
On Module Unique-SVP and NTRU

Joël Felderhoff1,2, Alice Pellet-Mary3, and Damien Stehlé2,4

1 Inria Lyon, Lyon, France
2 ENS de Lyon, Lyon, France

3 Univ. Bordeaux, CNRS, Inria, Bordeaux INP, IMB, Talence, France
4 Institut Universitaire de France, Paris, France

Abstract. The NTRU problem can be viewed as an instance of finding
a short non-zero vector in a lattice, under the promise that it contains an
exceptionally short vector. Further, the lattice under scope has the struc-
ture of a rank-2 module over the ring of integers of a number field. Let
us refer to this problem as the module unique Shortest Vector Problem,
or mod-uSVP for short. We exhibit two reductions that together provide
evidence the NTRU problem is not just a particular case of mod-uSVP,
but representative of it from a computational perspective.

First, we reduce worst-case mod-uSVP to worst-case NTRU. For this, we
rely on an oracle for id-SVP, the problem of finding short non-zero vectors
in ideal lattices. Using the worst-case id-SVP to worst-case NTRU re-
duction from Pellet-Mary and Stehlé [ASIACRYPT’21], this shows that
worst-case NTRU is equivalent to worst-case mod-uSVP.

Second, we give a random self-reduction for mod-uSVP. We put forward
a distribution DuSVP over mod-uSVP instances such that solving mod-
uSVP with a non-negligible probability for samples from DuSVP allows
to solve mod-uSVP in the worst-case. With the first result, this gives
a reduction from worst-case mod-uSVP to an average-case version of
NTRU where the NTRU instance distribution is inherited from DuSVP.
This worst-case to average-case reduction requires an oracle for id-SVP.

1 Introduction

Let K be a number field, OK its ring of integers and ∥ · ∥ the ℓ2-norm in the
complex embedding vector space. A notable example is K = Q[x]/(xd+1) with d
a power of 2: in this case, we haveOK = Z[X]/Φ(X) and ∥a∥ = (d

∑
i |ai|2)1/2 for

all a =
∑

0≤i<d aix
i ∈ K. In the (search) NTRU problem, one is given h ∈ Rq :=

OK/qOK with the promise that there exists a pair (f, g) ∈ O2
K such that gh =

f mod qOK and ∥f∥, ∥g∥ are significantly smaller than
√
q (by a factor γ called

the gap of the NTRU instance, see Definition 2.15 for a formal definition). The
goal is to find a short multiple of the pair (f, g). An efficient algorithm for
the NTRU problem for appropriate parameters would lead to a cryptanalysis
of the seminal NTRU encryption scheme [HPS98], a variant of which appears
among the finalists of the NIST post-quantum cryptography standardization
process [CDH+20].

It was noticed very early that the NTRU problem can be interpreted in
terms of Euclidean lattices [HPS98,CS97]. Indeed, the set Lh := {(a, b)T ∈ K2 :
bh = a mod qOK} forms a (2d)-dimensional lattice, when viewing OK as a d-
dimensional lattice via the embedding map (or, more elementarily for the running
example, using the polynomial expressions). The lattice is described by h, from
which a basis can be computed. This lattice has two peculiar properties. First,
it contains an unusually short non-zero vector (f, g). Indeed, for most h’s, we
have detLh = ∆K · qd, where ∆K refers to the field discriminant; our running
example satisfies ∆K = dd. As a result, one would expect the shortest non-zero
vectors to have ℓ2-norm around q1/2, up to limited factors depending on ∆K

and d; but (f, g)T is much shorter, by assumption. However, this is not quite
an instance of the unique Shortest Vector Problem (uSVP), as Lh does not
contain just one exceptionally short non-zero vector (up to sign), but d linearly
independent short vectors: in our running example, the (xi · f, xi · g)T ’s for
i ∈ [d] are linearly independent and belong to Lh and; in the general case,
a short Z-basis of OK can be used in place of the xi’s. This leads us to the
second peculiarity of the Lh lattice: as it is invariant under multiplication by
elements of OK , it is a rank-2 OK-module. We hence have a rank-2 OK-module
with the promise that it contains an unusually short non-zero vector, i.e., an
unusually dense rank-1 submodule. We call mod-uSVP the problem of finding
a short non-zero vector in rank-2 module containing an unusually short vector.
In this introduction, we call gap of the mod-uSVP instance the ratio between
the root determinant of the lattice (which predicts what would be expected for
the euclidean norm of the shortest vector) and the actual euclidean norm of a
shortest non-zero vector (see Definition 2.12 for a formal definition).

Search NTRU and mod-uSVP actually come with two flavors. The most
natural one, described above, asks to recover a short vector of the corresponding
rank-2 module. This is the variant we implicitly consider in this introduction
when we discuss NTRU and mod-uSVP. As mentioned above, the NTRU and
mod-uSVP lattices not only contain an unexpectedly short vector, but also an
unexpectedly dense rank-1 sublattice. The second variant, which we refer to as
NTRUmod or mod-uSVPmod, asks to recover a basis of this dense submodule.

As seen above, the NTRU problem can be viewed as a special case of a lat-
tice problem. It is however unclear if its instances are representative instances
of some standard lattice problem, or, more precisely, if they are computation-
ally equivalent to general instances of such a problem. In [Pei16, Section 4.4.4],
Peikert sketched a reduction from a decision version of the NTRU problem to
the Ring Learning With Errors (RLWE) problem [SSTX09,LPR10]; this reduc-
tion can be adapted to the search NTRU problem we consider here. Note that
under some parameter constraints, RLWE is computationally equivalent to the
Shortest Independent Vectors Problem for rank-2 modules [LS15,AD17] (mod-
SIVP), which consists in finding 2d linearly independent vectors whose longest
one is not much longer than optimal. Oppositely, in a recent work, Pellet-Mary
and Stehlé [PS21] exhibited a reduction from the Shortest Vector Problem for
lattices corresponding to ideals of OK (id-SVP) to NTRU. Enhanced by the id-

2

SVP self-reducibility from [dBDPW20], this leads to a reduction from worst-case
id-SVP to an average-case version of the NTRU problem.

Overall, we see that NTRU sits between id-SVP and mod-SIVP. Interest-
ingly, id-SVP admits algorithms that outperform generic lattice reduction al-
gorithms [LLL82,Sch87] for some parameter ranges [CDW21,PHS19]. As such
a phenomenon is unknown in the case for mod-SIVP, there is potentially quite
some room between id-SVP and mod-SIVP. With this state of affairs, it is un-
clear which of these problems captures the true hardness of NTRU, or if NTRU
lies somewhere strictly in between.

Contributions. We give evidence that the NTRU problem is not just a particu-
lar case of mod-uSVP, but actually representative of it. More precisely, we show
that worst-case NTRU is computationally equivalent to worst-case mod-uSVP,
and that worst-case and an appropriately defined average-case mod-uSVP are
also computationally equivalent, provided we have an oracle for id-SVP in both
cases (and up to reduction losses). Together, these results imply that worst-
case mod-uSVP reduces to average-case NTRU, provided we have an oracle for
id-SVP. Combining this result with the reduction from worst-case id-SVP to
worst-case NTRU from [PS21], this also implies that worst-case NTRU is com-
putationally equivalent to worst-case mod-uSVP, without an id-SVP oracle.

Our first result is a collection of four reductions from the four variants of mod-
uSVP (average case vs worst-case and vector vs module) to the corresponding
four variants of NTRU, relying on an approximate id-SVP oracle. We give below
a simplified version of one of these reductions, in the special case of power-of-
two cyclotomic fields. More details and the other reductions can be found in
Theorem 4.1.

Theorem 1.1 (Simplified version of Theorem 4.1). Let K be a power-
of-two cyclotomic field of degree d. Let γSVP, γ

+, γNTRU > 1. For all q ≥ 2d ·
poly(γ+) and γ− ≥ poly(d) · γNTRU ·

√
γHSVP, (worst-case) mod-uSVPmod with

gap in [γ−, γ+] reduces in polynomial time to (worst-case) NTRUmod with modu-
lus q and gap ≥ γNTRU and (worst-case) id-SVP with approximation factor γSVP.

More concretely, when starting from a mod-uSVP instance for which the
shortest non-zero vectors are ≈ γ times smaller than the root determinant, the
reduction produces an NTRU instance satisfying

√
q/(∥f∥ + ∥g∥) ≈ γO(1), up

to factors depending on field invariants. This transformation can be used to de-
rive a reduction from average-case mod-uSVP to average-case NTRU (where the
NTRU distribution is induced by the mod-uSVP distribution) and a reduction
from worst-case mod-uSVP to worst-case NTRU (and similarly for the variants
searching a dense rank-1 submodule). To achieve this transformation, an id-SVP
oracle is required to find non-zero vectors in ideals within a factor γO(1) from
optimal. Note that for cyclotomic fields, the algorithm from [CDW21] allows to

implement the oracle in quantum polynomial time when γ ≈ 2
√
d. Note also

that [PS21] showed a reduction from worst-case id-SVP to worst-case NTRU,
which is compatible with the reduction from worst-case mod-uSVP to worst-case

3

NTRU (relying on an id-SVP oracle). Combining both, we then obtain a reduc-
tion from worst-case mod-uSVP to worst-case search NTRU which does not rely
on an id-SVP oracle. A drawback of the reduction is that it results in an NTRU
modulus q of the order of ≈ 2d, even for small gap parameters γ. The modulus
can be decreased by allowing the reduction to be more costly. Using lattice re-
duction algorithms [Sch87], one can reach q ≈ γO(1) · βO(d/β) if allowing for a
reduction that runs in time polynomial in d, 2β , log∆K and ζK(2) (where ζK
refers to the Dedekind zeta function). The quantities log∆K and ζK(2) depend
on the number field, and may not be polynomially bounded in the field degree d.
In our running example, we have log∆K = O(d) and ζK(2) = O(1) (see [SS13]).

Second, we exhibit a random self-reducibility property for mod-uSVPmod.
More explicitly, we give a reduction from worst-case mod-uSVPmod for rank-2
modules to an average-case version of itself, whose instances can be sampled from
efficiently. The reduction preserves the gap parameter γ, up to factors depending
on field invariants, and runs in time polynomial in log∆K .

Theorem 1.2 (Simplified version of Theorem 6.1, under ERH). Let K
be a power-of-two cyclotomic field of degree d. For any gap poly(d) < γ ≤ 2O(d),
there exists an efficiently samplable distribution DuSVP

γ over uSVP instances with
gap ≥ γ such that worst-case mod-uSVPmod with gap ≥ γ′ = γ·poly(d) reduces in
polynomial time to average-case mod-uSVPmod for instance distribution DuSVP

γ .

Combined with the first reduction, the above allows to map a worst-case
instance of mod-uSVPmod to an average-case instance of NTRUmod, where the
NTRUmod instance distribution is inherited from the average-case mod-uSVP
distribution. This reduction relies on an id-SVP oracle. Since mod-uSVPmod

and mod-uSVP are computationally equivalent (up to polynomial losses) when
we have an id-SVP oracle, this also provides a reduction from worst-case uSVP
to average-case NTRU. Contrary to the reduction from worst-case uSVP to
worst-case NTRU, we cannot use the result of [PS21] to get rid of the id-SVP
oracle. This is because the average-case distribution of NTRU instances that is
produced by our reduction may not be compatible with the one used in [PS21].

We summarize the known reductions between variants of mod-uSVP and
NTRU in Figure 1. Note that the reductions may not be composable due to
incompatible parameter restrictions or instance distributions.

