
Continuously Non-Malleable Codes against
Bounded-Depth Tampering

Gianluca Brian[0000−0002−5352−9763]1 ⋆, Sebastian Faust[0000−0002−8625−4639]2

⋆⋆, Elena Micheli2 ⋆⋆, and Daniele Venturi[0000−0003−2379−8564]3 ⋆ ⋆ ⋆

1 Sapienza University of Rome, Rome, Italy.
{brian,venturi}@di.uniroma1.it

2 Technische Universität Darmstadt, Darmstadt, Germany.
{sebastian.faust,elena.micheli}@tu-darmstadt.de

Abstract. Non-malleable codes (Dziembowski, Pietrzak andWichs, ICS
2010 & JACM 2018) allow protecting arbitrary cryptographic primi-
tives against related-key attacks (RKAs). Even when using codes that
are guaranteed to be non-malleable against a single tampering attempt,
one obtains RKA security against poly-many tampering attacks at the
price of assuming perfect memory erasures. In contrast, continuously non-
malleable codes (Faust, Mukherjee, Nielsen and Venturi, TCC 2014) do
not suffer from this limitation, as the non-malleability guarantee holds
against poly-many tampering attempts. Unfortunately, there are only a
handful of constructions of continuously non-malleable codes, while stan-
dard non-malleable codes are known for a large variety of tampering fam-
ilies including, e.g., NC0 and decision-tree tampering, AC0, and recently
even bounded polynomial-depth tampering. We change this state of af-
fairs by providing the first constructions of continuously non-malleable
codes in the following natural settings:
– Against decision-tree tampering, where, in each tampering attempt,

every bit of the tampered codeword can be set arbitrarily after adap-
tively reading up to d locations within the input codeword. Our
scheme is in the plain model, can be instantiated assuming the ex-
istence of one-way functions, and tolerates tampering by decision
trees of depth d = O(n1/8), where n is the length of the codeword.
Notably, this class includes NC0.

– Against bounded polynomial-depth tampering, where in each tam-
pering attempt the adversary can select any tampering function that

⋆ Supported by grant SPECTRA from Sapienza University of Rome. This work was
partly done while G. Brian was visiting the University of Warsaw, Poland, sup-
ported by the Copernicus Award (agreement no. COP/01/2020) from the Foun-
dation for Polish Science and by the Premia na Horyzoncie grant (agreement no.
512681/PnH2/2021) from the Polish Ministry of Education and Science.

⋆⋆ This work has been funded by the German Research Foundation (DFG) CRC 1119
CROSSING (project S7), by the German Federal Ministry of Education and Re-
search and the Hessen State Ministry for Higher Education, Research and the Arts
within their joint support of the National Research Center for Applied Cybersecurity
ATHENE.

⋆ ⋆ ⋆ Supported by grant SPECTRA from Sapienza University of Rome.

2 Gianluca Brian, Sebastian Faust, Elena Micheli, and Daniele Venturi

can be computed by a circuit of bounded polynomial depth (and un-
bounded polynomial size). Our scheme is in the common reference
string model, and can be instantiated assuming the existence of time-
lock puzzles and simulation-extractable (succinct) non-interactive
zero-knowledge proofs.

1 Introduction

Related-key attacks (RKAs) allow an adversary to break security of a cryp-
tographic primitive by invoking it under one or more keys that satisfy known
relations. Such attacks were first introduced as a tool for the cryptanalysis of
blockciphers [52,20], but can also be mounted in practice thanks to the ability
of attackers to influence secret keys via tampering attacks [22,21,45].

Theoretically, we can model F-RKA security of a given cryptographic prim-
itive as follows: The attacker can choose multiple tampering functions f1, f2, . . .
within a family of allowed manipulations F of the secret key, and later ob-
serve the effect of such changes at the output by invoking the primitive on cho-
sen inputs. An elegant solution to the problem of constructing F-RKA-secure
cryptoschemes is provided by non-malleable codes [40]. Intuitively, an F-non-
malleable code allows us to encode a message so that a modified codeword via a
function f ∈ F either decodes to the same message or to a completely unrelated
value. In the application to RKA security, we simply encode the secret key κ and
store the corresponding codeword γ in memory. A RKA changes the memory
content to γ̃ = f(γ) for some function f ∈ F . Hence, at each invocation, we de-
code the codeword stored in memory and run the corresponding cryptographic
primitive using the obtained key. Since the decoded key is either equal to the
original or unrelated to it, we obtain F-RKA security.

Unfortunately, there are two important caveats to the above general solu-
tion: (i) Since non-malleable codes are only secure against a single tampering
attempt f ∈ F , at each invocation we must completely erase the memory and
re-encode the key; (ii) In case the modified codeword is invalid, and thus cannot
be decoded, we must self-destruct and stop using the underlying primitive. It
turns out that limitation (ii) is inherent, in that Gennaro, Lysyanskaya, Malkin,
Micali and Rabin [45] established that RKA security is impossible without self-
destruct.3 On the other hand, it would be desirable to remove limitation (i)
as perfect erasures of the memory are notoriously hard to implement in prac-
tice [26]. Another drawback of limitation (i) is that it makes the cryptoscheme
stateful (even if it was stateless to start with) and requires fresh randomness for
re-encoding the key.

The stronger notion of continuously non-malleable codes [43] allows us to
overcome limitation (i): Since such codes guarantee F-non-malleability even

3 Their attack is simple: The j-th tampering function tries to set the j-th bit of
the secret key to 0: If the device returns an invalid output, the next function fj+1

additionally sets the j-th bit of the key to 1 and otherwise it sets it to 0.

Continuously Non-Malleable Codes against Bounded-Depth Tampering 3

against poly-many tampering attempts, one immediately obtains F-RKA se-
curity without assuming perfect erasures.

1.1 Our Contribution

A nice feature of the above compiler is its generality: In order to achieve F-
RKA security all we need to do is to design an F-non-malleable code. In re-
cent years, there has been a tremendous progress in the design of non-malleable
codes for several tampering families F of practical interest, including: bit-wise in-
dependent and split-state tampering [40,55,2,6,29,53,54,50,51,4], space-bounded
tampering [42], small-locality and small-depth circuits [7,12,10,48], decision-tree
and AC0 tampering [13,15], and very recently even bounded polynomial-depth
tampering [11,35,14]. In contrast, continuous non-malleability is only known
for bit-wise independent tampering [34,32], tampering functions with few fixed
points and high entropy [49], constant-state tampering [3], split-state tamper-
ing [43,5,56,36] and space-bounded tampering [30], leaving open the following
intriguing question:

Can we construct continuously non-malleable codes against natural non-
compartmentalized tampering families, such as decision trees, AC0 or
even bounded polynomial-depth circuits?

We answer the above question in the affirmative:

– In the setting of decision-tree tampering, we construct a code which resists
continuous tampering attacks from the family of functions that modify every
bit of the tampered codeword arbitrarily after adaptively reading up to d
locations from the input codeword. Our scheme is in the plain model, assumes
the existence of one-way functions, and tolerates tampering by decision trees
of depth d = O(n1/8), where n is the length of the codeword. Notably, this
class includes NC0.

– In the setting of bounded polynomial-depth tampering, we construct a code
that resists continuous tampering attacks, where the adversary can select any
tampering function that can be computed by a circuit of bounded polynomial
depth (and unbounded polynomial size). Notably, this class includes non-
uniform NC. Our scheme is in the common reference string (CRS) model,
and assumes the existence of time-lock puzzles and simulation-extractable
(succinct) non-interactive zero-knowledge (NIZK) proofs.

We remark that both our constructions rely on computational assumptions.
Although we don’t know whether they are necessary for decision-tree or bounded-
depth continuous tampering, achieving information-theoretic guarantees in the
continuous scenario turned out to be challenging for even more well-studied
families [32,33,34,49,3,39,30,42,28,5]. We leave this problem open for future work.

4 Gianluca Brian, Sebastian Faust, Elena Micheli, and Daniele Venturi

1.2 Technical Overview

Due to space constraints, most proofs have been deferred to the full version
of this paper [25]. Let us start by reviewing different flavors of one-time non-
malleability (see Section 3 for formal definitions).

– Non-malleability w.r.t. message/codeword: A code is non-malleable w.r.t.
message (resp. w.r.t. codeword) if a tampered codeword either decodes to
the original message (resp. is identical to the original codeword) or decodes
to a completely unrelated value.

– Super non-malleability: A code is super non-malleable [43,44] if the tampered
codeword itself (when valid) is unrelated to the original message. Note that
the distinction between w.r.t. message and w.r.t. codeword also applies here.

Persistent tampering. The above flavors can be naturally extended to the setting
of continuous non-malleability. Our first observation is that, in the setting of non-
compartmentalized tampering, continuous non-malleability is only achievable in
the case of persistent tampering, where the j-th tampering function fj is applied
to the output of the previous function fj−1.

The latter can be seen as follows. Consider an adversary that computes offline
a valid encoding of two different messages, for simplicity say µ0 = 0k and µ1 =
1k. Call γ0 and γ1 the corresponding codewords. Next, the attacker prepares a
tampering query that hard-wires γ0, γ1 and proceeds as follows: It reads the first
bit γ[1] of the target codeword; if γ[1] = 0 it overwrites the target codeword
with γ0, while if γ[1] = 1 it overwrites the target codeword with γ1. As a result,
the adversary learns the first bit of the target codeword. Now, if tampering is
non-persistent, the attacker can repeat this procedure to efficiently recover the
entire codeword, which clearly violates continuous non-malleability.4

In light of the above attack, in what follows, and without loss of generality,
when we refer to continuous non-malleability, we implicitly refer to the case of
persistent tampering.

Decision-tree tampering. To show our first result, we revisit the recent construc-
tion of non-malleable codes against decision-tree tampering by Ball, Guo and
Wichs [15]. On a high-level, this construction first encodes the message µ us-
ing a leakage-resilient non-malleable code in the split-state model, resulting in
a codeword (γL, γR) consisting of a right and a left part. Then, each part γi for
i ∈ {L,R} is encoded independently as follows: we sample a random small set
(whose size is that of the underlying codeword) in a much larger array, plant
the input in these locations and zero everything else out. Finally, we use a ramp
secret sharing with relatively large secrecy threshold to encode a description of
the small set (which can be represented by a seed ζi). To decode, we can simply

4 To the best of our knowledge, this observation is new. Previous work in the setting
of non-compartmentalized tampering implicitly circumvented the above attack by
requiring each tampering function to have high min-entropy and few fixed points, or
by assuming that the number of tampering queries is a-priori bounded [49].

Continuously Non-Malleable Codes against Bounded-Depth Tampering 5

extract the seed and output what is in the corresponding locations of the array.
This allows us to recover both parts γL, γR and thus obtain the initial message.

Ball, Guo and Wichs [15] show how to simulate the decoded message corre-
sponding to one decision-tree tampering query using bounded split-state leakage
and one split-state tampering query on the underlying non-malleable code. Al-
though our construction is similar to theirs, proving continuous non-malleability
is non-trivial and requires significant new ideas. We discuss some of them below.

