, and more generally, polynomial function eval-
uation, with relatively high precision, the current FHE capabilities of evaluating
the encrypted comparison is limited. One method to resolve this problem is to
use scheme switching between CKKS and FHEW/TFHE, first introduced in the
CHIMERA paper by Boura at. al [8], and later improved in the PEGASUS pa-
per by Lu et. al [3]. However, after switching to FHEW/TFHE the comparison
capability for these “high-precision” numbers is very limited. For instance, we
show in Section 7 that a single FHEW/TFHE bootstrapping, a typical way to
perform an encrypted comparison in FHE, can efficiently support at most 4 bits
of precision for encrypted comparison using typical parameters as in [29], which
is also close to the precision used in [3]. Any further precision improvement for
this method makes the encrypted comparison highly inefficient. Therefore, there
is a significant interest in developing methods for large-precision comparison of
encrypted numbers that would scale significantly better (both asymptotically
and practically) with input precision.

The comparison of two encrypted numbers is equivalent to computing the
difference of these numbers followed by the evaluation of the sign function. As
evaluating the difference is trivial for any additively homomorphic encryption
scheme, the difficulty lies in the sign function computation. In the rest of the
paper, we will focus on the sign function, assuming that all our results for the
sign function readily apply to encrypted comparison.

The sign function evaluation is closely related to the main idea of FHEW/
TFHE bootstrapping, where we need to find the most significant bit (MSB)
of an encrypted number. Hence, one could directly apply the FHEW/TFHE
bootstrapping to find the sign. However, this approach only works for a very
limited precision (up to 4 bits, as pointed out above) for the parameters cur-
rently used for efficient Boolean circuit evaluation [1,29]. The complexity of
the FHEW/TFHE bootstrapping procedures scales linearly with the ciphertext
modulus Q, i.e., exponentially with the bit-size of Q. This implies that already
for 10 bits of precision, one would need to increase the runtime by a factor of
26 = 64, as compared to the current results for Boolean arithmetic. Clearly, this
approach is not viable for practical applications that require 10 or even more
bits of precision.

A major goal of our work is to develop a sign function evaluation proce-
dure that scales logarithmically with Q. We also use the central idea of our sign
evaluation algorithm to derive efficient general functional bootstrapping proce-
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dures, which support the evaluation of arbitrary functions. Note that functional
bootsrapping is often also called programmable bootstrapping [18].

Our Contributions More concretely, the contributions of our work can be sum-
marized as follows:

– We propose a novel procedure for large-precision homomorphic sign eval-
uation using FHEW/ TFHE bootstrapping: a large-precision ciphertext is
broken down into digits, and then the homomorphic floor function is exe-
cuted sequentially to clear each digit, starting from the least significant one.
After each digit is cleared, the ciphertext is scaled down to work with a
smaller ciphertext modulus Q, until at the last iteration the current modu-
lus becomes small enough to evaluate the fast FHEW/TFHE bootstrapping
procedure (with the same parameters as used for Boolean arithmetic).

– We develop two algorithms for the homomorphic floor function. The first
algorithm requires two invocations of FHEW/TFHE bootstrapping and has
a specific constraint for the input noise. The second algorithm requires three
invocations of FHEW/TFHE bootstrapping, but has no constraint on the
input noise.

– We use the central idea of the homomorphic floor function algorithms to
develop a general functional bootstrapping procedure, which supports arbi-
trary functions for small plaintext spaces (up to 4 bits in practical settings).
Our general functional bootstrapping procedure has asymptotically smaller
noise than other recent works.

– We derive a homomorphic digit decomposition algorithm based on the sign-
evaluation algorithm to extend the general functional bootstrapping proce-
dure to larger plaintext spaces.

– We implement all these capabilities using the PALISADE lattice cryptogra-
phy library, introducing several implementation–specific optimizations. Our
comparison of the two algorithms for floor function evaluation implies that
the method based on two invocations of bootstrapping is always more effi-
cient in practice. We also demonstrate an application of our method in the
context of a CKKS-based computation.

Techniques We describe a method to compute the sign of an encrypted value
using bootstrapping techniques. The input is the encryption of a numerical value
m ∈ Z, usually a signed integer, or a fractional number in fixed-point, binary,
two’s complement representation. We assume the input is presented as an LWE
ciphertext, i.e., a vector of elements in ZQ. The message m is an integer modulo
Q/α. We assume that α = 2l and Q = 2h are powers of 2, so that the message
m can also be interpreted as a (h− l)-bit integer. The problem is to compute an
encryption of the most significant bit of m, i.e., ⌊m/2h−l−1⌋. If m ∈ Z2h−l is the
standard (two’s complement) representation of a signed integer, this bit is the
sign of m, i.e., it equals 1 if and only if m represents a negative number.

We treat FHEW/TFHE bootstrapping as a black box, implying that any of
the bootstrapping functions described in [19,16,29] can be used interchangeably.
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For conciseness, we refer to this function as FHEW bootstrapping in the rest of
the paper.

FHEW supports functional/programmable bootstrapping for negacyclic func-
tions, i.e., functions f : ZQ → Z satisfying f(x + Q/2) = −f(x). If we add α/2
to the LWE ciphertext, yielding a modified message m′ = αm+e+α/2, where e
is the noise, and define a sign function γ : ZQ → {−1,+1}, mapping γ(x) = +1
for x ∈ {0, . . . , Q/2−1} and γ(x) = −1 for x ∈ {−Q/2, . . . ,−1}, we can directly
apply the FHEW bootstrapping procedure for the evaluation function γ (it is
easy to observe that γ is already negacyclic). The problem is that the complex-
ity of the FHEW bootstrapping procedure (in particular, the size of the FHEW
accumulators) is linear in the ciphertext modulus Q. So, while conceptually the
sign computation can be performed directly using the FHEW procedure, the
resulting algorithm would be terribly inefficient, both in theory (exponential in
the bit size of the input) and in practice.

To circumvent this problem, we “break down” the ciphertext modulo Q into
multiple digits, each working internally with a much smaller modulus q, which
enables the use of efficient FHEW bootstrapping. For each digit, we evaluate a
homomorphic floor function that can be used to clear the least significant digit
from the ciphertext. As soon as the current least significant digit is cleared,
the ciphertext is scaled down using modulus switching from Q to αQ/q. This
iterative procedure is repeated until Q becomes less than or equal to q. At that
point, efficient FHEW bootstrapping for γ(x) can be used directly to evaluate
the sign function. Conceptually, this algorithm corresponds to the “schoolbook”
long division algorithm. The main challenge in this long division algorithm is
associated with evaluating the floor function, which is not negacyclic and hence
cannot be directly evaluated using FHEW bootstrapping.

The idea of our first floor function algorithm is to first evaluate the sign func-
tion γ(x) to clear the MSB of each digit (first bootstrapping) and then subtract
the remaining bits in the digit using the second invocation of FHEW boot-
strapping. Both of these evaluation functions are negacyclic, enabling us to use
FHEW bootstrapping. If we had a perfect (noiseless) bootstrapping procedure,
this would take care of clearing all the bits of the digit. But FHEW bootstrap-
ping (just like any lattice-based bootstrapping procedure) is noisy. In order to
accommodate for the bootstrapping noise, this method requires the introduction
of a constraint on the noise of the input ciphertext: β ≤ α/4, where |e| < β.
This floor function algorithm can clear up to q/α bits.

We also propose an alternative floor function, which does not have the input
noise constraint, but requires an extra invocation of FHEW bootstrapping. The
first invocation of FHEW bootstrapping is used to clear the second-most signif-
icant bit in the digit. Intuitively, this first invocation has the effect of enforcing
the β ≤ α/4 constraint of the first floor computation algorithm. So, we can
proceed with another invocation of FHEW bootstrapping that clears the MSB,
and, finally, the remaining bits in the digit are cleared using the third invocation
of FHEW bootstrapping. In other words, the main difference between the two
floor function algorithms is in the first bootstrapping operation, which clears the
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second-most significant bit. In practice, the alternative floor function evaluation
algorithm gains one extra bit of precision compared to the first algorithm, but
has a cost of an additional invocation of FHEW bootstrapping.

Then, we generalize the algorithms for homomorphic floor function to ar-
bitrary function evaluation for small plaintext moduli, i.e., restricting the ci-
phertext modulus to q that supports efficient FHEW bootstrapping. Consider
the generalization of our first floor function algorithm as an example. We first
extend the ciphertext from modulus q to 2q. This introduces, as a byproduct,
a random MSB modulo 2q. Then we evaluate the γ(x) function modulo 2q to
clear this MSB. Finally, we invoke the desired function for the remaining bits
unaffected by noise. Compared to the homomorphic floor function, we loose just
one bit of precision.

Finally, we derive a homomorphic digit decomposition algorithm that can
be combined with the general functional bootstrapping for small-precision ci-
phertexts to achieve the evaluation of arbitrary functions over large-precision ci-
phertexts, i.e., evaluate large lookup tables. The digit decomposition algorithm
is closely related to the homomorphic sign evaluation algorithm: it basically
performs the same sequence of applications of the homomorphic floor function
evaluation, while keeping track of the (encrypted) digits produced by each invo-
cation.