Technical overview. The NTRU problem is a restriction of mod-uSVPmodules
with a basis of a specific shape. In general, a rank-2 module M is represented by
a pseudo-basis, i.e., two vectors (b1,b2) in K2 and two ideals I1, I2 of OK such
that M = b1I1+b2I2. When the two ideals I1 and I2 are both equal to OK , the
pseudo-basis is a basis, and the module is said to be free (note that a free module
is a module that has at least one basis, but not all of its pseudo-bases will satisfy
I1 = I2 = OK). In the NTRU problem, the instance is a basis (b1,b2) of a free
module contained in O2

K , with b1 = (1, h)T for some h ∈ OK and b2 = (0, q)T

for some integer q which is a parameter of the NTRU problem. Hence, the only
degree of freedom in this basis comes from the choice of h. The NTRU problem
then asks to solve mod-uSVP in this very specific module.

4

worst-case
id-SVP

average-case
NTRUmod

decision
NTRU

worst-case
mod-uSVPmod

average-case
mod-uSVPmod

average-case
NTRU

worst-case
mod-uSVP

worst-case
NTRU

Fig. 1. Known reductions between NTRU and mod-uSVP variants. Dashed arrows
require an id-SVP oracle. Blue arrows are proven in [PS21] and red arrows are proven
in this article. The black arrows are folklore.

In the reduction from mod-uSVP to NTRU, we start with an arbitrary
pseudo-basis of an arbitrary module M , and transform it into an NTRU basis.
We then call the NTRU solver on this NTRU instance and lift the solution back
to the original mod-uSVP module. In order to meaningfully lift a short vector
(or a dense rank-1 submodule) back, we require our transformation to preserve
the geometry of the rank-2 module M as much as possible. Our transformation
proceeds in four main steps.

First of all, we transform the input module M ⊂ K2 into an integral module
whose volume is bounded from below and above by quantities depending only
on the parameters of the reduction (NTRU modules are in O2

K and have vol-
ume qd). This is done by scaling M to the desired volume, and then rounding it
to an integral module with a very close geometry. This rounding is performed by
sampling two quasi-orthogonal vectors in the dual of M , and multiplying M on
the left by the matrix whose rows are these two vectors. Multiplication on the
left corresponds to a distortion of the ambient space, but since the two vectors
are quasi orthogonal, this does not change the geometry too much. Also, as the
row vectors of the sampled matrix belong to the dual of M , the resulting module
is integral.

Our second step aims at obtaining the triangular shape of the NTRU basis.
To do so, we compute the Hermite Normal Form of the pseudo-basis. With
some probability, the two coefficients on the first row of the pseudo-basis will
be coprime, leading to an HNF basis with a 1 as a top-left coefficient, exactly
what we need for an NTRU instance. This is where ζK(2) comes into play, as it
closely relates to the probability that two random elements of OK are coprime.

At this point, our pseudo-basis still has coefficient ideals. We remove them
with an id-SVP solver: we compute short x1 and x2 in the ideals I1 and I2,
respectively, and then replace the pseudo-basis ((b1,b2), (I1, I2)) by the basis
(x1b1, x2b2). This step has the effect of slightly sparsifying the module, i.e., it
leads to a rank-2 submodule whose determinant is not much larger. If our gap

5

is sufficiently large compared to the approximation factor of the id-SVP solver,
our sparsified module will still contain an unexpectedly short non-zero vector.

We now have a basis of a free module with vectors of the form (1, h′)T and
(0, b)T , with h′ and b in OK . Our last step consists in replacing b by the NTRU
parameter q. This is done by multiplying the second coordinates of both our
basis vectors by q/b. If q/b ≈ 1 (which we can ensure thanks to the id-SVP
solver), then this does not change the geometry of the module too much.

To conclude, the transformation we have described allows us to transform
any module of rank-2 with an unexpectedly short vector into an NTRU module
with roughly the same geometry. The transformation is reversible, hence, we can
lift any short vector or dense module found in the NTRU module back to the
original rank-2 module. Since this transformation is a Karp reduction, it can
be used to reduce average-case variants of mod-uSVP to average-case variants
of NTRU where the NTRU distribution is inherited from the one on the uSVP
instances.

For the random self-reducibility of mod-uSVPmod, we start with an arbitrary
rank-2 moduleM and want to randomize it so that the distribution of the output
module M ′ does not depend on M . Once again, we design the transformation so
that it preserves the geometry of the module, to be able to meaningfully lift any
dense rank-1 submodule of M ′ back to a dense rank-1 submodule of M . For this
reduction, we assume that all our worst-case modules live inK2

R = (K⊗QR)2 and
have fixed volume (which we can always achieve by scaling the module). We also
assume that the ℓ2-norm of their shortest non-zero vectors is exactly 1/γ < 1.
This restriction to modules with a known gap can be waived, by guessing the
gap and sparsifying the module (see Section 6).

Let us explain the main ideas behind the randomization in the simpler case
of K = Q. We have a lattice M ⊂ R2 with volume 1 and shortest non-zero
vector s with ∥s∥ = 1/γ. Up to rotation of the ambient space, we can assume
that s = (1/γ, 0)T . Let us take t ∈ R2 such that (s, t) forms a basis of M . Since
the volume of M is 1, we know that t = (t0, γ)

T for some t0 ∈ R. Up to the
rotation of the ambient space, the quantity t0 is the only degree of freedom.
Note also that the lattice only depends on t0 mod 1/γ. Let πs(t) denote the
quantity t0, i.e., the norm of the orthogonal projection of t onto span(s). This
discussion shows that the lattice M is uniquely determined by the span of its
shortest non-zero vector and the quantity γ · πs(t) mod 1. Hence, to “hide” the
latticeM , it suffices to “hide” these two quantities. Note that we use the vectors s
and t for our reasoning, but we usually do not have access to them: we randomize
our module by performing only operations that can be done on any of the bases
of M (for K2

R instead of R2, we expect that finding the analogue of (s, t) is
difficult).

In order to hide the span of s, one can apply a uniform orthonormal transfor-
mation to the ambient space. To hide the quantity γ ·πs(t) mod 1, we “blur” the
ambient space, by applying to it a transformation that is close to orthogonal, but
not fully so. By appropriately choosing the transformation, one can obliviously
transform the quantity γ · πs(t) into x · γ · πs(t) + y, where x and y are some

6

random variables. Recall that this quantity only matters modulo 1. Hence, if the
standard deviation of y is sufficiently large compared to 1, then y mod 1 will be
uniformly distributed and will hide the original value of πs(t). The existence of
a gap ensures that a close-to-orthogonal transformation suffices for this purpose.

This intuition over R2 explains one component of our randomization pro-
cedure, which we call the geometric randomization (see Section 5.2). Another
important part of our randomization, which we call the coefficient randomiza-
tion (Section 5.1), focuses on the coefficient ideals of the pseudo-basis (which
are just Z for lattices). The transformation described above will have the effect
of randomizing the vectors b1 and b2 of a pseudo-basis of our module M , but
will have no impact on the coefficients ideals I1 and I2.

In order to hide those ideals, the first step is to multiply the module M
by some uniformly distributed ideal I, using [dBDPW20]. Our new coefficient
ideals I · I1 and I · I2 will then be uniformly distributed too. This is however
not sufficient to fully hide the ideals, since the quotient (I · I1)/(I · I2) is con-
stant. In order to hide this last quantity, or decouple the ideals, we sparsify the
module with respect to some prime ideal p: concretely, we take a uniformly ran-
dom rank-2 submodule of M among those of index p. 5 This process generalizes
lattice sparsification as introduced in [Kho06]. Lattice sparsification is a classic
tool to remove one (or several) annoying vectors in a lattice. Here, the purpose is
different: it has the effect of obliviously multiplying I1 by p while leaving I2 un-
changed (with probability close to 1). By [dBDPW20], the uniform distribution
over bounded-norm prime ideals is close to the uniform distribution over norm-1
ideals (after renormalization of their norm), in the sense that little remains to
be done to obtain the latter distribution. As a result, this sparsification enables
us to (almost) randomize both I1 and I2, independently of one another. The
gap to perfect randomization is handled by carefully studying the distribution
resulting from the geometric and coefficient randomization (Section 5.3).

Summing up, our randomization consists in two main steps: a distortion of
the ambient space, which randomizes the vectors (b1,b2) and a sparsification,
which hides the coefficient ideals I1 and I2 (together with the multiplication of
the module by a random ideal I). Interestingly, we note that these two operations
are similar (though adapted to rank-2 modules) to the ones that were used
in [dBDPW20] to randomize ideal lattices.

The transformation described above allows us to transform an arbitrary mod-
ule M of K2

R into a random module M ′ of K2
R whose distribution is independent

of the input module. One last subtlety to handle in order to have a full worst-case
to average-case reduction is to compute a canonical representation of the mod-
ule M ′. Indeed, the pseudo-basis of the properly distributed module M ′ that we
have at the end of the randomization procedure might leak information about
the input module M . Unfortunately, one cannot compute HNF bases in K2

R (the
HNF gives a canonical representation of rational lattices). In order to obtain a

5 For two rank-2 modules M ′ ⊆ M with pseudo-bases ((b′
1, I

′
1), (b

′
2, I

′
2)) and

((b1, I1), (b2, I2)) respectively, we say that M ′ has index p in M if detK(b′
1,b

′
2) ·

I ′1I
′
2 = p · detK(b1,b2) · I1I2.

7

canonical representation of M ′, we then round it to a close module in O2
K for

which we will be able to compute an HNF pseudo-basis. The rounding procedure
is the same as the one described in the reduction from uSVP to NTRU, and the
distribution of the output pseudo-basis only depends on the input module and
not on the specific pseudo-basis that is provided to represent it.

Discussion. A question arising from our reduction concerns the possibility to
sample an NTRU instance from the distribution obtained at the end of the re-
duction, together with a short secret vector of the corresponding NTRU module.
The difficulty stems from the fact that the output NTRU distribution we obtain
after the reduction is not easy to describe, except as “the distribution obtained
by running the reduction”. The same difficulty also appeared in [PS21], where
it was tackled by running the reduction to sample from the average-case NTRU
distribution (and keeping in mind some quantities generated during the reduc-
tion in order to create a short vector of the output NTRU module). In our case,
we face two additional difficulties when trying to apply the same strategy. First,
we note that even sampling from the NTRU distribution, without asking for a
short vector of the corresponding module, does not seem straightfoward. Since
our mod-uSVP to NTRU reduction requires an id-SVP solver and takes subex-
ponential time if one wants to reach small NTRU modulus q, it does not provide
an efficient sampling algorithm for our final NTRU distribution. Secondly, our
reduction allows us to lift a short vector from the NTRU module back to the
uSVP module, but it is not so clear whether the converse is also possible (i.e.,
starting with a known vector of the uSVP module and obtaining a short vector
of the final NTRU module). This is because of the sparsification step: when we
sparsify a lattice, we can lift a vector from the sparser lattice back to the denser
lattice (this is actually the same vector), but the converse seems more difficult.

Another question we leave open is about the compatibility of our reduction
with those from [PS21]. Our worst-case mod-uSVPmod to average-case NTRUmod

reduction produces a new distribution over NTRU instances. It is unclear whether
this distribution can be used in the search to decision reduction from [PS21]. It
is also unclear how it compares to the one produced by the worst-case id-SVP
to average-case NTRU reduction from [PS21].

