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Abstract. We introduce a new notion of public key encryption, knowl-
edge encryption, for which its ciphertexts can be reduced to the public-
key, i.e., any algorithm that can break the ciphertext indistinguishability
can be used to extract the (partial) secret key. We show that knowl-
edge encryption can be built solely on any two-round oblivious transfer
with game-based security, which are known based on various standard
(polynomial-hardness) assumptions, such as the DDH, the Quadratic(N th)
Residuosity or the LWE assumption.

We use knowledge encryption to construct the first three-round (weakly)
simulatable oblivious transfer. This protocol satisfies (fully) simulat-
able security for the receiver, and weakly simulatable security ((T, ε)-
simulatability) for the sender in the following sense: for any polynomial
T and any inverse polynomial ε, there exists an efficient simulator such
that the distinguishing gap of any distinguisher of size less than T is at
most ε.

Equipped with these tools, we construct a variety of fundamental
cryptographic protocols with low round-complexity, assuming only the
existence of two-round oblivious transfer with game-based security. These
protocols include three-round delayed-input weak zero knowledge argu-
ment, three-round weakly secure two-party computation, three-round
concurrent weak zero knowledge in the BPK model, and a two-round
commitment with weak security under selective opening attack. These
results improve upon the assumptions required by the previous construc-
tions. Furthermore, all our protocols enjoy the above (T, ε)-simulatability
(stronger than the distinguisher-dependent simulatability), and are quasi-
polynomial time simulatable under the same (polynomial hardness) as-
sumption.

1 Introduction

We study the problem of constructing generic public-key encryption with a nat-
ural property that the public key can be reduced to its ciphertexts, i.e., any
algorithm that breaks the ciphertext indistinguishability can be used to extract
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the (partial) secret key. We call such a public-key encryption scheme knowledge
encryption. Although we often have the impression of public key encryption that
only the one holding the secret key can decrypt/distinguish a ciphertext, almost
none of known constructions provably achieves this property. Instead, they only
guarantee that, if an algorithm can break the ciphertext indistinguishability,
then we can use it to find a solution to a random instance of certain hard prob-
lem (rather than finding the corresponding secret key). The only exception we
aware of is the public-key encryption based on Rabin’s trapdoor permutations,
for which one can establish the equivalence between breaking the ciphertext
indistinguishability and finding a secret key.

Essentially, the decryption of a knowledge encryption scheme can be viewed
as a proof of knowledge of the (partial) secret key. From this prospective, the
concepts of conditional disclosure of secret (CDS) [23,1,4] and witness encryption
(WE) [20] in the literature are close to our knowledge encryption. Specifically, a
public key of a CDS (WE) scheme is generated from a publicly known instance
x (for WE, x serves as the pubic key) of an NP language L, and guarantees that
if x /∈ L, then the receiver obtains nothing about the encrypted message.

But the decryption of CDS/WE schemes provides only a sound proof that
the corresponding public key is valid (i.e., x ∈ L), rather than proof of knowledge
(or, extractability) of the witness of x ∈ L. Goldwasser et al. [29] put forward the
notion of extractable witness encryption, which, similar in spirit to our knowl-
edge encryption, requires that any algorithm that breaks the ciphertext indis-
tinguishability can be used to extract the witness for the instance x. However,
their scheme requires rather strong (unfalsifiable) knowledge assumptions.

Motivation. Our study is motivated by the recent works [34,9,16] on crypto-
graphic protocols with low round-complexity beyond the known black-box bar-
riers. At a very high level, the idea of behind these constructions is to design a
protocol in such a way that any distinguisher with relatively large distinguish-
ing advantage (inverse polynomial) ε can be used to extract certain secret of
the adversary, which can be used for a successful simulation (except with prob-
ability ε). Thus, for a given distinguisher, the simulator now can first exploit
the power of it to extract some secret information from the adversary and then
simulate in a straightforward manner. This distinguisher-dependent simulation
technique was introduced by Jain et al. in [34] and used to achieve delayed-
input weak zero knowledge argument and weakly secure two-party computation
for certain functionalities in three round, which bypass the well-known lower
bounds on the round-complexity [27] and are round-optimal under polynomially
hard falsifiable assumptions while black-box reduction/simulation are used to
prove the soundness/security for receiver [38]. Bitansky et al. [9] introduced an
ingenious homomorphic trapdoor simulation paradigm and presented a three-
round weak zero knowledge argument, without requiring “delayed-input” or the
simulator to work in distributional setting. Latter, the distinguisher-dependent
simulation was also used to achieve oblivious transfer (OT) in three round with
distinguisher-dependent simulatable security for the sender [31].
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Deng [16] introduced an individual simulation technique and exploited a vari-
ant of Rabin encryption (the only known “knowledge encryption”) to realize the
above-mentioned design idea. The work of [16] proposed a two-round commit-
ment satisfying (T, ε)-simulatable security under selective opening attack and
a three-round concurrent (T, ε)-zero knowledge argument in the bare public-
key model (both bypassing the black-box lowerbounds [44,45,3]), where the
(T, ε)-simulatability is defined as follows: For any polynomial T and any inverse
polynomial ε, there exists a simulator such that the distinguishing gap of any
distinguisher of size less than T is at most ε. Note that the (T, ε)-simulatability is
stronger3 than the distinguisher-dependent simulatability since it depends only
on the size of the distinguisher (not on the distinguisher per se).

All above protocols require specific number-theoretic assumptions. This state
of the art leaves the several intriguing questions:

Can we construct oblivious transfer in three-round that achieves simu-
latable security for both sides? Can we base the above protocols on more
general assumptions?

1.1 Our Contribution

We introduce the notion of knowledge encryption. Like CDS, a knowledge en-
cryption scheme is associated with an NP language L, and the public/secret
key pair (pk, sk) is generated from an instance x ∈ L and its witness w. We let
the public key (secret key) contain the instance x (witness w, respectively). We
require the following properties from a knowledge encryption scheme:

1 Indistinguishability: ciphertext indistinguishability holds for any (x,w) ∈
RL;

2 Witness extractability: for any algorithm that can break the ciphertext in-
distinguishability can be used to extract the witness w (part of the secret
key). This holds even when the public key is maliciously generated.

3 Public key simulation: for any (x,w) ∈ RL, there is a simulator that, taking
only x as input, can output a public key that is indistinguishable from the
honestly generated one.

We show that knowledge encryption can be built solely on any two-round OT
with game-based security, which are known based on various standard (polynomial-
hardness) assumptions, such as the DDH [40], the Quadratic(Nth) Residuos-
ity [33] or the LWE assumption [10].

Equipped with knowledge encryption, we obtain the following results as-
suming only the existence of two-round OT with game-based security (against
polynomial-time adversaries):

• The first three-round (T, ε)-simulatable OT with fully simulatable se-
curity for the receiver and (T, ε)-simulatable security for the sender.

3 Note that the result of [14] that distinguisher-dependent simulatability can be up-
graded to (T, ε)-simulatability holds only for zero knowledge protocols.
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Achieving polynomially simulatable security (of any kind) for both parties
of OT in three rounds has been an elusive. Previous work on three-round
OT achieves either one-sided (distinguisher-dependent) simulatability for the
sender [31], or game-based security for both parties [13].

• A variety of protocols achieving (T, ε)-simulatable security, includ-
ing three-round delayed-input (T, ε)-zero knowledge argument, three-round
(T, ε)-secure two-party computation for independent-input functionalities,
three-round concurrent (T, ε)-zero knowledge in the BPK model and two-
round commitment with (T, ε)-security under selective opening attack.
Prior works on these protocols either require an additional assumption–the
existence of dense encryption, or are only known based on the Factoring
assumption [16]. The three-round protocol of secure two-party computation
in [4] is built on a rather strong assumptions of the existence of succinct ran-
domized encodings scheme, which are only known based on indistinguishable
obfuscation. Furthermore, as mentioned before, the (T, ε)-simulatability we
achieve is stronger than the notion of distinguisher-dependent simulatability
achieved by the work of [34].
Our result on weak zero knowledge is incomparable to the work of [9]: The
protocol in [9] requires both LWE and Factoring (or standard Bilinear-
Group) assumptions, but the common input need not to be delayed to the
last round.

• Quasi-polynomial time simulatable under polynomial hardness as-
sumption: All above protocols are quasi-polynomial time simulatable under
the same (polynomial hardness) assumption.
Previous results achieving quasi-polynomial time simulatable security (e.g.,
see [42] and [35]) usually require quasipolynomial/exponential hardness as-
sumption.