Note that most of the homomorphic encryption schemes support the efficient
extraction of LWE ciphertexts. So the methods described here can be applied
to those schemes by first extracting an LWE representation of the input, and
then applying the main algorithm. For details on the algorithms for efficient
extraction of LWE ciphertexts, we refer the reader to [12,28].

1.1 Related Works

Related Concurrent Works Two concurrent and independent works [18,26] pro-
pose algorithms for homomorphic evaluation of arbitrary functions for small
plaintext moduli. Table 1 summarizes the results of the comparison between
our main algorithm for arbitrary function evaluation with their algorithms. An
expanded comparison with concrete parameters is presented in Section 8.

Table 1. Comparison of noise growth and complexity of our method for arbitrary func-
tion evaluation with other recent works; here, β is the FHEW functional bootstrapping
noise (see details in Section 6.5), N is the ring dimension used for functional bootstrap-
ping, p is the plaintext modulus, Q′ is the underlying RLWE ciphertext modulus, q is
the output LWE ciphertext modulus, and d′g ≥ 2 is the number of digits for gadget
decomposition specific to functional bootstrapping in [26].

Noise Growth # of bootstrappings

[18] β ·O(Np) 2

[26] β ·O(
√

Nd′gQ
′1/d′g ) d′g + 1

Our work β 2
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The main idea of both works is to use the fact that −1 · (−m) = m and
extract the MSB as part of their procedures by invoking FHEW/TFHE boot-
strapping. Both approaches hence require one multiplication operation, which
increases the noise requirements. This also implies that the main homomorphic
encryption scheme should support both additions and multiplications. Our ap-
proach does not require any multiplications, and can be applied to any additively
homomorphic encryption scheme, similar to the Boolean circuit construction in
the original FHEW paper [19].

The approach in [18] executes two bootstrapping operations (one to extract
the MSB and another to evaluate the desired function), and then multiplies the
results using a multiplication operation similar to the one in Brakerski’s and
BFV schemes [9,20]. As a result, the noise increases by O(Np), which implies
that the cost of the bootstrapping operations in this method is higher than in
ours. Our analysis in Section 8 predicts that the runtime complexity will be at
least two times higher for practical parameters.

The method in [26] applies the same blueprint, but instead of performing
a BFV-like multiplication, initially uses a multiplication by a GSW ciphertext,
and then further optimizes it to replace it with a cheaper multiplication by an
LWE′ ciphertext (i.e., a vector of LWE ciphertexts, see details in [29]). This
approach requires at least d′g +1 bootstrapping operations, where d′g is a design
parameter. Note that the value of d′g also affects the noise growth. If the noise
cost is minimized (a larger d′g is chosen), then the number of bootstrapping
invocations increases. It is clear that the method in [26] is always at least 1.5x
slower than ours as d′g ≥ 2, and it also substantially increases the noise unless
d′g is much larger than 2.

Both methods [18,26] can be extended to support large-precision sign evalua-
tion (though this was not done in these works), but will have the same drawbacks
(compared to our approach) as for arbitrary function evaluation: asymptotically
higher noise growth (both methods) and (for [26]) increased number of boot-
strapping operations.

A recent paper [32] independently developed an arbitrary function evalua-
tion method similar to ours. This work was published after our results became
available and hence we do not examine it here.

Other Approaches for Evaluating Sign Function Although we focus on the ap-
proaches to evaluating the comparison/sign functions based on FHEW/TFHE
bootstrapping, other methods have also been considered in literature.

We note that all of the methods described below have their own merits
and method selection is application-dependent. For instance, the FHEW/TFHE-
based method is preferred when only a small number of comparisons are needed
or a small number of levels are available for the comparisons. The CKKS-based
method may work better when a large number of comparisons are needed in
parallel and a sufficient multiplicative depth or CKKS bootstrapping are avail-
able (see Section 8.2 for details). The desired precision of comparison is also an
important factor. A comprehensive comparison of these methods is outside the
scope of this paper and is suggested as a topic for future work.
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One approach is based on evaluating special interpolation polynomials over fi-
nite fields using the BGV or BFV scheme (see [24] for an extensive review of these
techniques). This approach does not typically require bootstrapping but involves
a complicated encoding of interpolation polynomials into the native polynomial
space of BGV and BFV. Although high efficiency can be achieved (this method
may even have a smaller complexity than the techniques considered in our work),
this approach is somewhat special-purpose and becomes challenging when the
comparison operations need to be combined with multiplications and additions.
The main advantage of our approach is the ability to combine comparisons with
regular arithmetic operations, resulting in a more general functionality.

Another approach is based on minimax or other polynomial approximations
using the CKKS scheme (see [15,27] for recent results). This approach can be
very efficient for relatively small precision, and takes full advantage of CKKS
packing. However, the input numbers typically have to be within a specific known
range, and the runtime complexity may sharply increase with precision or min-
imum difference allowed between two numbers. In contrast, the computational
complexity of our approach is guaranteed to scale linearly with the number of
precision bits, and does not depend on how close two numbers are to each other,
i.e., how close the value of the sign function input is to zero. We provide a high-
level comparison between the CKKS method and our approach in Section 8.2.

A leveled bit-wise version of TFHE (without bootstrapping) was also pre-
viously considered. For example, Chillotti et al. showed that two (log p)-bit
numbers can be compared by evaluating a deterministic automaton made of
5 log p CMux gates [17]. Though this comparison complexity is much smaller
than for the approach considered in our paper, it has the drawback of requiring
the input to be encrypted in a bit-wise fashion. So, their approach will quickly
become inefficient in scenarios where comparisons need to be combined with ad-
ditions and multiplications, as these operations are very expensive in bit-wise
representation. Note that our main motivation for developing the general com-
parison capability based on FHEW/TFHE bootstrapping was to support mixed
computations involving additions, multiplications, or, more generally, polyno-
mial evaluation, as well as comparisons.

Another potentially promising approach is based on a limited form of func-
tional bootstrapping supported by BFV/BGV. Chen at al. show how BFV boot-
strapping can be used to compute the sign function [13]. It is not clear whether
the BFV/BGV approach can be extended to arbitrary functions (look-up tables),
but it is certainly an interesting research problem.

1.2 Organization

The rest of the paper is organized as follows. In Section 2 we provide the nec-
essary background on FHEW bootstrapping. Section 3 describes our algorithms
for homomorphic sign and floor evaluation. Section 4 shows how our homomor-
phic floor algorithms can be generalized to arbitrary function evaluation. Sec-
tion 5 introduces homomorphic digit decomposition algorithms based on our sign
evaluation algorithms. Section 6 discusses how parameters should be selected,
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and introduces some optimizations. Section 7 describes our implementation and
presents experimental results, and Section 8 compares our algorithms with other
concurrent works. Section 9 discusses an application of large-precision compari-
son. Section 10 concludes the paper.

2 Background

All logarithms are expressed in base 2 if not indicated otherwise. Vectors are
indicated in bold, e.g., a. We choose the ring dimension N as a power of two for
efficiency reasons.

2.1 FHEW Functional/Programmable Bootstrapping

In this section we recall the definition of LWE ciphertexts [30], and the prop-
erties of the FHEW [19] “functional” bootstrapping procedure needed by our
algorithms.

The LWE cryptosystem [30] is parametrized by a plaintext modulus p, ci-
phertext modulus q, and secret dimension n. The LWE encryption of a message
m ∈ Zp under (secret) key s ∈ Zn is a vector (a, b) ∈ Zn+1

q such that

b = ⟨a, s⟩+ (q/p) ·m+ e (mod q)

where e is a small error term, |e| < q/(2p). The message m is recovered by first
computing the approximate LWE decryption function

Decs(a, b) = b− ⟨a, s⟩ (mod q) = (q/p) ·m+ e

and then rounding the result to the closest multiple of (q/p).
The ciphertext modulus of LWE ciphertexts can be changed (at the cost of a

small additional noise proportional to the secret key size) simply by scaling and
rounding its entries, as described in the following lemma.

Lemma 1 (Modulus Switching). Let (a, b) ∈ Zn+1
q be an LWE encryption

of a message m ∈ Zp under secret key s ∈ Zn with ciphertext modulus q and
noise bound |Decs(a, b) − (q/p)m| < β. Then, for any modulus q′, the rounded
ciphertext (a′, b′) = ⌈(q′/q) · (a, b)⌋ is an encryption of the same message m
under s with ciphertext modulus q′ and noise bound |Decs(a′, b′) − (q′/p)m| <
(q′/q)β + β′′, where β′′ = 1

2 (∥s∥1 + 1).

In practice, when the input ciphertext is sufficiently random, or when modulus
switching is performed by randomized rounding, it is possible to replace the
additive term β′′ with a smaller probabilistic bound O(∥s∥2). For uniformly
random ternary keys s ∈ {0, 1,−1}n, this is β′′ ≈ O(

√
n).