First, in the original construction, the positions of the codeword that are not
indexed by ζi are ignored, since they are not useful for the reconstruction. In
our case, however, an attacker could copy the original codeword into the zero
bits and overwrite the rest with a valid encoding of an unrelated message, which
would allow it to retrieve the original encoding, thus breaking continuous non-
malleability. We avoid this by requiring such positions to be 0 for the codeword
to be valid. Second, we must ensure that the adversary cannot modify the other
parts of the outer codeword without touching the inner codeword: this is because
otherwise the adversary could use some tampering queries to save a state inside
the codeword, and then use another tampering query to actually tamper with
the codeword using more information than he should. We avoid this attack, by
relying on computational assumptions. The idea is to sample verification keys
vkL, vkR for a one-time signature scheme, generate (γL, γR) as an encoding of the
string µ||vkL||vkR, and finally append signatures σL, σR to the left and right part
of the above described final encoding. In Section 3.3, we also show that this trick
works generically to compile any super non-malleable code w.r.t. message into
a super non-malleable code w.r.t. codeword, so long as the tampering family F
allows us to evaluate the signing algorithm of the signature scheme. Intuitively,
our code against decision-tree tampering removes this assumption thanks to
the fact that the split-state model allows us to run arbitrary polynomial-time
functions (independently on the two parts of the codeword).

In a nutshell, our scheme uses as building blocks a split-state nmc, a signature
scheme and a simple procedure transforming states into their sparse versions.
The latter takes as input a length-c-string γ, samples a random set I of c indices
in [n] with n > c, and outputs the sparse codeword γ∗ = (γ∗

1 , γ
∗
2), where γ∗

1

is a RSS encoding of I, and γ∗
2 is a length-n-string that has γ in the positions

indexed by I, and zeros elsewhere. To extract the original string from the sparse
one, it suffices to use the RSS decoding algorithm on the first part, and return
the corresponding bits of the second part.
The design of our scheme follows.

Algorithm Enc∗(µ). Proceed as follows:
1. Sample two pairs of keys (skL, vkL), (skR, vkR) for the signature scheme
2. Compute the split-state codeword (γL, γR) for the message (µ||vkL||vkR)
3. Compute the sparse strings γ∗

L and γ∗
R for γL and γR.

4. Sign γ∗
L and γ∗

R with, respectively, skL and skR, to get σL and σR.
5. The final codeword is (σL, γ

∗
L , σR, γ

∗
R).

The decoding algorithm extracts γL and γR from their sparse versions γ∗
L

and γ∗
R and checks that in the remaining positions there are only zeros, decodes

6 Gianluca Brian, Sebastian Faust, Elena Micheli, and Daniele Venturi

the split-state codeword (γL, γR) to get µ||vkL||vkR, verifies the signatures and
outputs ⊥ if verification fails, µ otherwise.

Unfortunately, even with the above modifications, it is unclear how to extend
the original proof of security to the setting of continuous tampering, even if
one assumes the underlying split-state non-malleable code to be continuously
non-malleable. The reason is that the reduction needs to leak some bits from
the codeword for each tampering query, therefore having a large number of
tampering queries would lead to leaking too much information from the split-
state codeword. Instead, we exploit the power of super non-malleability: Assume
the underlying split-state code is super non-malleable w.r.t. codeword.5 Then,
the reduction only needs to know the index q∗ of the first tampering query
which actually modifies the inner codeword. In case the tampered inner codeword
(γ̃L, γ̃R) is invalid, the experiment stops and we are done. Otherwise, if (γ̃L, γ̃R)
is valid, the reduction obtains it in full. At this point, the reduction is able to
simulate the answer to all subsequent tampering queries on its own, as tampering
is persistent, which allows us to conclude continuous non-malleability.6

It remains to be seen how the reduction can obtain the index q∗. A possible
strategy would be to simulate the outcome of all the tampering queries inside the
leakage oracle, and then return the index of the first tampering query which ac-
tually modifies the codeword; however, each bit of a tampering query can depend
on bits of both the left and right part of the inner codeword, while a split-state
leakage query is only allowed to see one of these parts. Our strategy is to guess
the index q∗, and then check at the end of the experiment if the guess was correct
or wrong. Here, we additionally exploit the fact that the underlying split-state
super non-malleable code is information-theoretically secure, which essentially
allows the reduction to run many instances of the experiment inside the leakage
oracle, and check that the adversary does not try to cancel its advantage (due
to a wrong simulation). A similar strategy was already used in [56,23,24]. The
formal proof appears in Section 4.1.

Bounded polynomial-depth tampering. Our second construction exploits the ob-
servation that, for certain tampering families, continuous non-malleability w.r.t.
codeword can be reduced to one-time super non-malleability w.r.t. codeword
plus logarithmic (in the security parameter) leakage on the codeword. Indeed,
this is the case as long as the leakage family allows us to run polynomially-many
tampering functions in parallel, and return the index of the first query that actu-
ally modifies the codeword (if any). We formalize this observation in Section 3.3
(see Theorem 3). Note that the latter clearly holds true in the setting of bounded
polynomial-depth leakage and tampering.7

In light of the above, it suffices to construct a one-time super non-malleable
code w.r.t. codeword against bounded polynomial-depth tampering. We do so,

5 We can take, e.g., the non-malleable code of [5] for a concrete instantiation.
6 As a bonus, we actually prove continuous super non-malleability.
7 The same observation holds true for the setting of AC0 tampering, but not for
decision-tree tampering.

Continuously Non-Malleable Codes against Bounded-Depth Tampering 7

by looking at a slightly more general question. Namely, in Section 4.2, we show
how to compile a leakage-resilient non-malleable code into a super non-malleable
code in the CRS model, using simulation-extractable NIZK proofs. The idea is to
encode a message µ using the underlying code, and then append to the resulting
encoding γ a NIZK proof of knowledge π of the randomness ρ used by the
encoder. The decoder outputs ⊥ if the NIZK proof does not verify correctly.

In the reduction, we can simulate the NIZK proof π and then use a leak-
age query in order to obtain the tampered proof π̃ (so long as the proof π̃ is
valid), along with the extracted witness ρ̃ corresponding to a tampered code-
word (γ̃, π̃) = f(γ, π) in the experiment defining super non-malleability. Unfor-
tunately, the randomness ρ̃ is too long8 for being obtained via a leakage query.
However, this issue can be resolved by generating ρ using a pseudorandom gen-
erator G and letting the corresponding λ-bit seed σ be the witness. This allows
the overall leakage to depend only on the security parameter, either assuming
simulation-extractable SNARKs [9] (which inherently require non-falsifiable as-
sumptions [47]), or by making the size of the proof depend only on the size of
the witness (which can be achieved using fully-homomorphic encryption [46]).

More in detail, our compiler builds on a leakage-resilient one-time non-malleable
code (Enc,Dec), a pseudorandom generator G, and a simulation-extractable
proof system. The relation R for the proof system is satisfied by every cou-
ple statement-witness (γ, σ) where γ = Enc(µ;G(σ)) for some message µ. Our
encoding (and decoding) algorithm takes as input a CRS ω for the underlying
proof system, and is described below.

Algorithm Enc∗(ω, µ): Proceed as follows:
1. Generate a random seed σ for the PRG.
2. Use the underlying non-malleable encoding algorithm Enc with random-

ness G(σ)) to compute a codeword γ for µ
3. Generate a proof π for the couple (γ, σ)
4. Output (γ, π).

The decoding algorithm verifies the proof, returns ⊥ if verification fails, and
the message µ underlying γ otherwise.

A subtlety in the above proof sketch is that the leakage family supported by
the underlying code must allow simulating the proof π, applying the tampering
function f on (γ, π), verifying the tampered proof π̃, and extracting the cor-
responding tampered seed σ̃. Similarly, the tampering family supported by the
underlying code must allow simulating the proof π and applying the tampering
function f on (γ, π). Hence, this compiler does not work for all tampering fam-
ilies. Fortunately, it clearly works for the setting of bounded polynomial-depth
tampering.

Our final result is then achieved by adapting a recent construction of Dachman-
Soled, Komargodski and Pass [35], who showed how to obtain one-time non-
malleability w.r.t. message against bounded polynomial-depth tampering assum-
ing the existence of key-less hash functions and time-lock puzzles (along with

8 Note that we cannot extract the proof outside the leakage function, as the corre-
sponding statement is the tampered modified codeword γ̃ inside the leakage oracle.

8 Gianluca Brian, Sebastian Faust, Elena Micheli, and Daniele Venturi

other standard assumptions); in the CRS model, we show that their construction
can be simplified and proven leakage-resilient one-time non-malleable assuming
the existence of time-lock puzzles and simulation-extractable NIZKs. We refer
the reader to Section 4.2 and the full version for more details.

Necessity of super non-malleability for the inner split-state code. In our construc-
tion against decision-tree tampering, we require the inner split-state encoding
to be a super non-malleable code, thus allowing for the simulation of the whole
codeword. We argue that this is not an artifact of our proof, but rather a necessity
for our construction to achieve security. Indeed, by using a contrived instance of
a non-malleable code which is not super non-malleable, and contrived instances
of the ramp secret sharing and the signature scheme, we are able to instantiate
our scheme so that the adversary becomes able to retrieve the message in full.
We consider here a simplified version of our scheme in which we remove the
signature scheme, and we point the reader to [25] for the detailed explanation
and for how to reintroduce back the signatures.

First of all, we need a split-state non-malleable code which has a good amount
of spare bits, initially set to 0, and a secondary mode of operation which uses the
spare bits to reconstruct the message instead of the actual relevant bits. Then,
we need a malleable RSS encoding which allows to only replace a part of the
encoded value leaving everything else intact.

The attack then proceeds as follows: the adversary is now able to tamper
with the RSS encoding so that the spare bits of the split-state codeword are in
a known location (while keeping the other positions untouched), and he is also
able to replace those spare bits with some encoding of either 0 or 1 depending
on some bit that the adversary wants to leak, leaving everything else untouched.
Finally, the adversary uses multiple queries to leak every bit he left untouched,
thus recovering all the bits that are necessary to reconstruct the original message.

Application to RKA security without erasures. It is well known that a continu-
ously F-non-malleable code allows us to obtain a natural notions of F-RKA secu-
rity for arbitrary cryptographic primitives. This was proven by Faust, Mukherjee,
Nielsen, and Venturi [43] for the case of non-persistent tampering. In [25], we
show that the same works for the case of persistent tampering.

1.3 Related Work

In recent work, Freitag et al. [41] investigate non-malleable time-lock puzzles
in the concurrent setting. Their definition generalizes continuous non-persistent
non-malleable codes against bounded depth tampering, but requires that the
adaptive choice of tampering functions runs in bounded depth too. They pro-
vide an impossibility result for the latter, which we extend to all the continuous
non-persistent non-malleable codes against global tampering. Given that, they
introduce the weaker notion of functional concurrent non-malleable time-lock
puzzles, present a construction assuming the existence of (plain) time-lock puz-
zles in the auxiliary-input random oracle model, and provide interesting appli-
cations in coin tossing and electronic auctions.

Continuously Non-Malleable Codes against Bounded-Depth Tampering 9

Dachman-Soled and Kulkarni [36] show that continuous super non-malleability
in the split-state model inherently requires setup. This impossibility, instead,
does not hold for continuous super non-malleability against persistent tamper-
ing attacks, which can be achieved information-theoretically in the split-state
model.

Leakage-Resilient Locally Decodable and Updatable Non-Malleable Codes [38]
are a fine-grained tool for protecting RAM machines against leakage and tam-
pering. In literature, there are constructions in the split-state and continuous
setting [38], with information theoretic security [27], as well as tight upper and
lower bounds [37].