1.2 Technique Overview

Knowledge encryption. Before describing our construction, we briefly recall
the idea behind a CDS scheme for an NP relation RL. Given input (x,w) ∈ RL
of length λ+ `, the receiver uses the algorithm OT1 to encode w bit-by-bit, and
publishes his public key (x,OT1(w1),OT1(w2) · · · ,OT1(w`)); to encrypt a bit
m ∈ {0, 1}, the sender first garbles the following circuit C: on input (x,w,m),
C checks if (x,w)∈RL, if so, outputs m; otherwise outputs ⊥. After obtaining
a garbled circuit Ĉ and the associated labels {labi,b}i∈[λ+`+1],b∈{0,1}, the sender
sends the ciphertext c := (Ĉ, {labxi,xi}i∈[λ], {OT2(lab

w
i,0, lab

w
i,1)}i∈[`], lab

m
m) to the

receiver, which retrieves the labels {labwi,wi}i∈[`] and then decrypts c using the
evaluating algorithm of the garbling scheme.

To achieve the witness extractability property, our key idea is to embed a sim-
ple decoding mechanism in the above circuit C, which enables us to reduce the
instance x to random ciphertexts. Specifically, we let C to take an extra input
y of length ` and define it as follows: on input ((x,w, y,m), if (x,w) ∈ RL and
y = 0`, output m; if (x,w) ∈ RL and the Hamming weight of ‖y‖1 ≥ 1, output
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Σ`
i=1yiwi mod 2; if (x,w) /∈ RL, output ⊥. With this modification, when encrypt-

ing a bit m, the honest sender always chooses y = 0`, garbles the above circuit C
and then sets the ciphertext to be c := (Ĉ, {labxi,xi}i∈[λ], {OT2(lab

w
i,0, lab

w
i,1)}i∈[λ],

{labyi,0}i∈[`], lab
m
m).

It is not hard to see that this modification does not affect the indistinguisha-
bility of the scheme. On the other hand, the witness extractability property fol-
lows from the following observations. Note first that, for every i ∈ [`], one can
always choose a bad y which has 1 on the i-th coordinate and zero on all others,
and compute a ciphertext with such a y. Due to the security of the underlying
garbling scheme, no polynomial size circuit can distinguish these bad ciphertexts
from the honestly-generated ones. Thus, for any polynomial size circuit that
decrypts honestly-generated ciphertexts correctly with high probability, when
given a bad ciphertext as input, it would output Σ`

i=1yiwi mod 2 = wi correctly
with almost the same probability. One can apply this reasoning to ciphertext
distinguishers and prove the witness extractability property.

An alternative construction from CDS and random-self-reducible encryptions
is presented in the full version of this paper [17].
Nearly optimal (T, ε)-extractor for knowledge encryption. Applying the
result of [16], we will have a nearly optimal (T, ε)-extractor for any (possibly ma-
licious) key generation algorithm of knowledge encryption in the following sense:
for any polynomial T and any inverse polynomial ε, the extractor outperforms
any circuits of size T in extracting the witness for x in the public key except for
probability ε.

Looking ahead, the (T, ε)-simulatability of all our protocols relies on this
nearly optimal extractor. When receiving the public key(s) of knowledge en-
cryption from an adversary, the corresponding simulator will run this extractor
to extract the witness for x, and if it succeeds, then the simulation can be done;
if it fails, then the optimality of the extractor guarantees that no other circuits
(distinguishers) of size T can extract the witness either (except for small proba-
bility ε) , and thus the simulator can encrypt a dummy message in its last round,
which cannot be told apart from an real execution by any distinguishers of size T
except for probability ε (by the witness extractability of knowledge encryption.)
Three-round OT with (T, ε)-simulatability for both parties. A natural
idea here is to have the receiver generate a pair of public keys pk0, pk1 of knowl-
edge encryption from two NP instances x0 and x1, for one of which it knows
a valid witness so that it can receive one message encrypted by the sender.
However, there are two challenges that arise from this approach:

1 We need to make sure that the receiver knows a witness for only one of these
two instances (to achieve the sender security), while at the same time one
needs to know both witnesses for x0 and x1 to extract the two messages from
the sender in the proof of receiver security.

2 There is no way for the receiver to tell honest ciphertexts from “bad” ones.

One may think of the following solution to the first challenge: the sender
generates some hard instance y (and prove to the receiver that it knows a witness
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for y in three rounds), and then the receiver proves that it knows either a witness
for y or only one of x0 and x1 is in the language L (for some suitable language)
in a two-round WI protocol. However, among other issues, there is no known
two-round WI protocol based on two-round OT.

To this end, we have the sender generate two images y0 and y1 of a one-
way function f and prove to the receiver that it knows one pre-image of y0
or y1 via a three-round WI protocol4. Given the pair (y0, y1) and input b, the
receiver prepares two instances x0 and x1 in the following way: it runs the HVZK
simulator of the Σ-protocol to obtain an acceptable proof (a, b, z) of knowledge of
one preimage of y0 or y1, and sets xb = (y0, y1, a, b) and x1−b = (y0, y1, a, 1− b),
where xi = (y0, y1, a, i) is said to be a YES instance if and only if there exists a
z such that (a, i, z) is acceptable. The receiver now generates pkb honestly using
the valid witness z for xb = (y0, y1, a, b), and runs the key simulator of knowledge
encryption to obtain the other public key pk1−b. In the third round, the sender
encrypt its two message under the two public keys respectively and send the two
ciphertexts to the receiver.

Notice that the receiver does not know a witness for the instance x1−b on the
public key pk1−b, since otherwise it would be able to compute a preimage of y0
or y1 generated by the sender at random (which is infeasible due to the fact that
the WI proof actually hides the two preimages of y0 or y1.) This observation,
together with the existence of nearly optimal extractor (as mentioned above)
that outperforms any other circuits of a-priori bounded size for extracting a
witness of x0 or x1, one can prove the (T, ε)-simulatable security for the sender.

Our proof of the (fully) simulatable security for the receiver departs from
the traditional proof strategy that is usually done by extracting the sender’s two
messages from a WI proof of knowledge. Our simulator extracts the sender’s
two messages by decryption. Using rewinding strategy5 the simulator extracts a
preimage of y0 and y1, then generates two Yes instance x0 and x1 and two valid
public keys. When receiving the two ciphertexts from the sender, it can decrypt
to obtain both messages6 and send them to the functionality. Note that, although
these ciphertexts from the sender may be generated maliciously (as mentioned in
the above second challenge) and adaptively (depending on the receiver’s public
keys), we can still prove the simulatable security for the receiver since the public
keys of the receiver in the real model execution and the ones in the ideal model
execution are indistinguishable.

4 Note that the three-round WI and the Σ-protocol used in our construction can be
based on non-interactive commitment. As noted in [12], combing the recent work
of [39] with the work [24], one can build non-interactive commitment from two-
round (perfectly correct) OT with game-based security. Thus, two-round OT with
game-based security as we define is sufficient for constructing all primitives used in
our protocol.

5 Here we actually need Goldriech-Kahan technique to bound the running time of the
extractor, see the detailed proof in the full version of this paper [17].

6 If the simulator fails to decrypt a ciphertext, it sets the corresponding “plaintext” to
be ⊥.
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(T, ε)-zero knowledge and (T, ε)-secure two-party computation. At a high
level, our construction of (T, ε)-zero knowledge protocol follows the paradigm of
[2,36]. The prover and the verifier execute a three-round OT as constructed above
(denoted by (OT1,OT2,OT3) the three OT step algorithms respectively), where
the verifier plays the role of the receiver and chooses a random bit β ← {0, 1}
as the receiver’s input in the second round. In the last round of OT, the prover
prepares two acceptable Σ-proofs (α, 0, γ0), (α, 1, γ1) for the statement x ∈ L,
and sends x and (α,OT3(γ0, γ1)) to the verifier. Finally, the verifier recovers γβ
from OT and checks whether (α, β, γβ) is an acceptable proof. In order to reduce
the soundness error, we have the prover and the verifier run this protocol λ times
in parallel. The (T, ε)-zero knowledge of the protocol essentially follows from the
(T, ε)-simulatable security for sender of the underlying OT and the fact that
the nearly optimal extractor guaranteed by Lemma 2 works well for (possibly
malicious) parallelized key generator of knowledge encryption.

One can also prove a sort of soundness of the above protocol due to the simu-
latable security for receiver of the underlying OT. However, we do not know how
to show it satisfies adaptive soundness/argument of knowledge, which is natu-
rally required in settings where the prover can choose statements to be proven
adaptively. Inspired by [34], we use additional knowledge encryption schemes to
achieve adaptive argument of knowledge. In addition to executing the above pro-
tocol, the prover generates two public keys of knowledge encryption and proves
to the verifier that one of them is generated honestly in a three-round WI proto-
col. In the last round, it encrypts each of γ0 and γ1 twice under the two public
keys, and sends these encryptions along with the third OT messages (which now
encode both (γ0, γ1) and the randomnesses used in these encryptions). We ob-
serve that these additional encryptions does not harm zero knowledge property
of the above protocol since the WI proof for the sender’s two public keys actually
hides both secret keys. On the other hand, it does help us achieve adaptive ar-
gument of knowledge: One can extract a secret key by rewinding the prover and
decrypt those encryptions in the original transcript obtained before rewinding,
which will reveal a witness for the statement in that transcript.