A key feature of FHEW is that it allows to perform certain homomorphic
computations (described by an “extraction” function) on ciphertexts during
bootstrapping at no additional cost. We will use (a slight generalization of)
the FHEW [19] bootstrapping procedure, and its optimized variants for binary
[16] and ternary secrets [29], as implemented in PALISADE. The bootstrapping
algorithm is parametrized by
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– a dimension n and (input ciphertext) modulus q, where q is a power of 2,
– a secret key s ∈ Zn, which must be a short vector. Here we assume s ∈

{0, 1,−1}n,
– a large ciphertext modulus Q′ used internally to the bootstrapping proce-

dure, and which is not required to be a power of 2,
– an output ciphertext modulus Q, which we set to a power of 2 possibly

different from q, and
– an extraction function f : Zq → Z which must satisfy the negacyclic con-

straint
f(x+ q/2) = −f(x). (1)

The bootstrapping procedure also uses a bootstrapping key, which is computed
from s, but can be made public. Since this bootstrapping key is only used inter-
nally by the bootstrapping procedure, we omit it from the notation.

We remark that, since s is a small vector (e.g., with ternary entries {0, 1,−1}),
it can be used as a key both modulo q, and modulo Q′ or Q. On input an LWE
ciphertext (a, b) ∈ Zn+1

q , the FHEW bootstrapping procedure first computes an

LWE ciphertext (c′, d′) ∈ Zn+1
Q′ such that

Decs(c
′, d′) = f ′(Decs(a, b)) + e′ (mod Q′),

where the noise bound |e′| ≤ β′ depends only on the computation performed
during bootstrapping (and not the input ciphertext), and

f ′(x) =

⌈
Q′

Q
· f(x)

⌋
is a scaled version of f still satisfying the negacyclic condition (1). Then, modulus

switching is applied to (c′, d′) to obtain a ciphertext (c, d) =
⌈

Q
Q′ (c

′, d′)
⌋
∈ Zn+1

Q

modulo Q such that

Decs(c, d) = f(Decs(a, b)) + e (mod Q)

where |e| < β = (Q/Q′)β + β′′ is the noise bound from Lemma 1.
For the sake of comparison, we recall that in the original FHEW bootstrap-

ping procedure:

– the input LWE ciphertext (a, b) uses plaintext modulus p = 4, so that mes-
sages m ∈ {0, 1, 2, 3} are encoded as multiples of α = q/4, i.e., Decs(a, b) =
(q/4) ·m+ e for some error |e| < q/8;

– the output modulus Q = q is the same as the input modulus, so that boot-
strapping operations can be composed into arbitrary circuits;

– the extraction function f maps the interval [−q/8, 3q/8) ⊂ Zq to q/8 and
(necessarily, to satisfy (1)) the interval [3q/8, 7q/8) to −q/8. Moreover, the
output ciphertext is modified to (c, d + q/8), so that the final output is
either an encryption of q/8 + q/8 = q/4 = 1 · α (i.e., an encoding 1) when
m ∈ {0, 1}, or an encryption of −q/8 + q/8 = 0 · α (i.e., an encoding of
0) when m ∈ {2, 3}. This allows to evaluate the NAND of two input bits
m0,m1 ∈ {0, 1} as f(m0 +m1 mod 4).
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In this paper, we make extensive use of the FHEW bootstrapping procedure,
but for a larger output modulus Q, where q ≤ Q < Q′, and a number of different
(but still negacyclic) extraction functions f .

We write
Boot[f ](a, b)

for the result of invoking this bootstrapping procedure for a given function f .
We will make blackbox use of Boot, so that the internal workings of the boot-
strapping procedure are not important for the rest of the paper, and Boot can
be implemented either using the original FHEW bootstrapping procedure [19] or
the optimized versions proposed in [16,29]. The properties of the Boot function
described in this section and needed in the rest of the paper are summarized in
the following theorem.

Theorem 1. For any LWE ciphertext (a, b) ∈ Zn+1
q and function f : Zq → ZQ

such that f(x+q/2) = −f(x) (mod Q), the bootstrapping procedure Boot[f ](a, b)
outputs a ciphertext (c, d) ∈ Zn+1

Q such that

Decs(c, d) = f(Dec(a, b)) + e (mod Q)

for some |e| < β, where β is a noise bound that depends only on the operations
performed by Boot, but not on the input ciphertext (a, b).

For simplicity of presentation, we round β up to a power of 2.

3 Large-Precision Homomorphic Sign Evaluation

In this section we describe our main algorithms to homomorphically compute
the sign of an encrypted value.

Let (c, d) ∈ Zn+1
Q be an LWE ciphertext with (large) ciphertext modulus Q

and plaintext modulus Q/α. Specifically, assume Dec(c, d) = αm + e, for some
plaintext message m ∈ ZQ/α and noise bound |e| < β ≤ α/2. (Later we may set
β to a bound strictly smaller than α/2.) We assume that Q and α are powers of
2, so that the message m and the decryption Dec(c, d) can both be interpreted
as signed integers, in two’s complement notation, and the sign of m is given by
the MSB of m’s binary representation. The goal is to homomorphically compute
this sign bit.

By adding β to the ciphertext, the error e + β becomes a positive value in
the range (0, 2β) ⊆ (0, α). Hence the sign bit is also the same as the MSB of

m′ = Dec(c, d+ β) = αm+ (e+ β).

At this point, since we only care about the MSB of m′, it does not matter which
bits of m′ are considered “message” bits and which are “noise” bits, and one
may think of m′ simply as an arbitrary integer modulo Q.

We compute the MSB of m′ following the approach outlined in the introduc-
tion, using FHEW’s functional bootstrapping algorithm Boot with a relatively
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small modulus q to clear the least significant bits of m′ in small chunks, until
only the MSB is left. We present two algorithms: the first algorithm requiring
only two invocations of Boot per chunk, but under the assumption that |e| is
smaller than α/4 and the second algorithm that works for ciphertexts with an
arbitrary error e, but requires three invocations of Boot for each chunk. Although
the approach based on two invocations of Boot is more efficient in practice for the
large-precision sign evaluation, the approach with three invocations is more gen-
eral and is of independent interest for evaluating the homomorphic floor function
on arbitrary ciphertexts, e.g., noisy ciphertexts in the CKKS scheme.

In both algorithms, we instantiate the bootstrapping procedure as follows:

– We fix the modulus q to an appropriate value that can be efficiently sup-
ported by FHEW.

– We set the output modulus to Q by picking an internal modulus Q′ larger
than Q. (Usually, Q′ is not a power of two, in order to support NTT.) We
recall that the complexity of FHEW is linear in logQ′, and exponential only
in log q. Hence one can use a relatively large Q′.

– We use Boot with one of three possible extraction functions f0, f1, f2 shown
in Figure 1. It can be easily checked that all three functions satisfy the
negacyclic requirement (1).

f0(x) =

{
−q/4 if 0 ≤ x < q/2
+q/4 otherwise

f1(x) =

{
x if x < q/2
q/2− x otherwise

f2(x) =


−q/4 if 0 ≤ x < q/4
+q/4 if q/2 ≤ x < 3q/4
0 otherwise

Fig. 1. Negacyclic functions used by our homomorphic sign computation algorithms.
The value of f1(x) = q/2− x for x ≥ q/2 is not relevant for our algorithms, and added
here only to satisfy the negacylic constraint.

3.1 Homomorphic Floor Function using Two Invocations of Boot

The core of the algorithm is a procedure HomFloor that on input a ciphertext
(c, d) ∈ Zn+1

Q encrypting a message m ∈ ZQ/α with noise bounded by

|Dec(c, d)− α ·m| < β ≤ α/4

outputs another ciphertext (c′, d′) ∈ Zn+1
Q encrypting the floored message

r(m) =

⌊
α

q
·m

⌋
· q
α

(2)
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subject to the same noise bound β, i.e., such that |Dec(c′, d′) − α · r(m)| < β.
Notice that this has precisely the same effect as zeroing the log2(q/α) = log2 q−
log2 α least significant bits of m. In particular, the MSB of m is the same as the
MSB of r(m).

The main algorithm HomSign uses the HomFloor subroutine to clear the least
significant bits of the message until only the sign bit is left, as we describe next.
Notice that after the application of HomFloor, the resulting ciphertext

Dec(c′, d′) = α · r(m) + e = q · m̃+ e (mod Q)

can be interpreted as an encryption of the message

m̃ =
α

q
· r(m) =

⌊
α

q
·m

⌋
∈ ZQ/q

with noise |e| < β much smaller than q. Since r(m) is a multiple of q/α, the MSB
of m̃ is the same as the MSB of r(m) and m. So, we can switch to a smaller
modulus (α/q) ·Q using Lemma 1 to obtain an encryption of m̃ with a scaling
factor α, and repeat. After ⌈(logQ− log q)/ log(q/α)⌉ iterations, the modulus Q
will be at most q, and the sign of the message can be computed directly using
Boot.

The pseudocode of HomFloor and HomSign is given in Algorithm 1. In the rest
of this subsection we analyze the correctness of the algorithm. We first analyze
the correctness of HomFloor.