An alternative approach for obtaining generic RKA-security is to rely on non-
malleable key derivation [44,57,31]. The difference with non-malleable codes is
that in this case one stores a uniformly random string in memory which is used
to derive a key for the underlying cryptoscheme at each invocation. Continuously
non-malleable key derivation can essentially be achieved only for tampering via
polynomials or functions with high entropy.

Another line of research seeks direct constructions of RKA-secure crypto-
graphic primitives, including, e.g., pseudorandom functions [18,16,1] public-key
encryption [8,58], identity-based encryption and signatures [19]. RKA security
has become a de-facto standard for block-ciphers, and systems are often designed
while implicitly relying on the RKA-security of the underlying block-cipher (see,
e.g., [17] and references therein).

2 Preliminaries

We start by setting up some basic notation and by recalling the notion of cod-
ing schemes. For space reasons, the definition of other standard cryptographic
primitives is deferred to the full version [25].

2.1 Notation

We denote by [n] the set {1, . . . , n}. For a string x ∈ {0, 1}∗, we denote its length
by |x|; if i ∈ [|x|] and I ⊆ [|x|], we denote by x[i] the i-th bit of x and by x[I]
the substring of x obtained by only considering the bits indexed by I.

If X is a set, |X | represents the number of elements in X . When x is chosen
randomly in X , we write x←$ X . When A is a randomized algorithm, we write
y←$ A(x) to denote a run of A on input x (and implicit random coins ρ) and
output y; the value y is a random variable and A(x; ρ) denotes a run of A on
input x and randomness ρ. An algorithm A is probabilistic polynomial-time (PPT
for short) if A is randomized and for any input x, ρ ∈ {0, 1}∗, the computation
of A(x; ρ) terminates in a polynomial number of steps (in the size of the input).

Asymptotics. We denote by λ ∈ N the security parameter. A function p is
polynomial (in the security parameter), if p(λ) = O(λc) for some constant c > 0.
A function ν : N → [0, 1] is negligible (in the security parameter) if it vanishes

10 Gianluca Brian, Sebastian Faust, Elena Micheli, and Daniele Venturi

faster than the inverse of any polynomial in λ, i.e. ν(λ) = O(1/p(λ)) for all
positive polynomials p(λ). Unless stated otherwise, we implicitly assume that
the security parameter is given as input (in unary) to all algorithms.

Random variables. For a random variable X, we write P [X = x] for the proba-
bility that X takes on a particular value x ∈ X , with X being the set over which
X is defined. The statistical distance between two random variables X and Y
over X is defined as ∆ (X;Y) := 1

2

∑
x∈X |P [X = x]− P [Y = x]|. Given two en-

sembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we write X ≡ Y to denote that Xλ

and Yλ are identically distributed, X
s
≈ Y to denote that they are statistically

close, i.e. ∆ (Xλ;Yλ) ≤ ν(λ) for some negligible function ν : N → [0, 1], and

X
c
≈ Y to denote that they are computationally indistinguishable, i.e. for all

PPT distinguishers D there is a negligible function ν : N→ [0, 1] such that:

∆D (Xλ;Yλ) := |P [D(Xλ) = 1]− P [D(Yλ) = 1]| ≤ ν(λ).

The notion of computational/statistical indistinguishability generalizes immedi-
ately to ensembles of interactive experiments {GA(λ)}λ∈N where the adversary
A outputs a bit at the end of the interaction.

2.2 Coding Schemes

A (k, n)-code is a pair of algorithms Γ = (Init,Enc,Dec) specified as follows.

Initialization: The initialization algorithm Init is a randomized algorithm that
takes as input the security parameter λ ∈ N (in unary) and outputs a CRS
ω ∈ {0, 1}∗.

Encoding: The encoding algorithm Enc is a randomized algorithm that takes
as input a CRS ω ∈ {0, 1}∗, a message µ ∈ {0, 1}k and outputs a codeword
γ ∈ {0, 1}n.

Decoding: The decoding algorithm Dec is a deterministic algorithm that takes
as input a CRS ω ∈ {0, 1}∗, a codeword γ ∈ {0, 1}n and outputs either a
value in {0, 1}k or ⊥ (denoting an invalid codeword).

We say that Γ satisfies correctness if for all ω ∈ Init(1λ) and all messages µ ∈
{0, 1}k it holds that P [Dec(ω,Enc(ω, µ)) = µ] = 1, where the probability is over
the randomness of the encoding algorithm.

Remark 1 (Coding schemes in the plain model). A code in the plain model can
be obtained by restricting Init to output the empty string. In that case, we
simply write Γ = (Enc,Dec) and omit the string ω as an input of the encoding
and decoding algorithm.

Ramp secret sharing. A ramp secret sharing is a coding scheme satisfying the
additional property that any subset of the bits of a codeword with size at most
⌊t · n⌋, for some t ∈ (0, 1), reveals nothing about the message.

Continuously Non-Malleable Codes against Bounded-Depth Tampering 11

Definition 1 (Ramp secret sharing). We say that Γ is a binary (k, n, t)-
ramp secret sharing if Γ is a (k, n)-code satisfying the following property: For
every µ ∈ {0, 1}k, and for every non-empty subset I ⊆ {0, 1}n of size at most
⌊t ·n⌋, we have that Enc(µ)|I is identically distributed to the uniform distribution
over {0, 1}|I|.

As shown by Ball et al. [10], any binary linear error correcting code is a binary
ramp secret sharing with suitable secrecy. In particular, every binary linear error
correcting code correcting at most d errors is a binary ramp secret sharing with
secrecy (d− 1)/n.

Lemma 1 ([10]). For any message length k ∈ N there exist parameters n ∈ N
and t ∈ (0, 1) such that there is a binary (k, n, t)-ramp secret sharing.

3 Non-Malleable Codes

In this section, we revisit the definition of non-malleable codes and establish
relations among different flavors of non-malleability.

3.1 Non-Malleability

Let Γ be a (k, n)-code, and F = {f : {0, 1}n → {0, 1}n} be a family of functions.
Informally, Γ is non-malleable against tampering in F if decoding a codeword
tampered via functions in F yields either the original message or a completely
unrelated value. In this paper, we refer to the above flavor of security as non-
malleability w.r.t. message. Instead, when a tampered codeword (always via func-
tions in F) is either identical to the original codeword or decodes to a completely
unrelated value, we speak of non-malleability w.r.t. codeword.9

A stronger (as the name suggests) flavor of non-malleability is the so-called
super non-malleability, introduced implicitly in [43] (and explicitly in [44]). This
property requires that not only the output of the decoding, but the codeword
itself, is independent of the message, as long as the tampered codeword is valid
and either different from the original codeword (yielding super non-malleability
w.r.t. codeword) or decoding to something different than the original message
(yielding super non-malleability w.r.t. message).

The definition below formalizes continuous (super) non-malleability w.r.t.
message/codeword. For readability, it will be useful to introduce the following
predicates depending on a code Γ , a CRS ω, two messages µ0, µ1, two codewords
γ, γ̃ and a tampering function f ∈ F :

– msg(ω, µ0, µ1, γ, γ̃): outputs 1 if and only if Dec(ω, γ̃) ∈ {µ0, µ1};
– cdw(ω, µ0, µ1, γ, γ̃): outputs 1 if and only if γ̃ = γ;

9 In the literature, the latter flavor of non-malleability is sometimes known as strong
non-malleability whereas the former flavor is also known as weak non-malleability.
However, we find this terminology rather confusing due to the fact that a code can be
at the same time weakly non-malleable and super non-malleable (as defined below).

12 Gianluca Brian, Sebastian Faust, Elena Micheli, and Daniele Venturi

CNMsame,output
Γ,A,F,G (λ, b)

1: ω←$ Init(1λ)
2: (µ0, µ1, α0)←$ A0(ω)
3: γ←$ Enc(ω, µb)

4: return A
Otamper(γ,·),Oleak

ℓ (γ,·)
1 (α0)

Fig. 1. Experiment defining leakage-resilient (super) non-malleable codes, with an ad-
versary A consisting of subroutines (A0,A1).

– standard(µ̃, γ̃): outputs µ̃;
– super(µ̃, γ̃): outputs µ̃ if µ̃ ∈ {⋄,⊥}, and γ̃ otherwise.

The above algorithms are called inside the tampering oracle Otamper(γ, ·), which
initializes10 γ̂ = γ and self-destruct parameter δ = 0, and behaves as follows:

1. if δ = 1, output ⊥;
2. compute γ̃ = f(γ̂) and µ̃ = Dec(ω, γ̃);
3. if same(ω, µ0, µ1, γ̂, γ̃) = 1, set µ̃ = ⋄;
4. if µ̃ = ⊥, set δ = 1;
5. set γ̂ = γ̃ and return output(µ̃, γ̃);

We model leakage resilience by an oracle Oleak
ℓ (γ, ·) that accepts as input

functions g ∈ G and returns g(γ) (or ⊥ if δ = 1), for a total of at most ℓ bits.

Definition 2 (Continuously non-malleable codes). Let Γ be a (k, n)-code,
and F ⊆ {f : {0, 1}n → {0, 1}n} and G ⊆ {g : {0, 1}n → {0, 1}∗} be family of
functions. For flags same ∈ {msg, cdw} and output ∈ {standard, super}we say
that Γ is a (G, ℓ)-leakage-resilient persistent continuously F-non-malleable code
if the following holds for the experiments defined in Fig. 1:{

CNMsame,output
Γ,A,F,G (λ, 0)

}
λ∈N

c
≈

{
CNMsame,output

Γ,A,F,G (λ, 1)
}
λ∈N

. (1)

In particular:

– When Eq. (1) holds for same = msg (resp. same = cdw) we speak of persistent
continuous non-malleability w.r.t. message (resp. w.r.t. codeword);

– When Eq. (1) holds for output = super, we refer to persistent continuous
super non-malleability w.r.t. message/codeword. When output = standard,
we speak of persistent continuous non-malleability w.r.t. message/codeword.

– When Eq. (1) holds in the information-theoretic setting with statistical dis-
tance at most ϵ ∈ [0, 1], we say that Γ is leakage-resilient persistent contin-
uously super non-malleable with statistical security ϵ.

10 The oracle additionally takes as input all the values that are required to evaluate
the above predicates. We omit them for clarity.

Continuously Non-Malleable Codes against Bounded-Depth Tampering 13

One-time non-malleability. When we restrict the adversary by only allowing
one tampering query, we obtain the weaker notion of one-time non-malleability.
To formalize the latter, it suffices to replace Item 4 with an instruction which
sets δ = 1 regardless of the value of µ̃. We denote the resulting experiment as
1NMsame,output

Γ,A,F,G (λ, b), and in Definition 2 it only suffices to replace Eq. (1) with{
1NMsame,output

Γ,A,F,G (λ, 0)
}
λ∈N

c
≈

{
1NMsame,output

Γ,A,F,G (λ, 1)
}
λ∈N

(2)

to obtain the new notion.

3.2 Families of Tampering Functions

Below, we define a few tampering families of interest for this paper.