It should be noted that the regime where NTRU is provably secure (see [SS13])
is completely distinct from the regime required by our reductions. Indeed, the
regime of [SS13] requires that f and g are slightly larger than

√
q, whereas our

reduction requires f and g to be significantly smaller than
√
q. In other words,

we are in a regime where NTRU is a uSVP instance (and we are trying to show
that in this regime, it is representative of all uSVP instances), whereas [SS13]
works in a regime where an NTRU instance is statistically close to uniform; in
particular, in that regime, the underlying lattice is not a uSVP instance. The
regime of the overstretch-NTRU attacks (including [KF17]) is also distinct from
ours, but in the opposite direction. In these attacks, it is assumed that ∥f∥
and ∥g∥ are poly(d) and q grows; whereas in our case, we have ∥f∥ and ∥g∥ of
the form

√
q/poly(d). Said differently, in those attacks, the short vector is short

in absolute terms, whereas in our case it is short relative to what it would be

8

for a random lattice of the same volume. We leave as an open problem to check
whether these two regimes can be made to intersect.

2 Preliminaries

We use standard Landau notations, with underlying constants that are absolute
(e.g., they do not depend on the specfic choice of number field). We consider
column vectors (unless they are explicitly transposed). Vectors and matrices are
respectively denoted in bold lowercase and uppercase fonts. For a vector x ∈ Ck,
we let ∥x∥ denote its Hermitian norm.

We let D(c, s) refer to the normal distribution over R of center c and standard
deviation s > 0. For X a set that is finite or has finite Lebesgue measure, we
let U(X) denote the uniform distribution over X. For two distributions D1, D2

with compatible supports, we let SD(D1, D2) =
∫
|D1(t) − D2(t)|dt/2 refer

to their statistical distance. For D1, D2 with Supp(D1) ⊆ Supp(D2), we let
RD(D1 ∥ D2) =

∫
D1(t)

2/D2(t) dt refer to their Rényi divergence of order 2.
The probability preservation property states that for any event E, the inequality
D2(E) ≥ D1(E)2/RD(D1 ∥ D2) holds.

For a lattice L, we let DL,s,c denote the Gaussian distribution of support L,
standard deviation parameter s and center parameter c ∈ spanL. We will use
the following lemma, to sample discrete (tail-cut) Gaussian distributions. This
lemma is adapted from [GPV08, Theorem 4.1]. A proof of this precise formula-
tion can be found in [PS21, Lemma 2.2].

Lemma 2.1. There exists a polynomial time algorithm that takes as input a
basis B = (b1, . . . ,bn) of an n-dimensional lattice L, a parameter s ≥

√
n ·

maxi ∥bi∥ and a center c ∈ spanL and outputs a sample from a distribu-
tion D̂B,s,c such that

• SD(DL,s,c, D̂B,s,c) ≤ 2−Ω(n);

• for all v← D̂B,s,c, it holds that ∥v − c∥ ≤
√
n · s.

Some results are obtained under the Extended Riemann Hypothesis (ERH).

2.1 Number Fields

Let K be a number field of degree d ≥ 2 and ring of integers OK . Let KR =
K ⊗Q R. We identify any element of K with its canonical embedding vector
σ : x 7→ (σ1(x), · · · , σd(x))

T ∈ Cd. This leads to an identification of KR with
{y ∈ Cd : ∀i ∈ [r1], yi ∈ R and ∀i ∈ [r2], yr1+r2+i = yr1+i}, where r1 and r2
respectively denote the number of real and pairs of complex embeddings. Note
that the set KR is a real vector subspace of dimension d embedded (via σ) in Cd

and that σ(OK) is a full rank lattice in KR. The (absolute) discriminant ∆K is

defined as ∆K = |det(σ(OK))
2|. We have d = O(log∆K), for ∆K growing to

infinity.

9

For x ∈ KR, we define x ∈ KR as the element obtained by componentwise
complex conjugation of the canonical embedding vector of x. We extend this
notation to vectors and matrices over KR, and let x† denote xT for any x ∈
Kn

R . We define K and OK as the subsets of KR obtained by applying complex
conjugation to elements of K and OK , respectively. For x,y ∈ Kn

R , we define
⟨x,y⟩KR

= x† · y ∈ KR and ∥x∥ = ∥σ(⟨x,x⟩KR
)∥1/2. The (absolute value of the)

algebraic norm of x ∈ KR is defined as N (x) =
∏

i |σi(x)|. The algebraic norm
of x ∈ Kn

R is defined as N (x) = N (⟨x,x⟩KR
)1/2.

We define K+
R as the subset of KR corresponding to having all yi’s being

positive real numbers. For x ∈ K+
R , we define x1/2 as the element of K+

R obtained
by taking the square-roots of the embeddings.

We let O×K = {x ∈ OK : N (x) = 1} denote the set of units of OK

and LogO×K = {(log |σi(x)|)i : x ∈ O×K} ⊂ Rd denote the log-unit lattice. Note
that spanR(LogO×K) = E := {y ∈ Rd :

∑
yi = 0 ∧ ∀i ∈ [r2], yr1+r2+i = yr1+i},

by Dirichlet’s unit theorem. For ζ ∈ E, we define exp(ζ) as the element of K+
R

whose i-th embedding is exp(ζi), for all i.

In this work, we assume that we know a LLL-reduced [LLL82] Z-basis (ri)i≤d
of OK . We define δK = maxi ∥ri∥∞. We have 1 ≤ δK ≤ ∆

O(1)
K : the left inequality

follows from the fact that ∥r∥∞ ≥ 1 for all r ∈ OK \ {0}, whereas the right
inequality derives from Minkowski’s second theorem and the LLL-reducedness
of the ri’s. In the case of cyclotomic number fields, taking the power basis gives
δK = 1. For x =

∑
i xiri ∈ KR, we define ⌊x⌉ =

∑
i⌊xi⌉ri. We will use the

notation {x} = x−⌊x⌉. We have ∥{x}∥∞ ≤ d · δK , and hence ∥{x}∥ ≤ d3/2 · δK .

We will consider the following distributions over KR. Note that for r ∈ K+
R ,

the distribution of r · x for x ∼ DKR(c, s) is DKR(r · c, (σi(r) · si)i).

Definition 2.2. Let s ∈ Rr1+r2
>0 . We define the normal distribution DKR(c, s) of

center c ∈ KR and standard deviation vector s as the distribution obtained by
independently sampling real numbers (y)i∈[d] with{

yj ∼ D(0, sj) for j ∈ [r1]

yr1+j , yr1+r2+j ∼ D(0, sr1+j) for j ∈ [r2]

and then returning c + y where y ∈ KR is such that σj(y) = yj for j ∈ [r1]
and σr1+j(y) = yr1+j + iyr1+j for j ∈ [r2].

We define χKR as the distribution of (⟨x,x⟩KR
)1/2 for x ∈ K2

R sampled ac-

cording to DKR(0, 1)
2.

For a matrix B ∈ Kn×n
R , we define det(B) = N (detKR(B)). We say that B

is orthogonal if B† · B = I, which implies that det(B) = 1. We let On(KR)
denote the set of orthogonal matrices. If a matrix B ∈ Kn×n

R has KR-linearly
independent columns (i.e., no non-trivial linear combination is zero), then it
admits a QR-factorization B = QR with Q ∈ On(KR) and R ∈ Kn×n

R upper
triangular with diagonal elements in K+

R (see, e.g., [LPSW19, Section 2.3]).

10

2.2 Ideals

A fractional ideal (resp. oriented replete ideal) is a subset of K of the form x · I
for some x ∈ K× (resp. x ∈ K×R) and I ⊆ OK an integral ideal. Unless specified
otherwise, by default, an ideal will refer to an oriented replete ideal. For I ideal
of K, we define the ideal I = {x : x ∈ I} of K. Using the canonical embedding,
any non-zero ideal is identified to a d-dimensional lattice, called ideal lattice.
The algebraic norm of an integral ideal I is N (I) := |OK/I| if it is non-zero
and zero otherwise. This is extended to oriented replete ideals xI with x ∈ K×R
and I an integral ideal by setting N (xI) = N (x) · N (I).

For I1 and I2 integral, the product ideal I1I2 is the ideal spanned by all x1 ·x2

with x1 ∈ I1 and x2 ∈ I2. An integral ideal I is said prime if it cannot be written
as I = I1 · I2 with I1, I2 integral and both distinct from OK . For any B ≥ 0, we
let πK(B) denote the number of prime ideals with algebraic norm ≤ B. Under
the ERH, there exists an absolute constant c such that for any B ≥ (log∆K)c, we
have πK(B) ∈ (B/ logB) · [0.9, 1.1] (see [BS96, Theorem 8.7.4]). If x1I1 and x2I2
are two ideals with I1 and I2 integral, we define their product as (x1I1) ·(x2I2) =
(x1x2)(I1I2). The inverse of an ideal I is I−1 = {x ∈ K×R : xI ⊆ OK}.

We will use algorithms from [dBDPW20] to sample among different classes
of ideals.

Lemma 2.3 (Adapted from [dBDPW20, Lemma 2.2], ERH). There ex-
ists an algorithm A and an absolute constant c such that for any B ≥ (log∆K)c,
algorithm A on input B runs in time poly(logB, d) and returns a prime ideal
uniformly among prime ideals of norm ≤ B.

We will also rely on Algorithm 2.1, which is adapted from [dBDPW20, Theo-
rem 3.3], to sample (essentially) uniformly in the set I1 of norm-1 ideals, in time
polynomial in logB. Note that [dBDPW20] considers norm-1 ideals xI with I
integral and all σi(x)’s being positive integers. This discrepancy is handled by
introducing u at Step 3. The standard deviation in Step 2 and tailcut may seem
arbitrary at first sight: these choices simplify the analysis of the module ran-
domization (in Section 5.3). A proof of the following lemma is given in the full
version of this work.

Algorithm 2.1 Ideal-SampleB
1: Sample p uniformly among prime ideals of norms ≤ B, using Lemma 2.3;
2: Sample ζ ∈ E from the centered normal law with standard deviation d−3/2, condi-

tioned on ∥ζ∥ ≤ 1/d;
3: Sample u uniform in {x ∈ KR, ∀i ∈ [d] : |σi(x)| = 1};
4: Return u · exp(ζ) · p/N 1/d(p).

Lemma 2.4 (Adapted from [dBDPW20, Theorem 3.3], ERH). There
exists an absolute constant c such that for any B ≥ (dd∆k)

c, Ideal-SampleB
runs in time polynomial in logB and its output distribution is within 2−Ω(d)

statistical distance from U(I1).

11

2.3 Modules

A module is a subset of some Km
R of the form M =

∑
i≤k biIi where the Ii’s

are non-zero ideals and the bi’s are KR-linearly independent. This is written
compactly as M = B · I (where B is the matrix whose columns are the bi

and I = (I1, . . . , Ik)). The tuple ((I1,b1), . . . , (Ik,bk)) is called a pseudo-basis
of M and is written compactly as (B, I). The integer k is the rank of M . We
define N (M) = det(B) ·

∏
i≤kN (Ii). Note that for d = m = 1, this matches

the norm of an ideal. Using the canonical embedding, any rank-k module is
identified to a (kd)-dimensional lattice, called module lattice. In particular, we
define det(M) as the determinant of the module lattice. Note that det(M) =

N (M) · ∆k/2
K . The module successive minima λi(M) for i ∈ [kd] are defined

similarly. We will also be interested in the module norm-minimum λN1 (M) =
inf{N (N) : N rank-1 submodule of M}. A rank-1 submodule of M is said dens-
est if it reaches λN1 (M).