Algorithm 1 Algorithm for Homomorphic Sign Computation

1: procedure HomFloor(Q, (c, d))
2: d← d+ β
3: (a, b)← (c, d) mod q
4: (c, d)← (c, d)− Boot[f0](a, b) (mod Q)
5: d← d+ β − q

4

6: (a, b)← (c, d) mod q
7: (c, d)← (c, d)− Boot[f1](a, b) (mod Q)
8: return (c, d)
9: end procedure
10: procedure HomSign(Q, (c, d))
11: while Q > q do
12: (c, d)← HomFloor(Q, (c, d))

13: (c, d)←
⌈

α
q
· (c, d)

⌋
14: Q← αQ/q
15: end while
16: d← d+ β
17: (a, b)← (q/Q) · (c, d)
18: (c, d)← (−Boot[f0](a, b)) (mod Q)
19: return (c, d)
20: end procedure
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Lemma 2. For any Q, q,m and β ≤ α/4, the procedure HomFloor in Algo-
rithm 1, on input a ciphertext (c, d) ∈ Zn+1

Q such that |Dec(c, d) − α · m| < β

outputs a ciphertext (c′, d′) ∈ Zn+1
Q such that |Dec(c′, d′)− α · r(m)| < β, where

r(x) is the rounding function defined in (2).

Proof. Let µ = Dec(c, d) ∈ ZQ be the value encrypted by the input ciphertext
(c, d). By assumption, µ = αm+ e for some |e| < β. We trace the value of µ and
e through the execution of the algorithm. Adding β on line 2 makes the error
positive e ∈ (0, 2β). Line 3 computes an LWE ciphertext (a, b) that decrypts to
µ′ = Dec(a, b) = µ (mod q) ∈ Zq, that is, the (log2 q) least significant bits of
µ. Let m̃ = ⌊µ/q⌋ = ⌊(α/q)m⌋ be the remaining (most significant) bits, so that
µ = m̃ · q + µ′.

Next, in order to analyze lines 4 and 5, we consider two cases, depending
on the most significant bit of µ′. If the most significant bit of µ′ is zero, then
Dec(Boot[f0](a, b)) = −q/4+eβ , where |eβ | < β. Subtracting Boot[f0](a, b) from
(c, d) in line 4, and adjusting d in line 5, modifies µ by an additive term

−(−q/4 + eβ) + β − q/4 ∈ (0, 2β).

On the other hand, if the most significant bit of µ′ is 1, then Dec(Boot[f0](a, b)) =
+q/4 + eβ , and lines 4 and 5 modify µ by the additive term

−(q/4 + eβ) + β − q/4 = −q/2 + (0, 2β).

In either case, this clears the (log2 q)th least significant bit of µ (corresponding
to the most significant bit of µ′) while increasing the error by at most 2β. Since
the initial error is in (0, 2β), the final error is in (0, 4β) ⊆ (0, α), and does not
overflow into the most significant bits.

This shows that, even when accounting for the bootstrapping error, the value
of µ = Dec(c, d) at line 6 has its (log2 q)th least significant bit set to 0. In
formulas, µ = q · m̃+ x for some x = (µ mod q) ∈ [0, q/2). The ciphertext (a, b)
computed in line 6 encrypts this value x modulo q. Since f1(x) = x is the identity
function for all x ∈ [0, q/2), Boot[f1] in line 7 returns an encryption of x + eβ .
Subtracting this ciphertext from (c, d) on line 7, gives an encryption of

(q · m̃+ x)− (x+ eβ) = q · m̃x− eβ = α · r(m)− eβ

and hence
|α · r(m)− eβ − α · r(m)| < β,

as claimed in the lemma. ⊓⊔

The correctness of the main function HomSign easily follows, by repeatedly
applying Lemma 2.

Theorem 2. Let β > 2 be an upper bound on both the bootstrapping noise (from
Theorem 1) and the size of the secret key1 ∥s∥1 ≤ β. Let α ≥ 4β be a power of

1 The weaker bound β ≥ O(∥s∥2) = O(
√
n) suffices when using randomized modulus

switching, or heuristically when assuming the input ciphertext is random. We use
this weaker estimate for concrete parameters later in the paper.
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2. The procedure HomSign in Algorithm 1, on input an LWE ciphertext (c, d) ∈
Zn+1
Q encrypting a message m ∈ ZQ/α with error bounded by |Dec(c, d)−α ·m| <

β, computes an LWE encryption of the most significant bit of m, making at most

2
⌊

logQ
log(q/α)

⌋
+ 1 calls to Boot.

Proof. We need to show that the loop at lines 11-14 preserves the invariant that
(c, d) encrypts a message with the correct MSB, and noise bounded by β. By
Lemma 2, at each iteration, at line 12, HomFloor computes an encryption of a
value of the form m̃q+e with |e| < β, where m̃ has the correct MSB. Then, lines
13-14 switch the ciphertext modulus from Q to (α/q)Q. By Lemma 1, the error
of the resulting ciphertext is at most

(α/q)β + (β + 1)/2 ≤ β/4 + β/2 + 1/2 < β,

taking into account the constraint β > 2. This proves the loop invariant. Upon
exiting the loop, in line 15, the modulus has been reduced below Q ≤ q, and
the most significant bit of the message can be directly computed using Boot,
using the fact that the sign function (f0) is negacyclic. The multiplication by
q/Q at line 17 is there only to ensure that Boot is always called with the same
ciphertext modulus q. Alternatively, one may use a potentially smaller modulus
Q ≤ q in the last call, which could be slightly faster. ⊓⊔

The final output of HomSign satisfies Dec(c, d) = q/4 ± β when the initial
input encrypts a nonnegative number, and Dec(c, d) = −q/4±β when it encrypts
a negative number. Sign computation algorithms with different output encodings
are easily obtained by simply changing the function f0 used in line 18. Likewise,
the ciphertext modulus of the final output of HomSign can be set arbitrarily by
simply changing the output modulus of the last invocation of Boot at line 18.

Remark 1. Since the running time of HomSign is proportional to logQ / log(q/α),
it is always best to set α to the smallest possible value α = 4β. So, given values
for Q (from the input specification) and q, β from Theorem 1 (typically based on
security and efficiency considerations), the running time of HomSign is essentially

that of 2
⌊

logQ
log q−log β−2

⌋
+ 1 invocations of Boot or, equivalently,

⌊
logQ

log q−log β−2

⌋
invocations of HomFloor + 1 invocation of Boot.

3.2 Homomorphic Floor Function for Arbitrary Ciphertexts using
Three Invocations of Boot

We also propose an alternative floor function evaluation algorithm that works
for arbitrary ciphertexts. This algorithm requires three invocations of Boot but
makes no assumption on the size of the input error. Although this approach
is typically less efficient than HomFloor when used as a subroutine in HomSign
(as shown later in Section 6.1), it has some advantages when applied directly
to an arbitrary ciphertext. For instance, when the message and noise are not
separable, as in the CKKS scheme, the use of this procedure avoids calling a



Large-Precision Homomorphic Sign Evaluation using Bootstrapping 15

prior modulus switching operation, which may accidentally change the sign of
encrypted values close to zero. When used as a subroutine for HomSign, the
alternative floor function procedure allows us to replace α = 4β with α = 2β,
hence gaining one extra bit of precision in each floor function iteration at the
expense of one extra invocation of Boot.

Algorithm 2 Alternative Algorithm for Homomorphic Sign Computation

1: procedure HomFloorAlt(Q, (c, d))
2: (a, b)← (c, d) mod q
3: (c, d)← (c, d)− Boot[f2](a, b) (mod Q)
4: d← d+ β − q

4

5: (a, b)← (c, d) mod q
6: (c, d)← (c, d)− Boot[f0](a, b) (mod Q)
7: d← d+ β − q

4

8: (a, b)← (c, d) mod q
9: (c, d)← (c, d)− Boot[f1](a, b) (mod Q)
10: return (c, d)
11: end procedure

Lemma 3. Let β be the bootstrapping noise from Theorem 1, and assume q ≥
16β. The procedure HomFloorAlt in Algorithm 2, on input a ciphertext (c, d) ∈
Zn+1
Q with Dec(c, d) = m ∈ ZQ, outputs a ciphertext (c′, d′) ∈ Zn+1

Q with
Dec(c, d) = m̃q + e ∈ ZQ for m̃ = ⌊m/q⌋ and some |e| < β.

Proof. The ciphertext (a, b) computed in line 2 decrypts to m′ = Dec(a, b) =
m mod q, the log2 q least significant digits of m. Let x be the two most signif-
icant bits of m′. Function f2 only works on these two bits, mapping 00 7→ 11,
10 7→ 01, and 01, 11 7→ 00. When f2(m

′) is subtracted from (c, d) in line 3,
the corresponding bits of m are mapped either to 11 (when x = 11) or to 01
(otherwise). In particular, the second bit is always one. Subtracting q/4 from d
on line 4 makes this bit always zero. Adding β in line 4 also ensures that the
bootstrapping error added by Boot is positive, in the range (0, 2β). At this point
(line 5) we have a ciphertext such that Dec(c, d) = m̃ ·q+b ·(q/2)+x+e for some
(unknown) bit b̃ ∈ {0, 1}, positive integer x ∈ [0, q/4) and positive bootstrapping
error e ∈ (0, 2β). Similarly, we have Dec(a, b) = b̃(q/2)+x+e. Assuming q ≥ 8β,
adding e to b̃(q/2) does not change the bit b̃. So, f0(b̃(q/2)+x+e) = −q/4 when
b̃ = 0 and +q/4 when b = 1. Similarly to Lemma 2, subtracting Boot[f0](a, b)
from (c, d) in line 6 and adjusting the value of d in line 7 has the effect of clearing
the bit b̃, while adding a positive bootstrapping error e ∈ (0, 2β).