Split-state tampering. Let Γ be a (k, nL +nR)-code. In the split-state model, we
think of a codeword γ ∈ {0, 1}n as consisting of two parts γL ∈ {0, 1}nL , γR ∈
{0, 1}nR . Hence, we consider the following families of tampering and leakage
functions:

Fsplit(nL, nR) := {f = (fL, fR) : fL : {0, 1}nL → {0, 1}nL , fR{0, 1}nR → {0, 1}nR}
Gsplit(nL, nR) :=

{
g = (gL, gR) : gL : {0, 1}nL → {0, 1}ℓ, gR : {0, 1}nR → {0, 1}ℓ

}
.

In this case, we simply say that Γ is ℓ-leakage-resilient super non-malleable w.r.t.
message/codeword in the split-state model.

Decision trees. Let Γ be a (k, n)-code and d ∈ N. Consider a binary tree of depth
d whose internal nodes are labelled by numbers in [n] and whose leaves contain
values in {0, 1}. Given a binary tree as above, we define a decision tree of depth
d for {0, 1}n as a Boolean function that takes as input a string γ ∈ {0, 1}n and
is described as follows:

– it starts from the root;
– it reads the label i ∈ [n] of the node, and observes the i-th bit of the codeword

γi ∈ {0, 1}: if γi = 0, it descends to the left subtree, while if γi = 1, it moves
to the right subtree;

– it outputs the value of the leaf at the end of the path.

We denote with DT d(n) the set of all decision trees for {0, 1}n with depth at
most d. Hence, we consider the tampering family:

Fd
dtree(n) :=

{
f := (f1, . . . , fn) : ∀i ∈ [n], fi ∈ DT d(n)

}
,

and the leakage family Gddtree(n) := DT
d(n). In this case, we simply say that Γ is

ℓ-leakage-resilient super non-malleable w.r.t. message/codeword against depth-d
decision-tree tampering and leakage.

14 Gianluca Brian, Sebastian Faust, Elena Micheli, and Daniele Venturi

Bounded polynomial-time tampering. Let S(λ), T (λ) be polynomials in the secu-
rity parameter. A non-uniform algorithm A is described by a family of algorithms
{Aλ}λ∈N (i.e., a different algorithm for each choice of the security parameter).
Each Aλ corresponds to an algorithm whose input size is n(λ), where n : N→ N.
We say that a non-uniform algorithm A is S-size T -time if, for every input of
size n(λ) for some λ ∈ N, the total work of the algorithm is at most S(λ) and
its parallel running time is upper bounded by T (λ). We denote the family of

non-uniform S-size T -time algorithms as FS,T
non-uni(n), and let

FT
non-uni(n) :=

⋃
S∈poly(λ)

FS,T
non-uni(n).

3.3 Simple Facts

It is not hard to show that (super) non-malleability w.r.t. message is strictly
weaker than (super) non-malleability w.r.t. codeword (e.g., consider a contrived
code where we append a dummy bit to each codeword which is ignored by
the decoding algorithm). It is also easy to see that non-malleability w.r.t. mes-
sage/codeword is strictly weaker than super non-malleability w.r.t. message/code-
word (e.g., consider a contrived code where we encode the message twice and
where the decoding algorithm ignores the second copy of the codeword).

Below, we formalize three simple observations. (i) Assuming one-way func-
tions, one can transform any (super) non-malleable code w.r.t. message into one
w.r.t. codeword. (ii) For any (super) non-malleable code w.r.t. message/codeword
there is a natural tradeoff between security and leakage resilience. (iii) In some
cases, one-time super non-malleability w.r.t. codeword, along with leakage re-
silience, are sufficient to imply continuous non-malleability (in the setting of
persistent tampering). All the above statements hold as long as the tampering
family F and the leakage family G supported by the code are large enough (as de-
tailed below). For simplicity, we stick to the plain model (but similar statements
hold true in the CRS model).

Adding super non-malleability w.r.t. codeword. Let Γ = (Enc,Dec) be a code and
Σ = (Gen,Sign,SigVer) be a signature scheme. Consider the following derived
code Γ ∗ = (Enc∗,Dec∗).

Encoding: The encoding algorithm Enc∗ takes as input a message µ ∈ {0, 1}k,
samples (sk , vk)←$ Gen(1λ), computes γ←$ Enc(vk ||µ) and σ←$ Sign(sk , γ),
and outputs γ∗ = (γ, σ).

Decoding: The decoding algorithm Dec∗ takes as input a codeword γ∗ = (γ, σ),
and computes µ∗ = vk ||µ = Dec(γ). If either µ∗ = ⊥ or SigVer(vk , γ, σ) = 0,
output ⊥. Else output µ.

Let F ⊆ {f : {0, 1}n+s → {0, 1}n+s}, G ⊆ {g : {0, 1}n+s → {0, 1}∗ be
families of functions. In the theorem below, for any function f ∈ F , and any
γ ∈ {0, 1}n and σ ∈ {0, 1}s, we write f(γ, σ)1 (resp. f(γ, σ)2) for the function
that outputs the first n bits (resp. the last s bits) of f(γ, σ).

Continuously Non-Malleable Codes against Bounded-Depth Tampering 15

Theorem 1. Assume that Σ is a strongly one-time unforgeable signature scheme
with M = {0, 1}n, S = {0, 1}s and V = {0, 1}v, and that Γ is a (G(n), ℓ + s)-
leakage-resilient persistent continuously F(n)-super-non-malleable (k+v, n)-code
w.r.t. message. Then, the above defined (k, n+s)-code Γ ∗ is (G(n+s), ℓ)-leakage-
resilient persistent continuously F(n + s)-super-non-malleable w.r.t. codeword,
so long as for all g ∈ G(n+ s), all f ∈ F(n+ s), and all (sk , vk) ∈ Gen(1λ) and
ρ ∈ {0, 1}∗, it holds that

G(n) ⊇ {g(·,Sign(sk , ·; ρ)), f(·,Sign(sk , ·; ρ))2, } (3)

F(n) ⊇ {f(·,Sign(sk , ·; ρ))1,SigVer(vk , f(·,Sign(sk , ·; ρ)))}. (4)

Intuitively, if the signature scheme is strongly unforgeable, then a tampering
attacker cannot maul γ∗ while preserving vk . On the other hand, the security
of the underlying non-malleable code guarantees that every change to vk makes
the mauled message independent.

Remark 2 (On compartmentalized tampering). Note that Theorem 1 does not
immediately apply in the split-state setting where F = Fsplit(n, n) and G =
Gsplit(n, n), because the conditions of Eq. (3) and Eq. (4) are not satisfied in
general. However, we can slightly modify the code Γ ∗ by signing the left part γL
and the right part γR of a codeword γ = (γL, γR) ∈ {0, 1}2n separately, yielding
signatures σL and σR, and letting γ∗ = ((γL, σL), (γR, σR)) to obtain the above
result for the families Gsplit(n+ s, n+ s) and Fsplit(n+ s, n+ s).

Adding leakage resilience. Next, we show how to use complexity leveraging in
order to add leakage resilience to any strong-enough non-malleable code. The
latter was already shown by Brian et al. [23] for the case of split-state tamper-
ing, who proved how leakage can be simulated by guessing and later verifying
the accuracy of the guess. In particular, the security loss is exponential in the
number of bits leaked, as the reduction correctly simulates the leakage only when
the guess is exact. We observe that this can be generalized to the case where
tampering via F can reveal whether the answer to a leakage query in G is correct.
We call this property G-friendliness.

Definition 3 (Leakage-friendly tampering). Let F ⊆ {f : {0, 1}n → {0, 1}n}
and G ⊆ {g : {0, 1}n → {0, 1}ℓ} be families of functions. We say that F is G-
leakage friendly if for all g ∈ G, all f ∈ F , and all strings y ∈ {0, 1}ℓ it holds

that f̂ ∈ F where f̂ is the function that upon input γ ∈ {0, 1}n outputs f(γ) if
and only if y = g(γ) (and outputs ⊥ otherwise).

Theorem 2. Let F ⊆ {f : {0, 1}n → {0, 1}n} and G ⊆ {g : {0, 1}n → {0, 1}ℓ}
be families of functions such that F is G-leakage friendly. Assume that Γ is
persistent continuously F-(super)-non-malleable w.r.t. message/codeword, with
statistical security ϵ ∈ (0, 1). Then, Γ is G-leakage-resilient persistent continu-
ously F-(super)-non-malleable w.r.t. message/codeword, with statistical security
2ℓ · ϵ, assuming that all the leakage is done before the first tampering query.

16 Gianluca Brian, Sebastian Faust, Elena Micheli, and Daniele Venturi

Remark 3 (On computational security). Theorem 2 also holds in the computa-
tional setting, so long as ℓ = O(log λ). In fact, it even holds for ℓ = ω(log λ)
assuming Γ has sub-exponential security.

Remark 4 (On adaptive leakage). We can extend Theorem 2 to leakage families
G ⊆ {g : {0, 1}n → {0, 1}∗}, so long as the notion of leakage friendliness holds for
up to q leakage functions. In this case, leakage resilience holds against adversaries
making at most11 q leakage queries.

Achieving persistent continuous super non-malleability. Finally, we establish a
connection between one-time super non-malleability and persistent continuous
super non-malleability. Intuitively, one can simulate continuous tampering by
leaking the index of the first tampering query that modifies the codeword and
then obtaining the corresponding mauled codeword via a single tampering query.
This connection was first outlined in [49], and later proven formally in [5] in the
split-state setting. We generalize this observation to general tampering families.

Theorem 3. Let Γ be a (G(n), ℓ+1)-leakage-resilient F(n)-super-non-malleable
(k, n)-code w.r.t. codeword. Assume that for every q(λ) ∈ poly(λ), and every
tuple of tampering functions f (1), . . . , f (q) ∈ F(n), the leakage family G(n) con-
tains the function ĝ(γ) that computes (f (1)(γ), . . . , f (q)(γ))) and returns 1 if and
only if f (1)(γ) = · · · f (q−1)(γ) = γ, but f (q)(γ) ̸= γ. Then, Γ is also a (G(n), ℓ)-
leakage-resilient persistent continuously F(n)-super-non-malleable (k, n)-code w.r.t.
codeword.

Remark 5 (On super non-malleability w.r.t. codeword). Theorem 3 holds even
starting with a super non-malleable code w.r.t. message, so long as the family F
is closed under composition of poly-many functions (i.e., for all q(λ) ∈ poly(λ)
and all f (1), . . . , f (q) ∈ F the function f (q) ◦ f (q−1) ◦ · · · ◦ f (1) is contained in F).

4 Our Constructions

4.1 Decision-Tree Tampering

Our construction is inspired by [15], with a few modifications that are necessary
in order to prove persistent continuous super non-malleability w.r.t. codeword.
To facilitate the description, let us introduce the following auxiliary function. For
n, c ∈ N, let ϕ : {0, 1}c logn → P([n]) be the function that, upon input a string
ζ ∈ {0, 1}c logn corresponding to c binary representations of distinct numbers in
[n], outputs the corresponding set of indices I ⊆ [n].

Our scheme is made of two layers, where the outer layer takes as input a
split-state encoding of the message. Let n, c, t ∈ N be such that t ≥ c log n.
Let (EncRSS,DecRSS) be a binary ramp secret sharing with messages in {0, 1}t.
Consider the coding scheme (Enc∗n,c,t,Dec

∗
n,c,t) described below.