The dual of a module M is defined as M∨ = {b∨ ∈ spanKR
(M) : ∀b ∈

M, ⟨b∨,b⟩KR
∈ OK}: note that M∨ is an OK-module, σ(M∨) is the dual lattice

of σ(M) and (B · I)∨ = (B−† · J), where Ji = (Ii)
−1 for all i ≤ k.

For any full-rank module M ⊆ Km, there exists a pseudo-basis (B, I) such
that B ∈ Km×m is lower-triangular with ones on the diagonal. It is called a
Hermite Normal Form of M and can be computed in polynomial time from
any finite set of pairs {(Ii,bi)}i such that M =

∑
i biIi and the bi’s are not

necessarily independent [BP91,Coh96,BFH17].

Definition 2.5. Let M be a module. A submodule N ⊆M is said to be primitive
if it satisfies any of the three equivalent conditions:

• the module N is maximal for the inclusion in the set of submodules of M of
rank at most rank(N);
• there is a module N ′ with M = N+N ′ and rank(M) = rank(N)+rank(N ′);
• we have N = M ∩ spanK(N).

In particular, any densest rank-1 submodule of M is primitive.

A proof that the three conditions are equivalent is provided in the full version
of this work. The last statement follows from Condition 1.

The latter lemma allows us to conclude that the module norm-minimum is
reached (see the full version of this work for a proof).

Lemma 2.6. For any module M , there exists a rank-1 submodule N of M such
that N (N) = λN1 (M).

The following result provides a lower bound on the probability that a rank-1
module v · OK is primitive in a rank-k module M , when v ∈ M is sampled
from a sufficiently wide Gaussian distribution. Taking M = Ok

K , this provides
in particular a lower bound on the probability that k elements sampled inde-
pendently of a Gaussian distribution in OK are relatively coprime. This result
generalizes [SS13, Lemma 4.4], which proved the result for k = 2 and M = O2

K

12

(with a proof inspired from [Sit10]). The proof for the general case with rank-k
modules is very similar to the special case M = O2

K , hence we leave it to the full
version. In this work, we will only use Lemma 2.7 for modules of rank-2, however,
for the sake of re-usability, we state and prove it for modules of arbitrary ranks.

Lemma 2.7. There exists an absolute polynomial P such that the following
holds. For any δ ≥ 0, degree-d number field K, integer k ≥ 2, rank-k mod-
ule M ⊂ Kk

R, if c ∈ spanKR
(M) and ς > 0 are such that ∥c∥ ≤ δ · ς and

ς ≥ λkd(M) · P (∆
1/d
K , k, d, δ, λkd(M)/λ1(M)), then it holds that

Pr
v←DM,ς,c

(
v · OK is primitive in M

)
≥ 1

4ζK(k)
,

where ζK(·) is the Dedekind zeta function of K and the λi’s refer to the minima
of the lattice σ(M).

2.4 Rank-2 Modules with a Gap

In this work, we are interested in rank-2 modules that contain an unexpectedly
dense rank-1 submodule, i.e., in modules M with λN1 (M) significantly smaller
than

√
N (M). We define the gap of M by

γ(M) =

(
N (M)

1
2

λN1 (M)

) 1
d

.

The following lemma shows that if the gap is sufficiently large, then the densest
rank-1 submodule is unique. A proof may be found in the full version of this
work.

Lemma 2.8. Let M be a rank-2 module with gap γ > 0 and N a densest rank-1
submodule of M . If N ′ is a rank-1 submodule of M with N (N ′) < γd

√
N (M),

then N ′ ⊆ N .
In particular, for γ > 1, the densest rank-1 submodule is unique and any

vector b ∈M with ∥b∥ < γ · N (M)1/(2d) belongs to it.

In the following, when a rank-2 module M has a gap larger than 1, we will
implicitly use Lemma 2.8 when referring to the densest rank-1 submodule of M .
Most rank-2 modules we will consider will have gap larger than 1.

This can be used to show that we can use the QR-factorization to precisely
describe rank-2 modules (see the full version for a proof).

Lemma 2.9. Let M be a rank-2 module with gap γ > 0. Then M can be written
as

N 1
2d (M)

γ
·Q ·

([
1
0

]
· J1 +

[
r
1

]
· γ2 · J2

)
,

where Q ∈ O2(KR), r ∈ KR, J1 and J2 are norm-1 ideals. We call this a QR-
standard-form for M .

13

We note that there are multiple QR-standard forms for any module M , as
units of C can be transferred from the ideal coefficients to the matrix Q. In
the following section, we will be interested in modules with specific distributions
expressed in terms of QR-standard forms. It will then be convenient to define
a module by a (well-distributed) QR-standard form. Note that the modules we
define this way have norm 1.

Definition 2.10. For any Q ∈ O2(KR), γ > 0, r ∈ KR and norm-1 ideals J1, J2,
we define

QRSF-2-Mod(Q, γ, J1, J2, r) =
1

γ
·Q ·

([
1
0

]
· J1 +

[
r
1

]
· γ2 · J2

)
.

We will use the following result on the first and last minimum of the dual
of a rank-2 module with a gap. The proof is provided in the full version of this
paper.

Lemma 2.11. Let M be a rank-2 module in K2
R with gap γ(M) ≥ 1. Then

λ2d(M
∨) ≤ 2

√
d · γ(M) · N (M)−

1
2d

λ1(M
∨)−1 ≤ 2d · γ(M) · N (M)1/(2d) · δK ·∆

1
2d

K .

2.5 Algorithmic Problems

In this section, we define different variants of the unique-SVP problem for rank-2
modules, as well as variants of the NTRU problem. The definitions of the dif-
ferent NTRU problems differ slightly from the ones defined in [PS21]: this is to
emphasize the resemblance between uSVP and NTRU. The difference between
the NTRU definitions in this work and the ones in [PS21] are sufficiently minor
that they can be reduced to one another without difficulty, and we hence opted
to keep the same names.

Definition 2.12 (γ-uSVP instance). Let γ > 0. A γ-uSVP instance consists
in a pseudo-basis (B, I) of a rank-2 module M ⊂ K2 such that M contains a
non-zero vector s with ∥s∥ ≤ γ−1 · N (M)1/(2d).

Note that any module M associated to a γ-uSVP instance contains the rank-
1 submodule sOK whose norm is ≤

√
N (M)/γd. By Lemma 2.8, this implies

that if γ > 1, then the module M has a unique densest rank-1 submodule.

Definition 2.13 ((D, γ, γ′)-uSVPvec and (γ, γ′)-wc-uSVPvec). Let γ ≥ γ′ > 0
and D a distribution over γ-uSVP instances. The (D, γ, γ′) average-case unique
SVP problem for rank-2 modules ((D, γ, γ′)-uSVPvec for short) asks, given as
input a pseudo-basis of some rank-2 module M sampled from D, to compute
a vector s ∈ M \ {0} such that ∥s∥ ≤ N (M)1/(2d)/γ′. The advantage of an
algorithm A against the (D, γ, γ′)-uSVPvec problem is defined as

Adv(A) = Pr
(B,I)←D

(
A((B, I)) = s with

∣∣∣∣ s ∈M \ {0}
∥s∥ ≤ N (M)1/(2d)/γ′

)
,

14

where the probability is also taken over the internal randomness of A.
The worst-case variant ((γ, γ′)-wc-uSVPvec) asks to solve this problem for

any γ-uSVP instance (B, I).

Definition 2.14 ((D, γ)-uSVPmod and γ-wc-uSVPmod). Let γ > 0 and D a
distribution over γ-uSVP instances. The (D, γ) unique SVP problem for rank-2
modules ((D, γ)-uSVPmod for short) asks, given as input a γ-uSVP module M
sampled from D, to recover a densest rank-1 submodule N ⊂M . The advantage
of an algorithm A against the (D, γ)-uSVPmod problem is defined as

Adv(A) = Pr
(B,I)←D

(
A((B, I)) = N with

∣∣∣∣N ⊂M with rk(N) = 1
N (N) = λN1 (M)

)
,

where the probability is also taken over the internal randomness of A.
The worst-case variant (γ-wc-uSVPmod) asks to solve this problem for any

γ-uSVP instance (B, I).

We can now define the NTRU problems, as special cases of the uSVP variants
above.

Definition 2.15 (NTRU instance). Let q ≥ 2 be an integer, and γ > 0 a
real number. A (γ, q)-NTRU instance is a γ-uSVP instance whose pseudo-basis
is required to be of the form ((b1,OK), (b2,OK)) with b1 = (1, h)T for some
h ∈ OK and b2 = (0, q)T .

Comparison with [PS21]. In [PS21], an NTRU instance consists in the single
element h ∈ Rq, whereas we consider it as a basis of a rank-2 module in this
work. Both formalisms are equivalent, since one can reconstruct the basis of the
rank-2 module from h (and also q, which is a parameter of the problem). A second
difference comes from the fact that [PS21] requires the short vector s = (s1, s2)

T

to satisfy ∥s1∥, ∥s2∥ ≤
√
q/γ, whereas we require that ∥s∥ ≤ √q/γ. This means

that a (γ, q)-NTRU instance for us is a (γ, q)-NTRU instance for [PS21], but the
converse does not hold: a (γ, q)-NTRU instance for [PS21] is only guaranteed to
be a (

√
2 · γ, q)-NTRU instance for us.

Definition 2.16 (NTRU problems). Let q ≥ 2, γ ≥ γ′ > 0 and D a distri-
bution over (γ, q)-NTRU instances. The (D, γ, γ′, q)-NTRUvec problem, (γ, γ′, q)-
wc-NTRUvec problem, (D, γ, q)-NTRUmod problem and (γ, q)-wc-NTRUmod prob-
lem are the restrictions of the uSVP problems to (γ, q)-NTRU instances.

From the definitions of the NTRU and uSVP problems, one can see that the
average case NTRUvec and NTRUmod problems reduce to the worst-case uSVPvec

and uSVPmod problems. In the next sections, we will show that the converse also
holds, provided we have an oracle solving ideal-SVP.

Finally, we also recall the definition of the Hermite shortest vector problem
in ideal lattices (id-HSVP).

15

Definition 2.17 (γ-id-HSVP). Let γ ≥
√
d·∆1/(2d)

K . Given as input a fractional
ideal I ⊂ K, the γ-id-HSVP problem asks to find an element x ∈ I \ {0} such
that ∥x∥ ≤ γ · N (I)1/d.

By Minkowski’s theorem, this problem is well-defined for any γ ≥
√
d ·∆1/(2d)

K .

3 New Tools on Module Lattices

In this section, we present new tools to manipulate module lattices. For the sake
of re-usability, we describe them for modules of arbitrary ranks, but we will use
them only in rank 2 in the reductions of the present work. The missing proofs
of this section are available in the full version of this paper.

3.1 Module Sparsification

An essential ingredient in the module randomization of Section 5 is sparsification.
In this subsection, we extend to modules the definition and some properties of
sparsification over lattices [Kho06].

Definition 3.1. Let M a module, p a prime ideal, b∨ ∈ (M∨/pM∨) \ {0} and
b∨ a lift of b∨ in M∨. The sparsification of M by (b∨, p) is the submodule

M ′ =
{
m ∈M, ⟨b∨,m⟩KR

∈ p
}
.

The submodule M ′ does not depend on the choice of the vector b∨ lifting b∨.