This shows that, at line 8, we have Dec(c, d) = m̃q + x + e + e′ where
Dec(a, b) = x+ e+ e′ ∈ (0, q/4 + 4β). Assuming q ≥ 16β, we have x+ e+ e′ <
q/4 + 4β ≤ q/2. So, f1(x + e + e′) = x + e + e′, and subtracting Boot[f1](a, b)
from (c, d) in line 9, gives a ciphertext such that Dec(c, d) = m̃q ± β. ⊓⊔
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The HomFloorAlt algorithm can be used to homomorphically compute the
sign of a ciphertext using essentially the same process as HomSign. We only need
to choose an approximate value of α, and replace the call to HomFloor(Q, (c, d))
with the call to HomFloorAlt(Q, (c, d+α/2)) to ensure that the noise is positive,
so it does not alter the most significant bit of the message.

By Lemma 3, the ciphertext computed by HomFloorAlt has noise at most
β. So, by Lemma 1, switching the modulus to (α/q)Q increases the error to
(α/q)β + β′′, where β′′ is the modulus switching noise. For correctness, we need
this error to be bounded by α/2. This condition holds when

β

q
+

β′′

α
≤ 1

2
.

Setting q = 16β, this is equivalent to α ≥ (16/7)β′′.

In summary, the HomSign algorithm based on the HomFloorAlt procedure
proposed in this section makes a total of

1 + 3

⌊
logQ

log q + log2 7− 4− log β′′

⌋
≈ 3

logQ

log q − log β′′

calls to Boot.

4 From Floor Function to Arbitrary Function Evaluation

As discussed, the FHEW functional bootstrapping requires the evaluated func-
tions to be negacyclic. However, this greatly restricts the power of functional
bootstrapping. In this section, we show how to extend our main idea of HomFloor
to functional bootstrapping of arbitrary functions.

Let us first formally define the problem. Given a ciphertext (c, d) with mod-
ulus q encrypting a digit m ∈ Zq/α, and an arbitrary function f : Zq/α → ZQ/α,

we want to obtain a ciphertext (c′, d′) ∈ Zn+1
Q such that ⌈Dec(c′, d′)/α⌋ = f(m).

At a high level, we proceed as follows: first, we use modulus switching to
raise the ciphertext modulus from q to 2q. This process (randomly) maps an
encrypted value m ∈ Zq/α to either m ∈ Z2q/α or m + q/α ∈ Z2q/α. The main
purpose of this step is to double the size of the message space by introducing an
extra (most significant) bit.

Next, similar to HomFloor, we first use an extraction function f ′
0(x) (similar

to f0 in Fig. 1) to remove the MSB of the (modulus-raised) encrypted plaintext
m ∈ Z2q/α, i.e., for plaintext m ∈ Z2q/α we homomorphically evaluate f ′

0 to
obtain an encrypted value m′ = m (mod q/α) ∈ Z2q/α. This is the same as the
original message m, but as an element of a larger message space.

Then, we create a new function f ′
1 : Z2q → ZQ by setting

– f ′
1(x) = α · f(⌈x/α⌋) to the function we want to compute for x < q, and

– f ′
1(x) = −α ·f(⌈(2q − x)/α⌋) for x ≥ q to satisfy the negacyclic requirement.
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We evaluate this function via functional bootstrapping to obtain a ciphertext
(c′, d′) such that ⌈Dec(c′, d′)/α⌋ = f(m′).

The resulting procedure for arbitrary function evaluation is listed in Algo-
rithm 3.

Algorithm 3 Algorithm for Arbitrary Function Evaluation

Auxiliary math functions f0 : Z2q → Z2q

f ′
0(x) =

(
q

⌊
x

q

⌋
− q

2

)
mod 2q

1: procedure EvalFunc(f : Zq/α → ZQ/α, q, Q, α, (c, d))
2: Let

f ′
1(x) =

{
αf(⌈x/α⌋) if x < q
−αf(⌈(2q − x)/α⌋) otherwise mod Q

3: d← d+ β
4: (c, d)← (c, d) (mod 2q)
5: (c, d)← (c, d)− Boot[f ′

0](c, d) (mod 2q)
6: d← d+ β − q

2

7: (c, d)← Boot[f ′
1](c, d) (mod Q)

8: return (c, d)
9: end procedure

Note that if the function f(x) is periodic (i.e., f(x) = f(x+q/2 (mod q)) for
all x ∈ Zq), the extension to Z2q is not needed and we can replace all instances
of q with q/2 in Algorithm 3. This gains one extra bit of precision for periodic
functions, as compared to arbitrary functions.

For Algorithm 3, we can formulate the following theorem.

Theorem 3. For any Q, q,m and β ≤ α/4, the procedure EvalFunc in Algo-
rithm 3, on input a ciphertext (c, d) ∈ Zn+1

q such that |Dec(c, d) − α · m| < β

and an arbitrary function f : Zq/α → ZQ/α, outputs a ciphertext (c′, d′) ∈ Zn+1
Q

such that |Dec(c′, d′)− α · f(m)| < β.

Proof. We prove the theorem by tracing the value encrypted by the input ci-
phertexts (c, d). By assumption, Dec(c, d) = αm+ e for some |e| < β. Adding β
on line 3 makes the error positive e ∈ (0, 2β). Line 4 raises the ciphertext’s mod-
ulus to 2q and thus we (randomly) obtain one of the following: µ = Dec(c, d) =
αm+e ∈ Z2q or µ = Dec(c, d) = αm+e+q ∈ Z2q. Then, line 5 executes Boot[f ′

0],
and line 6 shifts the result by subtracting q/2. Based on a similar argument as
in the proof of Lemma 2, these two lines together clear the MSB of µ (i.e., now
Dec(c, d) = αm + e ∈ Z2q) while increasing the error by at most β, and hence
the updated encrypted value is µ = Dec(c, d) ∈ [0, q). Finally, line 7 executes
Boot[f ′

1] and we obtain Dec(c, d) = αf(m)+ e ∈ ZQ with |e| < β, and therefore,
the resulted (c, d) encrypts a plaintext m′ = ⌈Dec(c, d)/α⌋ = f(m) where m is
the input plaintext as we required. ⊓⊔
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An alternative arbitrary function evaluation can be trivially derived based
on HomFloorAlt using the same steps as described here. As the efficiency of this
alternative algorithm is worse, we do not discuss it in the paper.

Note that our general bootstrapping algorithm works efficiently in practice
only for small plaintext moduli p because the FHEW bootstrapping becomes
prohibitively expensive as the plaintext modulus is increased (more than doubles
for each extra bit of precision). However, we can extend it to larger plaintext
moduli using the procedure for homomorphic digit decomposition described in
the next section.

5 Homomorphic Digit Decomposition

The high-level idea of homomorphic digit decomposition is to decompose an
LWE ciphertext with a large plaintext (ciphertext) modulus into a vector of
LWE ciphertexts with small plaintext (ciphertext) moduli, corresponding to the
digit sizes. In this section we extend our sign evaluation algorithm in Section 3
to achieve homomorphic digit decomposition.

As pointed out in Section 4, one useful application of such digit decomposi-
tion is the evaluation of functions over large-precision ciphertexts using lookup
tables, i.e., the evaluation of arbitrary functions for large plaintext moduli. Two
methods for evaluating a Look-Up Table (LUT) using (a vector of) LWE ci-
phertexts for each digit are presented in [22]. The first (more general) approach
uses tree evaluation while the second (more special-purpose) approach is based
on chaining. These methods allow breaking down a large LUT into small LUTs,
each of which corresponds to a decomposed digit of the original ciphertext en-
crypting a large number. These small LUTs can be completely different from
each other. In summary, the evaluation of an arbitrary function over a large
plaintext space gets expressed as LUT evaluations over encrypted digits.

The LWE ciphertexts for each digit can be “extracted” from a large-precision
LWE ciphertext using the homomorphic digit decomposition algorithm presented
in this section, and then the general bootstrapping procedure from Section 4 can
be used to evaluate for each digit arbitrary functions/lookup tables over small
plaintext moduli. In other words, the digit decomposition procedure presented
in this section and small-LUT evaluation procedure presented in Section 4 are
two core subroutines in arbitrary function evaluation for larger plaintext spaces.

5.1 Digit Decomposition into Fixed-Size Digits

We first assume for simplicity that all output ciphertexts have the same modulus
q and log(Q/α) divides log(q/α). Let us formally define the problem. Given an
input LWE (c, d) ∈ Zn+1

Q encrypting a message m ∈ ZQ/α, our goal is to obtain

a vector of ciphertexts ((ci, di) ∈ Zn+1
q )i∈[k], where k = log(Q/α)

log(q/α) , such that each

ciphertext (ci, di) encrypts a digit mi ∈ Zq/α and m =
∑k

i=1 mi · (q/α)i−1.