11 Note that, e.g., Fsplit is Gsplit-leakage friendly for any q ∈ poly(λ).

Continuously Non-Malleable Codes against Bounded-Depth Tampering 17

Algorithm Enc∗n,c,t(γ). Upon input γ ∈ {0, 1}c:
1. Sample a random string ζ over the set of all strings of length c log n

corresponding to c binary representations of distinct numbers in [n].
2. Let I = ϕ(ζ) and let I = [n] \ I.
3. Let γ∗ be such that γ∗[I] = γ and γ∗[I] = 0n−c.
4. Output (EncRSS(ζ), γ

∗).
Algorithm Dec∗n,c,t(γRSS, γ

∗). Proceed as follows:
1. Decode ζ = DecRSS(γRSS) and let I = ϕ(ζ).
2. If there exists i ∈ [n] \ I such that γ∗[i] = 1, return ⊥.
3. Let γ := γ∗[I].
4. Output γ (or (γ, ζ) when ζ is explicitly needed).

We observe that the only difference between our version of the Dec∗n,c,t algo-
rithm and the one in [15] is the check we perform in Item 2. This modification
is required in order to obtain super non-malleability because, otherwise, an at-
tacker could copy the original codeword into the 0 bits and then overwrite it
with a constant valid codeword, and this would allow for the retrieval of the
original encoding, and thus of the underlying message, in full.

We are now ready to define the final encoding scheme Γ ∗ = (Enc∗,Dec∗) with
security against decision-tree leakage and tampering. Letm,nL, nR, c, tL, tR, s, v ∈
N be parameters. Let Σ = (Gen,Sign,SigVer) be a signature scheme with mes-
sage spaceM = {0, 1}∗, signature space S = {0, 1}s and verification keys in V =
{0, 1}v. Let Γ = (NMEnc,NMDec) be a (m+2v, 2c)-code. Let EncL := Enc∗nL,c,tL

,
EncR := Enc∗nR,c,tR

, DecL := Dec∗nL,c,tL
, DecR := Dec∗nR,c,tR

.

Algorithm Enc∗(µ). Upon input µ ∈ {0, 1}m:
1. Sample (skL, vkL)←$ Gen(1λ) and (skR, vkR)←$ Gen(1λ).
2. Run (γL, γR)←$ NMEnc(µ||vkL||vkR).
3. Run γ∗

L ←$ EncL(γL) and γ∗
R←$ EncR(γR).

4. Compute σL←$ Sign(skL, γ
∗
L) and σR←$ Sign(skR, γ

∗
R).

5. Output γ∗ := (σL, γ
∗
L , σR, γ

∗
R).

Algorithm Dec∗(γ∗). Proceed as follows:
1. Parse γ∗ = (σL, γ

∗
L , σR, γ

∗
R)

2. Run γL = DecL(γ
∗
L) and γR = DecR(γ

∗
R).

3. Run µ||vkL||vkR = NMDec(γL, γR).
4. Check that SigVer(vkL, γ

∗
L , σL) = 1 and SigVer(vkR, γ

∗
R, σR) = 1

5. Output µ, or ⊥ if the above check fails.

We establish the following theorem.

Theorem 4. Let Σ, Γ , and Γ ∗ be as above. Assume that Σ is a strongly one-
time unforgeable signature scheme with signature length s = βc for some β ∈
(0, 1), that Γ is an αc-leakage-resilient super non-malleable (k + 2v, 2c)-code
w.r.t. codeword in the split-state model for some constant α < 1, and that the
privacy thresholds tL, tR of the ramp secret sharing satisfy tL ≥ d and tR ≥ (4tL+
c)d. Then, the code Γ ∗ described above is a persistent continuously super non-
malleable (m,n)-code against depth-d decision-tree tampering for d = O(c1/4)
and n = O(c2).

18 Gianluca Brian, Sebastian Faust, Elena Micheli, and Daniele Venturi

Remark 6 (On simulating persistent continuous tampering). The definition of
persistent continuous tampering states that the adversary A has unlimited access
to the tampering oracle, unless A fails to produce a valid codeword, thus receiving
⊥ in all subsequent tampering queries. However, we observe that this is equiva-
lent to asking that A cannot send any more queries to the tampering oracle after
receiving, as a result to a tampering query, a codeword γ̃ ∈ {0, 1}n ∪ {⊥} which
is different from ⋄. This is because, once obtained a tampered codeword which is
either ⊥ or a valid codeword, the adversary can simulate all the other queries on
its own. Notice that this only holds in the case of super non-malleability, since
A needs the tampered codeword in order to simulate the subsequent queries.

The remainder of the section is dedicated to the proof of Theorem 4.

Establishing useful notation and procedures. For ease of notation, let Fd
dtree(n) :=

Fd
dtree,Fsplit(c, c) := Fsplit,Gsplit(c, c) := Gsplit, G∗

A(λ, b) := CNMcdw,super
Γ∗,A,Fd

dtree,∅
(λ, b)

and GA(λ, b) := 1NMcdw,super
Γ,A,Fsplit

(λ, b). For all adversaries A against G∗
A(λ, b), we

can assume, without loss of generality, that A performs at most p = poly(λ)
tampering queries. Finally, let EncLRSS be the instantiantion of EncRSS used in
EncL and let EncRRSS be the instantiation of EncRSS used in EncR.

The proof is by reduction. In order to simplify the exposition, we define a
template procedure ObtainBits which we will invoke several times in the actual
proof. Informally, ObtainBits tries to evaluate the decision trees corresponding
to the positions in I of the codeword tampered via f using the information L
already known to the reduction itself; if some information is missing, it leaks
it from the codeword. Since the reduction uses ObtainBits both inside and out-
side the leakage oracle, different sub-procedures are needed to leak these bits,
depending on when ObtainBits is invoked. The formal definition follows.

Procedure ObtainBitsBit,Return(f, I,L):
– Instantiation: A sub-procedure Bit taking as input an index i ∈ [n]

and returning a bit bi ∈ {0, 1}, and a sub-procedure Return taking
as input the set L and a string x ∈ {0, 1}∗ and returning some value.

– Input: A collection of decision trees f , a set of indices I ⊆ [n], a
set L = {(i, b) : i ∈ [n], b ∈ {0, 1}} such that if (i1, b1), (i2, b2) ∈ L
and i1 = i2 then b1 = b2. Informally, I is the set of decision trees
the procedure should compute and L is the prior knowledge of the
algorithm invoking the procedure.

1. Let x be an initially empty string.
2. For all i ∈ I, let initially T = f [i] and compute T as follows.

(a) Let r be the label on the root of T.
(b) If r is a leaf (i.e. T = r), then append r to x and step to the

next index i ∈ I (or break the loop if all decision trees have been
computed).

(c) If there exists (r, b) ∈ L for a b ∈ {0, 1}, let b∗ = b; otherwise,
run b∗ ← Bit(r) and replace L ← L ∪ {(r, b∗)}.

Continuously Non-Malleable Codes against Bounded-Depth Tampering 19

(d) Replace T with its left subtree if b∗ = 0 and with its right subtree
if b∗ = 1.

(e) Go to Item 2a.
3. Run y ← Return(L, x) and output y.

As for the sub-procedures, we define the following possibilities for the tem-
plate argument Bit.

– Procedure Leak(i): Use the leakage oracle to leak the bit i from the split-
state codeword.

– Procedure Await(i): Abort the procedure ObtainBits, returning (await, i).

Finally, we define the following possibilities for the template argument Return.

– Procedure Ready(L, x): Return (ready).
– Procedure Check(L, x): Return 1 if x is the all 0 string and return 0 if x

contains at least one 1.
– Procedure Update(L, x): Return the updated set L.

Notice that, when using the sub-procedure Leak, algorithm ObtainBits presents
an undefined behaviour whenever there exists (i, b) /∈ L such that i does not
refer to any position on the split-state codeword; however, our reduction only
invokes ObtainBits with sets L such that the only missing indices are indices
which belong to the split-state codeword.

Ruling out signature forgeries. For any adversary A against G∗
A(λ, b), q ∈ [p], j ∈

{L,R}, let W
(q)
j be the event in which the first q − 1 tampering queries from

A do not modify the codeword and the q-th tampering query f (q) is such that
f (q)(γ∗) = (σ̃L, γ̃

∗
L , σ̃R, γ̃

∗
R) satisfies (i) NMDec(DecL(γ̃

∗
L),DecR(γ̃

∗
R)) = µ̃||ṽkL||ṽkR

with ṽk j = vk j and (ii) SigVer(vk j , γ̃
∗
j , σ̃j) = 1 and (γ̃∗

j , σ̃j) ̸= (γ∗
j , σj). Let

W := WL∪WR, where WL :=
⋃

q∈[p] W
(q)
L and WR :=

⋃
q∈[p] W

(q)
R . Informally,

W is the event in which the adversary A against G∗
A(λ, b) modifies the message

but not the codeword, thus successfully forging a signature.
For b ∈ {0, 1}, letH∗

A(λ, b) be the experimentG∗
A(λ, b) in which the challenger

aborts whenever W happens. Clearly, the two experiments G∗ and H∗ are only
distinguishable when W happens, therefore, if we show that W happens with
negligible probability, it follows that G∗(λ, b) and H∗(λ, b) are statistically close.

Lemma 2. For all PPT adversaries A there is a negligible function ν : N →
[0, 1] such that Pr[W] ≤ ν(λ).

Reducing to split-state non-malleability with augmented adversaries. Now we
want to perform the reduction to the split-state super non-malleable code. Un-
fortunately, we cannot convert each decision-tree tampering query to a split-state
tampering query because each conversion needs some leakage and we would end
up leaking too many bits. However, the reduction only needs to simulate the
first tampering query which actually modifies the codeword, because the answer
to all previous queries is ⋄.

20 Gianluca Brian, Sebastian Faust, Elena Micheli, and Daniele Venturi

In order to apply this idea, we first define an experiment Haug which, infor-
mally, is the same of G except that the adversary is given one-time oracle access
to the needed information, i.e. the index of the first tampering query actually
modifying the codeword. The only remaining problem is that the reduction Âaug

still performs too much leakage to verify whether the tampered codeword is valid
or not; this is because the reduction should check that the padding string inside
the codeword γ∗ does not contain any 1. The solution is to give the reduction
Âaug oracle access to this information too, so that now Âaug is able to simulate
the experiment to the adversary A without performing too much leakage.

More formally, let A be an adversary telling apart H∗(λ, 0) and H∗(λ, 1)
with non-negligible advantage and let RunInfoA(τ) be a function which takes as
input the transcript τ of the execution of A(1λ; ρA) when the codeword is γ∗ and
outputs the index q⋄ of the first tampering query that is not answered ⋄ and a bit
b⊥ which is 1 if the output of such tampering query is ⊥ and 0 otherwise. Notice
that τ is uniquely determined by the random coins ρA of A and the decision-tree
codeword γ∗ = comp(γ) which is compiled by some deterministic compilation
instructions comp from the split-state codeword γ. Therefore, we can define the
oracle Oaug

A (γ, comp, ρA) which is initialized with the split-state codeword γ and,
upon receiving the query containing the instructions comp and the random coins
ρA, computes τ and outputs RunInfoA(τ). Consider the experiment Haug

Â,A
(λ, b)

which is exactly the same as GÂ except that Â is given one-time oracle access
to Oaug

A (γ, ·, ·) before the tampering query.