Equipped with the above three-round OT and weak zero knowledge argu-
ment, we follow the GMW paradigm [28] to give a three-round protocol for (T, ε)-
secure two-party computation for independent-input functionalities. We stress
that the (T, ε)-simulatable security against malicious receiver of our two-party
computation protocol only holds for independent-input functionalities, since for
the proof of (T, ε)-simulatability against malicious receiver to go through, we
need to make sure that one can freely sample the sender’s input x even when
the malicious receiver’s input y is fixed. This is roughly also the reason that we
achieve (T, ε)-zero knowledge only for delayed-input argument.

Our protocols of commitment with weak security under selective opening
attack and concurrent weak zero knowledge argument (in the BPKmodel) simply
follows by replacing the corresponding encryption scheme in the constructions
of [16] with our knowledge encryption (and revising their protocol accordingly
so that the simulation can go through with a witness for the instance on the
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public key of knowledge encryption). Furthermore, when using our construction
of (T, ε)-zero knowledge argument of knowledge in the extractable commitment
of [34], we obtain a three-round extractable commitment from two-round OT
with game-based security.

1.3 More Related Work

Related work on simulatable Oblivious transfer. The work of [41,19,13]
achieved fully-simulatable black-box construction of OT in four-round from cer-
tified/full domain trapdoor permutations or strongly uniform key agreement
protocol, which are also round optimal for black-box constructions [37]. In the
common reference string model, fully-simulatable secure (even UC-secure) OT
can be achieved in two rounds from various assumptions [43,18], such as DDH,
LWE, CDH or LPN assumptions.

Related work on two/multi-party computation. Katz and Ostrovsky [37]
showed that four-round is necessary for black-box two-party computation for
general functionalities where only one party receives the output. The construc-
tion of four-round black-box two-party computation was constructed in [41,15].
Garg et. al [21] study two-party computations with simultaneous message trans-
mission and give a four-round construction for general functionalities where both
parties receive the output. Four-round secure multi-party computation can be
constructed from various assumptions [5,32]. Recently, Choudhuri et. al [12] con-
structed a four-round construction only from four-round fully-simulatable OT.
In the CRS model, Benhamouda and Lin [6] and Garg and Srinivasan [22] pre-
sented the two-round constructions from two-round semi-malicious OT protocol
and NIZK or two-round fully-simulatable OT respectively.

2 Preliminaries

Throughout this paper, we let λ denote the security parameter. Given a positive
integer m, a and b, we denote by [m] the set {1, 2, · · · ,m}, and by [a, b] the
set {a, a + 1, · · · , b}. We often write a string x as a concatenation of its bits,
x = x1‖x2‖· · ·‖xn, where xi is the i-th bit of x. For a given y, we denote by ‖y‖1
the Hamming weight of y. We use the standard abbreviation PPT to denote prob-
abilistic polynomial time. We will use the terms (non-uniform) PPT algorithm
and polynomial-size circuits interchangeably. When writing a polynomial-size
circuit C, we mean a polynomial-size family of circuits C = {Cλ}λ∈N. For two
random ensembles X := {Xλ}λ∈N and Y := {Yλ}λ∈N, we write X

c
≈ Y to mean

X := {Xλ}λ∈N and Y := {Yλ}λ∈N are indistinguishable against all polynomial-
size circuits.

Due to space limitations, most of standard definitions (e.g., commitment
schemes, Σ-protocol, game-based secure OT, garbled circuits etc.) are deferred
to the full version of this paper [17].
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2.1 Interactive Argument

Let L be an NP language and RL be its associated relation. For a given x ∈ L,
we use RL(x) to denote the set of valid witnesses to x. An interactive argument
(P, V ) for L is a pair of PPT algorithms (called the prover and the verifier), in
which the prover P wants to convince the verifier V of a statement x ∈ L. For a
given (x,w) ∈ RL, we denote by OutV (P (w), V )(x) the output of V at the end
of an execution of (P, V ), and by ViewP (w)

V (x) the view of V in an interaction.

Definition 1. (Argument) A protocol (P, V ) for an NP language L is an
argument if the following two conditions hold:

• Completeness: For any x ∈ L and w ∈ RL(x), OutV (P (w), V )(x) = 1.
• Computational soundness: For any polynomial-size prover P ∗, there
exists a negligible function negl(·) such that for any x /∈ L of length λ,

Pr[OutV (P ∗, V )(x) = 1] < negl(λ).

Additionally, an interactive argument system is called public-coin if at every
verifier step, the verifier sends only truly random messages.

Delayed-input and adaptive computational soundness. We call an argu-
ment is delayed-input if the statement x is sent to verifier only in the last round.
Note that delayed-input argument system would enable a cheating prover to
choose a false statement adaptively (depending on the interaction history) to
fool the verifier. We consider such an adaptive cheating prover and define adap-
tive computational soundness in a natural way: A delayed-input argument is
called adaptive computational sound if its computational soundness condition
holds even against adaptive cheating prover.
Argument of knowledge and adaptive argument of knowledge. The
adaptive argument of knowledge property is defined in similar way to the ar-
gument of knowledge, except that here we need to deal with the issue that the
statement may be chosen adaptively. We follow the definition in [8,7] to define
three-round adaptive argument of knowledge.

Definition 2. A three-round delayed-input argument system with message (a1, a2, a3)
for NP language L is called an adaptive argument of knowledge if there exists
an oracle extractor E and a polynomial poly such that for any PPT malicious
prover P ∗, any noticeable function ε and any security parameter λ ∈ N:

if Pr

V (x, (a1, a2, a3)) = 1

∣∣∣∣∣∣∣
a1 ← P ∗

a2 ← V (λ, a1)

x, a3 ← P ∗(a1, a2)

 ≥ ε(λ),
then Pr

 V (x, (a1, a2, a3)) = 1∧
EP

∗
(x, (a1, a2, a3)) /∈ RL(x)

∣∣∣∣∣∣∣
a1 ← P ∗

a2 ← V (λ, a1)

x, a3 ← P ∗(a1, a2)

 ≤ negl(λ),
where E runs in expected time bounded by poly(λ)/ε.



10 Y. Deng and X. Zhang

An argument system is zero knowledge [30] if the view of the (even ma-
licious) verifier in an interaction can be efficiently reconstructed. We consider
a weak version of zero-knowledge as defined in [16,14], (T, ε)-zero-knowledge,
which relaxes the definition of zero-knowledge and requires that, for any poly-
nomial T and inverse polynomial ε, there exists an efficient simulator such that
the distinguishing gap of any T -size distinguisher is at most ε.

Definition 3. ((T, ε)-Zero-Knowledge) An argument (P, V ) is (T, ε)-zero-
knowledge if for any polynomial-size malicious verifier V ∗, any polynomial T and
any inverse polynomial ε, there exists a polynomial-size simulator S = {Sλ}λ∈N
such that for any T -size distinguisher D = {Dλ}λ∈N, and any statement x ∈
L ∩ {0, 1}λ, w ∈ RL(x):∣∣∣Pr [Dλ(ViewP (w)

V ∗ (x)) = 1
]
− Pr [Dλ(Sλ(x)) = 1]

∣∣∣ < ε(λ).

2.2 Oblivious Transfer

A 1-out-of-2 oblivious transfer protocol (OT) (S,R) is a two-party protocol be-
tween a sender S and a receiver R. The sender S has input of two strings (m0,m1)
and the receiver R has input a bit b. At the end of the protocol, the receiver
R learns mb (and nothing beyond that), whereas the sender S learns nothing
about b. We denote the output of receiver OutR(S(m0,m1), R(b))(1

λ).
There are two notable security definitions in the literature, the game-based

security [40,1] and the simulation-based security [25]. In this paper our goal is
to achieve simulation-based security, which is defined as follows..
Message Space. We let the message space M to include the special symbol
⊥, i.e., M := {0, 1}n∪ ⊥. Jumping ahead, in the proof of receiver’s security of
our construction, the simulator may extract (by decryption) two messages like
(m,⊥) or (⊥,⊥) from a corrupted sender. In this case, the simulator will not
abort, instead, it views ⊥ as a message and send these two messages to the
functionality.
Simulation-based security. We follow the standard real/ideal paradigm and
define the simulation-based security of OT. Roughly, to prove security in the
real/ideal paradigm, one first defines an ideal functionality F executed by a
trusted party, then constructs a simulator Sim that interacts with F and the
adversary, and then shows that the output of Sim is indistinguishable from the
real execution.