Let α = 4β and the input ciphertext (c, d) ∈ Zn+1
Q have noise < β. Then

we can perform digit decomposition using Algorithm 4. The high-level idea is
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to extract each least significant digit, remove it using HomFloor, and then use
the modulus switching procedure to reduce the modulus from Q to αQ/q, hence
moving to the next least significant digit.

Theorem 4. Let β > 2 be an upper bound on both the bootstrapping noise (from
Theorem 1) and the size of the secret key2 ∥s∥1 ≤ β. Let α ≥ 4β be a power
of 2. The procedure DigitDecomp in Algorithm 4, on input an LWE ciphertext
(c, d) ∈ Zn+1

Q encrypting a message m ∈ ZQ/α with error bounded by |Dec(c, d)−
α · m| < β, outputs ciphertexts ((ci, di))i∈[k] such that m =

∑k
i=1 mi · (q/α)i,

where mi = ⌈Dec(ci, di)/α⌋, k = log(Q/α)
log(q/α) , and |Dec(ci, di)− α ·mi| < β.

Proof. By the correctness of HomFloor shown in Lemma 2, we directly see that
m =

∑k
i=0 mi · (q/α)i, where mi = ⌈Dec(ci, di)/α⌋. The first ciphertext (c1, d1)

in the vector has the same noise as the input ciphertext, i.e., at most β. Then,
for (ci, di), where i ∈ [2, k], we have the same noise as for input ciphertexts of
HomFloor, again at most β, which follows from the proof of Theorem 2. ⊓⊔

Alternatively, we can formulate a digit decomposition algorithm based on
HomFloorAlt by trivially replacing HomFloor with HomFloorAlt and changing α
from 4β to 2β.

Algorithm 4 Algorithm for Homomorphic Digit Decomposition based on
HomFloor
1: procedure DigitDecomp(Q, q, (c, d))
2: k ← 1
3: while Q > q do
4: (ck, dk)← (c, d) (mod q)
5: (c, d)← HomFloor(Q, q, (c, d))

6: (c, d)←
⌈

α
q
· (c, d)

⌋
7: Q← αQ/q
8: k ← k + 1
9: end while
10: (ck, dk)← (c, d)
11: return {(ci, di)}i∈[k]

12: end procedure

5.2 Digit Decomposition into Varying-Size Digits

In some scenarios, it is desired to decompose a large-message LWE ciphertext
into a vector of LWE ciphertexts with different digit sizes, where each digit size
is a power of two. Our algorithm can also be extended to this more general case.

2 The weaker bound β ≥ O(∥s∥2) = O(
√
n) suffices when using randomized modulus

switching, or heuristically when assuming the input ciphertext is random.
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Let us first formally define the problem. Given an input LWE ciphertext
(c, d) ∈ Zn+1

Q , encrypting a message m ∈ ZQ/α, our goal is to output a vec-

tor of ciphertexts ((ci, di) ∈ Zn+1
qi )i∈[k], where k denotes the vector size and

(
∏k

i=1
qi
α ) = Q

α , such that each ciphertext encrypts a digit mi ∈ Zqi/α and

m = m1 +
∑k

i=2 mi · (
∏i−1

j=1
qj
α ).

This can be achieved by making small modifications in Algorithm 4. Instead
of evaluating DigitDecomp with modulus q in every iteration, we use qi in the

ith iteration, and replace
⌈
α
q · (c, d)

⌋
with

⌈
α
qi

· (c, d)
⌋
.

Note that the computational complexity of varying-size digit decomposition
depends on the value of each qi as different values of N and potentially other
parameters may be needed for a given value of qi.

6 Parameter Selection and Optimizations

The proposed algorithms work with the following parameters:

– q, small (power-of-two) (LWE) modulus;
– n, lattice parameter for the LWE scheme;
– Q′, RLWE/RGSW modulus (used for NTTs);
– Q, input (power-of-two) modulus;
– Qks, LWE/RLWE modulus used for key switching;
– N , ring dimension for RLWE/RGSW;
– Bg, gadget base for digit decomposition in each accumulator update, which

breaks integers modQ into dg digits;
– Bks, gadget base for key switching, which breaks integers modQ into dks

digits;

6.1 Selecting the Floor Function Evaluation Method

There are two options for evaluating the floor function: HomFloor and HomFloorAlt.
Given a ciphertext modulus q, noise bound β, and small plaintext modulus p,
HomFloor can support p ≤ q/α where α ≥ 4β with two bootstrapping operations
while HomFloorAlt can support the plaintext modulus of 2p with three bootstrap-
ping operations. Hence HomFloorAlt is about 1.5x slower but can process 1 extra
bit. If we denote as P the desired (large) plaintext space for sign evaluation (i.e.,
P = Q/α, where Q is the (large) modulus of the input ciphertext), then eval-
uating HomSign using HomFloor requires 1 + 2

⌊
logP
log p

⌋
bootstrapping operations

and evaluating HomSign using HomFloorAlt requires 1+3
⌊

logP
log p+1

⌋
bootstrapping

operations.
It is easy to see that for p = 2, using HomFloorAlt is faster by a factor of

about 4/3. For p = 22 = 4, the number of bootstrapping operations is roughly
the same, and for higher values of p using HomFloor is faster. In practice, the
value of p is at least 23 = 8 (or actually 24 = 16 for the optimized setting
described in Section 6.3), and, therefore, HomFloor is always the preferred floor
function evaluation algorithm in practice.
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6.2 Module-LWE vs RLWE

As an alternative to RLWE in the bootstrapping procedure described in The-
orem 1, we consider a module-LWE accumulator instead of the RLWE one. In
this case, we can replace one ring element of dimension N with w ring elements,
each with dimension N/w for some w ∈ Z+. Therefore, we use w NTT oper-
ations for the ring dimension N/w to replace one NTT operation for the ring
dimension N . This can give a speed-up of roughly logN/(logN − logw). How-
ever, since q = 2N , we would lose one bit as w is doubled, i.e., logw bits in
total. If we have 1 + 2

⌊
logP
log p

⌋
bootstrapping operations for RLWE, then we will

have logN
logN−logw

(
1 + 2

⌊
logP

log p−logw

⌋)
as a complexity for Module-LWE in terms

of equivalent bootstrapping operations.
For the practical values of N (at least 1024) and p (8 or 16), it can be easily

shown that RLWE is always faster than Module-LWE for any w > 1. Therefore,
RLWE is always preferred in practice.

6.3 Optimizations

Throughout the paper, so far, we have used the worst-case error bound of 4β.
This was done primarily for simplicity so we could work with a power-of-two
β. In the actual implementation, we can use an average-case error estimate. We
consider this as an implementation-level optimization.

If each ciphertext has an error bound β, adding two ciphertexts with errors
sampled independently from each other will result in an error bound of 2

√
2β,

which can be easily shown using subgaussian analysis/Central Limit Theorem
arguments, and was confirmed experimentally.

Such optimization can end up in an even tighter noise bound in practice
(essentially going from 2

√
2β to 2β). Our experimental results (based on 1,000

runs) suggest that a single ciphertext after bootstrapping has a standard devi-
ation σ ≈ 11.5. If we set the probability of error to less than 2−32, then the
estimated β is 73, which rounds up to 128. When two independent ciphertexts
are added together, we get a noise with standard deviation σ ≈ 16.3, and for the
same probability the estimated bound β is 103, which also rounds up to 128.

Therefore, in practice, we can remove the second addition of β in HomFloor
(at line 5 of Algorithm 1). The same optimization can be applied to HomFloorAlt,
DigitDecomp, and EvalFunc.

6.4 Setting the Parameters

For HomSign and DigitDecomp, the main input parameter is Q. Typically logQ
should be set to logP + log(β̃ + β) + 1 , where logP is precision in bits of
the input plaintext, β̃ is the error in the input ciphertext, and β is the FHEW
bootstrapping error bound defined in Theorem 1. It is recommended to perform
modulus switching to obtain the smallest acceptable value of Q before running
the procedures.
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After Q is fixed, one needs to find a prime number Q′ > Q to support the
NTT operations during bootstrapping. Based on the desired security level, we
can fix the ring dimension N using the HE standard [4] or LWE estimator [5]. For
example, for a ring of dimension N = 2048, for 128-bit security against classical
computer attacks, we can set logQ′ to at most 54 bits; for 256-bit security, we
can support at most 29 bits. With N fixed, we choose q = 2N for maximum
performance.

Together with Q′, we need to choose Bg, which is the gadget base to decom-
pose Q′. For best performance, we generally set Bg to the smallest power-of-
two >

√
Q′, i.e., dg = 2. Bg is the main parameter that determines the noise

growth. Roughly speaking, we need
Q·Bg

Q′ ≪ 1. For best runtime performance,

Bg = ⌈
√
Q′⌉, we need Q√

Q′ ≪ 1. If we have Bg = ⌈Q′1/3⌉ (dg = 3), we get a

slowdown of 3/4, but then we can support larger Q as the requirement is then
Q

Q′2/3 ≪ 1. According to our experiments, roughly
Q·Bg

Q′ ≈ 2−11 should be suffi-

cient to achieve the noise standard deviation of ≈ 11.5 after one bootstrapping
(which is enough to maintain a failure probability < 2−32 with error bound 128,
because adding two bootstrapped ciphertexts would result in a noise standard
deviation ≈ 16.3).