Note that M ⊆ M ′ ⊆ pM , implying that M ′ has the same rank as M . As
showed by the following two lemmas, sparsification increases the module norm
by a factor N (p) and an arbitrary rank-1 submodule of M is not contained in M ′

(except with probability ≤ 1/N (p)).

Lemma 3.2. Let M a module, p a prime ideal and b∨ ∈ (M∨/pM∨) \ {0}.
Let M ′ be the sparsification of M by (b∨, p). Then N (M ′) = N (p) · N (M).

Lemma 3.3. Let M a rank-k module, p a prime ideal and bI a primitive rank-1
submodule of M . Let b∨ be uniformly distributed in (M∨/pM∨) \ {0} and M ′

be the sparsification of M by (b∨, p). Then bpI ⊆M ′ and, except with probabil-
ity 1/N (p)− 1/N (p)k, we have bI ̸⊂M ′.

The following lemma states that a module sparsification can be efficiently
computed. The algorithm generalizes the one for lattice sparsification, detailed,
e.g., in [BSW16].

Lemma 3.4. There exists a polynomial-time algorithm taking as inputs an ar-
bitrary pseudo-basis of M ⊂ Kk

R, a prime ideal p and b∨ ∈ (M∨/pM∨) \ {0}
and computing a pseudo-basis of the sparsification of M by (b∨, p).

16

3.2 Module Rounding

In this section, we describe the DualRound algorithm that rounds a rank-k mod-
ule contained in Kk

R into a module contained in Ok
K (with a close geometry), in a

way that does not depend on how the module in Kk
R was represented. We do that

by sampling almost orthogonal vectors in the dual lattice, in a similar fashion to
what was done in [dBDPW20] in the context of ideal lattices. We believe that
this technique of rounding via the dual might have other applications, especially
in situations where one would like to have the analogue of an HNF basis for
lattices with real coefficients.

DualRound is parameterized by a standard deviation parameter ς > 0, a
BKZ block-size β ∈ {2, . . . , kd} and an error bound ε > 0. It starts by com-
puting a short Z-basis of C∨, by using a provable variant of the BKZ algo-
rithm [Sch87,HPS11,GN08,ALNS20]. This offers different runtime-quality trade-
offs. It then uses the discrete Gaussian sampler from Lemma 2.1 with orthogonal
center parameters ti.

Algorithm 3.1 Algorithm DualRoundς,β,ε

Input: A pseudo-basis (B, I) of a rank-k module M ⊂ Kk
R .

1: Compute a Z-basis of M∨;
2: Run BKZ with block-size β on it to obtain a new Z-basis C∨ of M∨;
3: Set R = ε−1

√
kdς;

4: For i ∈ [k], set ti = R · ei, where ei is the i-th canonical unit vector of Kk
R ;

5: For i ∈ [k], sample yi ← D̂C∨,ς,ti ;
6: Return Y = (y1| . . . |yk)

†.

Lemma 3.5. Let (B, I) be a pseudo-basis of a rank-k module M ⊂ Kk
R. Let

β ∈ {2, · · · , kd}, ε > 0, and ς be such that ς ≥ (kd)kd/β+3/2 ·λkd(M
∨). Algorithm

DualRound runs in time polynomial in 2β , log(ς/ε) and the bitsize of its input.
Further, on input (B, I), DualRoundς,β,ε outputs a matrix Y ∈ Mk(KR) such
that

• (Y ·B) · I is contained in Ok
K ;

• Y = R · Ik +E for R = ε−1
√
kdς > 0 and ∥eij∥ ≤ εR for all i, j ∈ [k].

Moreover, if (B′, I′) is another pseudo-basis of M and if Y′ is the output of
DualRound given this pseudo-basis as input, then

SD(Y,Y′) ≤ 2−Ω(kd).

Note that Lemma 3.5 does not necessarily ensure that the matrix Y is invert-
ible, hence the module Y ·B · I might not be of rank k. However, by choosing ε
sufficiently small and using the second condition on Y, one can make sure thatY
is indeed invertible. This is the purpose of Lemma 3.6.

Lemma 3.6. Let Y ∈ Kk×k
R be such that Y = R · Ik + E for some R > 0 and

∥eij∥ ≤ ε ·R for all i, j ∈ [k]. Assume that ε ≤ 1/(2k). Then Y is invertible and
we have Y−1 = R−1 · Ik + E′, with ∥e′ij∥ ≤ (k + 1) · ε · R−1 for all i, j ∈ [k].

Further, it holds that det(Y) ∈ [(1 + (k + 1)(k + 2)ε)−d/2, (1 + 3ε)d/2] ·Rkd.

17

4 From uSVP to NTRU

In this section, we prove the following result

Theorem 4.1. Let K be a number field of degree d with ζK(2) = 2o(d) and let
γ+ > 0 (recall that ζK(·) denotes the Dedekind zeta function of K). There exists

q0 = poly(∆
1/d
K , d, δK , γ+) ∈ R≥0 and an algorithm uSVP-to-NTRU such that the

following holds. For any q ≥ q0, γNTRU ≥ γ′NTRU > 1, γHSVP ≥
√
d∆

1/(2d)
K , let

γuSVP = γNTRU ·
√
γHSVP · 16

√
2 · d3/2 · δK

γ′uSVP =
γ′NTRU

γ
3/2
HSVP · 4 · d9/2 · δ2K

.

For any distribution DuSVP over γuSVP-uSVP instances with gap ≤ γ+, let
DNTRU be the distribution uSVP-to-NTRU (DuSVP, q, γHSVP). We have four re-
ductions

• from (DuSVP, γuSVP)-uSVPmod to (DNTRU, γNTRU, q)-NTRUmod;

• from γuSVP-wc-uSVPmod restricted to modules with gap ≤ γ+ to (γNTRU, q)-
wc-NTRUmod;

• from (DuSVP, γuSVP, γ
′
uSVP)-uSVPvec to (DNTRU, γNTRU, γ

′
NTRU, q)-NTRUvec;

• from (γuSVP, γ
′
uSVP)-wc-uSVPvec restricted to modules with gap ≤ γ+ to

(γNTRU, γ
′
NTRU, q)-wc-NTRUvec.

Given access to an oracle solving γHSVP-id-HSVP, the four reductions run

in time polynomial in their input size, in exp(d log(d)
log(2q/q0)

) and in ζK(2).

The outline of the reduction is given in Figure 2. Note that the quantity ζK(2)
may be exponential in d for some number fields (which may impact on the run-
time of the reduction, or even on the applicability of the reduction since we
require ζK(2) = 2o(d)). In the case of power-of-two cyclotomic fields, it was
proven in [SS13, Lemma 4.2] that ζK(2) = O(1). The missing proofs of this
section are available in the full version of this work.

4.1 Pre-conditioning the uSVP Instance

In this section, we use algorithm DualRound to pre-process the input module and
control its volume. In order to have the Hermite Normal Form of our integral
module look like an NTRU instance, we slightly modify the geometry of our input
module to make it have what we call the coprime property (see Definition 4.2).
Hence, we describe an algorithm, called PreCond (avaible in the full version of
this paper), which combines all this and transform any uSVP instance (with a
lower bounded gap) into a new uSVP instance with roughly the same geometry
and with all the properties we will require in Section 4.2.

18

Definition 4.2 (Coprime property). We say that a rank-2 module M ⊆ O2
K

has the coprime property if it holds that

{x ∈ OK | ∃ y ∈ OK , (x, y)T ∈M} = OK .

In other words, the module M has the coprime property if the ideal spanned by
the first coordinate of all the vectors of M is equal to OK .

We note that having the coprime property is not very constraining. In fact, any
module can be applied a small distorsion in order to ensure the coprime property.
This is formalized in Lemma 4.3 below.

Lemma 4.3. Let (B, I) be a pseudo-basis of a rank-2 module M ⊂ K2 with gap

γ(M) ≥ 1. There exists some V0 > 0 with V
1/(2d)
0 = poly(∆

1/d
K , d, δK , γ(M))

and an algorithm PreCond such that the following holds. Let β ∈ {2, · · · , 2d}
and V > 0 be such that V 1/(2d) ≥ (2d)2d/β · V 1/(2d)

0 . Then, on input (B, I), V
and β, algorithm PreCond outputs a matrix Y ∈ GL2(K) such that

• if (B, I) is a γuSVP-uSVP instance, then (YB, I) is a γ′uSVP-uSVP instance
for γ′uSVP = γuSVP/(2

√
2);

• the rank-2 module M ′ := YB · I is contained in O2
K ;

• N (M ′) ∈ [1/2d, 2d] · V ;
• M ′ has the coprime property;
• Y = R · I2 + E for some R = V 1/(2d) · N (M)−1/(2d) > 0 and ∥eij∥ ≤ R/5
for all 1 ≤ i, j ≤ 2.

Assume that ζK(2) ≤ 2o(d). Then Algorithm PreCond runs in expected time
polynomial in its input bitsize, in 2β and in ζK(2).

4.2 Transforming a uSVP Instance into an NTRU Instance

As the NTRU modules are free, the second step of our reduction finds a free mod-
ule containing our uSVP instance and transforms it into an NTRU instance. For
this purpose, we use the BalanceIdeal algorithm (available in the full version of
this work) that takes as input any fractional ideal I and uses a γHSVP-id-HSVP
oracle to output a balanced element x such that ⟨x⟩ contains I but is not much
larger than it.

Lemma 4.4. There exists an algorithm BalanceIdeal that takes as input a

fractional ideal I ⊂ K and a parameter γHSVP ≥
√
d · ∆1/(2d)

K , and outputs an
element x ∈ K such that I ⊆ ⟨x⟩ and |σi(x)| ∈ [1 − 1/d, 1 + 1/d] · σ−1 for all
i ≤ d, where σ = γHSVP · d2 · δK · N (I)−1/d.

Moreover, given access to a γHSVP-id-HSVP oracle, it runs in polynomial
time and makes one call to the γHSVP-id-HSVP oracle.

We can now describe our algorithm transforming a uSVP instance into an
NTRU instance: Algorithm 4.1. The operations done by this algorithm are sum-
marised in Figure 2 and proven in Lemma 4.6.

19

Algorithm 4.1 Algorithm Conditioned-to-NTRU

Input: A pseudo-basis B1 · I of a rank-2 module in O2
K and some parameters q and

γHSVP

Output: A basis B4 of a free rank-2 module and some auxiliary information aux

1: Compute the HNF pseudo-basis B2 · J of the rank-2 module spanned by B1 · I

Let a = B2[1, 0] # B2 =

(
1 0
a 1

)
2: Sample b← BalanceIdeal(J2, γHSVP)
3: Compute h = ⌊a · q/b⌉

4: Return B4 =

(
1 0
h q

)
and aux = (a, b, J1, J2)

Lemma 4.5. Let γHSVP ≥
√
d∆

1/(2d)
K , q ∈ Z>0 and (B, I) be a pseudo-basis of

a rank-2 module M ⊆ O2
K . Assume that we have access to a γHSVP-id-HSVP

oracle. On input γHSVP, q and (B, I), algorithm Conditioned-to-NTRU runs in
polynomial time in the bitsize of its input and makes one call to the γHSVP-
id-HSVP oracle.

Lemma 4.6. Let γHSVP ≥
√
d · ∆1/(2d)

K , γNTRU > 1 and q ∈ Z>0 be some
parameters. Define

V = γd
HSVP · qd · dd

and γuSVP = γNTRU ·
√
γHSVP · 8 · d3/2 · δK .