Let IsgnL , IrssL , IstrL , IsgnR , IrssR , IstrR be a partition of [n] such that, given an en-
coding γ∗, IsgnL (resp. IsgnR) contains the positions of γ∗ in which is stored the
left (resp. right) signature, IrssL (resp. IrssR) contains the positions of γ∗ in which
is stored the left (resp. right) ramp secret sharing and IstrL (resp. IstrR) con-
tains the positions of γ∗ in which is stored the string containing the left (resp.
right) part of the codeword and the left (resp. right) zeroes. For j ∈ {L,R}, let
Ij = Isgnj ∪ Irssj ∪ Istrj . We now show a reduction Âaug which is able to tell apart

Haug

Âaug,A
(λ, 0) and Haug

Âaug,A
(λ, 1) with non-negligible advantage.

1. Sample random coins ρA, ρ
enc
L , ρencR , ρsgnL , ρsgnR and random strings ζL, ζR.

2. For j ∈ {L,R}, let Icdwj = ϕ(ζj) and Izeroj = Istrj \ Icdwj .

3. Compute ωL = EncLRSS(ζL; ρ
enc
L) and ωR = EncRRSS(ζR; ρ

enc
R).

4. Sample (skL, vkL)←$ Gen(1λ) and (skR, vkR)←$ Gen(1λ).

5. Run A(1λ; ρA), obtaining the challenge messages µ0, µ1; then construct the
challenge messages µ∗

0 := µ0||vkL||vkR and µ∗
1 := µ1||vkL||vkR and send µ∗

0, µ
∗
1

to the challenger.

6. For j ∈ {L,R}, construct the leakage function gsgnj which hard-wires the

values ρencj , ρsgnj , ζj , ωj , sk j and, upon input the codeword part γj , computes

γ∗
j = Encj(γj ; ρ

enc
j , ζj) and σj = Sign(sk j , γ

∗
j ; ρ

sgn
j) and outputs σj .

7. Send (gsgnL , gsgnR) to the leakage oracle, thus obtaining the signatures (σL, σR).

8. Let L be a set which, initially, contains all the pairs (i, b) such that i ∈
[n] \ IcdwL ∪ IcdwR and b = γ∗[i]. Notice that the only bits unknown to Â are

Continuously Non-Malleable Codes against Bounded-Depth Tampering 21

the ones belonging to the split-state codeword, namely, the ones in IcdwL and

in IcdwR ; therefore, Â is able to construct the set L.
9. Using the information in L, construct the compilation information comp

which is used to compile the split-state codeword γ into the decision-tree
codeword γ∗ = comp(γ).

10. Send (comp, ρA) to the augmented oracle Oaug
A , thus receiving a pair (q⋄, b⊥).

11. Upon receiving the q-th tampering query f (q) ∈ Fd
dtree from A, return ⋄ if

q < q⋄; otherwise let f = f (q) and do the following.
(a) Obtaining the necessary bits: run the procedure

L ← ObtainBitsLeak,Update(f, IsgnL ∪ IrssL ∪ I
sgn
R ∪ IrssR ,L),

then use the set L to compute the tampered signatures σ̃L, σ̃R and the
tampered encodings ω̃L, ω̃R.

(b) Obtaining the new positions: for j ∈ {L,R}, compute ζ̃j = DecRSS(ω̃j)

and let Ĩcdwj = ϕ(ζ̃j) and Ĩzeroj = Ĩstrj \ Ĩcdwj .
(c) Leaking the remaining bits for the left part: construct the leakage function

ĝLL which hard-wires (a description of) the tampering function f , the

sets IcdwL and ĨcdwL and the set L and, upon input the left part γL of
the codeword, constructs the set LL = {(i, γ∗[i]) : i ∈ IcdwL }, runs the
procedure

y ← ObtainBitsAwait,Ready(f, ĨcdwL ,L ∪ LL) (5)

and returns y. Then, send (ĝLL , ϵ) to the leakage oracle, thus obtaining a
value y. If y = (await, i) for some i ∈ IcdwR , leak γ∗[i] from the right part
of the codeword, update L ← L ∪ {(i, γ∗[i])} and repeat this step.

(d) Leaking the remaining bits for the right part: construct the leakage func-
tion ĝLR which hard-wires (a description of) the tampering function f ,

the sets IcdwR and ĨcdwR ∪ ĨzeroR and the set L and, upon input the right
part γR of the codeword, constructs the set LR = {(i, γ∗[i]) : i ∈ IcdwR },
runs the procedure

y ← ObtainBitsAwait,Ready(f, ĨcdwR ∪ ĨzeroR ,L ∪ LR)

and returns y. Then, send (ϵ, ĝLR) to the leakage oracle, thus obtaining a
value y. If y = (await, i) for some i ∈ IcdwL , leak γ∗[i] from the left part
of the codeword, update L ← L ∪ {(i, γ∗[i])} and repeat this step.

(e) Validating the right part: construct the leakage function ĥchk
R which hard-

wires (a description of) the tampering function f , the sets IcdwR and ĨcdwR ∪
ĨzeroR and the set L and, upon input the right part γR of the codeword,
constructs the set LR = {(i, γ∗[i]) : i ∈ IcdwR }, runs the procedure

bvalid ← ObtainBitsAwait,Check(f, ĨcdwR ∪ ĨzeroR ,L ∪ LR)

and returns bvalid. Then, send (ϵ, ĥchk
R) to the leakage oracle, thus obtain-

ing the bit bvalid. If bvalid = 0, abort the simulation and return a random
guess.

22 Gianluca Brian, Sebastian Faust, Elena Micheli, and Daniele Venturi

(f) Tampering with the codeword: for j ∈ {L,R}, construct the tampering

function f̂j which hard-wires the strings σL, σR, ωL, ωR, the sets IcdwL ,
IcdwR ,L and (a description of) the tampering query f and, upon input the
codeword part γj , computes the tampered codeword part γ̃j by using the

additional bits given by L and then returns γ̃j . Send the query (f̂L, f̂R) to
the tampering oracle, thus obtaining a codeword γ̃ ∈ {0, 1}2c∪{⋄,⊥}. If
γ̃ ∈ {⋄,⊥}, abort the simulation and return a random guess. Otherwise,
let γ̃ = (γ̃L, γ̃R), reconstruct γ̃

∗
L (resp. γ̃∗

R) using the value γ̃L and the set
IcdwL (resp. the value γ̃R and the set IcdwR) and set γ̃∗ = (σ̃L, γ̃

∗
L , σ̃R, γ̃

∗
R).

(g) Checking the signature: reconstruct the tampered message µ̃||ṽkL||ṽkR.
Then, check that ṽkL ̸= vkL and ṽkR ̸= vkR, compute bL = SigVer(vkL, σ̃L,
γ̃∗
L) and bR = SigVer(vkR, σ̃R, γ̃

∗
R), check that bL = bR = 1 and abort the

simulation returning a random guess if one of the previous checks fails.
Finally, set γ̃∗ = ⊥ if b⊥ = 1, return γ̃∗ to A and output the same distin-
guishing bit as A.

For the analysis, notice that the reduction Âaug perfectly simulatesH∗(λ, b) to
A unless the leakage performed exceeds the admissible leakage αc− 1; therefore,
when the leakage is within the bounds, Âaug has the same advantage of A.

The following lemma allows us to conclude that GÂ(λ, 0) and GÂ(λ, 1) are
computationally close.

Lemma 3. If there exists an adversary Âaug which is able to distinguish between
Haug

Âaug,A
(λ, 0) and Haug

Âaug,A
(λ, 1) with non-negligible advantage, then there exists

an adversary Â which is able to distinguish between GÂ(λ, 0) and GÂ(λ, 1) with
non-negligible advantage.

Bounding the leakage. It remains to bound the leakage made by the reduction.

Proposition 1 ([15, Proposition 1]). Let n, c, t ∈ N such that t ≥ c log n.
Let A be an arbitrary algorithm that reads adaptively at most t bits of (EncRSS(ζ),
ϕ(ζ)). Let Y denote the number of distinct 1’s in ϕ(ζ) which are read by A. Then,
over the randomness of ζ and EncRSS,

Pr

[
Y ≥ 2tc

n

]
≤ exp

(
− tc

3n

)
.

Lemma 4. Suppose tR ≥ (4tL + c + 2s)d. Let ℓbitR be the amount of positions b
leaked from γR. Then, for any γ ∈ {0, 1}2c, the event that ℓbitR ≥ 2(4tR + 4tL +
c+ 2s)dc/nR happens with probability at most (4d+ 1) exp(−tRc/3nR).

Lemma 5. Suppose tL ≥ d. Let ℓbitL be the amount of positions b leaked from
γL. Then, for any γ ∈ {0, 1}2c, the event that ℓbitL ≥ 2(4tL + 4tR + nR + 2s)dc/nL

happens with probability at most (4tL + 4tR + nR + 2s)d/tL exp(−tLc/3nL).

Let

ℓtamp =
(
ℓbitL + ℓbitR

)
(1 + log(c))

Continuously Non-Malleable Codes against Bounded-Depth Tampering 23

= 2dc

(
4tL + 4tR + nR + 2s

nL
+

4tR + 4tL + c+ 2s

nR

)
(1 + log(c)).

By the above lemmas, the event that the amount of leakage performed by Â
exceeds ℓtamp+2s+2 (recall that the reduction also leaks 2s bits for the signatures
and 2 bits for checking the simulation) happens with probability at most

(4d+ 1) exp(−tRc/3nR) + (4tL + 4tR + nR + 2s)d/tL exp(−tLc/3nL). (6)

Lemma 6. Fix α ∈ (0, 1). Then, there exist constants η1, η2, η3, η4 (only depen-
dent on α) such that, if tL = η1c log n, tR = η2dc log n log c, nL = η3d

3c log n log3 c,
nR = η4d

2c log n log2 c, then ℓtamp ≤ αc with overwhelming probability.

By choosing the parameters as in Lemma 6, the length of the final codeword
satisfies

n = 2s+ 4tL + 4tR + nL + nR = O(d3c log n log3 c),

which can be rewritten as n/ log n = O(c7/4 log3 c), thus making n = O(c2) a
good approximation, and the total amount of leakage is ℓ = ℓtamp + 2βc + 2,
which, with a good choice of the parameters η1, . . . , η4 and α, β, can simply be
rewritten as ℓ ≤ αc. This concludes the proof of Theorem 4. ⊓⊔

4.2 Bounded Polynomial-Depth Tampering

Our construction for bounded polynomial-depth tampering, works in three steps.

(i) First, we show a compiler for turning any leakage-resilient non-malleable
code into a leakage-resilient super non-malleable code; the compiler is non-
black-box, as it relies on NIZK proofs, and thus yields a code in the CRS
model (even if the initial code is in the plain model).

(ii) Second, we show how to instantiate the above compiler by simplifying the
non-malleable code for bounded polynomial-depth tampering of Dachman-
Soled et al. [35] (thanks to the fact that we rely on trusted setup).

(iii) Third, we argue that the family of bounded polynomial-depth tampering
satisfies the conditions of Theorem 3, so that persistent continuous non-
malleability follows by steps (i) and (ii).

Let Γ = (Enc,Dec) be a (k, n)-code with randomness space {0, 1}r, let G :
{0, 1}s → {0, 1}r be a PRG, and let Π = (CRSGen,Prove,ProofVer) be a non-
interactive argument system with proof space P = {0, 1}m for the relation:

R =
{
(γ, σ) ∈ {0, 1}n × {0, 1}s : ∃µ ∈ {0, 1}k s.t. γ = Enc(µ;G(σ))

}
. (7)

Consider the following (k, n+m)-code Γ ∗ = (Init∗,Enc∗,Dec∗) in the CRS model.