The ideal functionality of OT is provided in Fig.1.
We denote by REALΠ,R∗(τ)(1λ,m0,m1, b)(resp., REALΠ,S∗(τ)(1λ,m0,m1, b))

the distribution of the output of the malicious receiver (resp., the malicious
sender and the honest receiver) during a real execution of the protocol Π (with
m0,m1 as inputs of the sender, b as choice bit of the receiver), and by
IDEALFOT ,SimR∗(τ)(1

λ,m0,m1, b) (resp., IDEALFOT ,SimS∗(τ)(1
λ,m0,m1, b)) the dis-

tribution of the output of the malicious receiver (resp., the malicious sender and
the honest receiver) during a ideal execution where τ is the auxiliary input.
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Functionality FOT
Security parameter: λ
FOT interacts with a sender S and a receiver R.
• Upon receiving (send,m0,m1) from S, where m0,m1 ∈M, record m0,m1

and then send send to R.
• Upon receiving (receive, b) from R, send mb to R and receive to S and halt.

Fig. 1: The Oblivious Transfer Functionality FOT

Definition 4. (Oblivious Transfer with Simulation-based Security) A
protocol Π = (S,R) securely computing FOT if it satisfies the following proper-
ties:

• Simulatable Security for Receiver: For any polynomial-size malicious
sender S∗, there exists a polynomial-size simulator Sim such that for any
auxiliary input τ ∈ {0, 1}∗, any m0,m1 ∈ {0, 1}n, b ∈ {0, 1},

{REALΠ,S∗(τ)(1λ,m0,m1, b)}
c
≈ {IDEALFOT ,SimS∗(τ)(1

λ,m0,m1, b)}.

• Simulatable Security for Sender: For any polynomial-size malicious re-
ceiver R∗, there exists a polynomial-size simulator Sim such that for any
auxiliary input τ ∈ {0, 1}∗, any m0,m1 ∈ {0, 1}n, b ∈ {0, 1},

{REALΠ,R∗(τ)(1λ,m0,m1, b)}
c
≈ {IDEALFOT ,SimR∗(τ)(1

λ,m0,m1, b)}.

In this paper, we follow the definition of weak simulatability in [16,14] and
give a definition of simulatable (T, ε)-security for sender of an OT protocol (S,R).

Definition 5. ((T, ε)-Simulatable Security for Sender) For any polynomial-
size malicious receiver R∗, any polynomial T , any inverse polynomial ε, any
auxiliary input distribution Z and τ ← Z, there exists a polynomial-size simu-
lator Sim such that for any T -size distinguisher D = {Dλ}λ∈N, any m0,m1 ∈
{0, 1}n, b ∈ {0, 1}:∣∣Pr[Dλ(REALΠ,R∗(τ)(1λ,m0,m1, b))] = 1

− Pr[Dλ(IDEALFOT ,Sim(τ)(1
λ,m0,m1, b))] = 1

∣∣ ≤ ε(λ). (1)

Remark 1. Notice that traditional security definitions (such as the definition of
sender’s security above) require that the black-box simulator can deal with any
auxiliary input τ , while, in our definition of (T, ε)-sender’s security, we weaken
this requirement by switching the order of the qualifiers and require only that
for any auxiliary input τ drawn from a (known) distribution, there is a desired
individual simulator. We make this change for the reason that, in the proof of
(T, ε)-simulatability for the sender of our OT protocol, the simulator will apply
the nearly-optimal extractor (similar to the one in [16]) for extracting some
secret keys from the malicious receiver, and such an extractor is really sensitive
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and works well only when all input distributions (including the auxiliary input
distribution) of the malicious receiver are well defined.

Still, as we will see, this weaker notion also has wide applications in protocol
composition. We can plug a protocol Πi satisfying this weaker security into a
global protocol Π composed from a series of subprotocols Π1, Π2, ...,Πn, and
achieve (T, ε)-simulation security of Π, as long as all these subprotocols are
simulatable and specified in advance7. One can view all messages from subpro-
tocols Πj 6=i as auxiliary input drawn from the distributions over the transcripts
of these subprotocols, which are well defined when we simulate the subprotocol
Πi in the proof of (T, ε)-simulatability of Π.

2.3 Secure Two-Party Computation

In this subsection we present the definition of secure two-party computation,
independent-input functionalities and the (T, ε)-security. Parts of the definition
of secure two-party computation are taken verbatim from [4]. In this paper, we
only consider the case where only one party (a.k.a receiver R) learns the output.
The other party is referred to as the sender S. Sender S has input x and receiver
R has input y. For a given deterministic functionality F , they execute a protocol
to jointly compute F (x, y), and R obtains F (x, y) at the end of execution. As
observed in [37], a two-party computation protocol which only one party learns
the output can be easily transformed into the one where both parties receive the
output by computing a modified functionality that outputs signed values.

We follow the real/ideal paradigm to define the simulation-based security of
two-party computation. The ideal model execution proceeds as follows:
Ideal model execution. Ideal model execution is defined as follows.

• Input : Each party obtains an input, denoted u (u = x for S and u = y for
R).
• Send inputs to trusted party : The parties now send their inputs to the trusted

party. The honest party always sends u to the trusted party. A malicious
party may, however, can send a different input to the trusted party.
• Aborting Adversaries: An adversarial party can then send a message ⊥ to

the trusted party to abort the execution. Upon receiving this, the trusted
party terminates the ideal world execution. Otherwise, the following steps
are executed.
• Trusted party answers receiver R: Suppose the trusted party receives inputs
(x′, y′) from S and R respectively. It sends the output out = F (x′, y′) to
receiver.
• Outputs: If the receiver R is honest, then it outputs out. The adversarial

party (S or R) outputs its entire view.

We denote the adversary participating in the above protocol to be B and the
auxiliary input to B is denoted by τ . We define IDEALF2pc,B to be the joint

7 One exceptional case is the UC composition [11], where Π may be composed with
arbitrarily unknown protocols.
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distribution over the outputs of the adversary and the honest party from above
ideal execution.

Real model execution. We next consider the real model in which a real two-
party protocol is executed (and there exists no trusted third party). In this case,
a malicious party may follow an arbitrary feasible strategy. In particular, the
malicious party may abort the execution at any time (and when this happens
prematurely, the other party is left with no output).

Let Π be a two-party protocol for computing F . Note that in the two-party
case at most one of S,R is controlled by an adversary. We denote the adversarial
party to be A and the auxiliary input to A is denoted by τ . We define REALΠ,A
to be the joint distribution over the outputs of the adversary and the honest
party from the real execution.

Definition 6. (Security) Let F and Π be described above. We say that Π
securely computes F if for every polynomial-size malicious adversary A in the
real world, there exists a polynomial-size adversary B for the ideal model, such
that for any auxiliary input τ ∈ {0, 1}∗.

{REALΠ,A(τ)(1
λ, x, y)}

c
≈ {IDEALF2pc,B(τ)(1

λ, x, y)}.

In this paper, we only consider independent-input functionalities, as de-
fined [34].

Definition 7. (Independent-Input Functionalities) An independent-input
functionality is defined as a functionality between two parties, Alice and Bob. Let
(Q,R,U) denote the joint distribution over inputs of both parties, where Alice’s
input is sampled efficiently from Q and Bob’s input is sampled efficiently from
distribution R, and U denotes their common public input. Then, a functional-
ity F over (X = (Q,U) × Y = (R,U)) is independent-input for Alice if Q is
independent of (R,U).

Similar to (T, ε)-zero knowledge, we define (T, ε)-security for a protocol of
two-party computation as follows.

Definition 8. ((T, ε)-Security) Let F and Π be described above. We say Π
computes F with (T, ε)-security if for any polynomial-size malicious adversary
A in the real model, any polynomial T , any inverse polynomial ε, and any auxil-
iary input distribution Z, there exists a polynomial-size adversary B in the ideal
model, such that for any T -size distinguisher D := {Dλ}λ∈N,∣∣Pr[Dλ(REALΠ,A(τ)(1

λ, x, y))] = 1

− Pr[Dλ(IDEALF2pc,B(τ)(1
λ, x, y))] = 1

∣∣ ≤ ε(λ).
where the probabilities is over the coin of joining parties and τ ← Z.
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3 Knowledge Encryption and the Nearly Optimal
Extractor for Key Generation

We now introduce a new concept of encryption– knowledge encryption. Roughly,
a knowledge encryption is a public-key encryption scheme for which ciphertexts
can be reduced to the public-key, i.e., any algorithm with large (ciphertexts)
distinguishing advantage can be used to extract the (partial) secret key. Like
CDS/WE schemes, a public-key of a knowledge encryption scheme is gener-
ated from a (publicly known) instance x of an NP language L, but it provides
stronger security guarantee in that the decryption of knowledge encryption ac-
tually constitutes a proof of knowledge of the corresponding (partial) secret key:
While CDS/WE schemes guarantee that the receiver obtains nothing about the
encrypted message when x /∈ L, knowledge encryption ensures that any re-
ceiver that can decrypt ciphertexts must know a valid witness of x (and hence
x ∈ L). The semantic security of knowledge encryption is required to hold when
(x,w) ∈ RL and the public key is honestly generated. This is in contrast to that
of CDS/WE schemes, which only consider semantic security for false statements.