Let (B, I) be any γuSVP-uSVP instance in O2
K , with the coprime property

and with norm in [1/22d · V, 22d · V]. Then on input (B, I), γHSVP, q, the algo-
rithm Conditioned-to-NTRU outputs (B4, aux) such that B4 is a (γNTRU, q)-
NTRU instance.

The aux information output by algorithm Conditioned-to-NTRU will be used
to lift any short vector / dense submodule from the NTRU instance back to the
uSVP instance. The proofs of Lemmas 4.5 and 4.6 are available in the full version
of this work.

4.3 Lifting back Short Vectors and Dense Submodules

In this section, we prove that using the auxiliary information aux produced
by Algorithm Conditioned-to-NTRU, one can lift a short vector or a densest
submodule from the output NTRU instance back to the input uSVP instance.
The proofs of Lemmas 4.7 and 4.8 are available in the full version of this work.

Lemma 4.7. There exists an algorithm LiftMod such that the following holds.
Let q, γHSVP and (B, I) be as in Lemma 4.6. Let M1 denote the rank-2 module
generated by (B, I), [C, (a, b, J1, J2)] ← Conditioned-to-NTRU((B, I), q, γHSVP)
and let M4 denote the rank-2 free module generated by C.

Let (v, J) be a pseudo-basis of the densest rank-1 submodule of M4. Then,
on input a, b, (C,O2

K) and (v, J), algorithm LiftMod outputs w ∈ K such that
spanK(w) ∩M1 is the densest rank-1 submodule of M1.

20

Module Pseudo-basis Short vector

M1

 I1 I2(
b11 b12
b21 b22

) s1 =

(
u
v

)
yStep 1

HNF

M2 = M1

 J1 J2(
1 0
a 1

) s2 = s1

y Step 2
Principalization

M3 ⊇M2

 OK OK(
1 0
a b

)  s3 = s2

y Step 3
distorsion
+ rounding

M4

 OK OK(
1 0

⌊a · q/b⌉ q

) s4 =

(
u

v · q/b− u · {a · q/b}

)

Fig. 2. Outline of algorithm Conditioned-to-NTRU.

Moreover, algorithm LiftMod runs in polynomial time.

Lemma 4.8. There exists an algorithm LiftVec such that the following holds.
Let q, γHSVP and (B, I) be as in Lemma 4.6. Let M1 denote the rank-2 module
generated by (B, I), [C, aux] ← Conditioned-to-NTRU((B, I), q, γHSVP) and let
M4 denote the rank-2 free module generated by C.

Let s ∈ M4. Then, on input aux, γHSVP, (C,O2
K) and s, algorithm LiftVec

outputs a vector t ∈M such that ∥t∥ ≤ ∥s∥ · 68 · γ2
HSVP · d4 · δ2K .

If given access to a γHSVP-id-HSVP oracle, algorithm LiftVec runs in poly-
nomial time and makes 1 call to the oracle.

Combining all the results of this section, one can prove Theorem 4.1.

5 Randomization of Rank-2 Modules with Gaps

A rank-2 module with a gap can, by Lemma 2.9 and the fact that densest
submodules are primitive, be written as M = u · J1 + v · J2 where u · J1 is
a densest rank-1 submodule of M . Informally, the goal of this section is to
randomize u,v, J1, J2 without changing the gap too much. The missing proofs
of this section are available in the full version of this work.

We first describe the average-case distribution we are considering. Note that
the gap parameter γ′ is itself a random variable.

21

Definition 5.1. Let γ > 0 and B > 2. We define the distribution Dmodule
B,γ over

rank-2 and norm-1 modules by:

Dmodule
B,γ = QRSF-2-Mod(Q, γ′, I1, I2, r),

where

• the matrix Q is uniform in O2(KR);
• the gap parameter γ′ is set as γ′ = γ · N (c/a)1/(2d)/B1/(2d) with (a, c) ∈ K2

R
distributed as χKR × D(0, 1) conditioned on the event that for all i ∈ [d] we
have |σi(a · c)| ≥ 1/d;

• the ideals I1, I2 are uniform in I1 (the set of norm-1 ideals);

• the element r is uniform in KR mod γ′−2 · I1I
−1
2 .

We now state the main theorem of this section, which can be viewed as a
worst-case to average-case reduction for rank-2 modules with a gap.

Theorem 5.2 (ERH). For all B ≥ (dd∆k)
Ω(1) and γ ≥ B1/(2d) there exists a

procedure RandomizeB that runs in time polynomial in logB and the bitsize of
its input, and such that on input a pseudo-basis (B, I) of a rank-2 and norm-1
module M of gap γ outputs a pair ((B′, I′), aux) such that

• the pseudo-basis (B′, I′) spans a rank-2 and norm-1 module M ′;
• any event that holds for Dmodule

B,γ with probability ε ≥ 2−o(d) also holds for M ′

with probability Ω(ε4) over the internal randomness of RandomizeB.

Further, there exists a deterministic algorithm Recover that runs in time
polynomial in the bitsize of its input such that for M ′ as above, if U ′ is a dens-
est rank-1 submodule of M ′, then Recover(U ′, aux) returns the densest rank-1
submodule of M , with probability 1−2−Ω(d) over the randomness of RandomizeB.

We note that the theorem does not state that the output distribution of
RandomizeB is Dmodule

B,γ , but only that they are close in the sense that any event

that holds with sufficient probability for Dmodule
B,γ also holds for the output dis-

tribution of RandomizeB with a polynomially related probability.
RandomizeB is described in Algorithm 5.6. It consists of two main steps: a co-

efficient randomization (described in Section 5.1), whose purpose is to randomize
the ideal coefficients; and a geometric randomization (described in Section 5.2),
whose purpose is to randomize the pseudo-basis matrix. Section 5.3 compares
the distribution that would ideally be returned by the composition of the coef-
ficient and geometric randomizations, with the distribution of the pseudo-basis
in Definition 5.1. Finally, we complete the proof of Theorem 5.2 in Section 5.4.

5.1 Coefficient Randomization

In the coefficient randomization step, our aim is to randomize the ideal coeffi-
cients of a good pseudo-basis (i.e., whose first pair corresponds to the densest

22

rank-1 submodule), given an arbitrary pseudo-basis of a rank-2 module. One
may multiply the whole pseudo-basis by a random ideal, but this only random-
izes the pair of ideal coefficients. More precisely, this leaves the ratio of the
ideal coefficients unchanged. To decouple the ideal coefficients, we use module
sparsification, as described in Section 3. This first step towards coefficient ran-
domization is formally described in Algorithm 5.1. Steps 1 and 3 are respectively
performed using Lemmas 2.3 and 3.4.

Algorithm 5.1 Partial Coefficient Randomization: Partial-CRB
Input: A pseudo-basis of a rank-2 module M .
1: Sample p uniformly among prime ideals of norms ≤ B;
2: Sample b∨ uniformly in (M∨/pM∨) \ {0};
3: Return a pseudo-basis of the sparsification of M by (b∨, p) along with p.

Theorem 5.3 (ERH). Let B ≥ (log∆K)Ω(1). The runtime of Partial-CRB
is polynomial in logB and the bitsize of its input. Let (B, I) be a pseudo-basis of
a rank-2 module M , and let (J1,u), (J2,v) be an arbitrary pseudo-basis of M .
Let M ′ be the rank-2 module spanned by the pseudo-basis output by Partial-CRB
when given (B, I) as input, let b∨ be the element of (M∨/pM∨) \ {0} sampled
in Partial-CRB and let b∨ be a lift of b∨ in M∨.
Then, with probability 1 − (1/B)Ω(1), we have ⟨b∨,u⟩KR

/∈ pJ−11 . In that case,

there exists x ∈ J1J
−1
2 such that

M ′ = u · pJ1 + (v + xu) · J2.

Assume further that γ(M) ≥ B1/(2d) and that u · J1 is the densest rank-1
submodule of M . Then, still when ⟨b∨,u⟩KR

/∈ pJ−11 , we have that γ(M ′) =

γ(M)/N (p)1/(2d) > 1 and u · pJ1 is the densest rank-1 submodule of M ′.

The result follows from Lemmas 5.4 and 5.5, whose proofs are postponed to
the full version of this work.

Lemma 5.4. Borrowing the notations of Theorem 5.3, we have

u · pJ1 ⊂M ′ and u · J1 ̸⊂M ′,

with probability 1− (1/B)Ω(1) over the choices of p and b∨.

Lemma 5.5. Borrowing the notations of Theorem 5.3 and assuming that u ·
J1 ̸⊂M ′, there exists x ∈ J1J

−1
2 such that (v + xu) · J2 ⊂M ′.

We now describe the coefficient randomization. Ideally, we would have ac-
cess to a pseudo-basis ((J1,u), (J2,v)) of the module M under scope, for which
the densest rank-1 submodule is u · J1. We would multiply J1 by a random
ideal and J2 by another random ideal. Unfortunately, given only access to an
arbitrary pseudo-basis ((I1,b1), (I2,b2)) of M , this seems difficult to achieve
obliviously. Instead, we use algorithm Ideal-Sample (Algorithm 2.1) to obtain

23

a uniform norm-1 ideal I, and multiply M by it. This will obliviously multiply J1
and J2 by I. As this distribution is invariant by ideal multiplication, the ideal
J2I/N (J2)

1/d will be uniform among norm-1 ideals. It remains to obliviously
randomize the first ideal independently of the second one. For this purpose, we
use Partial-CR (Algorithm 5.1), which has the effect of obliviously multiply-
ing the first ideal with a random prime ideal p while leaving the second one
unchanged (with overwhelming probability). Note that multiplying by a ran-
dom prime ideal is the main component of the ideal randomization algorithm
Ideal-Sample. In a sense, this “almost” randomizes J1.

Algorithm 5.2 describes the process on the input basis ((I1,b1), (I2,b2)). The
corresponding randomization performed on the hidden pseudo-basis ((J1,u),
(J2,v)) is described in Algorithm 5.3. Note that there is no need for Algo-
rithm 5.3 to be efficient as its sole purpose is to describe the behavior of Algo-
rithm 5.2 on the hidden pseudo-basis.

In Theorem 5.6, we show that the resulting distributions on the output mod-
ules are statistically close, and describe the evolution of the densest rank-1 sub-
module.

Algorithm 5.2 Real Coefficient Randomization: Real-CRB,B′

Input: A pseudo-basis ((I1,b1), (I2,b2)) of a module M ⊂ K2
R.

1: Let ((I ′1,b
′
1), (I

′
2,b

′
2)), p be the output of Partial-CRB on input ((I1,b1), (I2,b2));

2: Sample q using Ideal-SampleB′ ;
3: Let b′′

i = b′
i/N (p)1/(2d) for i ∈ [2];

4: Return ((qI ′1,b
′′
1), (qI

′
2,b

′′
2)), p, q.

Algorithm 5.3 Ideal Coefficient Randomization: Ideal-CRB
Input: Q ∈ O2(KR), γ > 1, J1, J2 ideals of norm 1, r ∈ KR;
1: Let M = QRSF-2-Mod(Q, γ, J1, J2, r);
2: Let u = 1/γ ·Q · (1, 0)T and v = γ ·Q · (r, 1)T ;
3: Sample p uniformly among prime ideals of norms ≤ B;
4: Sample b∨ in M∨, uniform in M∨/pM∨ conditioned on ⟨b∨,u⟩KR

̸∈ pJ−1
1 ;

5: Find x ∈ J1J2
−1 such that ⟨b∨,v + x · u⟩KR

∈ pJ−1
2 ;

6: Sample J uniformly among norm-1 ideals;
7: Return (Q, γ/N (p)1/(2d), J1J2

−1Jp/N 1/d(p), J, r + x).