Initialization: The initialization algorithm Init∗ outputs ω←$ CRSGen(1λ).
Encoding: The encoding algorithm Enc∗ proceeds as follows:

24 Gianluca Brian, Sebastian Faust, Elena Micheli, and Daniele Venturi

– sample a uniformly random seed σ←$ {0, 1}s and compute ρ = G(σ);
– let γ = Enc(µ; ρ);
– run π←$ Prove(ω, γ, σ);
– return γ∗ = (γ, π).

Decoding: The decoding algorithm Dec∗, upon input a codeword γ∗ = (γ, π),
proceeds as follows:
– run ProofVer(ω, γ, π), and output ⊥ if the verification fails;
– compute µ = Dec(γ), and output ⊥ if the decoding fails;
– else, return µ.

Let F ⊆ {f : {0, 1}n+m → {0, 1}n+m} be a family of functions. In the
theorem below, for any function f ∈ F , and any γ ∈ {0, 1}n and π ∈ {0, 1}m,
we write f(γ, π)1 (resp. f(γ, π)2) for the function that outputs the first n bits
(resp. the last m bits) of f(γ, π).

Theorem 5. Assume that Π is a one-time simulation extractable non-interactive
zero-knowledge argument system for the relation of Eq. (7), with proof space
P = {0, 1}m, with zero-knowledge simulator S = (S0,S1) and with extractor
K. Let Γ be a (G(n), ℓ+ s+m)-leakage-resilient F(n)-non-malleable (k, n)-code
w.r.t. message/codeword.

Then, the above defined (k, n+m)-code Γ ∗ is (G(n+m), ℓ)-leakage-resilient
F(n + m)-super-non-malleable w.r.t. message/codeword, so long as for every
g ∈ G(n+m) and every f ∈ F(n+m), all γ ∈ {0, 1}n, all π ∈ {0, 1}m, and all
(ω, ζ, ξ) ∈ S0(1

λ), it holds that:

G ⊇ {g(·,S1(ζ, ·))1,ProofVer(ω, f(·,S1(ζ, ·))),K(ξ, f(·,S1(ζ, ·)))} (8)

F ∋ f(·,S1(ζ, ·))1. (9)

Instantiating the proof system. Since the underlying code Γ needs to tolerate
at least m bits of leakage, where m is the size of a proof under Π, Theorem 5
implicitly requires proofs that are sub-linear in the size of the statement (which
is a codeword), but not of the witness (which is a seed for the PRG). In the liter-
ature, such proofs are referred as Succinct Non-interactive Arguments of Knowl-
edge (SNARKs). In [9], the authors present a simulation-extractable SNARK
whose proofs consist of 4 group elements. The security proof relies on both the
generic group model (GGM) and the random oracle model (ROM).

Alternatively, we can use [46], where fully-homomorphic encryption (FHE)
and NIZK argument systems are used to achieve succinct-proof NIZK argument
systems for all of NP. The succinct proof for an NP relation R is built as follows:

– The witness x is encrypted with key σ into a ciphertext u of the same length
by means of a symmetric-key encryption scheme (namely, one-time pad with
a pseudorandom key generated from σ via a PRG G).

– The key generation algorithm of the FHE is called with randomness ρ to get
(pk , sk). Next, the FHE scheme is used with keys (pk , sk) and randomness
τ to encrypt the symmetric key σ into a ciphertext z. Then, the FHE evalu-
ation algorithm takes as input the ciphertext z, and the NP relation R over
statement y and witness u⊕ G(·), and returns a ciphertext v.

Continuously Non-Malleable Codes against Bounded-Depth Tampering 25

– The underlying prover provides an argument π for the statement (pk , z, v)
and witness (ρ, σ, τ), proving that (pk , sk) are generated according to ρ, that
z is an encryption of σ according to pk , τ and that v decrypts to 1.

– The succinct proof is given by (pk , z, u, π).

Since |u| = |x| and (pk , z, π) are polynomial in the security parameter, the proof
size is |x| + poly(λ). Also note that (pk , z, u, π) is sufficient to verify the proof,
as one can obtain v and then call the underlying verification algorithm.

In their work, Gentry et al. [46] show that this transformation preserves the
soundness and the zero-knowledge property of the underlying NIZK argument
system. However, their result also applies to simulation extractability. For a
high-level idea, call A an adversary against the simulation-extractability of the
succinct-proof scheme. Assume that, given a simulated proof (pk , z, u, π) for a
statement y of its choice, A manages to produce an accepting and fresh pair
(ỹ, (p̃k , ũ, z̃, π̃)). Consider the extractor that takes as input (ỹ, (p̃k , ũ, z̃, π̃)) and
as trapdoor (pk , sk), and does the following. If p̃k ̸= pk , it computes the homo-
morphic evaluation ṽ of the circuit R(ỹ, ũ⊕G(·)) on ciphertext z̃ with p̃k . Then,
it runs the underlying extractor over ((p̃k , z̃, ṽ), π̃) to get (ρ̃, σ̃, τ̃). If p̃k = pk , the
extractor only needs to decrypt z̃ to get σ̃. In both cases, it outputs x̃ = ũ⊕G(σ̃).

Instantiating the underlying code. To instantiate the underlying code, we start
from the construction of Dachman-Soled et al. [35] which is in the plain model
and relies on key-less hash functions, time-lock puzzles, as well as other standard
assumptions. In the CRS model, their construction can be simplified as follows:
The encoding of a message µ consists of a time-lock puzzle ζ computed using µ
(with some fixed difficulty parameter) and a simulation-extractable NIZK proof
of knowledge π of the message µ inside the puzzle. We refer the reader to [25]
for the formal description and the security analysis in the CRS model.

Proving continuous non-malleability. Finally, we invoke Theorem 3 to conclude
persistent continuous non-malleability. To do that, we need to check that the
leakage family of bounded polynomial-depth circuits contains the function ĝ in
the statement of the theorem. In our case, it suffices to consider leakage resilience
against circuits of depth ≤ T +c for a small constant c, and compute the leakage
function ĝ as follows. Upon input the codeword γ, consider q parallel sub-circuits,
where the i-th circuit computes f (i)(γ), and outputs bi = 1 if f (i)(γ) = γ, bi = 0
otherwise. The circuit will then output 1 if b1 = · · · = bq−1 = 0 and bq = 1, and
0 otherwise. By inspection, every sub-circuit has depth ≤ T + c, as it computes
a tampering function and a bit-wise comparison (feasible in constant depth). To
check if b1 = · · · = bq−1 = 0, it suffices to compute b = OR(b1, . . . , bq−1). The
leakage function finally outputs AND(NOT(b), bq).

5 Conclusions

We have shown how to achieve continuous non-malleability in two natural set-
tings: (i) decision-tree tampering, and (ii) bounded polynomial-depth tampering.

26 Gianluca Brian, Sebastian Faust, Elena Micheli, and Daniele Venturi

The first result is in the plain model; the second result requires trusted setup.
Both constructions rely on computational assumptions (one-way functions in (i),
and time-lock puzzles and simulation-extractable succinct-proof NIZKs in (ii)).
Natural open problems include: removing computational assumptions from our
construction in (i), and weakening the assumptions from our construction in (ii).
We leave these as interesting directions for future research.

Our paper provides the first crucial insights for constructing continuously
non-malleable codes against non-compartmentalized tampering. In particular:

– We prove for the first time that security against non-persistent global tam-
pering is impossible in the continuous setting.

– We prove for the first time that, when the target tampering family is pow-
erful enough, continuous non-malleability follows from one-time super non-
malleability with log bits of leakage resilience. The latter, in particular, is
true for bounded-depth tampering and for AC0 tampering.

– We show a generic transform to reduce one-time super non-malleability to
one-time non-malleability using NIZK proofs; this transform requires the
underlying tampering family to satisfy certain properties, which are met in
the setting of bounded polynomial-depth tampering.

We believe the above observations are important, and will turn useful for
future constructions of continuously non-malleable codes against other non-
compartmentalized tampering families (e.g., AC0 tampering), possibly under
weaker assumptions.

References

1. Michel Abdalla, Fabrice Benhamouda, Alain Passelègue, and Kenneth G. Paterson.
Related-key security for pseudorandom functions beyond the linear barrier. In
Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume
8616 of LNCS, pages 77–94. Springer, Heidelberg, August 2014.

2. Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from
additive combinatorics. In David B. Shmoys, editor, 46th ACM STOC, pages 774–
783. ACM Press, May / June 2014.

3. Divesh Aggarwal, Nico Döttling, Jesper Buus Nielsen, Maciej Obremski, and Erick
Purwanto. Continuous non-malleable codes in the 8-split-state model. In Yuval
Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of
LNCS, pages 531–561. Springer, Heidelberg, May 2019.

4. Divesh Aggarwal, Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, Maciej
Obremski, and Sruthi Sekar. Rate one-third non-malleable codes. Cryptology
ePrint Archive, Report 2021/1042, 2021. https://eprint.iacr.org/2021/1042.

5. Divesh Aggarwal, Tomasz Kazana, and Maciej Obremski. Inception makes non-
malleable codes stronger. In Yael Kalai and Leonid Reyzin, editors, TCC 2017,
Part II, volume 10678 of LNCS, pages 319–343. Springer, Heidelberg, November
2017.

6. Divesh Aggarwal and Maciej Obremski. A constant rate non-malleable code in the
split-state model. In 61st FOCS, pages 1285–1294. IEEE Computer Society Press,
November 2020.

https://eprint.iacr.org/2021/1042

Continuously Non-Malleable Codes against Bounded-Depth Tampering 27

7. Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj
Prabhakaran. Explicit non-malleable codes against bit-wise tampering and permu-
tations. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015,
Part I, volume 9215 of LNCS, pages 538–557. Springer, Heidelberg, August 2015.

8. Benny Applebaum, Danny Harnik, and Yuval Ishai. Semantic security under
related-key attacks and applications. In Bernard Chazelle, editor, ICS 2011, pages
45–60. Tsinghua University Press, January 2011.

9. Karim Baghery, Zaira Pindado, and Carla Ràfols. Simulation extractable versions
of groth’s zk-SNARK revisited. In Stephan Krenn, Haya Shulman, and Serge
Vaudenay, editors, CANS 20, volume 12579 of LNCS, pages 453–461. Springer,
Heidelberg, December 2020.

10. Marshall Ball, Dana Dachman-Soled, Siyao Guo, Tal Malkin, and Li-Yang Tan.
Non-malleable codes for small-depth circuits. In Mikkel Thorup, editor, 59th
FOCS, pages 826–837. IEEE Computer Society Press, October 2018.

11. Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, Huijia Lin, and Tal Malkin.
Non-malleable codes against bounded polynomial time tampering. In Yuval Ishai
and Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS,
pages 501–530. Springer, Heidelberg, May 2019.

12. Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Non-
malleable codes for bounded depth, bounded fan-in circuits. In Marc Fischlin
and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of
LNCS, pages 881–908. Springer, Heidelberg, May 2016.

13. Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Non-
malleable codes from average-case hardness: AC0, decision trees, and streaming
space-bounded tampering. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 618–650. Springer,
Heidelberg, April / May 2018.