Definition 9 (Knowledge Encryption). A knowledge encryption scheme with
respect to an NP relation RL is a triple of PPT algorithms (KE.Gen,KE.Enc,KE.Dec):

• KE.Gen(1λ, x, w) : On input the security parameter λ ∈ N and statement
x ∈ L ∩ {0, 1}λ, w ∈ RL(x), Gen outputs a key pair (pk,sk), where the public
key is of the form pk = (k, x).

• KE.Enc(pk,m) : On input the public key pk and a message m ∈ {0, 1},
KE.Enc outputs a ciphertext c.

• KE.Dec(sk, c) : On input the secret key sk and ciphertext c, KE.Dec outputs
a message m (if c is undecryptable, we set m to be “ ⊥ ”).

We require the following properties from above scheme:

• Completeness: For any λ ∈ N, m ∈ {0, 1} and x ∈ L∩{0, 1}λ, w ∈ RL(x):

Pr

[
KE.Dec(sk, c) = m

∣∣∣∣∣(pk,sk)← KE.Gen(1λ, x, w)
c← KE.Enc(pk,m)

]
= 1.

• Indistinguishability: For any polynomial-size distinguisher D = {Dλ}λ∈N,
there exists a negligible function negl such that for any security parameter
λ ∈ N and x ∈ L ∩ {0, 1}λ, w ∈ RL(x):

Pr

[
Dλ(pk, c) = m

∣∣∣∣∣ (pk,sk)← KE.Gen(1λ, x, w)
m← {0, 1}; c← KE.Enc(pk,m)

]
<

1

2
+ negl(λ).

• Witness Extractability: There exists a PPT extractor E satisfying that,
for any public key pk∗ = (k∗, x), polynomial-size distinguisher D = {Dλ}λ∈N
and inverse polynomial ε, if

|Pr[Dλ(KE.Enc(pk∗, 0)) = 1]− Pr[Dλ(KE.Enc(pk∗, 1)) = 1]| ≥ ε,
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then
Pr[EDλ(pk∗, 11/ε) = w ∧ (x,w) ∈ RL] ≥ 1− negl(λ),

where E runs in time polynomial in ε−1 and λ.
• Public Key Simulation: There exists a PPT simulator KE.KeySim such
that for any (x,w) where x ∈ L ∩ {0, 1}λ, w ∈ RL(x):

{KE.Gen(1λ, x, w)}
c
≈ {KE.KeySim(1λ, x)}.

Remark 2. One can also define the security properties of knowledge encryption
over a randomly chosen (according to certain distribution) instance x. We choose
our definition because it gives great flexibility in applications, especially in the
applications where several parties jointly compute the instance x for some public
key of knowledge encryption, like our construction of three-round OT. However,
we note that the distributional version of our definition may admit more in-
stantiations, for example, the public-key encryption based on Rabin’s one-way
permutation is also a distributional knowledge encryption scheme.

In the rest of this section, we first present how to construct knowledge en-
cryption from two-round OT, and then we will apply techniques of [16] and prove
that, for any key generator of knowledge encryption, there exists a nearly opti-
mal extractor for the witness of x such that when it fails, no circuit of a-priori
bounded size can distinguish ciphertexts except with small probability.

3.1 Knowledge Encryption from Two-round OT

In this section, we give a construction of knowledge encryption from two-round
OT. At a high level, this construction follows the two-party-function-evaluation
approach used in CDS scheme, and relies on the following two ingredients:

• A two-round OT (OT1,OT2) with game-based security, and,
• A garbling circuit scheme GC = (Garble,Eval).

Note that the garbling circuit scheme can be based on any one-way function,
which is already implied by the existence of two-round OT with game-based
security.

The main idea behind our construction is to modify the circuit C to be
garbled in a CDS scheme and embed a simple decoding mechanism in C, which
enables us to reduce the instance x to random ciphertexts. Specifically, we let C
take an extra input y of length ` and define it as follows:

C(x,w, y,m) =

m if (x,w) ∈ RL and y = 0`,
Σ`
i=1yiwi mod 2 if (x,w) ∈ RL and ‖y‖1 ≥ 18,
⊥ if (x,w) /∈ RL.

(2)

8 In the following proofs, we only consider the case that ‖y‖1 = 1. In this case, C will
output a coordinate of w, and the extractor will extract the witness bit-by-bit.
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The formal description of knowledge encryption for RL9 from two-round OT
is shown in Fig.2.

Knowledge Encryption from Two-Round OT

KE.Gen(1λ, x, w): Parse w = w1‖w2‖ · · · ‖w`, and choose random coins
{ri}i∈[`], then run the 2-round OT scheme in parallel to generate
k := (OT1(1

λ, w1; r1), · · · ,OT1(1
λ, w`; r`)). Output the public-key pk = (k, x)

and the secret key sk = (w, r1, · · · , r`).

KE.Enc(pk,m): Set y = 0`, and run the GC scheme to generate a garbled
circuit Ĉ with labels {labxi,b}i∈[λ],b∈{0,1},
{labwi,b}i∈[`],b∈{0,1}, {labyi,b}i∈[`],b∈{0,1}, {lab

m
b }b∈{0,1} for circuit C defined in

(2). Output ciphertext
c := (Ĉ, {labxi,xi}i∈[λ], {OT2(labwi,0, lab

w
i,1)}i∈[`], {labyi,0}i∈[`], lab

m
m) .

KE.Dec(sk, c): Use sk to retrieve {labwi,wi}i∈[`] from {OT2(labwi,0, lab
w
i,1)}i∈[`],

and compute m← Eval(Ĉ, {labxi,xi}i∈[λ], {lab
w
i,wi}i∈[`], {lab

y
i,0}i∈[`], lab

m
m).

Fig. 2: The construction of Knowledge Encryption from two-round OT

Theorem 1. Assuming the existence of two-round OT protocol with computa-
tional game-based security, there exists a knowledge encryption scheme.

Proof. We prove that the construction presented in Fig 2 is a knowledge encryp-
tion scheme. Since the two-round OT with game-based security implies the exis-
tence of garbling scheme, our construction can be based solely on the two-round
OT with game-based security. Note first that it is easy to verify the completeness
property.
Indistinguishability. For a given pair (x,w) ∈ RL, denote by Dm the distribu-
tion {pk, c|pk← KE.Gen(1λ, x, w), c← KE.Enc(pk,m)} for m = {0, 1}. We prove
D0

c
≈D1 by a standard hybrid argument. Consider the following distributions.

D1,m: the same asDm except that the public key is generated by using (x,w∗) /∈
RL, i.e., pk← KE.Gen(1λ, x, w∗) (w.o.l.g.,we assume that such a w∗ ex-
ists, see footnote 9.)

D2,m: the same as D1,m except that it computes {OT2(lab
w∗

i,w∗i
, labw

∗

i,w∗i
)}i∈[`] in

the key generation, rather than {OT2(lab
w∗

i,0 , lab
w∗

i,1 )}i∈[`].
D3,m: the same as D2,m except that it generates the labels and garbled circuit

using the simulator of GC, i.e., (Ĉ, {labi,bi})← Sim(1λ, φ(C),⊥).
9 For ease of presentation, we assume that for every x ∈ L ∩ {0, 1}λ there is a string
w∗ ∈ {0, 1}` such that (x,w∗) /∈ RL. For any NP relation RL that does not satisfy
this condition, one can easily extend it to a new relation:

R′L := (x,w′) ∈ {0, 1}λ × {0, 1}`+1 : w′ = w‖1 and (x,w) ∈ RL,
for which w‖0 is not a valid witness (for any instance x).
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Note that the only difference between Dm and D1,m is the first OT messages
on those positions i where wi 6= w∗i . Due to the receiver’s security of the un-
derlying two-round OT, one can prove that Dm

c
≈D1,m by a standard hybrid

argument. From the sender’s security of the underlying two-round OT, it fol-
lows D1,m

c
≈D2,m. Furthermore, we have D2,m

c
≈D3,m, since for (x,w∗) /∈ RL,

the circuit garbled in the distribution D2,m on input (x,w∗, y,m) always out-
puts ⊥. Observing that both D3,0 and D3,1 are generated by the simulator of
the garbling scheme and are independent of the message m, one can see that
D3,0 ≡ D3,1. This concludes the proof of indistinguishability of our knowledge
encryption scheme.
Public Key Simulation. One can easily construct a simulator for simulating
the public key: On input x, the simulator chooses {ri}i∈[`] at random and outputs
pk = ({OT1(1

λ, 0; ri)}i∈[`], x). This simulated public key is indistinguishable
from the honestly-generated one due simply to the receiver’s security of the
underlying two-round OT.
Witness Extractability: Here our basic goal is to build an efficient extractor
such that for any pk∗ = (k∗, x) and any distinguisher D10 with high distinguish-
ing advantage, the extractor, with oracle access to D, can extract a witness for
x except for negligible probability.