Theorem 5.6 (ERH). Assume that B′ ≥ (dd∆K)Ω(1) and B ≥ (log∆K)Ω(1).
The runtime of Real-CRB,B′ is polynomial in log(BB′) and the bitsize of its
input.

Let M = 1
γ ·Q·

([
1
0

]
· J1 +

[
r
1

]
· γ2 · J2

)
⊂ K2

R a module with norm 1, in QR-

standard form. Then the distribution of the module output by Real-CRB,B′ on
input an arbitrary pseudo-basis of M is within statistical distance (1/B)Ω(1)+2−d

of QRSF-2-Mod(Ideal-CRB(Q, γ, J1, J2, r)).
Assume further that γ ≥ B1/(2d) and let U denote the densest rank-1 sub-

module of M . Let (M ′, p, q) be the output of Real-CRB,B′ on input M . Then,

24

with probability 1− (1/B)Ω(1), we have that γ(M ′) = γ(M)/N (p)1/(2d) > 1 and
the densest rank-1 submodule of M ′ is

N (p)
1
2d · U · q p

N 1
d (p)

.

5.2 Geometric Randomization

In the geometric module randomization, we will use a distribution Ddistort over
K2×2

R whose purpose is to distort the geometric relationship between the dens-
est rank-1 submodule and the complementing rank-1 submodule of the rank-2
module under scope. We define Ddistort as DKR(0, 1)

2×2 conditioned on the event
that |det(σi(D))| > 1/d holds for all i ∈ [d].

The following lemmas describe useful properties of the distribution Ddistort.

Lemma 5.7. The following properties hold.

• The distribution Ddistort can be sampled from in time polynomial in d.
• The distribution Ddistort is invariant by multiplication on the left and the

right by matrices in O2(KR).

Lemma 5.8. Let D be the distribution over K2×2
R of

Q ·
(
a b
0 c

)
where Q ← U(O2(KR)), a ← χKR and b, c ← DKR(0, 1), conditioned on the
event that for all i ∈ [d] we have |σi(a · c)| ≥ 1/d. Then D = Ddistort.

Let ((J1,u), (J2,v)) be a pseudo-basis of a rank-2 moduleM . Assume that u·
J1 is the densest rank-1 submodule, but that we have access to this pseudo-basis
only indirectly, via an arbitrary pseudo-basis of M . Write

(u|v) = Q ·
(
1 r
0 1

)
,

for some r ∈ KR. The purpose of the geometric randomization is to map r to

some r′ that is uniform modulo J1J
−1
2 , while at the same time not distorting

the module M too much, so that the randomized M still has a gap and its rank-
1 densest submodule is related to u · J1. For this purpose, we multiply M on
the left by a matrix sampled from Ddistort. For the analysis, it is convenient to
take it Gaussian, and to avoid a potentially large distortion, we avoid matrix
samples with small determinant. This corresponds to algorithm Real-GR (Algo-
rithm 5.4). The effect on the hidden pseudo-basis ((J1,u), (J2,v)) is described in
algorithm Ideal-GR (Algorithm 5.5). In Theorem 5.9, we show that the result-
ing module distributions are identical, and describe the evolution of the densest
rank-1 sublattice.

25

Algorithm 5.4 Real Geometric Randomization: Real-GR

Input: A pseudo-basis ((I1,b1), (I2,b2)) of a norm-1 module M ⊂ K2
R.

1: Sample D← Ddistort (using Lemma 5.7);

2: (b′
1|b′

2)← det(D)−1/(2d) ·D · (b1|b2);
3: Return ((I1,b

′
1), (I2,b

′
2)),D.

Algorithm 5.5 Ideal Geometric Randomization: Ideal-GR

Input: Q ∈ O2(KR), γ > 1, J1, J2 ideals of norm 1, r ∈ KR;
1: Sample a ← χKR and c ← D(0, 1) conditioned on the event that for all i ∈ [d] we

have |σi(a · c)| ≥ 1/d;
2: Sample b← D(0, 1);
3: Sample Q′ ← U(O2(KR));
4: Set J ′

1 = a/N 1/d(a) · J1 and J ′
2 = c/N 1/d(c) · J2;

5: Set γ′ = γ · N (c/a)1/(2d);
6: Set r′ = (b+ ar)/c;
7: Return (Q′, γ′, J ′

1, J
′
2, r

′).

Theorem 5.9. Algorithm Real-GR runs in polynomial time. Let M = 1
γ · Q ·([

1
0

]
· J1 +

[
r
1

]
· γ2 · J2

)
⊂ K2

R a module with norm 1, in QR-standard-form.

Let M ′ be the module spanned by the output of Real-GR on input an arbitrary
pseudo-basis of M . Then the distribution of M ′ is identical to the distribution
QRSF-2-Mod(Ideal-GR(Q, γ, J1, J2, r)).

Further, if γ > d and U is the densest rank-1 submodule of M , then, with
probability 1 − 2−Ω(d), we have γ(M ′) > 1 and the densest rank-1 submodule

of M ′ is det(D)
−1/(2d) ·D · U , where D is the Gaussian matrix sampled during

the execution of Real-GR.

5.3 On the Ideal-GR ◦ Ideal-CR Distribution

We define a few probability distributions over the inputs of QRSF-2-Mod, which
we will use to show that the operations performed on the available arbitrary
pseudo-basis randomize the rank-2 module, so that the input module is “forgot-
ten” in the output module distribution while at the same time controlling the
evolution of the densest rank-1 submodule.

Definition 5.10. Let B ≥ 2 and γ > 0. We consider the following random
variables, which are assumed independent (unless stated otherwise).

• Q uniform in O2(KR);
• b ∈ KR distributed as DKR(0, 1);
• (a, c) ∈ K2

R distributed as χKR ×DKR(0, 1) conditioned on the event that for
all i ∈ [d] we have |σi(a · c)| ≥ 1/d; we define γ′ = γ · N (c/a)1/(2d)/B1/(2d);
• p uniform among prime ideals of norms ≤ B;
• I1, I2, J uniform in I1 (the set of norm-1 ideals);
• ζ ∈ E sampled from the centered normal law of standard deviation d−3/2,
conditioned on ∥ζ∥ ≤ 1/d;

26

• u uniform in {x ∈ KR,∀i ∈ [d] : |σi(x)| = 1};
• r′ uniform in KR mod γ′−2 · I1I

−1
2 .

Let J1, J2 ∈ I1 and r ∈ KR arbitrary. Let x be as in Step 5 of Ideal-CRB,
when given (Q, γ, J1, J2, r) as input and with the variable p of Ideal-CRB being
the random variable above. In order to simplify the notations, we define the
random variable:

I(J1, J2) = N
1
d

(c
a

)
· au

c exp(ζ)
· J1J2−1J

p

N 1
d (p)

∈ I1.

Let r′′(J1, J2) be uniformly distributed in KR mod γ′−2 · I(J1, J2) · J−1.
We define the following distributions of the form (Q̃, γ̃, Ĩ1, Ĩ2, r̃), where the

random variables r̃ is defined modulo γ̃−2 · Ĩ1 · Ĩ2
−1

:

Drand
B,γ :

(
Q, γ

N
(
c
a

) 1
2d

N (p)
1
2d

,
a

N 1
d (a)

J1J2
−1J

p

N 1
d (p)

,
c

N 1
d (c)

· J,
b+ a(r + x)

c

)
,

D
(1)
B,γ :

(
Q, γ

N
(
c
a

) 1
2d

N (p)
1
2d

, N 1
d

(c
a

)
· au
c
· J1J2−1J

p

N 1
d (p)

, J, u
b+ a(r + x)

c

)
,

D
(2)
B,γ :

(
Q, γ ·

N
(
c
a

) 1
2d

N (p)
1
2d

, I(J1, J2), J, u
b+ a(r + x)

c exp(ζ)

)
,

D
(3)
B,γ :

(
Q, γ′, I(J1, J2), J,

B
1
d

N 1
d (p)

· u
b+ a(r + x)

c exp(ζ)

)
,

D
(4)
B,γ : (Q, γ′, I(J1, J2), J, r′′(J1, J2)),

Dtarget
B,γ : (Q, γ′, I1, I2, r′).

Note that Drand
B,γ is the distribution obtained by composing Ideal-CRB (Al-

gorithm 5.3) and Ideal-GR (Algorithm 5.5), on an input of the form (Q0, γ, J1,
J2, r) with (γ, J1, J2, r) as above and Q0 ∈ O2(KR) arbitrary. These algorithms
significantly randomize the QR-standard form, but it still depends on (J1, J2, r).
On the other hand, the distribution Dtarget

B,γ is independent of (J1, J2, r). Our goal
is to show that these two distributions are similar, in the sense that any event
that holds with some probability ε ≥ 2−o(d) for one holds with probability εO(1)

for the other one.
For this purpose, we consider the intermediate (hybrid) distributions of Defi-

nition 5.10. To help the reader, we use two colours in the definition of the succes-
sive distributions. The entries of the tuples that are in red are those that change
compared to the previous distribution. The variables with blue background are
those that depend on (J1, J2, r). The relations between the distributions of Defi-
nition 5.10 are pictorially summarized in Figure 3. The lemmas formally stating
these relations and their proofs are provided in the full version of this paper.

Some of the relations require B ≥ (dd∆K)Ω(1) or γ ≥ d1/4 ·∆1/(2d)
K .

27

Drand
B,γ = D

(1)
B,γ

RD2=O(1)−−−−−−−→ D
(2)
B,γ

RD2=O(1)−−−−−−−→ D
(3)
B,γ

SD=2−Ω(d)

←−−−−−−→ D
(4)
B,γ

SD=2−Ω(d)

←−−−−−−→ Dtarget
B,γ

Fig. 3. The relations between the distributions of Definition 5.10, proved in the

full version of this paper. Here D
RD2=O(1)−−−−−−−→ D′ means RD(D′ ∥ D) = O(1) and

D
SD=2−Ω(d)

−−−−−−−−→ D′ means SD(D,D′) = 2−Ω(d).

5.4 Full Module Randomization

The full randomization algorithm RandomizeB (Algorithm 5.6) is the composi-
tion of algorithms Real-CR and Real-GR.

Algorithm 5.6 (Real) Full Randomization: RandomizeB

Input: A pseudo-basis (B, I) of a norm-1 module M ⊂ K2
R.

1: Apply Real-CRB,(dd∆K)Ω(1) to (B, I) and let ((B◦, I◦), p, q) be the output;

2: Apply Real-GR to (B◦, I◦) and let ((B′, I′),D) be the output;
3: Return ((B′, I′), aux) with aux = (p, q,D).

Let ((B′, I′), aux) be an output of RandomizeB , and U ′ be a rank-1 submodule
of the module spanned by (B′, I′). We define:

Recover(U ′, aux = (p, q, D)) = (N (p) · det(D))
1
2d ·D−1 · U ′ · q−1p−1.

With these choices of algorithms RandomizeB and Recover, we can finally
prove Theorem 5.2. For this purpose, we show that the module distribution that
is output from the randomization algorithm (on an arbitrary input) and the
distribution Dmodule

B,γ from Definition 5.1 are close in the mixed “SD plus RD”
sense of Figure 3. The full proof is available in the full version of this work.

6 Random Self-Reducibility of Module uSVP

The main result of this section is the following worst-case to average-case reduc-
tion for uSVPmod.