The last remaining parameter is p, which is the small plaintext modulus
for each digit in HomSign and Decomp, i.e., the internal plaintext modulus in
HomFloor. We have p = q/(4β) as the worst-case bound in our algorithms.
However, the optimizations in Section 6.3 allow us to use p = q/(2β) in the
implementation.

6.5 Noise Estimates

Bootstrapping results in a ciphertext with an error from a Gaussian distribu-

tion of standard deviation σ =

√
q2

Q2
ks
(
Q2

ks

Q′2 σ2
ACC + σ2

MS1
+ σ2

KS) + σ2
MS2

, where

σ2
MS1

= |sN |2+1
3 , σ2

MS2
= |sn|2+1

3 , σ2
ACC = 4dgnN

B2
g

6 σ2
BK , and σ2

KS = σBKNdks
for a uniform ternary secret keys sN with dimension N and sn with dimension
n, as estimated in [29]. Note that here we use a heuristic (average-case) estimate
for σ2

MS .
To guarantee that we can have a failure probability < 2−32 as proposed

in [19,16,29], we set β ≈ 6.37σ, and we then round β to the smallest power-
of-two greater than 6.37σ. However, sometimes

√
2 · 6.37σ is also smaller than

the rounded β. Therefore, we can use the same β even if we have a
√
2 loss in

Algorithms 1 and 4.

6.6 Computational Complexity

For our experiments, we used the TFHE/GINX bootstrapping method with
ternary secret keys [29]. Each bootstrapping takes roughly 2n(dg + 1) NTT
operations (we employed the ternary CMUX optimization recently proposed by
Bonte et. al [6]) and each NTT operation is O(N logN).
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7 Implementation and Performance Evaluation

7.1 Parameters Used for Our Implementation

In our implementation, we limited Q to at most 229, which supports up to 21
bits of precision. This precision is sufficient for most applications. One common
use of FHEW-based comparisons is in applications that use the CKKS scheme
for all polynomial computations, and then switch to FHEW for comparison-
based computations [28]. The precision typically achieved in these applications
is not higher than 20 bits (as it is limited primarily by the precision of CKKS
bootstrapping [7]).

Once Q is fixed, we need to find Q′ such that Q/Q
′ dg−1

dg ≪ 1, as explained in
Section 6.4. We set logQ′ to 54, which is the largest modulus size that supports
128-bit security for N = 2048 [4].

Next, we need to choose Bg. For Q′ < 254, there are three main practical
options: Bg = 227 (two digits in RGSW gadget decomposition, i.e., dg = 2),
Bg = 218 (dg = 3), and Bg = 214 (dg = 4). For Q ≤ 216, we can use Bg = 227

(fastest bootstrapping). For 216 < Q ≤ 225, we use Bg = 218. For 225 < Q ≤ 229,
we use Bg = 214.

Note that we can dynamically change from Bg = 214 to Bg = 218 and then
to Bg = 227 as the value of Q gets progressively reduced via HomFloor iterations
in HomSign and DigitDecomp, resulting in a speed-up of later bootstrapping
operations. When using this dynamic mode, a bootstrapping key for each value
of Bg should be generated and loaded in computer memory. Hence, there is
a tradeoff between runtime and storage. One can either use the smallest Bg

for all bootstrapping operations and the smallest storage for the bootstrapping
key or use multiple values of Bg, improving the runtime of later bootstrapping
operations at the expense of increased storage requirements.

We use n = 1305, σBK = 3.19, Qks = 235, and Bks = 32, where σBK is
the standard deviation of the noise to encrypt the bootstrapping keys. All other
parameters are set to the same values as in [29].

For the parameters above, the estimated standard deviation σ of a boot-
strapped ciphertext is about 11.5 (based on 1,000 bootstrapping runs). For a sum
of two bootstrapped ciphertexts, the standard deviation σsum is about 16.3. We
can use this value of σsum to select the value of plaintext modulus p. The failure

probability is given by 1− erf( q/p

2
√
2σsum

). To guarantee the probability of success

for HomSign to be at least 1− 232, similar to [19,16,29], we set p = 16 = 24. For
this value of p, the error upper bound β is 128. This implies we can achieve 4
bits of precision in the HomFloor function, i.e., we can work with digits of up to
4 bits per iteration when dealing with large-precision LWE ciphertexts.

Remark 2. Although we restricted Q to 229 and logQ′ to 54 bits, higher values
of both Q and Q′ can be supported. For Q′ larger than 64 bits, the machine
word size for many modern computing environments, a Residue Number System
(RNS) variant of RLWE and the corresponding RNS digit decomposition can be
instantiated using the lattice gadget techniques presented in [21].
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7.2 Software Implementation

We implemented HomSign, DigitDecomp, and EvalFunc in PALISADE v1.11.6 [1].
The evaluation environment was a commodity desktop computer system with
an Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz and 64 GB of RAM, running
Ubuntu 18.04 LTS. The C++ compiler was g++ 10.1.0. We compiled PAL-
ISADE with the following CMake flag: WITH NATIVEOPT=ON (machine-
specific optimizations were applied by the compiler).

7.3 Experimental Results

For Q bounded to 229 and the parameter values discussed in Section 7.1, the
runtime of HomSign and DigitDecomp can be described in terms of bootstrapping
times for dg = 2, dg = 3, and dg = 4. For Q ≤ 216 we use dg = 2, for 216 < Q ≤
225 we use dg = 3, and for 225 < Q ≤ 229 we use dg = 4.

The single-threaded runtimes for dg = 2, dg = 3, and dg = 4 in our evaluation
environment were 442, 600, and 785 ms, respectively. The runtimes for HomSign,
DigitDecomp, and EvalFunc are listed in Table 2. When logP = 4, only one
bootstrapping invocation is needed. Then for each next 4 bits (each digit), two
more bootstrapping invocations are needed, as explained in Section 6.1. Note
that although for Q = 225 and Q = 226, the number of bootstrapping operations
is the same (four calls to HomFloor, each with two bootstrapping invocations,
plus one extra bootstrapping), the runtimes are different because for Q = 225 we
have three bootstrapping operations at dg = 2 and six bootstrapping operations
at dg = 2, while for Q = 226 we have three bootstrapping operations at dg = 2,
four bootstrapping operations at dg = 3, and two more bootstrapping operations
at dg = 4. Moreover, note that for Q = 228 and Q = 229, there is a relatively large
runtime gap. This is because we need one more call to HomFloor for Q = 229

and therefore two additional bootstrapping invocations. In general, the runtime
is roughly linear in logQ. For arbitrary function evaluation, we can process one
bit less compared to the HomFloor function in HomSign.

For EvalFunc, we used the function y = x3, but any other function over mod-
ulus P could be used instead, and we verified this experimentally. As explained,
EvalFunc with P = 23 can be used as a subroutine to support arbitrary function
(LUT) evaluation for larger plaintext moduli; this LUT evaluation is achieved
using a combination of either tree or chain method introduced in [22] together
with the digit decomposition method proposed in Section 5. One can also in-
crease P for a single “digit” by increasing the ring dimension (each extra bit of
P requires doubling the ring dimension, i.e., roughly doubling the runtime). We
chose specifically logP = 3 for EvalFunc to illustrate the runtime for arbitrary
functions as this setting corresponds to the ring dimension N = 2048, which was
used for all proposed capabilities in our implementation for simplicity.

It is possible to use a smaller ring dimension N = 1024 and logQ′ ≤ 27 for
Q = 212 (but not for higher Q) at the cost of reducing logP by one bit, i.e., use
the same bootstrapping parameters as for Boolean circuit evaluation in [29], but
we have chosen to run all experiments at N = 2048 for simplicity/uniformity
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Table 2. Single-threaded timing results of HomSign, DigitDecomp, and EvalFunc
for (logP )-bit encrypted numbers at N = 2048, q = 2N = 4096. Recall that in
HomSign/DigitDecomp, as we proceed, logP becomes smaller and Bg is dynamically
increased to improve the runtime performance, as suggested in Section 7.1.

Function Q logP [bits] runtime [ms] Initial Bg

HomSign/DigitDecomp 212 4 442 227

HomSign/DigitDecomp 216 8 1,322 227

HomSign/DigitDecomp 220 12 2,515 218

HomSign/DigitDecomp 224 16 3,709 218

HomSign/DigitDecomp 225 17 4,589 218

HomSign/DigitDecomp 226 18 5,216 214

HomSign/DigitDecomp 228 20 5,222 214

HomSign/DigitDecomp 229 21 6,096 214

EvalFunc 212 3 884 227

and best precision. Similarly, we can reduce n and Qks if Q < 229 is desired,
hence reducing the runtime by a factor proportional to n. But we did not include
this optimization to provide a general functionality up to 21 bits of precision and
illustrate the linear dependence of runtime on logQ and logP .