Fix an arbitrary public key pk∗ = ((k∗ = (ot∗1,1, · · · , ot∗1,`)), x). We use the
sender’s security property (which is against unbounded receiver) of the two-
round OT to define w∗ ∈ {0, 1}` as follows: For each i ∈ [`], if for any (δ0, δ1),
OT2,i(δ0, δ1) is indistinguishable from OT2,i(δ0, δ0) against any polynomial-size
adversary, w∗i = 0, otherwise w∗i = 1.

Suppose that D is a polynomial-size distinguisher and ε is an inverse poly-
nomial such that

|Pr[D(KE.Enc(pk∗, 0)) = 1]− Pr[D(KE.Enc(pk∗, 1)) = 1]| ≥ ε(λ), (3)

we construct a desirable oracle machine ED to complete the proof of the witness
extractability property.

We first argue that the definition of w∗, together with the inequality (3),
implies (x,w∗) ∈ RL. Suppose otherwise (x,w∗) /∈ RL. Let {Dj,m}j∈[3],m∈{0,1}
be as above. For every j ∈ [3] and m ∈ {0, 1}, Denote by Dj,m|pk∗ the distribu-
tion conditioned on pk∗. Then, for each m ∈ {0, 1}, we have KE.Enc(pk∗,m) ≡
D1,m|pk∗ and D1,m|pk∗

c
≈ D2,m|pk∗ (by definition of w∗). Furthermore, apply-

ing the same reasoning as in the proof of the indistinguishability property, we
also have D2,m|pk∗

c
≈ D3,m|pk∗ (for each m ∈ {0, 1}) and D3,0|pk∗ ≡ D3,1|pk∗.

Putting together, we conclude that KE.Enc(pk∗, 0) and KE.Enc(pk∗, 1) are indis-
tinguishable, which contradicts the inequality (3).

We now turn to the construction of the oracle machine ED assuming the
distinguisher D satisfies the inequality (3). Our main idea is to run D on fake
ciphertexts by manipulating the input y and use its distinguishing advantage to
compute the witness w∗ bit-by-bit.
10 D might know of the random coins used to sample pk∗.
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Denote by ~y(j) the string with the j-th coordinate being 1 and all oth-
ers being 0. Observe that, by the definition of circuit C, when choosing ~y(j)
to compute a ciphertext, it will be decrypted to w∗j . We formally define such
an encryption algorithm KE.Enc′(pk∗, 0) as follows: KE.Enc′(pk∗, 0) acts exactly
the same as KE.Enc(pk∗, 0) except that it chooses y′ = ~y(j) = y′1‖y′2‖ · · · ‖y′`
(as a result, the i-th label with respect to y generated by KE.Enc′(pk∗, 0) is
labyj,1, rather than labyj,0). A ciphertext generated by KE.Enc′(pk∗, 0) can be
viewed as a ciphertext of w∗j , and furthermore, the distribution KE.Enc′(pk∗, 0)
is actually indistinguishable from KE.Enc(pk∗, w∗j ). To see this, consider the fol-
lowing distribution DS : run the simulator Sim for garbling scheme and obtain
(Ĉ,{labxi,xi}i∈[λ],{lab

w
w∗i
}i∈[`], {labyy′i}i∈[`], lab

m
m) ← Sim(1λ,φ(C),w∗j ), and output

ciphertext c=(Ĉ,{labxi,xi}i∈[λ], {OT2(lab
w
i,w∗i

, labwi,w∗i )}i∈[`], {lab
y
i,y′i
}i∈[`], labmm).

Note that w∗j = C(x,w∗, y′ = ~y(j), 0) = C(x,w∗, y = 0`, w∗j ), and for this
reason, the above ciphertext simulator can be viewed as a simulator for both
KE.Enc′(pk∗, 0), which garbles C on input (x, y′ = ~y(j), 0), and KE.Enc(pk∗, w∗j ),
which garbles C on input (x, y = 0`, w∗j ). Similarly to the proof of the indistin-
guishability property, due to the sender’s security of the two-round OT and the
security of the garbling scheme, one can prove that both KE.Enc′(pk∗, 0) and
Enc(pk∗, w∗j ) are indistinguishable from DS . Thus,

KE.Enc′(pk∗, 0))
c
≈ KE.Enc(pk∗, w∗j )). (4)

This means the distinguisherD can tell apart KE.Enc′(pk∗, 0)) from KE.Enc(pk∗, 1−
w∗j )), which gives rise to the following oracle extraction machine ED.

ED(pk∗, 11/ε)

1. For each j ∈ [λ]:
(a) Run D on input KE.Enc(pk∗, 0) λε−2 times with fresh randomness (for

bothD and KE.Enc) each time. Denote by d0,k the output ofD(KE.Enc(pk∗, 0))
in the k-th repetition. Compute d0 = λ−1ε2Σk∈[p]d0,k.

(b) Run D on input KE.Enc(pk∗, 1) λε−2 times with fresh randomness (for
bothD and KE.Enc) each time. Denote by d1,k the output ofD(KE.Enc(pk∗, 1))
in the k-th repetition. Compute d1 = λ−1ε2Σk∈[p]d1,k.

(c) Run D on input KE.Enc′(pk∗, 0) λε−2 times with fresh randomness (for
bothD and KE.Enc) each time. Denote by d̂k the output ofD(KE.Enc′(pk∗, 0))
in the k-th repetition. Compute d̂ = λ−1ε2Σk∈[p]d0,k.

(d) If |d0 − d̂| > |d1 − d̂|, then set ŵj = 1, if else, set ŵj = 0.
2. Output ŵ = ŵ1‖ŵ2‖ · · · ‖ŵ`.

We denote by u0 the probability Pr[D(KE.Enc(pk∗, 0)) = 1], by u1 the proba-
bility Pr[D(KE.Enc(pk∗, 1)) = 1] and by û the probability Pr[D(KE.Enc′(pk∗, 0)) =
1]. By Chernoff bound, we have

Pr[|d0 − u0| ≥ δu0] ≤ 2e−δ
2u0p/3.
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Set δu0 = ε/8. Due to that u0 ≤ 1, we have that δ ≥ ε/8. Therefore,

Pr[|d0 − u0| ≥ ε/8] ≤ 2e−λ/2
6·3. (5)

Similarly,

Pr[|d1 − u1| ≥ ε/8] ≤ 2e−λ/2
6·3, and (6)

Pr[|d̂− û| ≥ ε/8] ≤ 2e−λ/2
6·3. (7)

From the (in)equalities (3) and (4), we also have |u0−u1| ≥ ε and |û−uw∗j | ≤
negl. Putting together with the inequalities (5),(6),(7), it follows

Pr[|d1−w∗j − d̂| > |dw∗j − d̂|] ≥ 1− negl,

which implies that,

Pr[w∗j 6= ŵj |ŵ ← ED(pk∗, 11/ε)] ≤ negl(λ).

Note also that (x,w∗) ∈ RL, we have

Pr[ŵ ← ED(pk∗, 11/ε) ∧ (x, ŵ) ∈ RL] ≥ 1− negl(λ),

as desired. ut

An alternative construction based on RSR encryption and CDS scheme ap-
pears in the full version of this paper [17].

3.2 Nearly-optimal Extractor for Knowledge Encryption

Following [16], we show the existence of the nearly optimal (T, ε)-extractor for
any (malicious) key generation algorithm of knowledge encryption, which essen-
tially states that, for any ciphertext distinguisher of size T , the probability that
the extractor fails to extract a valid witness for the instance x on the public key
whereas the ciphertext distinguisher succeeds is less than ε. For any (malicious)
key generator that generates multiple public keys simultaneously, this property
holds for each one of them, even if the distinguisher takes the output of the
nearly optimal extractor as input.

For a given polynomial t, denote by x[t] the set of t strings {xk}k∈[t]. We first
recall the lemma on the existence of nearly-optimal (T, ε)-extractor for any hard
distributions in [16].