14. Marshall Ball, Dana Dachman-Soled, and Julian Loss. (Nondeterministic) hardness
vs. non-malleability. Cryptology ePrint Archive, Report 2022/070, 2022. https:

//eprint.iacr.org/2022/070.
15. Marshall Ball, Siyao Guo, and Daniel Wichs. Non-malleable codes for decision

trees. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part I, volume 11692 of LNCS, pages 413–434. Springer, Heidelberg, August 2019.

16. Mihir Bellare and David Cash. Pseudorandom functions and permutations prov-
ably secure against related-key attacks. In Tal Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 666–684. Springer, Heidelberg, August 2010.

17. Mihir Bellare, David Cash, and Rachel Miller. Cryptography secure against related-
key attacks and tampering. In Dong Hoon Lee and Xiaoyun Wang, editors, ASI-
ACRYPT 2011, volume 7073 of LNCS, pages 486–503. Springer, Heidelberg, De-
cember 2011.

18. Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key at-
tacks: RKA-PRPs, RKA-PRFs, and applications. In Eli Biham, editor, EURO-
CRYPT 2003, volume 2656 of LNCS, pages 491–506. Springer, Heidelberg, May
2003.

19. Mihir Bellare, Kenneth G. Paterson, and Susan Thomson. RKA security beyond
the linear barrier: IBE, encryption and signatures. In Xiaoyun Wang and Kazue
Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 331–348. Springer,
Heidelberg, December 2012.

20. Eli Biham. New types of cryptanalytic attacks using related keys (extended ab-
stract). In Tor Helleseth, editor, EUROCRYPT’93, volume 765 of LNCS, pages
398–409. Springer, Heidelberg, May 1994.

https://eprint.iacr.org/2022/070
https://eprint.iacr.org/2022/070

28 Gianluca Brian, Sebastian Faust, Elena Micheli, and Daniele Venturi

21. Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems.
In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 513–
525. Springer, Heidelberg, August 1997.

22. Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of
checking cryptographic protocols for faults (extended abstract). In Walter Fumy,
editor, EUROCRYPT’97, volume 1233 of LNCS, pages 37–51. Springer, Heidel-
berg, May 1997.

23. Gianluca Brian, Antonio Faonio, Maciej Obremski, Mark Simkin, and Daniele
Venturi. Non-malleable secret sharing against bounded joint-tampering attacks
in the plain model. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 127–155. Springer, Hei-
delberg, August 2020.

24. Gianluca Brian, Antonio Faonio, and Daniele Venturi. Continuously non-malleable
secret sharing: Joint tampering, plain model and capacity. In Kobbi Nissim and
Brent Waters, editors, TCC 2021, Part II, volume 13043 of LNCS, pages 333–364.
Springer, Heidelberg, November 2021.

25. Gianluca Brian, Sebastian Faust, Elena Micheli, and Daniele Venturi. Continuously
non-malleable codes against bounded-depth tampering. Cryptology ePrint Archive,
Paper 2022/1231, 2022. https://eprint.iacr.org/2022/1231.

26. Ran Canetti, Dror Eiger, Shafi Goldwasser, and Dah-Yoh Lim. How to protect
yourself without perfect shredding. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Gold-
berg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors,
ICALP 2008, Part II, volume 5126 of LNCS, pages 511–523. Springer, Heidelberg,
July 2008.

27. Nishanth Chandran, Bhavana Kanukurthi, and Srinivasan Raghuraman.
Information-theoretic local non-malleable codes and their applications. In Eyal
Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part II, volume 9563 of LNCS,
pages 367–392. Springer, Heidelberg, January 2016.

28. Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors and
codes, with their many tampered extensions. In Daniel Wichs and Yishay Mansour,
editors, 48th ACM STOC, pages 285–298. ACM Press, June 2016.

29. Eshan Chattopadhyay and David Zuckerman. Non-malleable codes against con-
stant split-state tampering. In 55th FOCS, pages 306–315. IEEE Computer Society
Press, October 2014.

30. Binyi Chen, Yilei Chen, Kristina Hostáková, and Pratyay Mukherjee. Continuous
space-bounded non-malleable codes from stronger proofs-of-space. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692
of LNCS, pages 467–495. Springer, Heidelberg, August 2019.

31. Yu Chen, Baodong Qin, Jiang Zhang, Yi Deng, and Sherman S. M. Chow. Non-
malleable functions and their applications. In Chen-Mou Cheng, Kai-Min Chung,
Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part II, volume 9615 of
LNCS, pages 386–416. Springer, Heidelberg, March 2016.

32. Sandro Coretti, Yevgeniy Dodis, Björn Tackmann, and Daniele Venturi. Non-
malleable encryption: Simpler, shorter, stronger. In Eyal Kushilevitz and Tal
Malkin, editors, TCC 2016-A, Part I, volume 9562 of LNCS, pages 306–335.
Springer, Heidelberg, January 2016.

33. Sandro Coretti, Antonio Faonio, and Daniele Venturi. Rate-optimizing compilers
for continuously non-malleable codes. In Robert H. Deng, Valérie Gauthier-Umaña,
Mart́ın Ochoa, and Moti Yung, editors, ACNS 19, volume 11464 of LNCS, pages
3–23. Springer, Heidelberg, June 2019.

https://eprint.iacr.org/2022/1231

Continuously Non-Malleable Codes against Bounded-Depth Tampering 29

34. Sandro Coretti, Ueli Maurer, Björn Tackmann, and Daniele Venturi. From single-
bit to multi-bit public-key encryption via non-malleable codes. In Yevgeniy Dodis
and Jesper Buus Nielsen, editors, TCC 2015, Part I, volume 9014 of LNCS, pages
532–560. Springer, Heidelberg, March 2015.

35. Dana Dachman-Soled, Ilan Komargodski, and Rafael Pass. Non-malleable codes
for bounded parallel-time tampering. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part III, volume 12827 of LNCS, pages 535–565, Virtual Event,
August 2021. Springer, Heidelberg.

36. Dana Dachman-Soled and Mukul Kulkarni. Upper and lower bounds for continuous
non-malleable codes. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part I,
volume 11442 of LNCS, pages 519–548. Springer, Heidelberg, April 2019.

37. Dana Dachman-Soled, Mukul Kulkarni, and Aria Shahverdi. Tight upper and lower
bounds for leakage-resilient, locally decodable and updatable non-malleable codes.
In Serge Fehr, editor, PKC 2017, Part I, volume 10174 of LNCS, pages 310–332.
Springer, Heidelberg, March 2017.

38. Dana Dachman-Soled, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou. Locally
decodable and updatable non-malleable codes and their applications. In Yevgeniy
Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part I, volume 9014 of LNCS,
pages 427–450. Springer, Heidelberg, March 2015.

39. Ivan Damg̊ard, Tomasz Kazana, Maciej Obremski, Varun Raj, and Luisa Sinis-
calchi. Continuous NMC secure against permutations and overwrites, with appli-
cations to CCA secure commitments. In Amos Beimel and Stefan Dziembowski,
editors, TCC 2018, Part II, volume 11240 of LNCS, pages 225–254. Springer, Hei-
delberg, November 2018.

40. Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes.
In Andrew Chi-Chih Yao, editor, ICS 2010, pages 434–452. Tsinghua University
Press, January 2010.

41. Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. Non-malleable
time-lock puzzles and applications. Cryptology ePrint Archive, Report 2020/779,
2020. https://eprint.iacr.org/2020/779.

42. Sebastian Faust, Kristina Hostáková, Pratyay Mukherjee, and Daniele Venturi.
Non-malleable codes for space-bounded tampering. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS, pages 95–126.
Springer, Heidelberg, August 2017.

43. Sebastian Faust, Pratyay Mukherjee, Jesper Buus Nielsen, and Daniele Venturi.
Continuous non-malleable codes. In Yehuda Lindell, editor, TCC 2014, volume
8349 of LNCS, pages 465–488. Springer, Heidelberg, February 2014.

44. Sebastian Faust, Pratyay Mukherjee, Daniele Venturi, and Daniel Wichs. Effi-
cient non-malleable codes and key-derivation for poly-size tampering circuits. In
Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume
8441 of LNCS, pages 111–128. Springer, Heidelberg, May 2014.

45. Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin.
Algorithmic tamper-proof (ATP) security: Theoretical foundations for security
against hardware tampering. In Moni Naor, editor, TCC 2004, volume 2951 of
LNCS, pages 258–277. Springer, Heidelberg, February 2004.

46. Craig Gentry, Jens Groth, Yuval Ishai, Chris Peikert, Amit Sahai, and Adam D.
Smith. Using fully homomorphic hybrid encryption to minimize non-interative
zero-knowledge proofs. Journal of Cryptology, 28(4):820–843, October 2015.

47. Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments
from all falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors,
43rd ACM STOC, pages 99–108. ACM Press, June 2011.

https://eprint.iacr.org/2020/779

30 Gianluca Brian, Sebastian Faust, Elena Micheli, and Daniele Venturi

48. Divya Gupta, Hemanta K. Maji, and Mingyuan Wang. Explicit rate-1 non-
malleable codes for local tampering. In Alexandra Boldyreva and Daniele Mic-
ciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS, pages 435–466.
Springer, Heidelberg, August 2019.

49. Zahra Jafargholi and Daniel Wichs. Tamper detection and continuous non-
malleable codes. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015,
Part I, volume 9014 of LNCS, pages 451–480. Springer, Heidelberg, March 2015.

50. Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar. Four-state
non-malleable codes with explicit constant rate. In Yael Kalai and Leonid Reyzin,
editors, TCC 2017, Part II, volume 10678 of LNCS, pages 344–375. Springer,
Heidelberg, November 2017.

51. Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi Sekar. Non-
malleable randomness encoders and their applications. In Jesper Buus Nielsen and
Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS,
pages 589–617. Springer, Heidelberg, April / May 2018.

52. Lars R. Knudsen. Cryptanalysis of LOKI91. In Jennifer Seberry and Yuliang
Zheng, editors, AUSCRYPT’92, volume 718 of LNCS, pages 196–208. Springer,
Heidelberg, December 1993.

53. Xin Li. Improved non-malleable extractors, non-malleable codes and independent
source extractors. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors,
49th ACM STOC, pages 1144–1156. ACM Press, June 2017.

54. Xin Li. Non-malleable extractors and non-malleable codes: Partially optimal con-
structions. Cryptology ePrint Archive, Report 2018/353, 2018. https://eprint.
iacr.org/2018/353.

55. Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience in the split-
state model. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 517–532. Springer, Heidelberg, August 2012.

56. Rafail Ostrovsky, Giuseppe Persiano, Daniele Venturi, and Ivan Visconti. Con-
tinuously non-malleable codes in the split-state model from minimal assumptions.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part III,
volume 10993 of LNCS, pages 608–639. Springer, Heidelberg, August 2018.

57. Baodong Qin, Shengli Liu, Tsz Hon Yuen, Robert H. Deng, and Kefei Chen. Con-
tinuous non-malleable key derivation and its application to related-key security. In
Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages 557–578. Springer,
Heidelberg, March / April 2015.

58. Hoeteck Wee. Public key encryption against related key attacks. In Marc Fischlin,
Johannes Buchmann, and Mark Manulis, editors, PKC 2012, volume 7293 of LNCS,
pages 262–279. Springer, Heidelberg, May 2012.

https://eprint.iacr.org/2018/353
https://eprint.iacr.org/2018/353