Theorem 6.1 (ERH). There exist γ0 = (d∆
1/d
K)O(1) and a family of distribu-

tions (DuSVP
γ)γ≥γ0

such that the following properties hold for any γ ≥ γ0:

• if γ ≤ (2d∆
1/d
K)O(1), then DuSVP

γ can be sampled from in time polynomial
in log∆K ;
• with probability 1 − 2−Ω(d), a sample from DuSVP

γ is a pseudo-basis of a

rank-2 module M ⊆ O2
K with gap γ(M) ≥ γ ·

√
d∆K

1/(2d); in particular,
these are γ-uSVP instances;

• there exists a Karp reduction from γ′-wc-uSVPmod to (DuSVP
γ , γ)-uSVPmod,

with γ′ = γ · (d ·∆1/d
K)O(1); the reduction runs in time polynomial in log∆K

and the input bitsize.

28

Note that the restriction on γ for the first condition is very mild, as in this
parameter range, uSVPmod can be solved in polynomial time using the LLL
algorithm [LLL82]. We now proceed in two steps. We first define and study the
distribution DuSVP, and then prove Theorem 6.1.

6.1 A Distribution over uSVP Instances

Let γ > 1. The distribution DuSVP
γ is defined as follows:

• sample a module from Dmodule
B,γ′ along with a pseudo-basis (B, I), with B =

(dd∆K)O(1) and γ′ = 2γ ·
√
d∆K

1/(2d) ·
√
dB1/d (see Definition 5.1) and using

Ideal-Sample to sample from I1;
• call DualRoundς,β,ε(B, I) with ς = (2d∆

1/d
K)O(1), β = 2 and ε = 1/(2d)3/2,

and let Y denote the output;
• return HNF(Y ·B, I).

The first two statements of Theorem 6.1 are implied by the following lemmas,
whose proofs can be found in the full version of this work.

Lemma 6.2. A sample M from Dmodule
B,γ′ has gap γ(M) ≥ γ′/(

√
dB1/d), with

probability 1− 2−Ω(d).

Using the latter result and Lemma 2.11, we obtain that the assumptions of
Lemma 3.5 are satisfied. This implies that the above sampling algorithm runs in
time polynomial in log∆K . By Lemmas 3.5 and 3.6, the output is a pseudo-basis
of a rank-2 module in O2

K .

Lemma 6.3. Let γ > 2. Let (B, I) be a pseudo-basis of a rank-2 module M with
gap γ. Let Y denote the output of DualRoundς,β,ε(B, I) with ς = γ · (2d)2d+3,
β = 2 and ε = 1/(2d)3/2. Then the module spanned by (Y ·B, I) has gap ≥ γ/2.

The definition of DuSVP
γ and Lemmas 6.2 and 6.3 implies that the modules

whose pseudo-basis are sampled from DuSVP
γ have gap ≥ γ ·

√
d∆K

1/(2d), and
hence are γ-uSVP instances with overwhelming probability.

6.2 Reducing Worst-Case Instances to DuSVP Instances

We first introduce intermediate problems, that will allow us to split the reduction
into several steps.

Definition 6.4. Let γ > 1. A γ-uSVPN instance consists in a pseudo-basis
(B, I) of a rank-2 module M ⊂ K2 such that γ(M) ≥ γ.

Let D a distribution over γ-uSVPN instances. The (D, γ)-uSVPNmod prob-
lem asks, given as input a sample (B, I) from D, to recover a densest rank-1
submodule of the module spanned by (B, I).

The worst-case variant γ-wc-uSVPNmod asks to solve this problem for any γ-
uSVPN instance.

The γ≈-wc-uSVPNmod variant is the restriction of γ-wc-uSVPNmod to the γ-
uSVPN instances whose spanned modules M satisfy γ(M) ∈ [γ, γ · (1 + 1/d)].

29

Note that worst-case wc-uSVPmod reduces to wc-uSVPNmod as the existence
of a short non-zero vector implies the one of a dense rank-1 module. Similarly,

uSVPNmod reduces to uSVPmod with a loss of a (
√
d∆

1/d
K) factor in the parameters,

thanks to Minkoswki’s theorem. To prove the third statement of Theorem 6.1,
it hence suffices to reduce wc-uSVPNmod to uSVPNmod for distribution DuSVP

γ . The
result follows from Lemmas 6.5 and 6.7.

The first lemma states that to solve γ-wc-uSVPNmod (in which the gap is only
bounded from below), then it suffices to solve γ≈-wc-uSVPNmod (in which the gap
is almost known). It relies on sparsification.

Lemma 6.5 (ERH). Let γ, γ′ > 1 satisfying γ′ ≥ 2 log(∆K)
O(1/d) ·γ. Then γ′-

wc-uSVPNmod reduces to γ≈-wc-uSVPNmod. The reduction runs in time polynomial
in (log∆K)O(1) and its input bitsize and succeeds with probability Ω(1/(d2 +
log∆K)).

Using the Rényi divergence, it is possible to relate the success probability of
an algorithm towards solving uSVPNmod for samples from DuSVP

γ with the same

probability for DuSVP
γ′ , when γ and γ′ are sufficiently close.

Lemma 6.6. Let γ, γ′, γ′′ > 1 with γ′ ∈ γ · [1, 1+1/d] and γ′′ = γ/(d∆
1/d
K)O(1).

Then any algorithm that solves (DuSVP
γ , γ′′)-uSVPNmod with probability ε also

solves (DuSVP
γ′ , γ′′)-uSVPNmod with probability Ω(ε2).

Equipped with the latter result, we are now able to state the worst-case to
average case component of the reduction.

Lemma 6.7 (ERH). Let γ, γ′, γ′′ > 1 with γ′ = γ · (d∆1/d
K)O(1) and γ′′ =

γ/(d∆
1/d
K)O(1) . Then there is a reduction from γ≈-wc-uSVPNmod to (DuSVP

γ′ , γ′′)-

uSVPNmod. The reduction runs in time polynomial in log∆K and the input bitsize,
and if the (DuSVP

γ′ , γ′′)-uSVPNmod oracle succeeds with probability ε ≥ 2−o(d), then

the reduction succeeds with probability εO(1).

Acknowledgments. The authors thank Koen de Boer, Guillaume Hanrot and
Aurel Page for insightful discussions. Joël Felderhoff is funded by the Direction
Générale de l’Armement (Pôle de Recherche CYBER). The authors were sup-
ported by the CHARM ANR-NSF grant (ANR-21-CE94-0003) and by the PEPR
quantique France 2030 programme (ANR-22-PETQ-0008). The last author was
supported in part by the European Union Horizon 2020 Research and Innovation
Program Grant 780701.

References

AD17. M. R. Albrecht and A. Deo. Large Modulus Ring-LWE ≥ Module-LWE.
In ASIACRYPT, 2017.

30

ALNS20. D. Aggarwal, J. Li, P. Q. Nguyen, and N. Stephens-Davidowitz. Slide
reduction, revisited - filling the gaps in SVP approximation. In CRYPTO,
2020.

BFH17. J.-F. Biasse, C. Fieker, and T. Hofmann. On the computation of the HNF
of a module over the ring of integers of a number field. J Symb Comput,
2017.

BP91. W. Bosma and M. Pohst. Computations with finitely generated modules
over Dedekind domains. In ISSAC, 1991.

BS96. E. Bach and J. O. Shallit. Algorithmic Number Theory: Efficient Algo-
rithms. 1996.

BSW16. S. Bai, D. Stehlé, and W. Wen. Improved reduction from the bounded dis-
tance decoding problem to the unique shortest vector problem in lattices.
In ICALP, 2016.

CDH+20. C. Chen, O. Danba, J. Hoffstein, A. Hülsing, J. Rijneveld, T. Saito, J. M.
Schanck, P. Schwabe, W. Whyte, K. Xagawa, T. Yamakawa, and Z. Zhang.
NTRU: A submission to the NIST post-quantum standardization effort.
Available at https://www.ntru.org/, 2020.

CDW21. R. Cramer, L. Ducas, and B. Wesolowski. Mildly short vectors in cyclo-
tomic ideal lattices in quantum polynomial time. J ACM, 2021.

Coh96. H. Cohen. Hermite and Smith normal form algorithms over Dedekind
domains. Math of Comput, 1996.

CS97. D. Coppersmith and A. Shamir. Lattice attacks on NTRU. In EURO-
CRYPT, 1997.

dBDPW20. K. de Boer, L. Ducas, A. Pellet-Mary, and B. Wesolowski. Random self-
reducibility of Ideal-SVP via Arakelov random walks. In CRYPTO, 2020.

GN08. N. Gama and P. Q. Nguyen. Finding short lattice vectors within Mordell’s
inequality. In STOC, 2008.

GPV08. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, 2008.

HPS98. J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: a ring based public
key cryptosystem. In ANTS, 1998.

HPS11. G. Hanrot, X. Pujol, and D. Stehlé. Analyzing blockwise lattice algorithms
using dynamical systems. In CRYPTO, 2011.

KF17. P. Kirchner and P.-A. Fouque. Revisiting lattice attacks on overstretched
NTRU parameters. In EUROCRYPT, 2017.

Kho06. S. Khot. Hardness of approximating the shortest vector problem in high
ℓp norms. J Comput Sys Sci, 2006.

LLL82. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials
with rational coefficients. Math Ann, 1982.

LPR10. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning
with errors over rings. In EUROCRYPT, 2010.

LPSW19. C. Lee, A. Pellet-Mary, D. Stehlé, and A. Wallet. An LLL algorithm for
module lattices. In ASIACRYPT, 2019.

LS15. A. Langlois and D. Stehlé. Worst-case to average-case reductions for mod-
ule lattices. Design Code Cryptogr, 2015.

Pei16. C. Peikert. A decade of lattice cryptography. Found. Trends Theor. Com-
put. Sci., 2016.

PHS19. A. Pellet-Mary, G. Hanrot, and D. Stehlé. Approx-SVP in ideal lattices
with pre-processing. In EUROCRYPT, 2019.

PS21. A. Pellet-Mary and D. Stehlé. On the hardness of the NTRU problem. In
ASIACRYPT, 2021.

31

https://www.ntru.org/

Sch87. C.-P. Schnorr. A hierarchy of polynomial lattice basis reduction algo-
rithms. Theor Comput Sci, 1987.

Sit10. B. D. Sittinger. The probability that random algebraic integers are rela-
tively r-prime. J Number Theory, 2010.

SS13. D. Stehlé and R. Steinfeld. Making NTRUEncrypt and NTRUSign as
secure as standard worst-case problems over ideal lattices. Available at
https://eprint.iacr.org/2013/004, 2013.

SSTX09. D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa. Efficient public key
encryption based on ideal lattices. In ASIACRYPT, 2009.

32

https://eprint.iacr.org/2013/004

	On Module Unique-SVP and NTRU
	Introduction
	Preliminaries
	Number Fields
	Ideals
	Modules
	Rank-2 Modules with a Gap
	Algorithmic Problems

	New Tools on Module Lattices
	Module Sparsification
	Module Rounding

	From uSVP to NTRU
	Pre-conditioning the uSVP Instance
	Transforming a uSVP Instance into an NTRU Instance
	Lifting back Short Vectors and Dense Submodules

	Randomization of Rank-2 Modules with Gaps
	Coefficient Randomization
	Geometric Randomization
	On the Ideal-GR Ideal-CR Distribution
	Full Module Randomization

	Random Self-Reducibility of Module uSVP
	A Distribution over uSVP Instances
	Reducing Worst-Case Instances to DuSVP Instances