Lemma 1 (Nearly-Optimal (T, ε)-Extractor for t-Instance Sampler [16]).
Let L be an NP language and poly be the size of the circuits for deciding the NP-
language RL. Let Samp be an arbitrarily t-instance sampling algorithm over L
with input distribution ensemble R := {Rλ}λ∈N. Let F := {Fλ}λ∈N be a proba-
bilistic (not necessarily efficient-computable) machine.
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1. For every polynomial T, ε−1, there exists a probabilistic circuit family Ext :=
{Extλ}λ∈N of size O( tε (T + poly)) such that for every j ∈ [t], every proba-
bilistic circuit family C := {Cλ}λ∈N of size T and every security parameter
λ ∈ N,

Pr

(xj , w∗j ) ∈ RL∧
(xj , w

′
j) /∈ RL

∣∣∣∣∣∣∣
r ← R;x[t] ← Samp(1λ, r);

w′[t] ← Ext(x[t], r, F (r));

w∗j ← C(x[t], r, F (r), w[t]);

 < ε(λ).

2. There exists a probabilistic circuit family Ext := {Extλ}λ∈N of quasi-polynomial
size such that for every probabilistic circuit family C := {Cλ}λ∈N of polyno-
mial size, the above probability is negligible.

The original version of this lemma in [16] considers only a deterministic function
F , however, it is easy to verify that the same proof also yields the above lemma
with respect to a probabilistic (possibly unbounded) function F .

We consider an arbitrary key generator KE.Gen∗ that outputs t public keys
simultaneously. We write its input as r (including possibly its random coins, NP
instances and the corresponding witnesses), and assume that r are drawn from
certain distribution ensemble R := {Rλ}λ∈N.

The following lemma can be viewed as a knowledge encryption version of
Lemma 4 in [16] (which holds only with respect to the Rabin’s encryption based
on factoring). For the sake of completeness, we provide its proof in the full version
[17].

Lemma 2. Let t be a polynomial. Let KE.Gen∗ be any t-public-key generator
of knowledge encryption with respect to an NP language L, whose output is
of the form pk

∗
[t] = {(k∗k, xk)}k∈[t], and let the input distribution ensemble be

R := {Rλ}λ∈N. Let F := {Fλ}λ∈N be a probabilistic (not necessarily efficient-
computable) machine.

1. For every polynomial T and every inverse polynomial ε, there exists a prob-
abilistic circuit family Ext := {Extλ}λ∈N of polynomial size such that for
every j ∈ [t], every probabilistic distinguisher D := {Dλ}λ∈N of size T and
any security parameter λ ∈ N,

∣∣∣∣∣∣∣∣Pr
D(pk

∗
[t], c, r, F (r), w

′
[t]) = 1∧

(xj , w
′
j) /∈ RL

∣∣∣∣∣∣∣∣
r ← R; pk

∗
[t] ← KE.Gen∗(1λ, r)

w′[t] ← Ext(pk
∗
[t], r, F (r));

c← KE.Enc(pk∗j , 0);

 −

Pr

D(pk
∗
[t], c, r, F (r), w

′
[t]) = 1∧

(xj , w
′
j) /∈ RL

∣∣∣∣∣∣∣∣
r ← R; pk

∗
[t] ← KE.Gen∗(1λ, r)

w′[t] ← Ext(pk
∗
[t], r, F (r));

c← KE.Enc(pk∗j , 1);


∣∣∣∣∣∣∣∣ < ε(λ).
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2. There exists a probabilistic circuit family Ext := {Extλ}λ∈N of quasi-polynomial
size such that for every probabilistic distinguisher D := {Dλ}λ∈N of polyno-
mial size, the above holds with respect to a negligible function ε.

Remark 3. The proof strategy of [16] for this kind of lemma only works if the
algorithms Ext and D take the same input (except that D is also given the
output of Ext as input). However, in the security reduction, D usually sees a
complete session transcript, but the simulator has only a partial transcript when
it applies Ext to extract some secrets from the adversary. This is the reason
why we have both Ext and D take an extra input F (r), which represents some
messages in a session generated after the point that the simulator did extraction.
Although F (r) may not be efficiently computable from the input of Ext, but in
our cases, the simulator is able to compute it efficiently with the randomness
used in generating certain transcript prefix.

4 Three-round Simulatable Oblivious Transfer

In this section, we show how to use the knowledge encryption scheme to construct
a three-round OT scheme with simulatable security for the receiver and (T, ε)-
simulatable security for the sender.

Our protocol proceeds as follows. The sender generates two images y0 and y1
of a one-way function f and prove to the receiver that it knows one pre-image of
y0 or y1 via a three-round WI protocol. Given the pair (y0, y1) and input b, the
receiver prepares two instances x0 and x1 in the following way: it runs the HVZK
simulator of the Σ-protocol to obtain an acceptable proof (a, b, z) of knowledge of
one preimage of y0 or y1, and sets xb = (y0, y1, a, b) and x1−b = (y0, y1, a, 1− b),
where xi = (y0, y1, a, i) is said to be a YES instance if and only if there exists a
z such that (a, i, z) is acceptable. The receiver now generates pkb honestly using
the valid witness z for xb = (y0, y1, a, b), and runs the key simulator of knowledge
encryption to obtain the other public key pk1−b. In the third round, the sender
encrypts its two message under the two public keys respectively and sends the
two ciphertexts to the receiver.

We give a formal description of our construction in Fig.3, which is based on
the following ingredients:

• A one-way function f .
• A three-round public-coin witness indistinguishable argument (WI1,WI2,WI3)

with special soundness and negligible soundness error for language Lf .
• A Σ-protocol (a, e, z) with 1-bit challenge for language Lf .
• A knowledge encryption scheme (KE.Gen,KE.Enc,KE.Dec) for language LΣ .

where Lf , LΣ are defined as follows:

Lf := {(y0, y1)|∃x s.t. f(x) = y0 ∨ f(x) = y1}
LΣ := {(y0, y1, a, e)|∃z s.t. (a, e, z) is an acceptable proof for (y0, y1) ∈ L}
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Three-round Oblivious Transfer Protocol

Sender Input: Security parameter 1λ and messages m0,m1 ∈ {0, 1}n.
Receiver Input: Security parameter 1λ and bit b ∈ {0, 1}.

• Sender Message: Sample δ0, δ1 ← {0, 1}λ at random, compute y0 = f(δ0),
y1 = f(δ1) and generate WI1 as the first message of WI for (y0, y1) ∈ Lf .
Send (y0, y1,WI1).

• Receiver Message: Generate the second WI message WI2. Use the HVZK
simulator of the Σ-protocol to generate an acceptable Σ-proof (a, b, z) for
(y0, y1) ∈ Lf (where b is the receiver’s input). Generate
(pkb, skb)← KE.Gen(1λ, (y0, y1, a, b), z) (where ((y0, y1, a, b), z) ∈ RLΣ ) and
pk1−b ← KE.KeySim(1λ, (y0, y1, a, 1− b)). Send (WI2, pk0, pk1).

• Sender Message: Write pki = (ki, xi = ((y0, y1, a, i))) for i ∈ {0, 1}, and
check if both xi share the same (y0, y1, a). If not, abort; Otherwise, generate
the third WI message WI3 using a random witness and encrypt messages mi

under public key pki in bitwise manner: c0 ← KE.Enc(pk0,m0),
c1 ← KE.Enc(pk1,m1). Send (WI3, c0, c1).

• Receiver’s Output: Check if (WI1,WI2,WI3) is acceptable. If not, output
⊥; otherwise, output mb ← KE.Dec(skb, cb) (if cb is not decryptable, set mb

to be ⊥)).

Fig. 3: Three-round Oblivious Transfer Protocol

Note that non-interactive commitment can be built from two-round (perfectly
correct) OT with game-based security (see footnote 4). Thus, two-round OT with
game-based security as we define is sufficient for constructing all primitives used
in our protocol.

Theorem 2. Assuming the existence of two-round OT with game-based security
(against polynomial-time adversaries), there exists a three-round OT protocol
with fully simulatable security for the receiver and (T, ε)-simulatable security
for the sender. Furthermore, the same protocol also achieves quasi-polynomial
simulatable security for the sender under the same assumption.

Due to space limitation, we defer the detailed proof to the full version of this
paper [17]. Here we only provide a sketch of proof.

proof sketch. The simulatable security for the receiver can be proven using
rewinding simulation strategy (once a preimage is obtained by rewinding, the
simulator can generate two valid public keys and decrypt both ciphertexts11 from
the sender), but one must be careful in the analysis of the running time of the
rewinding simulator, which actually requires the Goldreich-Kahan technique [26]
to make sure that the simulator will run in expected polynomial time.
11 Like the honest receiver, the simulator sets the “plaintext” of an undecryptable ci-

phertext to be ⊥
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The (T, ε)-simulatable security for the sender can be proven by constructing
the following simulator. The simulator generates the first message by following
the honest sender strategy. Upon receiving two public keys pk0 = (k0, x0), pk1 =
(k1, x1) of knowledge encryption from the malicious receiver, it applies the nearly
optimal extractor for the receiver and tries to extract one witness of xi. For the
case that the simulator extracts two witnesses, it aborts the simulation; For
the case that the simulator extracts at most one valid witness, it sets b′ = 0
if a valid z0 is extracted s.t. (x0 = (y0, y1, a, 0), z0) ∈ RLΣ and sets b′ = 1
if else. Then it sends b′ to FOT and encrypts the message mb′ received from
FOT under both public keys pkb′ and pk1−b′ . For the first case, we prove that
it happens only with negligible probability. For the second case, we will use
the (near) optimality of the extractor to prove that the simulation and the real
execution are indistinguishable against distinguishers of certain size except for
small probability.