For comparison, the TFHE/GINX bootstrapping runtime for N = 1024 us-
ing the same parameters as in [29] with the CMake flag NATIVE SIZE=32 for
the clang++ 9.0.0 compiler was 74 ms (we observed that clang++ 9.0.0 is faster
than g++ 10.1.0 when 32-bit integers are used for modular arithmetic in PAL-
ISADE). This implies that the bootstrapping operations in our implementation
are 6.0x (for dg = 2), 8.1x (for dg = 3), and 10.6x (for dg = 4) slower than
the bootstrapping time for a single Boolean gate evaluation [29] when using our
computing environment. This slowdown is primarily caused by increased values
of n from 502 to 1305 and N from 1024 to 2048 (both parameters proportion-
ally increase the runtime). If a smaller precision (below 21 bits) is desired, this
slowdown can be reduced by using smaller values of n (also, a smaller value of
N can be used if the precision of 4 bits is sufficient for a given application).

8 Comparison with Other Recent Works

8.1 Comparison with algorithms based on FHEW/TFHE
bootstrapping

There is a recent work proposing algorithms for homomorphic digit decomposi-
tion and arbitrary function evaluation [18]. The high-level idea of their approach
is to use the fact that −1 ·(−m) = m and extract the most significant bit as part
of their procedures. They run two bootstrapping operations (one to extract the
MSB and another to evaluate the desired function) and then multiply the results
using a homomorphic multiplication, similar to the multiplication in Brakerski’s
and Brakerski/Fan-Vercauteren (BFV) schemes [9,20]. The work [18] does not
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provide any implementation; hence we focus here on the theoretical comparison
of approaches.

The most significant difference is the extra noise added in [18] due to the
BFV-like homomorphic multiplication. This adds a multiplicative factor O(N ·p)
to the prior noise, and hence increases Q′ by the same factor. In our method, no
additional noise beyond the sum of the noises due to bootstrapping operations
is needed. The other difference is that each iteration of their HomFloor-like op-
eration in digit decomposition supports one bit less precision than our method.
This bit is lost for the same reason that one extra bit is needed in our arbitrary
function evaluation, where we have to extend from Zq to Z2q.

We can estimate the concrete noise increase in [18] by using the heuristic
BFV multiplication noise estimate, 4Np, from [23,25]. For the parameters used
in our implementation (also accounting for a smaller p, by one bit), the extra
factor is 4 · 211 · 24 = 217. This implies that logQ′ has to be increased by 17 bits.
According to [4] and our noise estimates, this will require increasing the ring
dimension N from 2048 to 4096 to achieve the same security level and roughly
the same precision (i.e., same logP ). The reduced precision per iteration of their
HomFloor-like function may further increase the computational complexity. In
summary, our estimates suggest that the method proposed in [18] will be at least
two times slower for digit decomposition for the parameters used in our imple-
mentation. We expect a similar improvement for arbitrary function evaluation
(except that our algorithm supports the same largest plaintext modulus as their
algorithm, i.e., there is no 1-bit advantage as in the case of HomFloor).

Another potential drawback of the approach in [18] is the need for a BFV-like
relinearization key and related extra implementation complexity. In this sense,
our approach is simpler as it requires only regular FHEW/TFHE keys.

There is another recent work proposing an algorithm for arbitrary function
evaluation [26]. The high-level idea is similar to [18], i.e., use the fact that
−1 · (−m) = m. The difference is that [26] performs multiplication using a GSW
ciphertext (which encrypts the sign bit). They also propose a method to use an
LWE′ ciphertext (a vector of LWE ciphertexts, see details in [29]) for multipli-
cation instead of using a GSW ciphertext, as only plaintext multiplications are
needed in their algorithm, instead of ciphertext multiplications. This makes the
extraction of the sign bit two times faster than the GSW-based method. Their
algorithm requires d′g + 1 ≥ 3 bootstrappings to perform an arbitrary function
evaluation whereas our method requires only 2 bootstrappings and is indepen-
dent of d′g. Here, d′g refers to the number of digits for gadget decomposition
specific to their LWE′ multiplication. Their algorithm also increases the noise
by a multiplicative factor of O(

√
Nd′gQ

′1/d′
g ), which is the cost of GSW-like

multiplication, as compared to our approach.

Both methods [18,26] can be extended to support large-precision sign evalua-
tion (though this was not done in these works), but will have the same drawbacks
as for arbitrary function evaluation: asymptotically higher noise growth (both
methods) and increased number of bootstrapping operations (applies to [26]
only). Another advantage of our method is that no multiplication support is
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needed for the homomorphic encryption scheme that invokes the FHEW boot-
strapping, i.e., an additively homomorphic LWE scheme can be used. In meth-
ods [18,26], a homomorphic encryption scheme supporting both additions and
multiplications is needed.

8.2 Comparison with CKKS sign evaluation

We compare our sign-evaluation method with the state-of-the-art CKKS sign-
evaluation method [27] (i.e., CKKS-based comparison between two numbers)
and summarize the advantages of our approach below.

– As shown in Table VII of [27], with 20 bits of accuracy, their approach takes
∼ 30 seconds (for 64K slots), while ours takes about 6 seconds (for 1 slot).
Therefore, if the number of comparisons needed is small (e.g., 5 comparisons),
our method is faster.

– Our method is easily parallelizable while the CKKS method supports limited
parallelization (only over RNS residues). Therefore, on a server-grade multi-
core machine, our performance can be better even for a larger number of
comparisons.

– When combined with CKKS for other applications (as shown in Section 9),
our method does not require the ring dimension to be very large (215 is
already enough), while the CKKS method requires the ring dimension to
be 217 or higher, which may not be desired for the original application and
therefore can greatly impact the performance, e.g., memory requirements
and runtime.

– Higher precision for the CKKS method (e.g., 50 bits) can be harder to sup-
port as logQ can easily exceed 3000 (and the ring dimension will increase
accordingly). The scaling factor will also need to be adjusted accordingly,
increasing the underlying machine word size from 64-bit to 128-bit, which
further reduces the performance (as high as 8x slower, judging by the PAL-
ISADE CKKS implementation). On the other hand, our method simply
needs to use the RNS variant of RLWE as mentioned in Remark 2 of our
paper (there is only an increase in the ring dimension). Hence, the decrease
in runtime for higher precision is much smaller for our method.

– Our method is much simpler to implement/use (no special composite poly-
nomials are needed).

– When multiple invocations of CKKS sign evaluation are needed, CKKS boot-
strapping should be called in between, which significantly increases the run-
time of the CKKS-based approach. Our method does not have any additional
requirements for multiple invocations of the sign function as it inherently in-
cludes FHEW/TFHE bootstrapping.

9 Application

In this section, we consider an application of our large-precision comparison
method where CKKS and FHEW/TFHE are used together. We combine CKKS
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and FHEW/TFHE using the scheme switching methods described in [28] based
on the ideas proposed in [8].

The large-precision comparison is used to evaluate the Heaviside activation
function arising in some machine learning applications [2,11,31], which is defined
as

H(x) =

{
1 if x > 0,
0 otherwise.

In the case of artificial neural network networks, e.g., in a deep learning model
for functions with jump discontinuities, the input x is often computed as an inner
product of (encrypted) inputs and (encrypted) weights, which can be performed
using CKKS (along with other linear/polynomial computations needed for the
model). In our example, we evaluate an inner product with CKKS and then
evaluate the Heaviside function by negating the CKKS ciphertext containing
256 valid slots and switching it to 256 FHEW/TFHE ciphertexts. We perform
our large-precision sign evaluation on these 256 ciphertexts using Algorithm 1.
Lastly, we switch the comparison results back to a CKKS ciphertext.

In our experiment, the input precision was about 21 bits (by setting logQ =
29 and other parameters as in Section 7) and the observed output precision was
larger than 30 bits, which are both much higher than the results from [28] (input
precision of 5-6 bits and output precision not higher than 13 bits). Similar to [28],
the runtime for our experiment with 256 slots was dominated by large-precision
comparisons, and the contribution of CKKS-FHEW and FHEW-CKKS scheme
switching was not higher than 10%. Hence, the runtime can be estimated by
multiplying the runtimes from Table 2 by the number of slots (and dividing
them by the number of threads if multi-threading is available).

More generally, one can use large-precision comparison to perform an en-
crypted branch evaluation by checking the values against a threshold (i.e., if the
input is above some threshold T, evaluate circuit B; otherwise, evaluate circuit
C). This may require high precision as the behavior of B and C can be greatly
different.

10 Concluding Remarks

Our experimental results for homomorphic sign evaluation suggest that increas-
ing the precision from 4 bits to 21 incurs a slow-down of only about 14x. If
FHEW/TFHE bootstrapping would be used directly, a slow-down of more than
100,000x would be observed. This implies that our large-precision homomorphic
sign evaluation implementation can be used for applications that work with 20-
bit-precision numbers (and can be extended to a larger precision, as discussed
in Remark 2 in Section 7.1). For instance, it can be plugged into the decision
tree inference implementation [28] to increase the precision of comparison.

It was also shown that our method for arbitrary function evaluation, which
we call general functional bootstrapping (often referred to as programmable
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bootstrapping in literature), has a lower complexity than two other recently
proposed methods [18,26]. Both of these methods require one multiplication
operation while our method can be built on top of an additively homomorphic
encryption scheme, similar to the original FHEW construction for Boolean gate
evaluation [19].
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