When replacing (T, ε)-extractor with a quasi-polynomial extractor (guaran-
teed by Lemma 2) in the simulation of the receiver’s view, the second part of
Theorem 2 follows.

5 Three-round weak zero-knowledge argument of
knowledge

In this section, we construct a delayed-input (T, ε)-zero-knowledge argument
satisfying adaptive argument of knowledge, which is based on the following in-
gredients:

• A 3-round OT (OT1,OT2,OT3) presented in Fig.3.
• A one-way function f .
• A knowledge encryption scheme (KE.Gen,KE.Enc,KE.Dec) for language L′f .
• A 3-round public-coin WI protocol (WI1,WI2,WI3) with special-soundness

property for language Lpk.
• A Σ-protocol (α, β, γ) with 1-bit challenge space for an NP language L.

where L′f , Lpk are defined as follows:

L′f : {y|∃δ s.t. f(δ) = y}
Lpk : {pk0, pk1|∃b, skb, rKE , (yb, δb) ∈ L′f s.t. (pkb, skb) = KE.Gen(1λ, yb, δb; rKE)}

We formally present our construction in Fig.4. Due to space limitation, we
give only the statement of our result in this section. The proof can be found in
the full version [17].

Theorem 3. Assuming the existence of two-round OT protocol with game-based
security (against polynomial-time adversaries), there exists a three-round delayed-
input (T, ε)-zero-knowledge adaptive argument of knowledge. Furthermore, the
same protocol also satisfies witness hiding and quasi-polynomial simulatable zero
knowledge under the same assumption.
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Delayed-input (T, ε)-Zero-knowledge Argument of Knowledge

Prover Input: (x,w) ∈ RL.

• Prover Message: Run OT1 λ times in parallel and obtain {oti}i∈[λ].
Sample δ0,δ1←{0, 1}λ and compute y0=f(δ0), y1=f(δ1). Generate two
knowledge encryption public keys (pk0, sk0)← KE.Gen(1λ, y0, δ0),
(pk1, sk1)← KE.Gen(1λ, y1, δ1) and the first message WI1 of WI for
statement (pk0, pk1) ∈ Lpk. Send ({ot1,i}i∈[λ], pk0, pk1,WI1).

• Verifier Message: For each i ∈ [λ], sample βi ← {0, 1} and compute
ot2,i ← OT2,i(βi) independently. Generate the second message WI2 of WI.
Send ({ot2,i}i∈[λ],WI2).

• Prover Message: For each i ∈ [λ], generate two Σ-proofs with the same
first message (i.e. (αi, 0, γi,0), (αi, 1, γi,1)). For b = 0, 1, encrypt γi,b using
both of pk0, pk1 separately to obtain Ci,b, i.e.
Ci,b = (KE.Enc(pk0, γi,b),KE.Enc(pk1, γi,b)). Let γ

′
i,b be the message

consisting of γi,b and the randomness used in computing Ci,b. Compute
ot3,i ← OT3,i(γ

′
i,0, γ

′
i,1). Generate the third message WI3 of WI.

Send (x, {αi, Ci,0, Ci,1, ot3,i}i∈[λ],WI3).

• Verifier’s Output: Recover γ′i,βi from OT, output 1 if for all i ∈ [λ],
(αi, βi, γi,βi) and WI1,Wi2,WI3 are acceptable proofs and Ci,βi is indeed the
encryptions of γi,βi (using the randomness contained in γ′i,βi).

Fig. 4: Three-round Argument System for NP

6 Two-party Secure Computation

Equipped with the three-round OT and zero knowledge argument constructed
in previous sections, we now follow the GMW paradigm [28] to give a three-
round protocol for weakly secure two-party computation for independent-input
functionalities. We use the following ingredients in our construction:

• A 3-round OT (OT1,OT2,OT3) (presented in Fig.3).
• A 3-round delayed-input weak zero knowledge argument (ZK1,ZK2,ZK3)

(presented in Fig.4) for language L2pc.
• A garbling circuit scheme GC = (Garble,Eval),

where L2pc is defined as follows: (Ĉ, {labxi,xi}i∈[n], {ot1,i, ot2,i, ot3,i}i∈[n]) ∈ L2pc

if and only if there exists a random tape for the honest sender (on input ot2,i) to
generate messages (Ĉ, {labxi,xi}i∈[n], {ci,b = KE.Enc(pk1i,b, lab

y
i,b)}i∈[n],b∈{0,1})(ci,b

is the ciphertexts in ot3,i under the public key pk1i,b contained in ot2,i).
We assume that the independent-input functionality C maps (x, y) of length

2n to a string of length n. The protocol is formally presented in Fig.5.

Theorem 4. Assuming the existence of two-round OT protocol with game-based
security (against polynomial-time adversaries), there exists a three-round two-
party computation protocol for independent-input functionalities that achieves
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3-round Two-party Weak Secure Computation

Sender Input: x ∈ {0, 1}n
Receiver Input: y ∈ {0, 1}n

• Sender Message: Run OT1 λ times in parallel and obtain {oti}i∈[λ].
Generate the first message ZK1.
Send ({ot1,i}i∈[n],ZK1).

• Receiver Message: Generate the second message ZK2. For each
i ∈ [n],compute ot2,i ← {OT2,i(yi)}i∈[n] independently where yi is the i-th
bit of y.
Send ({ot2,i}i∈[n],ZK2).

• Sender Message: Use GC to generate the garbled circuit Ĉ along with
labels {labxi,b}i∈[n],b∈{0,1}, {labyi,b}i∈[n],b∈{0,1} for functionality C. Compute
ot3,i ← OT3,i(labyi,0, lab

y
i,1). Compute ZK3 for

(Ĉ,{labxi,xi}i∈[n],{ot1,i,ot2,i,ot3,i}i∈[n]) ∈ L2pc.
Send (Ĉ, {labxi,xi}i∈[n], {ot3,i}i∈[n],ZK3).

• Receiver’s Output: Recover labyi,yi from OT, and check if (ZK1,ZK2,ZK3)
is acceptable. If not, output ⊥; otherwise, output
Ĉ({labxi,xi}i∈[n], {lab

y
i,yi
}i∈[n]).

Fig. 5: 3-round Two-party Weak Secure Computation

(T, ε)-security against malicious receiver and standard security against malicious
sender. Furthermore, the same protocol also achieves quasi-polynomial simulat-
able security against malicious receiver under the same assumption.

We provide the proof of Theorem 4 in the full version of this paper [17].

7 More Applications

In this section we present direct applications of our results in previous sections
to various protocols, including extractable commitment, selective opening secure
commitment and concurrent zero knowledge argument in the BPK model. Com-
pared with existing protocols, all our new constructions only rely on two-round
OT with game-based security. Since one can prove the security of these new
constructions using essentially the same security proof strategies in [34,16], we
will not repeat these proofs here.

The work [34] provides a transformation of non-interactive commitment into
a three-round extractable commitment via three-round weak zero knowledge
argument of knowledge. When using our construction of (T, ε)-zero knowledge
argument of knowledge in their transformation, we have the following result.

Theorem 5. Assuming the existence of two-round OT with game-based secu-
rity (against polynomial-time adversaries), there exists a three-round extractable
commitment scheme.
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The commitment with (T, ε)-security under selective opening attack and con-
current (T, ε)-zero knowledge argument (in the BPK model) in [16] are con-
structed from Rabin encryption scheme (based on hardness of Factoring). We
can also replace the Rabin encryption scheme with our knowledge encryption
(and revise their protocol accordingly so that the simulation can go through
with a witness for the instance on the public key of knowledge encryption), and
obtain the following result.

Theorem 6. Assuming the existence of two-round OT with game-based security
(against polynomial-time adversaries), there exist:

1. Two-round commitment scheme with (T, ε)-security under selective opening
attacks.

2. Three-round concurrent (T, ε)-zero knowledge argument with concurrent sound-
ness in the BPK model, which also satisfies concurrent witness hiding in the
same model.

3. All above protocols satisfy (fully) quasi-polynomial simulatable security.
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